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1 Supplementary Methods: Task instruction

Participants first played a demo to familiarize themselves with navigating a simple environment with
a different structure than that of the main experiment. During the demo, they were briefed on how
the action selection worked and how they could transition between images by selecting different actions.
Then, they were given a written instruction with the following information:

1. ‘Different from the demo, at the beginning of this experiment, I will not show you all the images
that you will see in the experiment.’

2. ‘We cannot tell whether the experiment you are going to do is deterministic or stochastic.’
3. ‘There are three types of rewards in this experiment:
e The image of a 10-Euro bill: every time you find this image, you will receive 2 CHF
e The image of a 50-Euro bill: every time you find this image, you will receive 3 CHF
e The image of a 100-Euro bill: every time you find this image, you will receive 4 CHF’

4. ‘During the experiment, you need to find the rewards 5 times. You will be paid based on which
rewards you find. For example, if you find the ‘10 Euro bill’ twice, ‘50 Euro bill’ once, and ‘100
Euro bill’ twice, you will be paid 2x2 + 3x1 4+ 4x2 = 15 CHF.’



2 Supplementary Methods: Computational modeling

2.1 Intrinsically motivated RL as a computational model of human behavior

We used ideas from non-parametric Bayesian inference [1] to design an intrinsically motivated RL algo-
rithm for environments where the total number of states is unknown. We present the final results here,
the derivations and some theoretical analysis in Section 4, and the pseudo-code in Section 5. A summary
of the mathematical notation is provided in Table 1.

We indicate the sequence of actions and states until time ¢ by s1.; and a1.;, respectively, and define the
set of all known states at time ¢ as

S = {s 3t e{l,..,t} st s= st/} U{Go,G1, G}, (S1)

where G;s represent our three different goal states—Go corresponds to the 2 CHF goal, Gy to the 3 CHF
goal, and G5 to the 4 CHF goal. Note that {Go, el Gg} represents the images of the goal states and not
their locations G*, G1, and Gs; the assignment of images to locations is unknown to the model. Hence,
starting with ¢ = 0, the algorithm incorporates information about the existence of multiple goal states in
the environment. In a more general setting, {éo, G, @2} should be replaced by the set of all states whose
images were shown to participants before the experiment. After a transition to state s;1 1 = s resulting
from taking action a; = a € {left, middle, right} (i.e., representing disk positions in Figure 1C) at state
s; = s, the reward functions Reyxs and Rin; evaluate the reward values rext i+1 and 7ing ¢4+1. We define the
extrinsic reward function R.y; as

Rext(sa a — S/) = 68/7é0 + ri((ss’,él + TSCSS/,GW (82)

where § is the Kronecker delta function, and we assume (without loss of generality) a subjective extrinsic
reward value of 1 for Gy (2 CHF goal) and subjective extrinsic reward values of r; > 1land 75 > 1
for G1 and G, respectively. The prior information of human participants about the difference in the
monetary reward values of different goal states can be modeled in simulated RL agents by varying r] and
3 (resulting in the exploratory component of reward-seeking via optimistic initialization; see Section 2.2).
We discuss Rints in Section 2.3.

As a general choice for the RL algorithm in Figure 4A, we considered a hybrid of model-based and
model-free policy [2-5]. The model-free (MF) component uses the sequence of states si., actions
a1:¢, extrinsic rewards rexs 1.4, and intrinsic rewards rmt 1+ (in the two parallel branches in Figure 4A)

and estimates the extrinsic and intrinsic (J-values QMF ext Al nd QMF int> Tespectively. Traditionally, MF
algorithms do not need knowledge of the total number of states [6} thus, the MF component of our
algorithm remains similar to that of previous studies [2, 7]: At the beginning of episode 1, Q-values are
initialized at Ql(\%, oxt and Ql(\EJ[)F,int' Then, the estimates are updated recursively after each new observation.
After the transition (s, at) — s¢+1, the agent computes extrinsic and intrinsic reward prediction errors
RPFEext t+1 and RP FEiyg 141, respectively:

RPEext,t+1 = Text,t+1 T ’Yextvl\%l):‘7ext(5t+l) - Q&)F,ext(St, at) (83)

RPFEint 41 = Tint,t+1 + ’Vintvl\(/[tl):‘7int(5t+1) - Ql(\lj[)p7int(5t7 at),

where Yext and 7ing € [0, 1) are the discount factors for extrinsic and intrinsic reward seeking, respectively,

t t t ¢ .
and Vl\(/[%7ext(st+1) = max,/ Ql(\/I)F,ext(StJFl’ a’) and Vl\(/[%vint(stﬂ) = max,/ Ql(\/[)Rint(sHl,a’) are the extrinsic
and intrinsic V-values of the state s;y1, respectively. We used two separate eligibility traces [6, 7] for the

update of Q-values, one for extrinsic reward eé)zt and one for intrinsic reward e’} both initialized at zero

int’
at the beginning of each episode. The update rules for the eligibility traces after taking action a; at state



Description

G*

Rext(s,a — &)

Image-label of goal state i (2,3,4 CHF).
Set of known states up to t, including G;s.
Actual goal state discovered in Episode 1.

Extrinsic reward function.

Equation S1)
Equation S1)
Alg. 1)

Equation S2)

Rinet(s,a — s')

(t)
QMB/MF, ext/int

(t)
VMB/MF, ext/int

RPEext/int,t
(*)

6ext/int

é(t+1)

s,a,s’

pO(s'|5,a) = 0% (s")

Intrinsic reward function.

State-action pair values.

State-values.

Reward prediction errors.

Eligibility traces.

(Leaky) count of transitions (s,a) — .

Estimated transition probability.

Empirical frequency (relative familiarity) of s;
same as Py in the main text.

(

(

(

(

(Sec. 2.3)

(Equation S5; Alg. 4)
(Equation S3; Alg. 4)
(Equation S3)
(Equation S4)
(Equation S6)
(Equation S7)
(Equation S16)

m(als) Softmax policy combining all values. Equation S8)

ry & ri Subjective extrinsic values for Gy & Go. Equation S2)

Yext & Vint Discount factors. Equation S3; Alg. 4)
Aext & Aint Decay factor of eligibility traces. Equation S4)

P Learning rate for MF updates.

K Leak parameter for transition counts.

€known & €new
TPS,ext/int
,3(1)

MB/MF, ext/int

(2,7)
BMB/MF,ext/int

b(a)

Prior counts for the known & new states.
Number of prioritized sweeping iterations.
Policy inverse-temperatures in Episode 1.

Policy inverse-temperatures in Episodes 2-5,
depending on the reward value r of G*.

Action-bias term, with b(left) = 0.

(

(

(

(

(Equation S5)
(Equation S6)
(Equation S7)
(Alg. 4)
(Equation S8; Alg. 1)
(

Equation S8; Alg. 1)

(Equation S8)

St is

Table 1: Main notation and definitions.

1 if s=s,a=a
(t+1) _ ty t
eext (37 a) -

Yext Aext 6((93 (s,a) otherwise

1 if s=s;,a=a
(t+1) B ts t
eint (57 a) -

t .
'Vint)\intei(ni(s, a) otherwise,

where 7Yext and 7in are the discount factors defined above, and Aext and Aiyg € [0, 1] are the decay factors



of the eligibility traces for the extrinsic and intrinsic rewards, respectively. The update rule for the MF
Q-values is then given by
AQ\H" (5.0) = pecs1(s, ) RPEry, (35)

(t+1) (t+1)

where e, is the eligibility trace (i.e., either eq ' or e;; ), RPE1 is the reward prediction error (i.e.,

either RPFEext +1 or RPEin¢41), and p € [0, 1) is the learning rate.

In parallel, the model-based (MB) component builds a world-model that summarizes the structure of
the environment by estimating the probability p(*)(s'|s, a) of the transition (s,a) — s’. We assumed that
the agent takes a non-parametric approach: We used Dirichlet Processes to define the agent’s estimate
p®(s'|s,a) as the expected probability of the transition (s,a) — s', conditioned on a;.; and s.;. While the
derivation of this Bayesian estimate requires a number of technical steps (presented in Section 4.1), the
final estimate of p()(s'|s, @) has a straightforward interpretation and a simple implementation. Specifically,
to make the Bayesian estimate, the agent only needs to count the transition (s,a) — s’ recursively, using
a leaky integrator [8, 9]:

C

$,a,s

(S6)

s,a,s’ T

~(t) :
A(t+1) {Kcs,a,s/ + 58’75t+1 ifs=s,a=a
t

, otherwise,

0)

where ¢ is the Kronecker delta function, CN’S( ws = 0,and k € [0,1] is the leak parameter and accounts for
imperfect, forgetful model-building in humans; see Section 3.4 for an alternative approach. If k = 1, then
C’it:;,) is the exact count of transition (s,a) — §'. For k < 1, we refer to Cit:;,) as a leaky count. These

leaky counts are used to estimate the transition probabilities

€known +é(t)

s,a,s’

ety if s eSS,
p(t) (3/|87 a) — 6ncw+€known|8 |+Cs,a (S?)

