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Graphneural networks learn emergent tissue
properties from spatial molecular profiles

Mayar Ali1,2,3,8, Sabrina Richter1,4,8, Ali Ertürk 2,5, David S. Fischer1,6,7 &
Fabian J. Theis 1,4,7

Tissue phenotypes, such as metabolic states, inflammation, and tumor prop-
erties, emerge frombothmolecular states and spatial cell organization. Spatial
molecular assays provide an unbiased view of tissue architecture, enabling
phenotype prediction. Graph neural networks (GNNs) offer a natural frame-
work for analyzing spatial proteomics by integrating expression profiles with
structure. We apply GNNs to classify tissue phenotypes using spatial cell pat-
terns. We show that for relatively simple classification tasks, such as tumor
grading in breast cancer, incorporating spatial context does not significantly
improve predictive performance over models trained on single-cell or pseu-
dobulk representations. However, GNNs capture meaningful spatial features,
retaining prognostic signals beyond tumor labels, highlighting tumor-grade-
specific cell type interactions, and uncovering complex immune infiltration
patterns in colorectal cancer not detectable with traditional approaches.
These findings suggest that while spatial dependencies may not always
enhance classification performance in small datasets, GNNs remain valuable
tools for characterizing tissue organization and interactions.

Thehighmolecular resolutionprovidedby single-cell RNA-seq (scRNA-
seq) has put the cell as a functional unit in the focus of recent advances
in tissue biology1. However, interactions between cells and properties
of the tissue beyond the length scale of a cell are largely lost in assays
that are based on dissociated tissues. Highly multiplexed imaging
technologies such as Imagingmass cytometry (IMC)2 and co-detection
by indexing (CODEX)3 enable the simultaneous measurement of doz-
ens of protein markers at subcellular resolution within intact tissues.
These technologies are particularly valuable in oncology and immu-
nology, where they help characterize the tumor microenvironment
and study how spatial organization of cells shapes disease progression
and therapeutic responses4,5. By capturing the coordinated behavior
of malignant, immune, and stromal cells in different tumor pheno-
types, these datasets provide insights into mechanisms of

effective versus ineffective tumor control, ultimately advancing
immunotherapies6,7.

In order to analyze tissue organization, single-cell spatial omics
data can be modeled as spatial graphs, where nodes represent indivi-
dual cells and edges encode spatial proximity. This representation
enables computational models to capture tissue architecture and cel-
lular interactions explicitly8–10. Graph neural networks (GNNs) have
emerged as a powerful tool for integrating spatial, molecular, and
cellular information. Recent studies suggest that GNNs can identify
disease-relevant tissue structures and even outperform traditional
clinical metrics in certain prognostic tasks11–13. However, the extent to
which GNNs effectively leverage spatial context for prediction, and
whether their learned representations faithfully capture biologically
meaningful features, remains unclear.

Received: 10 April 2025

Accepted: 27 August 2025

Check for updates

1Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany. 2Institute for Tissue Engineering and Regenerative Medicine,
Helmholtz Zentrum München, Neuherberg, Germany. 3Graduate School of Systemic Neurosciences, Ludwig Maximilian University of Munich,
Munich, Germany. 4TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany. 5Institute for Stroke and Dementia
Research, Klinikumder Universität München, Ludwig-Maximilians-Universität LMU,Munich, Germany. 6Eric andWendy Schmidt Center at the Broad Institute,
Cambridge, MA, USA. 7Department of Mathematics, Technical University of Munich, Garching bei München, Germany. 8These authors contributed equally:
Mayar Ali, Sabrina Richter. e-mail: david.fischer@meduniwien.ac.at; fabian.theis@helmholtz-munich.de

Nature Communications |         (2025) 16:8419 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-5163-5100
http://orcid.org/0000-0001-5163-5100
http://orcid.org/0000-0001-5163-5100
http://orcid.org/0000-0001-5163-5100
http://orcid.org/0000-0001-5163-5100
http://orcid.org/0000-0002-2419-1943
http://orcid.org/0000-0002-2419-1943
http://orcid.org/0000-0002-2419-1943
http://orcid.org/0000-0002-2419-1943
http://orcid.org/0000-0002-2419-1943
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-63758-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-63758-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-63758-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-63758-8&domain=pdf
mailto:david.fischer@meduniwien.ac.at
mailto:fabian.theis@helmholtz-munich.de
www.nature.com/naturecommunications


Here, we systematically evaluate the predictive performance and
interpretability of GNNs for tumor phenotype classification using
spatial omics data. We first conduct a comparative multi-model abla-
tion study to assess the individual and combined contributions of
spatial context and single-cell features to predictive performance.
Second, weperform in-depth interpretability analyses of graphmodels
to understand the underlying factors drivingmodel predictions and to
better understand the biological relevance of the learned representa-
tions. Specifically, we address two key questions: (1) Does spatial
context enhance predictive performance compared to single-cell or
bulk representations? (2) Can graph models yield biologically mean-
ingful insights into tissue organization? To this end, we explore several
model interpretation strategies, including learned sample embed-
dings, attention-based interaction patterns, and saliency maps, to
determine whether GNNs capture relevant biological structures. Our
findings aim to clarify the role of spatial information in tumor phe-
notype prediction and highlight the potential of graph-based models
as interpretable tools for spatial omics and tissue biology.

Results
Graph neural networks model tissue phenotypes
To investigate the role of tissue architecture in tumor phenotype
prediction, we perform a multi-model ablation study to assess the

performance of graph neural networks (GNNs) across multiple spatial
omics datasets. Our goal is to determine how spatial context and
single-cell information contribute to predictive accuracy, and whether
graph-basedmodels cancapturemeaningful biological patterns across
different cancer types and imaging platforms (Fig. 1a, b).

We first evaluate the performance of GNNs in predicting tumor
phenotypes from spatial omics data, specifically examining the influ-
ence of spatial context and single-cell resolution. For this, we consider
three distinct datasets with graph-level supervision tasks: a cohort of
CODEX samples from colorectal cancer biopsies (CODEX - colorectal
cancer14, 140 images from 35 patients), and two cohorts of imaging
mass cytometry (IMC) breast cancer biopsy data (IMC - Jackson15, 559
images from 350 patients and IMC - METABRIC16, 500 images from 454
patients). For the CODEX - colorectal cancer dataset, we focus on pre-
dicting binary anatomic labels, specifically the presence of tertiary
lymphoid structures. For the IMC - Jackson and IMC - METABRIC data-
sets, we predict tumor grades, distinguishing between grades 1, 2, and
3 tumors. In all cohorts, hold-out splits are defined by patients to avoid
leakage of batch information (Methods).

We represent the data as spatial graphs, where each node corre-
sponds to an individual cell and is annotated with single-cell features.
Spatial graphs are constructed by connecting cells with an edge if their
Euclidean distance fell below a fixed threshold radius, with

a

Bulk Single Cell Graph Statistics
(Density)

Spatial Tissue Architecture
(Graph)

Spatial Omics Data Spatial Graph Abstraction
b

proportions 
of cell types

average 
expression

single-cell
expression

spatial
context

single-cell expression 
+

spatial context

cell type 
+

spatial context

c

Sample 
representation

Cell type
interactions

Cell
importance

high

low
PCA

class I
class II

high

low

spatial proximity graphnode 
features

ce
lls

cells

tis
su

e 
lab

el

pr
ed

ict
ion

Teritary lymphoid structure
(TLS) region

Diffuse immune infiltrate
(DII) region

Fig. 1 | Overviewof spatial graph framework and ablationdesign for phenotype
prediction. a Tissue-level phenotypes are functions of the architecture of the tis-
sue. In this case, two immune infiltration regions, Tertiary lymphoid structure (TLS)
region and diffuse immune infiltrate (DII) region, can be distinguished based on the
spatial distribution of immune cells. This anatomical label cannot be inferred based
on frequencies of cell types thatwould be available in dissociation-basedprotocols,
but only based on the spatial distribution of cells14. One example image from the
CODEX - colorectal cancer dataset for each class. b (top) The spatial context of each
cell can be formally represented by a graph in which edges are weighted based on
the distance between nodes. Each sample can be represented as one such graph,
where nodes are colored by the measured cell features. Node features and the
proximity graph are input to the model. We perform prediction with a model that
consists of graph neural network layers to produce node embeddings, followed by
pooling over nodes and a final classification network that outputs a tissue-level

label. (bottom) Different downstream tasks and interpretation approaches can be
performed using the graph embeddings, such as cell-type interactions or neigh-
borhood analysis, cell importance to the phenotype prediction, and sample
representation where the spatially-aware graph embeddings can be visualized with
a PCA in which each point reflects one graph (image) and depicts separation of
samples by the tissue-level class. c Design of the ablation study. Bulkmodels only
have access to the averagenode feature vector of the graphwhether proportionsof
cell types or averagemolecular expression. Single Cellmodels have access to single-
cell-resolved but in silico dissociated data from the observed spatial graph. Graph
Statistics are spatially aware models that have access to the full spatially resolved
data but reduce it to simpler summary statistics such as tissue density represented
by node degree. Finally, Spatial Tissue Architecturewhich are represented by graph
models, have access to node features and the spatial proximity graph.

Article https://doi.org/10.1038/s41467-025-63758-8

Nature Communications |         (2025) 16:8419 2

www.nature.com/naturecommunications


neighborhood sizes (resolutions) determined based on the average
node degree distribution³ (Supp. Figure 1). This representation
enables the modeling of both cellular attributes and spatial relation-
ships within the tissue. GNNs operate on these graphs by iteratively
aggregating information from neighboring nodes and ultimately
pooling the learned cell-level representations into a single graph-
level embedding, which serves as the basis for tissue phenotype
prediction.

Ablating over tissue architecture motives in spatial omics for
tumor phenotype prediction
To disentangle the contribution of spatial context and single-cell
resolution to model performance, we designed a comprehensive
ablation study building on the spatial graph framework described
above. In this setting, we constructed spatial graphs where each node
represents an individual cell and is annotated with its molecular pro-
file, such as protein or gene expression levels, while edges represent
spatial proximity as previously described. To benchmark the utility of
spatial context and single-cell resolution, we compared three scenar-
ios: (1) the full molecular profiles of cells within their spatial context
encoded via spatial proximity graphs (Spatial Tissue Architecture), (2)
molecular profiles of in silico dissociated single cells without any
encoding of potential interactions (Single Cell), and (3) pseudobulk
profiles computed as the meanmolecular expression across all cells in
a tissue image (Bulk) (Fig. 1c). For each of these inputs, we applied
tailored machine learning models: graph convolutional networks
(GCN) and graph isomorphism networks (GIN) for the spatial graphs,
multi-instance learning (MI)models for the single-cell input, andmulti-
layer perceptrons (MLPs), logistic regression and random forests (RF)
for the pseudobulk-level representation. We optimized all models
using hyperparameter grid searches within a nested cross-validation
framework (Table 1, Table 2), andperformancewas evaluatedusing the
area under the precision-recall curve (AUPR) to account for class
imbalances (Methods).

We found that GNNs trained on spatial graph representations of
tissue images did not significantly outperform multi-instance learning
(MI) models trained solely on single-cell expression vectors for all
datasets (ΔAUPR=0.052 and p =0.21, ΔAUPR =0.036 and p =0.086,
ΔAUPR =0.014 andp = 0.56 forCODEX - colorectal cancer, IMC - Jackson
and IMC - METABRIC, respectively, Fig. 2a, b, f). In addition, the single-
cell resolution modelled by the MI models offered no substantial
improvement over pseudobulk representations (ΔAUPR = −0.012 and
p =0.71, ΔAUPR =0.005 and p = 0.80, ΔAUPR = −0.021 and p = 0.31 for
CODEX - colorectal cancer, IMC - Jackson and IMC - METABRIC, respec-
tively, Fig. 2a, b, f, Supp. Figure 2). Notably, only in the IMC - Jackson
breast cancer dataset did the spatial model significantly outperform
the pseudobulk-level representation (ΔAUPR =0.041 and p =0.019).
These findings suggest that the added value of spatial context or
single-cell resolution for tumor phenotype prediction is limited in
current spatial omics datasets, which comprise only up to a few hun-
dred images. The strong performance of pseudobulk representations
likely reflects their ability to smooth out cell-to-cell variability and
emphasize dominant molecular signals at the tissue level. In contrast,
more complex spatial or single-cell models may require larger data-
sets, or more complex phenotypes that are tightly coupled to spatial
organization, to fully leverage the additional layers of information they
encode.