€new 1 I —
p if §= Snew
€new +€known |S(t) |+Cg2 ’

where C‘§2 => g C’iti ¢ 1s the leaky count of taking action a at state s, €xnown € R* is a free parameter
for the prior pseudo-count of transition to a known state (i.e., states in S(t)), and epew € RT is a free
parameter for the prior pseudo-count of transition to a new state (i.e., states not in S(t)). Choosing
€new = 0 is equivalent to assuming there is no unknown state in the environment, for which the estimate
in Equation S7 is reduced to the classic Bayesian estimate of transition probabilities in bounded discrete

environments [2, 3]. See Section 4 for derivations and further interpretation.

The transition probabilities are then used in a novel variant of prioritized sweeping [6, 10] adapted to
deal with an unknown number of states. The prioritized sweeping algorithm was chosen primarily for
practical reasons and implementation efficiency. The algorithm evaluates a pair of Q-values, i.e., Ql(\?B oxt

for extrinsic and Q&)B ¢ for intrinsic rewards, by iterating over the corresponding Bellman equations [6]
for Tpgext and Tpgint iterations, respectively. See Algorithm 4 for details.

Finally, we considered a softmax action policy [6]: The probability of taking action a in state s at
time ¢ is

Wt(a‘s) X €xXp BMB,exth(\f[)B,ext(Sa a) + 5MF,extQ1(\f[)F,ext(sv CL) + (S )

8

BBt Qi i (5, @)+ Butrine Qe o (8, @) + b(a)

where SuvBext € RY, Burext € RY, Bupint € RY, and Bypint € RT are free parameters (i.e., inverse
temperature parameters of the softmax policy) expressing the contribution of each @-value to action-
selection, and b(a) captures the general bias of the agent for taking the particular action a (e.g., left grey
disk in Figure 1C) independently of the state s. Without loss of generality, we assumed b(left) = 0 and



considered b(middle) € R and b(right) € R as free parameters.

In general, the contribution of seeking extrinsic reward and seeking intrinsic reward and the MB and MF
branches to action selection depends on different factors, including time passed since the beginning of the
experiment [4, 11], cognitive load [12], and whether the location of reward is known [2]. Here, we make
a simplistic assumption that these contributions (expressed as the 4 inverse temperature parameters)
depend only on reward optimism:

e Episode 1: Before finding the goal state, we considered SuBext = 61(\/}1)3 oxt) PMFext = Bl(v}%“ oxt?
BMB.int = 61(\/}])3 int? and BuvF,int = Bﬁ% it s four independent free parameters.

e Episodes 2-5: After finding the goal G*, we considered SuBext = ﬁl\ié)ext, BMF,ext = ﬁg)ext’

BMB int = ﬁMB’int, and AMF int = BMF int» Where 7 is either 2 CHF, 3 CHF, or 4CHF, resulting in
3 x 4 = 12 free parameters.

Summary of free parameters: The full algorithm has 14 main parameters (capturing initialization
and learning dynamics)

main
( ) = {Tl ) T27 QMF ext? QMF Jint» Yext, Vint; Aexts Aints 05 K, €new €known TPS,extu TPS,int}a (89)

16 inverse temperature parameters (capturing the randomness in decision-making and the balance of
seeking intrinsic versus extrinsic rewards)

2,r 2,r
- {'BMB Lext? ﬁMB Jint» BMF ext? BMF mt} U {BMB ,ext? ﬁMB ,int> BIE/IF ,ext? 'BIE/IF mt}""e{z 3,4CHF}» (810)
and 2 bias parameters
®®) = {p(middle), b(right)}. (S11)
We denote the set of all parameters by
d = {cp(main), o, q)(b)} (S12)

We note that not all these parameters were fitted for all algorithms (see Section 2.3).

2.2 Informing RL agents of different goal states

Human participants were informed that the environment had different goal states with different monetary
reward values. This information was intended to incentivize exploration after finding the likely goal
state G* at the end of episode 1. We used three mechanisms to incorporate this information into the RL
algorithm described above (Section 2.1). Our main focus throughout the paper was on the first mechanism
that assigns different values to SuMBext, OMF exts OMB.int, and Suvrint (see Equation S8) depending on the
reward value of G*; this makes the relative importance of intrinsic rewards explicitly depend on
the difference between the reward value of the discovered goal rg+ and the known reward values r] and
r3 of the other goal states (Equation S2).

The other two mechanisms are the model-based optimistic initialization and model-free optimistic
initialization. Exploration in the nIR algorithm in Figure 4 is solely directed via these mechanisms (see
Section 2.3). In this section, we discuss how these mechanisms balance exploration versus exploitation.

Model-based optimistic initialization. MB optimistic initialization is an explicit approach to model
reward-optimism through designing the world-model. The MB branch finds the extrinsic ()-values Ql(\?B oxt



by (approximately) solving the Bellman equations

QI(\jI)B,ext(Sv a) = 7&%(57 @) + Yext Zp(t) (s'ls, a) o Qf\?ﬁext(s/a a'), (S13)

s

where p(t)(s’ |s,a) is the estimated transition probability in Equation S7, and

Rea(s.a) = 3 p(sls.0) Rext(s,a — )
s’ (814)
= p"(Gols,a) +rip!(Gi|s, a) + r5p") (Gals, a)
is the average immediate extrinsic reward expected to be collected by taking action a in state s (see
Equation S2). We note that in Equation S14, we used the fact that the goal states are known from the

beginning, i.e., G; € SO for i € {1,2,3}. Hence, the knowledge of the existence of three different goal
states with three different rewards has an explicit influence on the MB branch.

To intuitively understand this influence, we first focus on episode 1. Because no transitions to any of the
goal states is experienced during episode 1, we have

6known(1 + TT + T;)

€new + E1(nox7vr1|8(t)| + CN’s(fa)L .

R (s,0) = (S15)

Rg()t(s, a) is closely linked to (approximately) Bayes-optimal exploration bonuses in the RL theory [13]
and has two important properties. First, Rg()t(s,a) is an increasing function of €gnown. This implies

that the expected reward of a transition during episode 1 increases by increasing the prior probability
of transition to states in S®). This is a direct consequence of our Bayesian approach to estimating the

world-model. Second, Rg()t(s, a) is a decreasing function of CN’S(t()l This implies that the expected reward

of a state-action pair decreases by experience. Importantly, Rg()t(s, a) converges to 0 as C‘S(il — 00, which
makes a link between exploration driven by the MB optimistic initialization and exploration driven by

information gain (see Section 4.3).

During episodes 2-5, the exact theoretical analysis of the MB optimistic initialization is rather complex.
However, using a few approximation steps for episode 2, we can find a condition for whether the MB
extrinsic (-values show a preference for exploring or leaving the stochastic part (Section 4.5). The
condition involves a comparison between the discounted reward value of the discovered goal state 72 7
and an optimistic estimate of a reward-to-be-found in the stochastic part Rgt)o .- The estimate Rgt)och.
depends on 77, 75, Yext €knowns |S () |, and the average leaky count C' (1) of state-action pairs in the stochastic
part (Section 4.5). We show that if rg+ < r3, then increasing 735 would eventually result in a preference
for staying in the stochastic part: If the reward value of a goal state is much greater than the value of the
discovered goal state, then the agent prefers to keep exploring the stochastic part. However, for any value
of r5 and rg«, increasing C® would eventually result in a preference for leaving the stochastic part and
going towards the already discovered goal: Agents will eventually give up exploration after a sufficiently
long and unsuccessful exploration phase. This is another qualitative link between exploration based on
the MB optimistic initialization and exploration driven by information gain (see Section 4.3).

Model-free optimistic initialization. Unlike the MB branch, the MF branch does not explicitly
know about the existence of different goal states and their values. However, the initial value Ql(\% ext Of
the MF extrinsic @-values quantifies an expectation of the reward values in the environment before any
interaction with the environment.

During episode 1, no extrinsic reward is received by the agent; hence, for a small enough learning rate



p and an optimistic initialization Ql(\z)F oxt > 0, the extrinsic reward prediction errors are always negative

(Equation S3). As a result, Q&)F&Xt(s,a) decreases as an agent keeps taking action a in state s, which
motivates the agent to try new actions. This is a well-known mechanism for directed exploration in
the machine learning community [6]. Similar to the MB optimistic initialization, the effect of the MF
optimistic initialization fades out over time—which makes them both similar to exploration driven by
information gain (see Section 4.3).

During episodes 2-5, the exact theoretical analysis of the MF optimistic initialization is complex and
dependent on an agent’s exact trajectory (because of the eligibility traces). However, whether the MF
extrinsic @)-values show a preference for exploring or leaving the stochastic part essentially depends on
the reward value of the discovered goal state rg« and the initialization value Ql(\(/)[}?,ext'

To gain some insights, we consider an example: If an agent, starting at s1, takes the perfect trajectory
of s1 = s2 = s3 — s4 — sb — s6 — G™* in episode 1, then, given a unit decay factor of the eligibility
traces (i.e., Aext = 1), it is easy to see that, in the 1st visit of state 4 in episode 2, the agent prefers the
stochastic/bad action over the progressing action if rg« < é(l — Yext) (1 + Yext + 'Ygxt)Ql(\g)F,ext- This
implies that, even though the MF branch is not explicitly aware of different goal states and their reward
values, it can still describe a type of reward optimism through the initialization of Q}-values.