Spatially-aware graph embeddings reveal clinically meaningful
tissue representations
The ability of graph neural networks (GNNs) to explicitly model cel-
lular interactions and tissue architecture offers unique opportunities
for capturing biologically meaningful spatial features that may not
directly translate into classification performance. Despite the com-
parable predictive performances of GNNs to the baseline models, it
remains worthwhile to explore what these models learn about tissue
organization and whether their learned representations reflect rele-
vant biological structures or processes. Therefore, we analyzed the
graph-level embeddings learned by the GNNs. These embeddings,
obtained after node-pooling, provide spatially-aware representations
of entire tissue samples and can be interpreted as a continuous patient
manifold (Methods). Interestingly, the embeddings revealed biologi-
cally meaningful patterns beyond the separation required for tumor
phenotype classification. For the two breast cancer datasets, we found
that the graph embeddings recapitulated the sequential ordering of
tumor grades (1, 2, and 3), even though the categorical multi-class loss
functiondoes not enforce suchordering. For the IMC - Jacksondataset,
the embeddings showed a clear gradient of tumor grades, progressing
from grade 1 through grade 2 to grade 3, as reflected in the increasing
pairwise distances between grades (Fig. 2c, e). In the IMC - METABRIC
dataset, although the distance between grade 1 and grade 3 embed-
dings was not significantly greater than that between grade 2 and
grade 3, the median distance from grade 1 to grade 3 was still higher,
suggesting a partial preservation of grade ordering (Fig. 2i). This
interpretation is further supported by principal component analysis of
the learned embeddings. The first principal component (PC1) revealed
a graded separation across tumor grades: grade 3 sampleswere shifted
toward the positive end of PC1, grade 1 clustered toward the negative
end, and grade 2 was distributed between them. This suggests that the
model captures a latent, continuous trajectory consistent with tumor
severity (Fig. 2g). Furthermore, to assess whether the learned
embeddings also captured prognostic signals, we examined the asso-
ciation between the first principal component and disease-specific
patient survival and indeed found a correlation even within samples of
the same tumor grade (Fig. 2d, h). This was reflected in the right-
censored concordance index, which yielded median values con-
sistently above 0.5 across cross-validation runs of the selected model
(IMC - Jackson: 0.55, 0.54, 0.57 for grades 1, 2, and 3; IMC - Metabric:
0.86, 0.62, 0.53; Supp. Figure 3a, b). These analyses show that the
graph models learned meaningful, even clinically interesting, sample
representations that go beyond the separation of labels they were
trained on and offer two important implications: (1) the multifaceted
utility of these embeddings suggests that the models base their pre-
dictions on biologically meaningful features and may generalize to
further interpretation tasks, and that (2) the continuous nature of the
learned representations reflects gradual variability across tumor
grades and patient subgroups, highlighting their potential for future
studies to explore clinical outcomes along such latent trajectories.

Uncovering spatial patterns of immune cell distribution in
breast cancer with graph neural networks
These results suggest that gene expression states, the input node
states in the presented ablation study, contain significant information
about the tissue labels, even in the absence of information about
spatial connectivity. However, the cell-wise gene expression states

Table 1 | Hyperparameters related to training and data processing screened in grid search for each dataset

dataset learning rate l2 radius number of clusters

IMC - breast cancer (Jackson) {5e-2, 5e-3, 5e-4} {0, 1e-6, 1e-3} {10, 20, 50} {5, 10, 20}

IMC - breast cancer (METABRIC) {5e-2, 5e-3, 5e-4} {0, 1e-6, 1e-3} {10, 20, 55} {5, 10}

CODEX - colorectal cancer {5e-2, 5e-3, 5e-4} {0, 1e-6, 1e-3} {25, 50, 120} {5, 10}
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themselves are functions of the spatial context9,17, thus potentially
confounding this ablation result. To address this potential limitation in
the capture of spatial patterns of cells that are predictive of tissue
labels, we set out to performa similar ablation study inwhich the input
node states are discrete cell type labels. These cell type labels do not
resolve fine-grained gene expression variability within cell types that is
often confounded by spatial context9 but may still represent relevant
spatial patterns in the tissue: for example, the spatial distribution of
immune cells within tumors in a spatial graph of cells that has cell type
labels as node states. To specifically query immune cell distributions,
we reused the previously described graph representation of tissue
images, replacing molecular expression profiles with binary immune
versus non-immune cell representations as node features.

To determine whether GNNs pick up tumor phenotype specific
spatial patterns of immune infiltration into the tumor, we designed a
second ablation study to compare their classification performance
against baselinemodels. Specifically,wecompared: (1) the graph tissue
representation with binary node features of immune vs non-immune
cell (“Spatial Tissue Architecture” model), (2) tissue density structure,
using either the graph skeleton or the histogram of node degrees
without cell phenotype information (“Density”model), and (3) the cell
type fractions (immune vs. non-immune) only (“Cell Type Fractions”
model) (Fig. 1c). As an additional control, we trainedGNNsondatawith
randomly permuted node labels (“Permuted Spatial Tissue Archi-
tecture”model) to test whether predictions relied on specific immune-
tumor spatial arrangements, while keeping the adjacencymatrices and
cell type fractions fixed (Methods).

Notably, we found that GINmodels trained on the spatial immune
cell distribution of the IMC - Jackson breast cancer dataset significantly
outperformed all othermodels. This includedmodels trained solely on
cell type fractions, tissue density features, and permuted node labels
(ΔAUPR =0.072, p =0.019 for Cell Type Fractions; ΔAUPR =0.16,
p = 5.47e-6 for Density; ΔAUPR =0.047, p =0.041 for Permuted,
Fig. 3a). Therefore, we conclude that the GIN model successfully cap-
tured distinctive spatial patterns of immune cell invasion associated
with different tumor grades. In contrast, for IMC - METABRIC dataset,
graph models did not outperform baseline models trained solely on
immune cell fractions, although they did outperform both the tissue
density-based and permuted graph baselines (ΔAUPR =0.052 and
p =0.14 for Cell Type Fractions, ΔAUPR =0.12 and p = 6.69e-6 for
Density, ΔAUPR =0.088 and p = 9.72e-3 for Permuted, Fig. 3b). The
generally low performance on this dataset, close to random baseline
levels, may explain why modeling complex spatial patterns failed to
improve prediction performance. This finding highlights the current
limitations imposed by small sample sizes in spatial omics datasets.
Together, these findings show that while spatial modeling of immune
cell organization can enhance phenotype prediction in certain set-
tings, its effectiveness likely depends on dataset size, signal strength,
and the degree to which immune spatial patterns are linked to the
target phenotype.

To further explore the ability of GNNs to retrieve spatial patterns,
we trained a graph attention network (GAT) on the IMC - METABRIC
dataset and analyzed the learned interactions between neighboring
cell types in the context of tumor grades (Fig. 3c–e, and Supp. Fig-
ure 4). Interpreting the weight matrix of the first graph convolutional
layer (Methods), similar to how convolutional filters are visualized in
image recognition models, revealed biologically meaningful interac-
tions. Specifically, setting the convolutional filters in context with the
learned attention mechanism between cell types (Fig. 3c), we found
that the proximity of fibroblasts around tumor cells to be indicative of
grade 1 tumors, while the occurrence of macrophages next to tumor
cells rather indicated grade 3 tumors (Fig. 3c, d). This observation
aligns with the increased presence of macrophages near tumor cells in
grade 3 tumors and the higher prevalence of fibroblast-tumor cell
interactions in grade 1 tumors16 (Fig. 3e).Ta
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In summary, our findings demonstrate that GNNs applied to
immune cell patterns within tumor tissue can identify distinctive spa-
tial patterns of immune infiltration relevant for tumor grade predic-
tion, as shown in the IMC - Jackson dataset. We further demonstrated a
way to extract such patterns from fitted models. Our findings
emphasize the value of GNNs in integrating diverse factors con-
tributing to phenotype prediction and to uncover subtle spatial

patterns that hold promise for advancing our understanding of tumor
microenvironments and informing targeted therapeutic strategies.

Graph neural networks capture complex immune infiltration
patterns in colorectal cancer
Previous studies have shown that the spatial distribution of immune
cells in colorectal cancer is predictive of disease outcomes and is used
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to stratify tumors.11,14. This motivated us to investigate whether spatial
immune infiltration patterns could again be found to distinguish
between tumor cores with tertiary lymphoid structures (TLS) and
those with diffuse immune infiltrates (DII).