2.3 The four algorithms compared in the main text

We considered four hypotheses for how humans explore the environment to search for the goal state,
including the most representative exploration strategies in RL [14-16]: (i) seeking novelty, (ii) seeking
information gain, (iii) seeking surprise, and (iv) exploration with no intrinsic reward. We formalized the
four hypotheses in our framework by using different types of the intrinsic reward function R, that maps
a transition (s,a) — s’ to an intrinsic reward value ripg+1 = Rint¢(St, @t — Se41)-

2.3.1 Novelty-seeking

For an agent seeking novelty (red in Figure 4), we defined the intrinsic reward function as

Rinte(s,a — ') = —logp!{(s"), (S16)
®) g ey th G :
where py (s") = 1+|$(t)|+283 Z s the state frequency with C,” the leaky count of encounters of state s

up to time ¢ (similar to Equation S6): C’SH) = xCWY + 6 5, With C'S)) = 0; the empirical frequency pgf)

S/
is denoted by p; in the main text, for the sake of simplifying the notation.
With this definition, which generalizes earlier works [2] to the case where the number of states is unknown,
the least novel states are those that have been encountered most often (i.e., with the highest CN'S(f))

Moreover, novelty is at its highest value for the unobserved states as we have CN'S) = 0 for any unobserved
state s’ ¢ S®). Similar intrinsic rewards have been used in machine learning [17, 18].

To dissociate the effect of exploration by novelty-seeking from optimistic initialization in episode 1, we
considered BI(\/}%,ext = ﬂl(\/}l)?),ext = 0 and Ql(\%’ext = 0; see Section 4.6 for further discussion. Moreover,
we put Tpsext = Tpsint = 100 (i.e., almost twice the total number of states) to decrease the number
of parameters, based on the results of [2] showing the negligible importance of fitting this parameter.
Hence, the novelty-seeking algorithm had a total of 27 parameters (11 main parameters + 14 inverse
temperature parameters + 2 biases).



2.3.2 Information-gain-seeking

For an agent seeking information gain (green in Figure 4), we defined the intrinsic reward function as
Rinta(s,0 = ') = Dict,[p (|3, )] [p**D (|5, 0)|, (817)

where Dk, is the Kullback-Leibler divergence [19], and p*1) is the updated world-model upon observing
(s,a) — s’. The dots in Equation S17 denote the dummy variable over which we integrate to evaluate the
Kullback-Leibler divergence. Note that if s’ ¢ S (1) then there are some technical problems in the naive
computation of Dk —since p® and p*t1) have different supports. We dealt with these problems using a
more fundamental definition of Dky, using the Radon—-Nikodym derivative; see Section 4.3 for derivations
and see [20] for an alternative heuristic solution. Note that the information gain in Equation S17 has
also been interpreted as a measure of surprise (called ‘Postdictive surprise’ [21]), but it has a behavior
radically different from that of the Shannon surprise introduced below for our surprise-seeking agents
(Equation S18)—see [22] for an elaborate treatment of the topic. Importantly, the expected (integrated
over s') information gain corresponding to a state-action pair (s,a) converges to 0 as 08(2 — 00 (see
Section 4.3 for the proof). Similar intrinsic rewards have been used in machine learning [20, 23-25].

Similarly to the case of novelty-seeking, we considered ﬁl(\/}%,ext = Bl(\/}l)B, ext = 0, Ql(\%’ ext = 0, and Tpgext =
Tpsint = 100; see Section 4.6. Hence, the algorithm seeking information gain also had a total of 27
parameters (11 main parameters + 14 inverse temperature parameters + 2 biases).

2.3.3 Surprise-seeking

For an agent seeking surprise (orange in Figure 4), we defined the intrinsic reward function as the Shannon
surprise (a.k.a. surprisal) [22]
Rint(s,a — §') = —logp®(s'|s, a), (S18)

where p()(s'|s,a) is defined in Equation S7. With this definition, the expected (integrated over s')
intrinsic reward of taking action a at state s is equal to the entropy of the distribution p®(s’|s,a) [19].
If €new < €xnown, then the most surprising transitions are the ones to unobserved states. Similar intrinsic
rewards have been used in machine learning [26, 27].

Similarly to the case of novelty-seeking, we considered 61(\/}%79)& = Bﬁl)g’ext =0, Ql(\%’ext =0, and Tpgext =
Tps,int = 100; see Section 4.6. Hence, the surprise-seeking algorithm had also a total of 27 parameters
(11 main parameters + 14 inverse temperature parameters + 2 biases).

2.3.4 Exploration with no intrinsic reward

As our last alternative algorithm (black in Figure 4), we considered agents with no intrinsic reward:
Rintt(s,a — s') = 0. (S19)

Exploratory actions of these agents are purely driven by the MB and MF optimistic initialization described
in Section 2.2. As a result, exploration based with no intrinsic reward does not depend on any of the
parameters that influence the intrinsically motivated part of the RL algorithm described above, ending
up with a total of 19 parameters (9 main parameters + 8 inverse temperature parameters + 2 biases;
considering Tpg ext = 100).

2.4 Model-fitting and model-comparison

To compare different algorithms based on their explanatory power, we did a stratified 3-fold cross-
validation [28]: We grouped our 57 human participants into 3 disjoint sets, where all sets had almost



the same number of participants from different reward groups (i.e., 2 CHF, 3 CHF, 4 CHF). For each fold

k € {1,2,3} of cross-validation, one set of participants was considered as testing set D,(:eSt) and the union
of the other two as the training set D,(:ram).

Then, for each model M € {novelty, inf-gain, surprise, no int} and cross-validation fold k € {1, 2,3}, we
fitted the model parameters ®;; by maximizing log-likelihood of the training data given parameters:

‘i’k,M = arg max log P(D,(;rain)\q)M, M) (S20)
M

where P(D,(:ram)@ M, M) is the probability that D,Scram) is generated by simulating model M with ®,
(see Equation S12), and @k M 1s the set of estimated parameters that maximizes that probability. For
optimization, we first applied a gradient-free algorithm (Subplex [29]) to perform a broad search of the
parameter space, starting from three different initial conditions. The results of this broad search were then
used as initialization for a gradient-based algorithm (L-BFGS [30]), which we employed for fine-tuning.
To accelerate the initial broad search, we introduced two constraints: (i) setting b(middle) = b(right) =

0, and (ii) treating ﬁﬁg)ext and /31(\/21; )ext as independent of the discovered reward r. These constraints
were removed in the ﬁné—tuning stepj In both steps, we followed standard model-fitting practices (e.g.,
[31]) and carried out unconstrained optimization by reparameterizing bounded parameters with a logit
transformation and positive parameters with an inverse-softplus transformation. To prevent parameter
divergence for less sensitive parameters, we additionally included a negligible /5 regularization term in
the loss function (weight 1073).

We then evaluated all models on the testing set: For each participant n in the testing set D,(gteSt) of fold
k, we evaluated the cross-validated log-likelihood as

Un, v = log P(D,Et(f;) | Pk s, M), (S21)

where D](:(ZS; ) is the data of participant n (which we assumed to be in the testing set of fold k). We then
used the cross-validated log-likelihoods in the Bayesian model selection method of [32] with the random
effects assumption: We assumed that, with an unknown probability P, the data of each participant n
was generated by simulating model M,, = M. The goal of the model comparison is to infer the probability
Py for all models; the one with the highest Py is the most probable model for most participants. To do
so, we performed Markov Chain Monte Carlo sampling (using Metropolis-Hastening algorithm [33] with
100 chains of length 10’000) and estimated the joint posterior distribution over Proveltys Pintgains Psurprise;
and Py, int. Figure 4B shows the expected value of Py, (the expected posterior probability; Figure 4B1)
and the probability of Py; being higher than Py for all M’ # M (the protected exceedance probabilities;
Figure 4B2). Figure 4D shows the protected exceedance probabilities when the posterior distribution is
evaluated conditioned on participants’ data in only one of the reward groups. See [2, 34] for a similar
approach and [35, 36] for tutorials on the topic.

Finally, for each participant n in the testing set D,(:eSt) of fold k, we evaluated the accuracy rate of

novelty-seeking (Figure 4C) in predicting the participant’s actions (conditioned on the past actions)
in each episode, i.e., we evaluated the ratio of actions where novelty-seeking with parameter i)k,novelty
assigned the highest probability to the participant’s chosen action; whenever the maximum probability
was shared between 2 or 3 actions, we considered the prediction 1/2 or 1/3 correct, respectively (i.e., a
random model would have a 33% accuracy rate).
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2.5 Posterior predictive checks and model-recovery

For each model M € {novelty, inf-gain, surprise, no int}, we repeated the following steps 1500 times: 1.
We picked, with one-third probability, the fitted parameter i’k u of fold k € {1,2,3}. 2. We picked, with
one-third probability, one of the reward conditions (i.e., 2 CHF, 3 CHF, and 4 CHF). 3. We simulated
model M with parameters <i>k u for 5 episodes in our environment, i.e., we sampled a trajectory D from
P(D|<i>k7 M, M), with the G* of the environment corresponding to the reward group picked in step 2. As a
result, we ended up with 1500 simulated agents (with randomly sampled parameters) for each algorithm.