To model these spatial patterns, we represented tissues again as
spatial proximity graphs where nodes were categorized as either
immune or non-immune cells. Surprisingly, GNNs trained on this
representation did not significantly outperform models trained on
permuted node labels, where cell type identities were randomly
shuffled (ΔAUPR =0.004, p =0.88, Fig. 4a). This suggests that immune
cell identity contributed little to themodel’s predictive performance in
this setting. Moreover, models trained on the graph structure alone,
without any node feature information, outperformed graph models
that included either immune status or full molecular profiles as node
features (ΔAUPR =0.023, p =0.44 for Spatial Tissue Architecture
(immune/non-immune features); ΔAUPR =0.027, p =0.45 for Spatial
Tissue Architecture (molecular features), Fig. 4a, Supp. Figure 2). This
indicates that theunderlying spatial arrangementof cells, independent
of theirmolecular or immune identity,may be the dominant predictive
signal in this dataset. Supporting this, even random forest classifiers
trainedonnodedegreehistogramsachieved comparable performance
in distinguishing tumor areas with tertiary lymphoid structures from
those with diffuse immune infiltrates (ΔAUPR =0.071, p =0.12, Fig. 4a).

The relevanceof tissue density inmodelling colorectal cancer also
explains the strong performance differences between GCN and GIN
models in this setting. While GCNs normalize node degrees during
messagepassing,GINspreserve nodedegree information through sum
aggregation. Modifying GCNs to use sum aggregation restored their
performance to match GINs (ΔAUPR =0.17 and p = 1.49e-4 GIN vs.
GCN, ΔAUPR =0.015 and p =0.51 GIN vs. GCN with sum aggregation,
Supp. Figure 5d). This finding highlights the significance of preserving
tissue density structure in models of cellular organization.

We note that tissue density may be confounded by local cell type
composition, thus not guaranteeing that the density model is indeed
an ablation that is free of spatial information. To understand if the GIN
model captured immune-related spatial features in these settings in
which it did not outperform the density model, we employed a
gradient-based interpretability approach, calculating the gradient of
the model’s output with respect to node-level inputs to estimate the
contribution of individual cells. Positive gradient values indicated
features characteristic of TLS regions, while negative values pointed
toward the DII label. First, stratified cells by their node degree and the
immune-to-non-immune cell ratio in their local neighborhood and
computed average gradient values. Interestingly, while node degree
alonewas sufficient to achieve high predictive performance, themodel
clearly incorporated immune identity into its predictions. For instance,
cells with node degrees between 10 and 15 and high immune fractions
were strong indicators of TLS regions, whereas cells with similar
degree but lower immune content were associated with DII regions
(Fig. 4b). This level of discrimination could not be achieved by models
relying only on tissue density. Next, we asked whether cells within
similar local features, same node degree and immune fraction, were

used differently by the model depending on whether they point
towards TLS orDII regions. For this, we compared the average gradient
values between cells from TLS and DII images (Fig. 4e, f). The gradient
values revealed a specific subset of cells (with node degree 10–20,
immune cell fraction > 80%) that emerged as key determinants of TLS
classification. However, the presence of these cells alone did not fully
explain the model’s predictions; cells with identical local properties
exhibited substantially lower gradient values when they originated
from DII images. This suggests that the model leveraged broader
spatial context beyond local density and immune abundance. To fur-
ther investigate potential sources of this contextual difference, we
analyzed the neighborhood compositions of these predictive cells,
using annotations from the original dataset (Fig. 4c, d, g). We found
that cells linked to TLS regionsweremost often situated in follicle- or T
cell-enriched neighborhoods, while the same cell types in DII regions
were more frequently embedded in granulocyte- or macrophage-
enriched neighborhoods. Even among cells residing in T cell-enriched
neighborhoods, gradient values differed markedly between TLS and
DII images (Fig. 4h, i), further supporting that the model captures
subtle, higher-order spatial cues that distinguish immune
microenvironments.

These findings suggest that the graph models capture spatial
organization patterns beyond local tissue density, immune cell com-
position, and immediate neighborhood context. Despite cells having
the same node degree, immune fraction, and neighborhood annota-
tion, the model assigns distinct importance depending on whether
they originate from TLS or DII regions. This indicates that the model
leverages more complex spatial relationships within the tissue sub-
graph to distinguish between these phenotypes. Such patterns are
difficult to capture with conventional models, highlighting the
strength of graph-based approaches in learning subtle, context-
dependent features of tissue architecture. It is also important to
keep in mind that tissue density may still embed some spatial context
due to confounding with local cell composition, which may partly
account for the performance of the density-based models relative to
the graph models.

Cell type encodings enable interpretability in graph repre-
sentation learning despite lower prediction accuracy
Cell type labels are a coarsening of vector-shaped cell-wise mean gene
expression observations. One would expect the increased feature
complexity of gene expression states compared to cell type labels to
translate to overall improved predictive ability of models that use
these node states in the input. Indeed, graphmodels were significantly
better when trained on gene expression vectors as opposed to one-hot
encoded cell type node representations on the breast cancer datasets,
IMC - Jackson data and IMC - METABRIC data (p = 7.22e-4 and p = 3.59e-
3, respectively, Supp. Fig. 5a–c). Nonetheless, cell type encodings offer
a lower-dimensional and interpretable representation of tissue, which
can be particularly valuable for identifying structural patterns and
supporting mechanistic studies, such as those modeling immune
infiltration.

Fig. 2 | Graph networks capture latent biological signals related to breast
cancer grade and patient survival. a, b, f Multi-modal ablation study on tumor
phenotype classification performance usingmolecular cell representations. Shown
is the area under the precision-recall curve (AUPR) across three-fold nested cross-
validation for the best performing hyper-parameter set per test split selectedbased
on the train loss for (a)CODEX - colorectal cancer and the validation loss for (b) IMC -
Jackson, and (f) IMC - METABRIC. Bulk represents the pseudobulk expression per
sample, Single Cell is the set of molecular expression vectors per tissue image and
Spatial Tissue Architecture represents the spatial tissue graph representation. The
mean positive class prevalence across the 9 cross validation splits is included as a
randompredictor (grey line). c, e and (g–i) showanalyseson the graph embeddings

from theGINmodels for IMC - Jackson and IMC -METABRIC, respectively. c, g PCAof
the graph embeddings obtained from a GIN model of training, validation, and test
data with class labels superimposed. d, h Clinical disease-free survival (DFS)
annotations. Gray points indicate graphs without recorded survival annotations.
e, i The average euclidean distances between graph embedding vectors from dif-
ferent classes. Statistical significance was assessed using a two-sided unpaired
Student’s t-test (p >0.05, ns; p <0.05, *; p <0.01, **; p <0.001, ***). Box plots show
the median (center line), the 25th and 75th percentiles (bounds of box), and
whiskers extending to the most extreme data points within 1.5× the interquartile
range; outliers are shown as individual points.
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Introducing additional prediction tasks to combat overfitting
Overfitting is of particular concern in relatively small cohorts of hun-
dreds of observations as those that we considered here, especially
when working with high-dimensional molecular feature spaces. We
introduced an auxiliary self-supervision task (Methods) to the graph
model, where the graph neural network predicts the cell type com-
position of neighboring spectral clusters, to constrain the node
embeddings, and compared the resulting performance with standard
graphmodels. However, this task did not improve overall performance
of the graph models (Supp. Fig. 6). We added further sample-level
labels in amulti-task setup to theGCNs trainedon the IMC - Jackson and

IMC - METABRIC datasets but did not find this to improve the predic-
tion accuracy on test data (Supp. Fig. 7). These results highlight the
challenges of training expressive graph models on limited data and
point to the need for larger, more diverse datasets to fully leverage
their potential.