Depending on their exploration strategy and parameters, some simulated agents either continued to
explore the stochastic part of the environment or repeatedly fell into the trap states. Hence, we stopped
simulations of each episode after 3000 actions; note that the median number of actions taken by human
participants is less than 100 (Figure 2B-C). Accordingly, we considered the simulated agents who took
more than 3000 actions in any of the 5 episodes to be similar to the human participants who quit the
experiment and excluded them from further analyses. Moreover, we applied the same criterion that we
used for the human participants and excluded, separately for each algorithm, the simulated agents who
took more than 3 times the group-average number of actions in episodes 2-5 to finish the experiment. In
total, we excluded 13 + 1% of agents seeking novelty, 18 + 1% of agents seeking information-gain, 35+ 1%
of agents seeking surprise, and 42+2% of agents without intrinsic rewards. For reference, we had excluded
10 + 4% of human participants. These numbers show that the distribution of the number of actions for
all but novelty-seeking simulated agents had a heavy tail. Our main conclusions in the main text do not
change even if we include the simulations corresponding to this heavy tail (Figure S4).

In our main analyses, we focused on the remaining simulated agents. Figure 2D-F shows the data statistics
of simulated novelty-seeking agents compared to human participants; The replication of Figure 2D for all
algorithms is shown in Figure 5A. Figure 5B shows the median and the average relative error (absolute
difference divided by SE) of different algorithms in reproducing 43 group-level statistics: (1) number of
actions in episode 1, (2-5) fractions of trials spent in trap states and stochastic parts during the 1st and
2nd halves of episode 1 (Figure 2A), (6-9) median number of actions in episodes 2-5 for each reward
group and its correlation with reward value (Figure 2B1), (10-13) fraction of time-steps spent in the
stochastic part in episodes 2-5 for each reward group and its correlation with reward value (Figure 2B2),
(14-16) correlation of episode length with episode number for each reward group (e.g., Figure 2C for
the 2 CHF group), (17-19) correlation of the fraction of time-steps spent in the stochastic part with the
episode number for each reward group, and (20-43) the ratio of taking different actions (2 possibilities, i.e.,
progressing action and self-looping/stochastic action) in different progressing states (3 possibilities, i.e.,
states 1-3, state 4, and states 5-6) and in different periods of the experiment (4 possibilities, i.e., episode
1 for all participants and episodes 2-5 separately for each reward group). See Figure S3 for details.

Finally, for the simulated data of each algorithm, we repeated the model selection procedure (i.e., 3-
fold cross-validation followed by Bayesian model selection) on the action choices of five groups of 60
simulated agents (20 from each participant group: 2 CHF, 3 CHF, and 4 CHF). To accelerate this model-
recovery step, we initialized the optimization with the parameter estimates obtained from the fit to all real
participants. We always successfully recovered the model that had generated the data, using almost the
same number of simulated agents (60) as human participants (57). See insets in Figure 4B for confusion
matrices.
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3 Supplementary Results

3.1 Different intrinsic rewards react differently to stochasticity

To confirm that the stochastic part of our experimental paradigm preserves the essential features of a noisy
TV [14, 27], we simulated three groups of RL agents (500 agents per group) exploring our environment
by seeking (i) surprise, (ii) novelty, or (iii) information gain. As a control group, we also simulated 500
random agents taking each action with an equal probability of 1/3.

We aimed to quantify the isolated effect of the intrinsic reward on the simulated agents’ attraction to
the stochastic part. To achieve this, we considered the most efficient version of each exploration strategy
by employing the model-based branch of our algorithm in Algorithm 1. Additionally, we removed the
extrinsic-reward-seeking component of the algorithm; this would allow us to analyze the purely exploratory
behavior of the RL agents in isolation (similar to [26, 27]).

The resulting algorithm included a total of 7 parameters: {¥int, K, €news €knowns LPS.int, 61(\/}])3 int 61(\/?])3 it -
To avoid arbitrariness in parameter selection, we assumed perfect model-building by settin;g k= 1 and
nearly perfect planning by setting T’pgin; = 100. Furthermore, we chose the discount factor 7y, and the
prior parameters €pey and €xnown based on the range of fitted parameters reported by [2]: ~ine = 0.70,

new = 107°, and €nown = 107%. Finally, after fixing these parameter values, we fine-tuned 61(\/}])3 int 1O

minimize the average length of episode 1; in other words, we fine-tuned 31(\/111)3 it Such that the agents would
find the goal as fast as possible (Figure S1). As expected, agents seeking information gain were fastest in
finding the goal state (Figure S1B1), followed by the novelty-seeking (Figure S1A1) and surprise-seeking
agents (Figure S1C1). All intrinsically motivated agents were faster than random agents (Figure S1D1).
Importantly, already in episode 1, all intrinsically motivated agents learned to avoid the trap states
and were attracted to the stochastic part of the environment (Figure S1A2-C2). The random agents,
however, spent most of their time in the trap states and only a marginal fraction in the stochastic part
(Figure S1D2).

Given the parameters fine-tuned for episode 1, we then simulated the agents for an additional 4 episodes
with ﬁﬁl)a it = ﬁl(v}])g mt- Dach episode ended when agents reached the goal state G*, even though no
extrinsic reward was associated with G*. Depending on their exploration strategy, some simulated agents
continued to explore the stochastic part of the environment and did not escape it. Hence, we stopped
simulations of each episode after 3000 actions. We characterized the exploratory behavior of different
agents during episodes 2-5 by measuring the search duration (Figure S2A) and the fraction of time-
steps spent in the stochastic part (Figure S2B). For agents seeking information gain, both the search
duration and the fraction of time-steps in the stochastic part decreased over episodes (Figure S2A3 and
B3). Conversely, novelty- and surprise-seeking agents exhibited the opposite pattern (Figure S2A1-A2
and B1-B2). Notably, surprise-seeking agents were often (i.e., in > 50% of simulations in episode 5)
stuck in the stochastic part, failing to escape within 3000 actions (Figure S2A1). By design, random
agents exhibited consistent behavior across episodes (Figure S2A4 and B4): They had a persistently
higher search duration, compared to novelty- and information-gain-seeking agents (Figure S2A4 versus
Figure S2A2-A3), but spent only a marginal fraction of their time in the stochastic part of the environment
(Figure S2B4 versus Figure S2B1-B3).

These findings confirm that the stochastic part of our experimental paradigm effectively replicates the
distinct exploration patterns previously associated with different intrinsic rewards [14].
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Figure S1: Efficient exploration driven by different intrinsic rewards rapidly finds the goal state in episode 1
(Supplementary to Figure 1). A1-D1. Histogram of the number of actions in episode 1 for agents simulated by different
algorithms (500 simulations for each algorithm). A2-D2. Fraction of time-steps spent in the stochastic part during the 1st
and the 2nd half of episode 1 (similar to Figure 2A). Error bars show the SEMean. Single dots show the data of (60 out of
500) individual simulations.
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Figure S2: Efficient exploration driven by different intrinsic rewards shows different patterns of attraction
to the stochastic part (Supplementary to Figure 1). A. Median number of actions in episodes 2-5 for agents simulated
by different algorithms (500 simulations for each algorithm). Error bars show the SEMed. Correlations denote the average
(across simulations) Pearson correlation between the number of actions and the episode number. B. fraction of time-steps
spent in the stochastic part in episodes 2-5. Error bars show the SEMean. In all panels, single dots show the data of (20 out
of 500) individual simulations. Correlations denote the average (across simulations) Pearson correlation between the fraction
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3.2 Detailed summary statistics for posterior predictive checks

For model selection based on Posterior Predictive Checks (PPC), we reported the median relative error
of different algorithms in reproducing 43 summary statistics of human data (Figure 5 in the main text).
Figure S3 displays the relative error for all summary statistics separately. Novelty-seeking most accurately
reproduces the majority of the summary statistics of human action choices (Figure S3; 1st row versus the
others). However, as mentioned in the Discussion in the main text, these replications are far from perfect.
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Figure S3: Relative error of different algorithms in replicating 43 summary statistics of human data (Sup-
plementary to Figure 5). The heatmap displays the relative error, calculated as the absolute difference in the sum-
mary statistics divided by their standard errors. Each row corresponds to one of the four algorithms: novelty-seeking (N),
information-gain-seeking (I), surprise-seeking (S), and exploration with no intrinsic reward (nIR). Each column (C1-C43)
corresponds to one of the 44 summary statistics: the median number of actions in episode 1 (C1); correlation between the
reward value of G* and the number of actions in episodes 2-5 (C2) or the fraction of time-steps spent in the stochastic states
in episodes 2-5 (C3); the median number of actions (C4, C8, and C12) and the average fraction of time in the stochastic
states (C5, C9, and C13) during episodes 2-5 for different reward groups (2CHF, 3CHF, and 4CHF), respectively; correlation
between the episode number and the number of actions (C6, C10, and C14) or the fraction of time in the stochastic states
(C7, C11, and C15) during episodes 2-5 for different reward groups (2CHF, 3CHF, and 4CHF), respectively; fraction of
time-steps spent in the stochastic part (C16 and C17) and the trap states (C18 and C19) during the two parts (the 1st and
2nd halves) of episode 1, respectively; the ratio (C20-C43) of taking different actions (2 possibilities, i.e., progressing action
and self-looping/stochastic action, abbreviated by PA and SA, respectively) in different progressing states (3 possibilities,
i.e., states 1-3, state 4, and states 5-6, abbreviated by S1-3, S4, and S5-6) and in different periods of the experiment (4 pos-
sibilities, i.e., episode 1 for all participants, abbreviated by E1, and episodes 2-5 separately for each reward group, indexed
by E2-5 & 2CHF, 3CHF, or 4CHF, respectively).
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3.3 Posterior predictive checks with no exclusion criterion

Figure S4 is a replication of Figure 5 in the main text but with including all simulations—even those for

which the simulation was stopped at 3’000 actions (see Section 2.5).
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Figure S4: PPC-based model comparison without excluding outlier simulations (Supplementary to Figure
5). This figure follows the same structure as Figure 5 in the main text. Including outlier simulations degrades both the
qualitative and quantitative performance of all algorithms; however, novelty-seeking agents remain the most similar to human
participants.
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3.4 Model-selection with uniformly leaking counts

In our main computational model, we accounted for imperfect model-building by incorporating leakiness
in the transition counts (Equation S22). Specifically, after taking action a; in state s;, we assumed that
the agent decreases the counts CN’S’ays/ corresponding to the state-action pair (s¢, a;). However, we kept
the counts associated with all other state-action pairs unchanged. This modeling choice was motivated
by previous findings showing that participants’ estimates of transition probabilities in a given state s are
not affected by resets in a different state s’ [2].

As a control, we also considered an alternative approach inspired by [37, 38|, in which all counts leak
uniformly, i.e.,

$,a,8

HC)

s,a,s’

(S22)

s,a,s’ T

~(t4+1) {I{é(t) ’ +5s/,st+1 ifs = St, a = ay ,

otherwise,

where x in the second line is colored in blue to emphasize the difference between Equation S6 and
Equation S22.

To test whether and how the type of leakiness changes our results, we repeated our model selection proce-
dure using Equation S22 in place of Equation S6. To accelerate this step, we initialized the optimization
with the fitted parameters from the original model selection. The results of the new model selection
confirm our main conclusions in the main text (Figure S5). Additionally, we observed that the uniform
leak further impairs the performance of both surprise-seeking and information-gain-seeking algorithms.
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Figure S5: Model-selection results repeated for the algorithm with uniformly leaking counts (Supplementary
to Figure 4B in the main text). A. The expected posterior probability quantifies the proportion of participants whose
behavior is best explained by each algorithm (regarding cross-validated log-likelihoods). B. Protected Exceedance Probability
quantifies the probability of each model being more frequent than the others among participants.
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4 Supplementary Methods: Derivations and theoretical analyses

4.1 Model-building in an environment of unknown size

We used ideas from non-parametric Bayesian inference [1, 39] and Dirichlet processes [40] to derive a
Bayesian estimate p()(s|s, a) of the transition probabilities in an environment of unknown size.

4.1.1 Time-dependent base distribution as the expected prior

Consider the 1st time an agent takes action a at state s. Which state s’ does the agent expect to visit
next, given that it has zero experience for taking action a at state s? There are two possibilities: (i)
s’ is one of the already known state, i.e., s € S® or (i) s’ is one of the infinitely many imaginable
states S that the agent has not observed yet, i.e., s’ ¢ S (1), We assume that the agent considers different
weights for these two possibilities even in the prior distribution. We give a precise definition of this prior
distribution in the following subsection, but we first need to define our time dependent base distribution
[40], which we will use later.

We define the probability measure H as a continuous probability distribution (i.e., without any atom)
on the space of all imaginable states S—e.g., the space of all images that can appear on the computer
screen. Our results are independent of the exact shape of H—as long as it is a continuous probability
distribution. We define the time-dependent base distribution on S as

H(t) e Enew H+ €known 5o,
€new 1 6k1f10W11|S(t)| €new + Eknown|$(t)| Sez,s:(t) ) (823)

where 0 is the Dirac measure at s, €xnown and €ney are the weights for combining the two possibilities of (i)
transition to a known state s’ € S® and (ii) transition to a new and unknown state s’ € S, respectively.
In the next section, we use this base distribution as p(*)(.|s, a) for any state-action pair (s,a) that has not
been experienced before.

4.1.2 Derivation of the world-model

We indicate the matrix of transition probabilities as a parameter @ that fully summarizes the environment.
Then, given underlying © = 0 : S x A — Measures|S|, we have

P(Siy1 = 8|St = 5,4 = a,0 = 0) := 0 4(s) (S24)

for any s and s’ € S and a € A. Given the sequence of states S1.; = s1.; and actions Aj4_1 = a1.4_1, an
agent’s belief about the transition matrix 6 is defined as the posterior

t—1
gD (0) := PY (0514, ar.4—1) o< PO ()P (59410, a1:¢—1, 51) = PO (0) H Os,r.a, (Se111), (525)
t=1

where the prior P®) is a time-dependent prior distribution over transition probabilities. We assume that
Oqs are a priori i.i.d. samples of a Dirichlet process prior [40] with the base distribution H ® and a
time-dependent concentration parameter a®, that is, for any finite and countable S’ C S,

PO ({fsq:s€S,aecA}) = H DP (05,45 ), HD), (S26)
s€S8’,ac A

where DP stands for Dirichlet Process. H® is the prior expected value of © and can be seen as a prior
estimate of transition probabilities, and ¥ denotes how many samples this estimate is worth [33, 40].
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Putting a weight of €xpown for each known state and €yey for all unknown states (Equation S23), we end
up with a® = e, + €known|S (t)\ as the number of samples that H® is worth.

It is straightforward to show that the posterior distribution ¢(* has the same form as the prior [40], that
is, for any finite and countable &’ C S,

o

(t) . / — 0] W 27 gO 4
q ({Hs,a.seS,aeA})— DP(0s4; o + Oy, H Csas ,
568116,4 ( a® +C{ a0l ;@ ‘)
(S27)

where Cg ()1 is the number of times action a has been taken at state s’ until time ¢, and C, (¢ ) & 18 the number
of times transition (s,a) — s’ has been experienced. We consider the posterior expected Value of © as an
agent’s estimate of the world-model [40]:

R (®) 1
) (g s,a =00 () =E O, 4(5)] = aiH(t) )4 ——M— C(t) W Ogr (s
Pl a) = Brale) =Ry Ol = Lo e O e Zs:u o (5]
S28
B a(t)(l — Ct)H(S/) + 1 Z (a(t)ct n C(t) )5 (s’) ( )
a(t)+0§2 (t)+0§z)z ez |S®)| s,a,8" )95 )

€known |S(t> ‘

PST—T O] to shorten the notation. Equation S28 can

where we used Equation S23 and defined ¢; :=
be simplified and written as

€known +C<t)

. s,a,s’ lf S/ c S(t) ,

pO(s]s,a) = ggg(sl) _ J erewternown|SO+CL) / (S29)
€new 3 .
Enew+€known‘5(t)|+0§i)l if s = Snew -
where by s’ = Spew we mean s’ ¢ SO ie.,
5 ®(1 - ¢) a®(1 - ¢)

00 (spew) = E N()[ES/N@ Lo :at/ H(s)ds' = ———1 S30
s,a( HBW) Os,a~qlt s,a[ S'¢S t)] o0 n ng wgs® ( ) o i Cgf()l ( )

For the case of epew = 0, €xnown = €, and S& = & being a finite and countable set, the transition matrix
is the same as the transition matrix conventionally used for finite state-spaces [2, 13]. For the case of
€known = 0, the transition matrix has the form of a Chinese restaurant process [40, 41].

To account for imperfect model-building, we use leaky counts C’it()l ¢ and C’gt) =3 C’gt}l o instead of Cgtc)l

and Ci ) where Céz)z

s’ is recursively updated via

S/

(S31)

5(41) _ HC( ) s’ + 05,50, fs=8,a=ay
s C() p otherwise,

s,a,s

where ¢ is the Kronecker delta function, CS( 63 ¢ =0, and x € [0,1] is the leak parameter; this is a common

modeling choice in neuroscience and psychology [8, 9, 42]; see Section 3.4 for an alternative approach. If
% =1, then CTY) = ¢t
’ s,a,s’ :

s,a,s’
One may argue that the whole Bayesian formulation could be avoided by considering Equation S29 as the
starting point—similar to how we present the model Section 2.1. However, as we will see in the next two
sections, Equation S29 without the Bayesian formulation of this section is not enough for (i) deriving the
update rule for the model-based branch in Section 4.2 or (ii) evaluating information gain in Section 4.3.
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4.2 Prioritized sweeping for updating the MB Q-values

Given a reward function R (i.e., Rex for the extrinsic reward or Rip ¢ for the intrinsic reward) the Bellman
equations [6, 43] are

Q"(s,a) =E Ry a(S') +ymax QW (5", d)

Q) ; ] ’
S es,a a EA (832>
| S —
=V ®)(s)
where Q) is the Q-value (i.e., &)B ext for the extrinsic reward or Ql(\f[)B ¢ for the intrinsic reward),

v € [0,1) is the discount factor (i.e., Yext for the extrinsic reward or iy, for the intrinsic reward), and we
denote R(s,a — s') by Rsq(s") to shorten the notation.