Discussion
In this study, we evaluated the ability of GNNs to capture tissue phe-
notypes from spatial molecular profiling data, leveraging their capacity
to implicitly integrate multiple layers of biological information: spatial
organization of cells, overall cell type composition, molecular
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the IMC -METABRICdataset with cell type input. cHeatmapof the attentionweights
between different pairs of key and query cell types. d, e Neighborhood analysis on
tumor cells. d Heatmap of the filter weight matrix of the first convolutional node
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set into global context by the averaged gradients of the different graph labels with
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quartile range; outliers are shown as individual points.
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expression profiles as well as structural tissue features such as cellular
density patterns.We found that for relatively simple classification tasks,
such as predicting tumor grade in breast cancer, the inclusion of spatial
context did not improve phenotype classification performance, likely
due to the limited dataset sizes of a few hundred images. However,
despite this, GNNs successfully captured biologicallymeaningful spatial

patterns, revealing insights beyond what traditional statistical approa-
ches could extract. For instance, GNN-derived sample representations
contained clinically relevant signals beyond categorical tumor grade
labels. Using Graph Attention Networks, we identified tumor-grade-
specific cell type interactions in oneof thebreast cancer datasets, and in
colorectal cancer, GNNs uncovered complex immune infiltration
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patterns that would not have been apparent through simple statistical
analyses. Even in cases where these patterns did not enhance classifi-
cation accuracy, their successful retrieval suggests that GNNs could
serve as valuable tools for spatial data analysis, helping to characterize
tissue organization principles and microenvironmental interactions.

As datasets grow in size and phenotype complexity, graph-based
approaches remain a promising avenue for modeling spatial mole-
cular data. With richer and more extensive datasets, there will be
greater flexibility to exploremore sophisticatedmodel architectures.
While our study was constrained to relatively simple GCN and GIN
models due to dataset size limitations, future work could benefit
from models with higher capacity, such as Graph Attention
Networks18 or spatially aware message-passing architectures, which
may be more sensitive to subtle tissue niche motifs. Additionally,
hierarchical pooling strategies could enhance information aggrega-
tion in larger graphs11, which may for example become available in
the context of tissue clearing19. Integrating spatial profiling with high-
resolution single-cell RNA sequencing may further improve the
molecular input space for GNNs20, allowing for a more detailed
characterization of tissue organization.

The spatial patterns captured by graph models in this study
may hold practical value for both experimental and clinical
applications. For instance, grade-associated spatial arrangements
or immune infiltration patterns could guide biomarker discovery
by highlighting tissue-level features linked to disease progression.
These insights may also help design spatial profiling experiments
by prioritizing specific tissue regions or compositions for valida-
tion. Furthermore, graph-derived embeddings could serve as
spatially informed features in multi-modal models for patient
stratification or therapy response prediction. More broadly, graph
models offer an interpretable framework for studying tissue
organization and understanding microenvironmental signals, with
potential applications extending beyond classification. Realizing
this promise will require larger, more diverse datasets and rigor-
ous validation to ensure robustness and clinical utility. Taken
together, our findings highlight both the current limitations and
future opportunities of GNNs for spatial omics, positioning them
as powerful tools for studying the complex interplay between
tissue structure and molecular state21.

Methods
Data
IMC - Jackson (breast cancer). The breast cancer dataset (Jackson
et al.15 with 559 images from 350 patients) was measured with IMC.
The dataset consists of samples from three breast cancer grades,
grade 1 (114 images), grade 2 (214 images) and grade 3 (231 images).
Here, 34 proteins in a panel specific to breast cancer microenviron-
ment were simultaneously measured. We used the segmentation
provided by Jackson et al. We used the following channels:

1021522Tm169Di EGFR, 1031747Er167Di ECadhe, 112475Gd156Di
Estroge, 117792Dy163Di GATA3, 1261726In113Di Histone,
1441101Er168Di Ki67, 174864Nd148Di SMA, 1921755Sm149Di Vimenti,
198883Yb176Di cleaved, 201487Eu151Di cerbB, 207736Tb159Di p53,
234832Lu175Di panCyto, 3111576Nd143Di Cytoker, Nd145Di Twist,
312878Gd158Di Progest, 322787Nd150Di cMyc, 3281668Nd142Di
Fibrone, 346876Sm147Di Keratin, 3521227Gd155Di Slug,
361077Dy164Di CD20, 378871Yb172Di vWF, 473968La139Di Histone,
651779Pr141Di Cytoker, 6967Gd160Di CD44, 71790Dy162Di CD45,
77877Nd146Di CD68, 8001752Sm152Di CD3epsi, 92964Er166Di Car-
boni, 971099Nd144Di Cytoker, 98922Yb174Di Cytoker, phospho
Histone, phospho S6, phospho mTOR, Area. Jackon et al. annotated
the following cell types: B cells, T and B cells, T cells, macrophages,
T cells, macrophages, endothelial, vimentin hi stromal cell, small
circular stromal cell, small elongated stromal cell, fibronectin hi
stromal cell, large elongated stromal cell, SMA hi vimentin hi stromal
cell, hypoxic tumor cell, apoptotic tumor cell, proliferative tumor
cell, p53+ EGFR+ tumor cell, basal CK tumor cell, CK7 + CK hi cad-
herin hi tumor cell, CK7 + CK+ tumor cell, epithelial low tumor cell,
CK lowHR low tumor cell, CK +HRhi tumor cell, CK +HR+ tumor cell,
CK +HR low tumor cell, CK low HR hi p53+ tumor cell and myoe-
pithelial tumor cell. We coarsened the cell types into B cells, T and B
cells, T cells, macrophages, T cells, macrophages, endothelial, stro-
mal cells (vimentin hi stromal cell, small circular stromal cell, small
elongated stromal cell, fibronectin hi stromal cell, large elongated
stromal cell, SMA hi vimentin hi stromal cell) and tumor cells
(hypoxic tumor cell, apoptotic tumor cell, proliferative tumor cell,
p53+ EGFR+ tumor cell, basal CK tumor cell, CK7 + CK hi cadherin hi
tumor cell, CK7 + CK+ tumor cell, epithelial low tumor cell, CK lowHR
low tumor cell, CK +HR hi tumor cell, CK +HR+ tumor cell, CK +HR
low tumor cell, CK low HR hi p53+ tumor cell, myoepithelial tumor
cell). We binarized the cell types into immune cells (B cells, T cells,
macrophages) and non immune cells (endothelial, vimentin hi stro-
mal cell, small circular stromal cell, small elongated stromal cell,
fibronectin hi stromal cell, large elongated stromal cell, SMA hi
vimentin hi stromal cell, hypoxic tumor cell, apoptotic tumor cell,
proliferative tumor cell, p53+ EGFR+ tumor cell, basal CK tumor cell,
CK7 + CK hi cadherin hi tumor cell, CK7 + CK+ tumor cell, epithelial
low tumor cell, CK low HR low tumor cell, CK +HR hi tumor cell,
CK +HR+ tumor cell, CK +HR low tumor cell, CK low HR hi p53+
tumor cell, myoepithelial tumor cell). We used the disease-free sur-
vival annotations censored in the cases where the disease-free sur-
vival equaled the overall survival to perform survival analysis.