We assume that R, (s') is the same for all s ¢ S®. Additionally, we note that égt()l(s’ ) is also the same
for all s’ ¢ S® or s ¢ S® (Equation $29). Hence, Q(")(s,a) takes the same value for all s ¢ S® and for
all actions a € A; we denote this value by V) (sp6) = QY (spew, a).

Accordingly, Equation S32 can be re-written as

QU (s,0) = 3 0 (Roals) + V() ) + 01 (new) (Rialsnen) + 7V (snew) ) ($33)

)

Noting that V® (spew) = Q® (spew,a) and Ry, (8') := Rs,...a(s) are independent of a, we can find
V® (spew) by solving

VO (snew) = D2 08 (5) (oo () + 9V () + 00 (n0) (B (5n0) + 7V (500w))

s'eS®
N €known / ) (o Enew ()
= Ry \%4 R new V new) |-
e TS0 ,% (R () 4 WO 2 (B () 49V s
(S34)
The solution to Equation S34 is given by
VO (spewy) = Cenown R, () + VO (s now Rien (Snew
(Snew) (1 — 7)énew + €lnown| S| 'ezs:@) ( new (8) FAV (s )) - TR P —OT - (Snew)
= WIEE)OWH Z (Rsnew (SI) + ’Yv(t)(sl)) + WIStBZJVRSneW (SHGW)7
s'eS)
(S35)
where in the last line we shortened the notation by defining constants
W(t) — €known and W(t) — €new (836)

fnown (1 - 'Y)Gnew + 6k1r10W11|S(t)| e (1 - ’7)€new + eknown‘s(t” .

Finally, we combine Equation S33 and Equation S35 to derive a set of equations for the @-values that
depend only on states in S®:

Q(t)(sv a) =y Z (égc)z(sl) + ’Yégc)z(snew>wlgl)own> V(t)(S/) + Z égzl(s/)Rs’a(S/)—i_
s'eS®) s'eS®) (S37)
égi)z(snew) (Rs,a(SneW) + VwéélvRSnew (Snew) + ’YWISI)OWH Z Rsnew (5,)) .

s'eSt)

To approximate the solution to this set of equations, we use prioritized sweeping [6, 10, 44]—primarily for
practical reasons and implementation efficiency. The modified algorithm is presented in Alg. 4 in which
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we use the QQUpdate operator defined as
QUpdate(5> a”, é V R Wknowna Wnewa S)

= + ’798 a(snew)Wkn wn ‘|‘ 95 a s,a )"‘
2, (e )V V2 fle (538)

és,a(snew) (Rs,a(snew) + ’}/WneszneW (Snew) + ’YWknown Z Rsnew (Sl)> .
s'eS

4.3 Derivation of information gain

Information-gain-seeking algorithms [20, 24, 45] consider the intrinsic reward as the amount of change in
the world-model 912’2 upon observing the transition (s,a) — ', often defined as

Rintt(s,a — s') = IG(t)(s, a— s") =DkL égt()l I gi+y) ), (S39)

) s,a—s

where 601D s égtj Uit Sir1 = ¢, and Dgy, is the Kullback-Leibler divergence [19]. In different contexts,

s,a—s’
IGW(s,a — s') is also called Postdictive surprise [21], but it has a fundamentally different behavior from
5(t)

the prediction surprise —logfsa(s’) that we used for our surprise-seeking algorithm (see [22] for more
discussion).

If s’ ¢ S, the naive definition of Dy, cannot be used in Equation S39 because 0§ ()1 and H(t“) has different
supports for their atoms. To resolve this issue, [20] propose a padding mechanism as a heur1stic solution.

5(t)

We use a more general definitions of Dkr, as the expected Radon-Nikodym derivative of 65, with respect

to 9?;_? , that is well-defined in our Bayesian framework:
5(t)
A(t t+1 das,
DKL eg,) ” s,a—s’ = ES'/~é§f21 W(SH) 9 (840)
s,a—s’
o), 7 5(t) H(t+1) 1", 5(t)
where ey (5") is the Radon-Nikodym derivative of 65,2 with respect to 6, , /', at S”; we note that 65

S a—>s
A(t+1)
s,a—s’?

is always absolutely continuous with respect to 6 which implies that the Radon—-Nikodym derivative

is well-defined in our case. Accordingly, for s’ € S®), the Radon Nikodym derivative is

new nown S(t) C.gt()l 1 1
0 Cne |+ Clp it s
0s.a s") énew+einown| S +Cs a () (541)
= t
de(t+1) €new+€known|8(t) H’C(t) +1 6kno""n“’Cvs,a,s/ 1f 8// — S/

SQA)S Encw+€known‘$(t)|+0§tt>l Eknown“"C‘(t) ,+1

s,a,s

and for s’ ¢ S®, the RadonNikodym derivative is

A(t) 6DCW‘l'eknown|S(t)H’Eknown41’61&3()17‘1’1 lf S// # 8/
Ba_ (1) = new+eknown| SO +CL ’ (S42)
G :
das ,a—s’ 0 if §"=5".
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As a result, the information gain in Equation S39 can be calculated as

(®)
€new T€k Wn|8(t> \-l—Cs(,,t()l—i-l A(t) / eknown""csya’sl . / t
log » ®|1c® + bs,a(s") log ———ap=— if s’ € s©,
Rintt(s,a — s') = €new+eknown| S| +Cs.a €known +C ;s (S43)
) 1@y
, ® 1 .
log €new+€known|8 ‘+€known+c.s,u,+ lf 3/ ¢ S(t) ,

€new +€known ‘S(t) |+C£f(>L

where we used the fact that égt()l(s' ) = 0 for a given and fixed s’ ¢ S®),

If €new — 0, then the momentary average gain in information after taking action a in state s can be
written as

IG(t)(s, a) =E [IG(t)(s, a— S’)}

5/~
1 5 2 1 (S44)
— | ®) (g -
log |1+ Bga] ezsj() (04" "10g [1+ ngégfg(s/)}’
where we defined Bgf) = €known|S (t)\ + C’s(t()l With a few lines of algebra, we can show
o1G" (s,a 1 ) > 14 B
((t) ) - (t) ) [1 - Z <9gt21(3/)> ﬁ} <0, (S45)
acs,a Bs,a(l + Bs,a) 0 1+ 957(1(8/)B57a

where the equality holds if an only if égt()z(s' ) = 1 for some s’. Hence, IC(t)(

s,a) is a decreasing function

of the count C§'2 of the state-action pair (s, a).

4.4 Seeking surprise or information gain in deterministic environments

Suppose action a in state s is deterministic, meaning that taking a in s will always lead the agent to a
specific state s* with no randomness. If the agent is aware of the deterministic nature of the environment,
then taking this action once is sufficient to obtain an exact estimate of p®(.|s,a). As a result, after
trying a deterministic action once, there should intuitively be no remaining surprise or information gain
associated with that action. In this section, we show that this intuition is consistent with our formalization
of surprise and information gain: The values of surprise and information gain associated with a second
try of a deterministic action decrease as a function of the agent’s belief in the environment’s determinism.

To simplify notation and derivation, we assume €ney = 0 and €xpnown = €, though this assumption is not
required for the analysis. Combined with the determinism of action a, this allows us to simplify the world
model in Equation S7 as

EJrégft)z if / *

®) (o Nset+C{Y) ST
p(s']s,a) = e (S46)
Noer T if & #s*,
where s* is the next state reached when action a is taken in state s, and we defined N := |S®)|. Following

the Bayesian reasoning in Section 4.1, the simplified world model in Equation S46 shows that the agent’s
belief in the environment’s determinism is captured by the magnitude of €. In the limit as ¢ — 0, a single
observation of (s,a) (i.e., ééi{ = 1) is sufficient for the agent to assign probability 1 to the transition
(s,a) — s*. Furthermore, in this limit, subsequent observations do not lead to an update of the estimated

transition probability.

Accordingly, our goal in this section is to examine the theoretical behavior of surprise- and information-
gain-seeking strategies in the limit of € — 0.