IMC - METABRIC (breast cancer). The breast cancer METABRIC
cohort (Ali et al.16 with 500 images from 467 patients) was collected
with IMC. Here, 37 proteins in formalin-fixed, paraffin-embedded
breast tumor samples were measured. METABRIC dataset consists of
images from three breast cancer grades, grade 1 (50 images), grade 2

Fig. 4 | Graph neural networks model complex spatial immune infiltration
patterns in colorectal cancer. a Multi-modal ablation study on colorectal cancer
anatomical phenotype prediction using binary immune vs. non-immune cell fea-
ture space. Shown is the area under the precision-recall curve (AUPR) across three-
fold nested cross-validation for the best performing hyper-parameter set per test
split selected based on the train loss. Cell Type Fractions represent the ratio
between immune vs non-immune cells per sample,Density is represented either as
the histogram of node degrees within a sample, or it is the full graph structure
without node features. Permuted Spatial Tissue Architecture refers to a spatial tissue
graph representation with cell identities randomly permuted across the graph and
Spatial Tissue Architecture represents samples via their spatial tissue graphs. The
mean positive class prevalence across the 9 cross validation splits is included as a
random predictor (grey line). b Cells stratified by node degree and fraction of
immune cells in the immediate neighborhood colored by agreement between

enrichment of a cell category within one phenotype class and the average model
saliency using GIN model. c, d Spatial plots of the spatial tissue graphs colored by
the neighborhood cell annotation from the original publication from samples with
different anatomical phenotypes, c TLS region and (d) DII regions. e–i Cell saliency
analysis based on the GIN model. e, f Average cell saliencies stratified by node
degree and fraction of immune cells in the immediate neighborhood for cells from
(e) TLS samples and (f) DII samples. Saliencies are computed as the gradient of the
output with respect to the input cell representations (yellow: TLS, blue: DII).
gNeighborhoodcompositionof the cells highlighted in (e) and (f). h, iSameas (e, f)
of cells annotated as T cell enriched neighborhoods. Statistical significance was
assessed using a two-sided unpaired Student’s t-test (p >0.05, ns; p <0.05, *;
p <0.01, **; p <0.001, ***). Box plots show the median (center line), the 25th and
75th percentiles (bounds of box), andwhiskers extending to themost extreme data
points within 1.5× the interquartile range; outliers are shown as individual points.
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(181 images) and grade 3 (269 images). Ali et al. segmented the single
cells in the images using random forest classifier and then the
expression of proteins in single cells was quantified. Themean protein
expression of the segmented cells is used as the node features of the
spatial graph. We used the following channels: HH3_total, CK19,
CK8_18, Twist, CD68, CK14, SMA, Vimentin, c_Myc, HER2, CD3,
HH3_ph, Erk1_2, Slug, ER, PR, p53, CD44, EpCAM, CD45, GATA3, CD20,
Beta_catenin, CAIX, E_cadherin, Ki67, EGFR, pS6, Sox9, vWF_CD31,
pmTOR, CK7, panCK, c_PARP_c_Casp3, DNA1, DNA2, H3K27me3, CK5,
Fibronectin. Ali et al. annotated the following cell types: B cells, Basal
CKlow, Endothelial, Fibroblasts, Fibroblasts CD68 + , HER2+ , HR +
CK7-, HR +CK7- Ki67 + , HR +CK7- Slug + , HR- CK7 + , HR- CK7-, HR-
CKlow CK5 + , HR- Ki67 + , HRlow CKlow, Hypoxia, Macrophages Vim+
CD45low, Macrophages Vim+ Slug + , Macrophages Vim+ Slug-,
Myoepithelial, Myofibroblasts and T cells, Vascular SMA+ . We coar-
sened the cell types into B cells, Endothelial, Fibroblasts (Fibroblasts,
Fibroblasts CD68 + ), Macrophages (Macrophages Vim+ CD45low,
Macrophages Vim+ Slug + , Macrophages Vim+ Slug-), Myoepithelial,
Myofibroblasts, T cells, Vascular SMA+ and Tumor cells (HER2+ ,
HR +CK7-, HR +CK7- Ki67 + , HR +CK7- Slug + , HR- CK7 + , HR- CK7-,
HR- CKlow CK5 + , HR- Ki67 + , HRlow CKlow, Hypoxia). We binarized
the cells types into immune cells (B cells,Macrophages Vim+CD45low,
Macrophages Vim+ Slug + , Macrophages Vim+ Slug-“: “immune cells,
T cells) and non-immune cells (Basal CKlow, Endothelial, Fibroblasts,
Fibroblasts CD68 + , HER2+ , HR+CK7-, HR +CK7- Ki67 + , HR +CK7-
Slug + , HR- CK7 + , HR- CK7-, HR- CKlow CK5 + , HR- Ki67 + , HRlow
CKlow, Hypoxia). We used the disease-specific survival that is the time
until the last follow-up or death censored according to the disease
specific death indicator to perform survival analysis.