22



Surprise-seeking. For a surprise-seeking agent, the expected reward associated with taking action a
in state s is given by

Rinca(5,0) = Eg,_yo [Ruea(s,0— )] =Eg,_sy [~ 1ogp®(']s,0)] (847)

S/~ TSI~
Using Equation S46, it is straightforward to see that, before trying action a, the average reward associated

with a is independent of the agent’s belief about the environment’s determinism (i.e., €):

70 =0 = Rins(s,a) = log N,. (S48)

,a

However, as soon as C‘S)Z > 0, the average reward drastically decreases, i.e.,
~(t
W>1>e =

_ F (S49)
Rint t(s,a) = —(1 — €) log(1 — €) — €log N 1= O(eloge)

where we defined
. (Ns—1)e

= oy S50

Nye + 0] (530)
Accordingly, a surprise-seeking agent that believes the environment is deterministic will experience a
sharp decrease in the intrinsic reward of a deterministic action after trying it once. Intuitively, this means
that such an agent will aim to try as many actions as possible in a deterministic environment.

Information-gain-seeking. For an information-gain-seeking agent, the expected reward associated
with taking action a in state s is given by

D /
Rint t(s,a) == B g0) [Rint.¢(s,a — 5] (S51)
with ) i )
) Nt C+1 | e+C) GO e
/ BT Ngel) T N el BT T
Rintt(s,a — s') = e : : (S52)
eNs+Csa+ € log —€— if 8/758*
Nt CD T Noere® OB ’

where we used Equation 543 and Equation S46 to evaluate Rint((s,a — §).

Intriguingly, before trying action a, the average reward associated with a increases as the agent’s belief
about the environment’s determinism increases (as € — 0), i.e.,

~ _ 1 1 1
Lgfa =0 = Rinte(s,a) =log (1 + N56> N log (1 + 6) = O(—loge). (S53)

Intuitively, this implies that, as the agent’s belief in the environment’s determinism increases (as € — 0),
the agent becomes increasingly confident that taking a single action will resolve the whole uncertainty
about the transition probabilities, resulting in a substantial gain of information. Asymptotically, if CétC)L =

0, then we have lime_,o Rint ¢(s,a) = oo.

However, similarly to the case of surprise, only taking action a once drastically decreases its associated
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intrinsic rewards, i.e.,

é§221>>6:>

= O(e).

Rint,t(sa CL) = log

- 2
eNg + C'(t) €+ C's(tt)l €+ C(t) Ne? €
t) W | " o2 08
eN, + ) Nye + O + ¢ (Nse+C§t3> e+ 1
(S54)
Accordingly, an information-gain-seeking agent that believes the environment is deterministic will aim to

try as many actions as possible in a deterministic environment. As a result, seeking information-gain and
seeking surprise are not behaviorally dissociable in these situations.

4.5 Analysis of the MB optimistic initialization in episode 2

To theoretically analyze the influence of the MB optimistic initialization in episode 2, we make a few
simplistic assumptions:

1. €new in Equation S29 is negligible.

2. All transition probabilities except for the ones between the stochastic states and the progressing
action in state 6 (because of the only one-time experience) have been learned with certainty during
the 1st episode.

3. The counts for the actions in the stochastic part are roughly the same for all states and actions,
(t)

which we denote by C®, i.e., for any state s, in the stochastic part, we assume that CsJa = c®
for every action a.

Given these assumptions, we have a symmetry between the stochastic states, implying that the Q-values
in the stochastic part are the same for all states. Hence, in all the following equations, we use s, to denote
a representative state in the stochastic part, use a, to refer to the progressing actions, use a, to refer
to the stochastic/self-looping actions, denote state 4 by s4, denote state 6 by s6, use rg+ to denote the
reward value of the already discovered goal, and define

> 1 * *
R = m (1 +r]+ 7"2) and V | Z 1\(/[t])3 ext / (855)

Using these notations and assumptions as well as Equation S29 and Equation S32, we have

Ql(\l/‘/[)B ext(587 ap) = pgt) (R + 'Yext‘_/(t)) + Yext (1 N pgt)> Vl\SItl)3,ext(54)

® o0 (B 4 g 70 )y (856)

MB ext(ss’ as) =Ds (R + ’YeXtV ) + Yext (1 —Ds )VMB,ext(SS)v
where o

p) = Gl (557
€known‘S | + Cc®
(®)

Note that | S(t>| is equal to the probability of transition to any state s’ for which Cj, .+ = 0 (see Equa-
tion S29).

If the optimal policy is to leave the stochastic part and go to the already discovered goal state, then we
must have

Condition 1: Ql(\i/f[)B,ext(‘SS? CLS) < Ql(\il)B,ext(S&?? a’p) = Vl\(/It])S ext(ss) (S58)
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According to Equation S56, Condition 1 is equivalent to Q&)B oxt (852 Qp) = Vl\(/[% oxt(5s) < Vl\%)iext(sél),

which, by using Equation S56 again and after a few lines of algebra, can be written as
(t)

Ds
1- ’Yext(l - Pgt))

Condition 1 =

|2+ 90 VO] < V) (5. (S59)

Given that the optimal policy under Condition 1 is to leave the stochastic part and go to the already
discovered goal state, we can write the value of state 4 as

Vl\(/[t])s,ext(sél) = Ql(\l/t[)Byext(séla ap) = Vgxth(\l/t[)B,ext(S& ap) = 7e2xt [ﬁét) (R + 76xtv(t)) + (1 - pét))TG*} ’ (860)

where ©
() — _Cenown| SO o) 561
pg €known‘8(t)‘ + 1 pg pg ’Yext( pg ) ( )
(t)
Note that \gi”l is equal to the probability of transition to any state s’ for which Cs6,ap,s = 0 (see

Equation S29). Using Equation S60, we can simplify Equation S59 as
Condition 1 = fo1(r], 75, Yexts €knowns C'(t), |S(t)|) < rge, (S62)

with

(t)
x ok 2 1 S ~ D ¥
fCl(rlv 79, Yexts €known C(t)7 ’S(t) ’) = [ P - Vgxtpét)} [R + ’Yextv(t)] . (863)

712 (1 = 1 = (1 = p7)

The variable R(Stt)o 4. in Section 2.2 is v2, fo1.

An important observation is that, independently of the parameter values, we have

_ lim fCl(T'Ia T‘;, VYexts €known C(t)a ’S(t) ‘) <0.
Ct) 500

This implies that, for any value of 75 and rg+ > 0, increasing C () would eventually result in a preference
for leaving the stochastic part and going towards the already discovered goal (Condition 1 is satisfied). In
other words, agents will eventually give up exploration after a sufficiently long and unsuccessful exploration
phase. This is why the MB optimistic initialization is similar to exploration driven by information gain.

Moreover, by analyzing fcip, we can gain further insights about how the model parameters influence
exploration based on the MB optimistic initialization:

1. For any value of r5 and rg+, we have

lim fCl (T’T, 7'>2k? Yext s €known C’(t)a ’S(t) D = Q.
Yext—0

This implies that decreasing the discount factor to put a small weight on the future rewards would
make the agent stay in the stochastic part (Condition 1 is violated).

2. If rg» < r} (i.e., the agent knows that there exists a goal state with a reward higher than the one

(t)
already discovered) and 7§Xt;5§t) e L
1*’Yext(1fps )

(i.e., the discount factor is small enough; see point
1), then we have

llm fCl(rra TZ) Yext ;s €known é(t)a ’S(t) D > rgx.
r5—00
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This implies that, if rg« < 73, then increasing r5 would eventually result in a preference for staying
in the stochastic part (Condition 1 is violated). In other words, if the reward value of one of the
three goal states is much greater than the discovered goal state, then the agent prefers to keep
exploring the stochastic part.

3. For any value of r5 and rg-, we have

lim_ for(r}, 73, Yext: eknown, €0, 1SV]) < 0.
6known_>0

This implies that, independently of the reward value of the discovered goal state, if the agent assigns

a very small prior probability to the unseen transitions, then the agent always prefers to leave the

stochastic part and go to the already discovered goal state (i.e., Condition 1 is satisfied).

4.6 Optimistic initialization in tandem with intrinsic rewards

When presenting different exploration strategies in Section 2.3, we mentioned that we set [31(\/}% oxt =

1(\/}])37 oxt = 0 and QS}% oxt = 0 to dissociate the effect of exploration driven by intrinsic rewards from that

driven by optimistic initialization in episode 1. In this section, we further elaborate on this choice and
discuss the interplay between intrinsic rewards and optimistic initialization in our models.

Specifically, we emphasize that this parameter setting (i.e., f&;ext = 1(\/}])37ext = 0 and Ql(\%ﬁxt = 0)
removes the effect of optimistic initialization only from the extrinsic-reward-seeking component and only
during episode 1. This has two important implications. First, the mechanism for MB optimistic initializa-
tion described in Section 2.2 can still contribute to directed exploration during episodes 2-5. In this sense,
models with intrinsic rewards include two parallel mechanisms for balancing exploration and exploitation,
both controlled by the extent of the ‘reward optimism.” Second, even during episode 1, the choices of
Ql(\% int? €known, and €new result in an optimistic initialization of the intrinsic value for unobserved states
and actions.