CODEX - colorectal cancer. The colorectal cancer dataset (Schürch
et al.14 with 140 images from 35 patients) was measured with CODEX.
The dataset consists of two patient groups, one group with Crohn’s-
like reaction (CLR) represented in 68 images and one group with dif-
fuse inflammatory infiltration (DII) represented in 72 images. Four
regions were sampled from each patient: from patients in the CLR
groups, two regions containing a tertiary lymphoid structure (TLS) and
two diffuse immune infiltrate regions (DII) were sampled per patient,
while from patients in the DII group, four diffuse immune infiltrate
regions were sampled per patient. The sample-specific anatomic label
(with tertiary lymphoid structure or diffuse immune infiltrate, Fig. 2)
Patients from the CLR group have higher overall survival than patients
classified as DII. Here, 57 proteins specific to the tumor micro-
environment were measured. We used the segmentation previously
performed by Schürch et al. The molecular abundance per cell seg-
ment and the coordinates of the center of each cell were used to
construct the spatial graph. We used the following channels: CD44,
FOXP3, CD8A, TP53, GATA3, PTPRC, TBX21, CTNNB1, HLA-DR, CD274,
MKI67, PTPRC, CD4, CR2, MUC1, TNFRSF8, CD2, VIM, MS4A1, LAG3,
ATP1A1, CD5, IDO1, KRT1, ITGAM, NCAM1, ACTA1, BCL2, IL2RA, ITGAX,
PDCD1, GZMB, EGFR, VISTA, FUT4, ICOS, SYP, GFAP, CD7, CD247,
CHGA, CD163, PTPRC, CD68, PECAM1, PDPN, CD34, CD38, SDC1,
HOECHST1:Cyc_1_ch_1, CDX2, COL6A1, CCR4, MMP9, TFRC, B3GAT1,
MMP12. Schürchet al. annotated the following cell types: B cells, CD11b
+ monocytes, CD11b + CD68+ macrophages, CD11c+ DCs, CD163+
macrophages, CD3 + T cells, CD4 +T cells, CD4 +T cells CD45RO+ ,
CD4 + T cells GATA3 + , CD68+ macrophages, CD68+ macrophages
GzmB+ , CD68 +CD163+ macrophages, CD8 +T cells, NK cells, Tregs,
adipocytes, dirt, granulocytes, immune cells, immune cells / vascu-
lature, lymphatics, nerves, plasma cells, smoothmuscle, stroma, tumor
cells, tumor cells / immune cells and undefined, vasculature. We
binarized the cell types into immune cells (B cells, CD11b+ monocytes,
CD11b + CD68+ macrophages, CD11c+ DCs, CD163+ macrophages,
CD3 + T cells, CD4 + T cells, CD4 + T cells CD45RO+ , CD4 +T cells
GATA3 + , CD68+ macrophages, CD68+ macrophages GzmB+ ,

CD68 +CD163+ macrophages, CD8 +T cells, NK cells, Tregs, granulo-
cytes, immune cells, immune cells / vasculature, lymphatics and tumor
cells / immune cells) and non-immune cells (adipocytes, dirt, nerves,
plasma cells, smooth muscle, stroma, tumor cells, undefined and
vasculature).

Spatial proximity graphs. We considered spatial neighborhood
graphs built with fixed kernel radii across all images. In all datasets
considered here, pixel dimensions are fixed across images so that radii
defined in pixels correspond to consistent spatial distances across
images. We defined a raw adjacency matrix A for each image with
entries aij based on a radius r of a kernel between the position of two
cells i, j in 2D space zi, zj :

aij = 1 if Z i � Zj

��� ������ ���
2
< r else 0

Spectral clustering. We applied spectral clustering to the spatial
graphs by first constructing a k-nearest neighbor (kNN) graph using
the spatial coordinates fzigni= 1 of the cells, with k = 10. The kNN graph
is undirected, where an edge exists between twonodes i and j if either i
is among the k nearest neighbors of j or vice versa.

Label preparation for the self-supervision task. For each spectral
cluster Ci, we define the local self-supervision label yi 2 Rd , where d is
the number of cell types, as the normalized cell type frequency vector
computed over all cells in the neighboring clusters N(Ci), where the
neighborhood is defined using cluster connectivity in the original
kNN graph.

Hold-out definitions
We implemented a nested cross validation. For each study, the data-
sets were split into training (80%), validation (10%) and test (10%)
datasets, except for CODEX - colorectal cancer study which was split
into only training and test datasets due to the limited number of
samples. The splitwas performedon the patient domain, ensuring that
images from the same patients are grouped together in the split. In the
nested cross validation, we used 3 random tests and 3 validation splits.
The same splits were used for all themodels to ensure fair comparison.
We used early stopping on the validation loss for the two breast cancer
datasets andfixed number of epochs for colorectal cancer dataset. The
best models were selected based on their performance in terms of the
lowest validation loss (or training loss in case of CODEX - colorectal
cancer). To evaluate the models, we compared based on Area Under
Precision-Recall curve (AUPR) (section Evaluationmetrics). Thismetric
provides an overall assessment of the models’ ability to distinguish
between the tissue phenotype and capture the balance between pre-
cision and recall. To determine the optimal hyperparameters, we
employed a grid search strategy where different combinations of
hyperparameters were explored as shown in Tables 1 and 2.

Evaluation
Evaluation metrics: We used the area under the precision-recall curve
(AUPR): as a metric for classification performance across all classes
considered.

AUPR=
X
i

ðRi � Ri�1ÞPi ð1Þ

whereRiandPi are recall and precision respectively for threshold i. The
score for multi-class is calculated using macro average.

Evaluation comparison: We used a two-sided t-test to assess the
statistical significance of performance differences between indepen-
dent scenarios. For each scenario, we identified the best-performing
model class by comparing the mean AUPR across repeated runs. p
values below 0.05 were considered statistically significant.
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Models
All neural network models used in this study are feed-forward archi-
tectures designed to perform graph-level classification. The models
take graph-structured inputs or reduced representations thereof and
predict phenotype-level outcomes. Depending on the experiment,
models were trained using either a cell type feature space (one-hot-
encoded categorical input) or a molecular feature space (continuous
gene expression values).

In molecular feature spacemodels, we first embed the input node
features into a lower-dimensional latent space using a fully connected
multilayer perceptron (MLP) with non-linear activation, hi =MLPðxiÞ
where xi are the raw features of node i, and hi is the resulting node
embedding.

For graph models, node embeddings are passed through graph
neural network (GNN) layers, including GCN, GIN, or Graph Attention
Networks, to propagate information through the graph structure. The
final graph representation is obtainedbypooling node embeddings via
mean; in our experiments, we used mean pooling.

Eachmodel is trained forgraph-level supervision (e.g., tumor class
prediction) using the appropriate loss function depending on the task
type: categorical cross-entropy (CCE) for classification, mean squared
error (MSE) for regression, binary cross-entropy with logits (BCE) for
proportion outputs, and a custom right-censoredMSE loss for survival
prediction.

All models share a consistent data structure and training pipeline
to ensure comparability. Node and graph features are accessed as
standardizedbatch tensors, andpredictions aregenerated through the
shared forward API. Optimization is performed using the Adam opti-
mizer with learning rate scheduling.

In addition, we implemented random forest and logistic regres-
sion baselines using scikit-learn, trained on the same aggregated
graph-level feature representations used by the MLP models.

Bulk models. Pseudobulk multi-layer perceptron networks (MLP): We
implemented a pseudobulk reference model by aggregating cell-wise
feature vectors into a single vector per image. For models using the
molecular feature space,we computed themeanof each feature across
all cells in the image. In the case of models using the cell type feature
space, we computed a compositional representation by normalizing
the distribution of one-hot encoded cell types across the image,
resulting in a frequency-based encoding per cell type. The aggregated
input vector passed through a fully connected neural network as
described in Table 2 (graph embedding) to obtain the graph-level
prediction y= f ðxÞ.