In other words, optimistic initialization and intrinsic-reward-seeking operate in tandem in our intrinsically
motivated RL algorithms. From this perspective, the poor performance of nRI in our work (Figure 4)
should not be taken as evidence that humans do not employ optimistic initialization to explore their
environment. Rather, our results indicate that a form of optimistic initialization limited to extrinsic
rewards alone is insufficient to explain participants’ behavior.
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5 Supplementary Methods: Algorithmic implementation

5.1 Initialization

For Epi > 1, 8©, ¢, U, U, Ok exes Qim0 Qi exr and QNh 1y are initialized by their latest

ext’ 1nt ’
value in the previous episode.

For Epi = 1, the initial values are as follows:

0 = {Gy, G1,Ga},

CcO =,
(S64)
QMF ext( ) QMF ,ext?
0 0
%\/I%‘,int (87 a’) = 1(\/[)F,int .

For the model-based @Q-values, we can analytically solve the Bellman equations at time ¢ = 0, resulting in

é nown X én WW nown
U (s) = QU e (5:0) = known - JextPhew T

ext ~ A (1+T1 +T2)7
1-— Yext ‘S(O)‘ (gknown + Yext enekanown>
0 0
Ui(nt)(s) = Ql(\/I%B it (8, @)
éknown ‘S |Rk11111(§\)zvn (sknown) Oncw (ngl::(t“),vn(sncw) + Yint Wncle(liélvff) (Sncw) + ’S ©) "Yint Wknowan(liélvEI) (Sknown))

1- “Yint |S(O) | (éknown + ’YinténeWWknown)

)

(S65)
with . .
|44 nown — mn ) W, w e )
‘ (1 = 7)énew + €xnown|S©| ‘ (1 = 7)énew + €known| S|
0 €known é €Enew (S66)
Ko €new + 6k1f10W11|$(0)’ 7 e €new T+ 6known|‘s(0)‘
and .
Rgenvtv)(sknown) = Rint,O(SneW7 a— 5) s Rfl‘élvtv)(snew) = Rint,O(SneW7 a — Snew) (867)
nglrlll(t):\)zvn(skHOWn) = Rint,O(sv a— 8) ) Rl((lrlll;))vn( new) = Rint,O(sa a— Snew)

for any a € A and s € SO,

However, the final (after learning the transition probabilities) values for QmB ext(s,a) are much smaller
than the analytic solution to the Bellman equation at ¢t = 0—due to the sparse connections and a single

path to one goal state. We, therefore, use a heuristic and put Ul )( ) = Ql(\%_%,oxt(s’ a) =0.

ext

5.2 Pseudocode

See Algorithms 1, 2, 3, and 4 for pseudocode. Note that, in all pseudocode, we use an alternative shorter
notation by defining Rgnét t)( ") := Rintt(s,a — §') and Rg?;(t)(s’) = Rext(s,a — §).
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Algorithm 1 General pseudocode for algorithm

10:
11:

12:

13:

14:

15:
16:
17:

18:
19:

20:
21:
22:

23:

24:
25:
26:

27:

28:

29:
30:

# Setting specification
Specify P = {pmain) o) )}

Specify the intrinsic reward function R(mt t)( ".
Specify Episode (Epi) and the set of possible actions A.
if Epi =1 then
BBt < BAth extr A ext = Bk s BB int < Bl snes A0 AuE int < Bih i
= MB,ext’ e MF ext’ »110 MB,int’ ) MF ,int
else

T ety 27‘ * 27‘ *
ﬂMB,ext < BMB%xt’ /BMF ext < BMFgXt7 ﬁMB int < BIE/IB,(i;nt)’ and BMF int < BMF?nt)

end if

+# Initialization (all variables are defined only for s € S())

Initialize S©, C(©), Uegg, Ul(not), %53376“, 1(\(4)%37111,5, 1(\%76)(,5, and Ql(\(/)l)mnt (cf. Section 5.1).
7 1st observation

t<0

Initialize state s; and update C’s(l) — KC~'§0) + 65,6, and S « sy {s1}.

é( ) , C( ) Cforall s and ¢’ € SO,

QMF eXt(s a) < Ql(\% ext(s,a) and Ql(vl[)mnt(s, a) + Ql(\z)F’im(s, a) for all s € S,
gx)t<—0ande()<—0

# Extensions of variables for s; ¢ S(©)

CSCBS,(—Olfs—slors —sland51¢8(0)

Ql(\/llF,ext(sl’ ) - Ql(\(/gi‘,ext and QMF,int(517 a’) - Ql(\(/)l%,int if 51 ¢ S(O)
Update Uéig, Ul(nlt), %3 exts and Q1(v1[33,int using the model-based branch in Alg. 2.
# Going through the task
t <« 1.
while s; # G; for i € {0,1,2} do
# Making action
Compute Q\(5, ) < Aur ext @i exe (5 @) + Brtr it QN oy (5, ).

Compute Q{75 (5,a) < By ext Qi ext (5, @) + Brtbine @\ e (51 @)-

Sample a; with probability 7(a|s¢) o exp {Q&)F(st, a) + Q&)B(st, ai) + b(at)}.
Observe s¢41.

# Updating in’r(lnal variables
S(t+1) — S U {8t+1}

Update counts CY kGO 45, 5041 and cUtD ey Os/ 501

St,0¢,8 St,Qt,S

Cit:;,) — C’é()ls, if s # s¢ or a # ay.
Update Ue(f(:rl), Ui(z: 1), S{Elexw nd Ql(\ﬁ;li)nt using the model-based branch in Alg. 2.
Update egil , lfljl), Ql\flJlg‘le)xt’ nd Ql(\fl;lmt using the model-free branch in Alg. 3.
# Going to the next step
t+—t+1.
end while
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Algorithm 2 Pseudocode for the model-based branch

1:

t+1 Z C (t+1)

8&5

# Updatmp the wi 011(1 model
égf;rl)(sl) « (€nown + C(t+1))/(5new + €xnown[SEHY | + Cstc:rl)) for s’ € St

s,a,s’

égfil) (Snew) — (enew)/(fnew + 6known|8 (t+1) | + C t+1))
# Updating the values
Update Ql(\faglmt nd Ul(nt 2 using Alg. 4 and R61+1) a9 rewards.

Update Ql(\faglext nd UL using Alg. 4 and R®Y) as rewards.

ext

Algorithm 3 Pseudocode for the model-free branch

# Prediction errors
RPE — R(ext) ( Q(t) ( N _ Q(t)
ext,t+1 St,at 3t+1> + Yext MaXg/c A MF,ext \St+1, @ ) MF,ext(St7 at)-

t t
RPFEint 441 <+ Rgt,at )(5t+1) + Yint MaXq/e A Ql(\/[)p,int(stﬂ, a') — Q%A)Fvim(st, at).
# Update of the eligibility traces

eg{l)(st, ) < 1, and egxt 1)(8 a) ’yext)\extegt(s, a), for all s # s; and a # ay.
ei(fl;rl)(st, at) < 1, and el(njl)(s a) %mAmtefn{( ,a), for all s # s; and a # a;.

# TD-learners

&;?gxt(s a) < Ql(\il)F ext(s a) + pe&tl)(s, a)RPEext t+1, Vs € S and a € A.

1(\51;11)nt( a) < QMF int (8 @) + pel(fl:rl)(s, a)RPFEin 441, Vs € S and a € A.
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Algorithm 4 Pseudocode for the modified Prioritized Sweeping Algorithm at time ¢ 4 1

# Specifying whether the update is for the intrinsic or the extrinsic reward
1: ¥ ¢ Yext for extrinsic and v < iyt for intrinsic reward.
2 QW ¢ Qe UD ¢ UL, and R ¢+ R for extrinsic, and Q) « Q). UY + UL, and

ext? int
R « Rntt+1) for intrinsic reward.
# Extending U-values

8 Winown 4= €known/ (1 = 7)énew + enown|SU) and Whew ¢ enew/ (1 = 7)énew + eknownlS*1])
4: if s;41 ¢ S® then
5: U(t)(st-&-l) < Winown Zs'es(t) <R5new (s") + ’YU(t)(SI)> + Whew Rspew (Snew)-
6: end if
# Applying the effect of the latest observation on Q-values using previous U-values
7: for (s,a) € S x A do

8: QU+ (s, a) < QUpdate(s, a;v, 0D U R, Winown, Waew, SET1) defined in Eq. S38.
9: end for
# Making the priority queue
10: for s € St do
11: Ut (5) <~ UB(s)
12: PriorityQueue(s) « [U®*D(s) — maxeq QU4 (s, a)|
13: end for
# Updating U-values for Tpg steps
14: for Tpg iterations do

15: s' <= argmax . g(t+1) PriorityQueue(s)
16: AV ¢ maxgeq QU (s, a) — U (s)
17: UMD ()« maxaeq QU (s, a)

# Applying the effect of the update of U-values on Q)-values

18:  for (s,a) € S**D x A do

19: QU (s,a) + QU (s,a) + ’y(égf;rl)(s’) + ’yég(fl)(snew)Wknown) AV
20: end for
# Updating the priority queue
21: for s € St do
22: PriorityQueue(s) + [U* ) (s) — maxae 4 Q) (s, a)|
23: end for
24: end for
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