Pseudobulk random forest (RF) and logistic regression models:
Using the same aggregated input representations described above, we
trained scikit-learn random forest and logistic regression classifiers for
graph-level prediction. Model performance was monitored using log-
loss on a validation set.

Single-cell models. Multi-instance networks (MI): For the multi-
instance reference model, each node’s features xi 2 Rd were inde-
pendently transformed using a stack of fully connected layers with
non-linear activation functions. At each layer l, the transformation is
given by, hi

ðl + 1Þ =ϕðh lð Þ
i W lð Þ + bðlÞÞ, where ϕ is a non-linear activation,

W ðlÞ 2 Rdlxdl + 1 is a learnable weight matrix, and bðlÞ is a bias term. After
the final layer, the node embeddings hðLÞ

i are aggregated using a
pooling operation (mean, max, or sum) to form a graph-level repre-
sentation, z =PoolðfhðLÞ

i gNi= 1Þ, This graph embedding z was then pas-
sed through a multilayer perceptron to generate the graph-level
prediction y= f ðzÞ, as detailed in Table 2.

Correlation Network: We constructed a correlation network
by generating k-nearest neighbor (KNN) graphs based on
gene expression similarities instead of spatial proximity. We
applied a log transformation to the expression matrix and used

Scanpy’s sc.pp.neighbors to compute the correlation-based adjacency
matrix.

Spatially-awaremodels. Node degree models (Density): To explore the
impact of spatial information on the tissue-level phenotype classifi-
cation, we implemented two models: a random forest and logistic
regression. To generate the node degree distributions, we computed
the histogram of node degrees from 0 to 14, with an additional bin for
nodes with a node degree exceeding 14. The resulting histogram was
normalized to obtain the proportion of nodes within each bin. These
normalized nodedegree distributionswere thenused as input features
for the random forest and logistic regressionmodels. By incorporating
the full distribution of node degrees per graph, we aim to capture the
spatial information within each graph which play a significant role in
the graph structure and should be able to provide insights about the
tissue-level phenotypes.

Graph models. Graph convolutional networks (GCN): The node

embedding layers for theGraphConvolutionalNetwork are defined as:

Hðl + 1Þ =ϕ A*HðlÞW ðlÞ
� �

, whereσ is a LeakyReLU activation functionwith

negative slope factor 0.1,HðlÞ 2 2 Rnxd is the input node featurematrix

of dimensions (number of nodes x input features), W ðlÞ 2 Rdxd0 is a
learnable weight matrix is a weight matrix of dimensions (input fea-
tures x output features) and A* is the symmetrically normalized adja-
cency matrix: A* =D�1

2AD�1
2 where A is the raw adjacency matrix and D

is the degree matrix of A. he resulting node embeddings were aggre-
gated using a pooling layer and passed through a multilayer percep-
tron (MLP) to obtain graph-level predictions. We additionally
implemented a GCN variant with sum aggregation (GCN_SUM) to
assess its performance relative to other graph models (Supp. Fig. 5d).

Graph isomorphism networks (GIN):We used GIN as a graph neural
network model for tissue-level classification, designed to capture
global graph structures through aggregation-invariant operations and
non-linear transformations. The node embedding layers for the GIN
models at layer l are defined as:

hi
ðlÞ =MLP ð1 � ϵÞhðl� 1Þ

i +
X
j2NðiÞ

hj
ðl�1Þ

 !
ð2Þ

where hðl� 1Þ
i denotes the node feature embeddings vector node i at

layer l � 1 , NðiÞ denotes the set of neighbors of nodes and ϵ is a
learnable scalar (fixed to 0 in our implementation). To form the graph-
level representation, node embeddings from all GIN layers are
concatenated, hi =CONCATðhi

ð0Þ, hi
ð1Þ, :::, hi

ðLÞÞ, where L is the num-
ber of GIN layers. These concatenated node embeddings are then
aggregated across all nodes using mean pooling h = 1

N

PN
i= 1hi. The

graph-level representation h then passed through a fully connected
network to learn the tissue-level phenotype classification y= f ðhÞ,
where y is the classification output.

Graph convolutional networks with self-supervision (GNN-SS): We
introduced an auxiliary self-supervision task to the graph neural net-
works. For each pre-computed spectral cluster in the graph, themodel
predicts the cell type composition of all neighboring clusters com-
bined. After the graph embedding layers, node embeddings within
each cluster are pooled andpassed through a one-layer neural network
to produce the predicted composition. A mean squared error (MSE)
loss is computed between the predicted and true composition vectors
and added to the main graph-level loss during training.

GNN-Permuted: We used the described Graph Neural Networks
(GNN) but trained them with randomly permuted node features, pre-
serving the adjacency matrix to maintain the graph structure.

Graph attention networks (GAT):We implementedGraph attention
networks with dot-product attention to allow for actual incorporation
of both partners in the attention value computation. Instead of
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computing scalar scores for all nodes and taking pairwise sums to
weight the information transfer between two nodes, here, the atten-
tion score is computed as

αij = sof tmaxjðxiTWQWK
TxjÞ, ð3Þ

with WQ and WK being weight matrices corresponding to linear
embeddings for the query and key nodes, respectively, and softmax
being computed over all neighbors of a query node after subtracting
the maximum value. We used 4-dimensional key and query embed-
dings for the dot product computation. The message passing step is
then performed as

xi
k = σ WV

T
X
j2Ni

αij xj

0@ 1A0@ 1A ð4Þ

with a node feature embedding matrix WV and σ as a Leaky ReLU
activation function with negative slope factor 0.1. Node embeddings
were then aggregated using amean pooling layer followed by a simple
MLP for final graph-level predictions.

Other baselines
Random predictor: showing the expected value of the random pre-
dictor, which is the mean positive class prevalence plotted per class
across the cross-validation folds.

Downstream analyses and model interpretations
Tissue graph embeddings. For the sample representation analyses,
we computed the graph embeddings for thewhole dataset as obtained
as activations after the global node pooling step within the respective
GNN. These latent graph representations were then quantile normal-
ized to follow feature-wise uniform distributions as implemented in
sklearn.preprocessing.quantile_transform, followed by a PCA
transformation.

Survival analysis. To assess the signal of the disease-free survival
covariate in the graph embedding space, we used the loadings of the
first principal component as predictor and quantified the performance
using the concordance index for right-censored data. This con-
cordance index computes the fraction of comparable data pairs, that is
pairs where at least the earlier event occurred, that were predicted in
the correct order.

Graph attention network interpretation. We visualized the learned
attention weights between nodes of different cell types in the case of
one-hot encoded cell type identities as node input features as follows:
First, we computed fαij = xi

TWQWK
Txj for all combinations of cell

types, then subtracted the maximum value per key cell type, and
exponentiated these values to mimic the softmax transformation. For
visualization purposes, these values were additionally divided by the
maximum value per key cell type. Secondly, inspired by interpretation
methods from image recognition, we interpreted the learned filter
weights of the first convolutional node embedding layer. We retrieved
the node embedding weight matrixWV and scaled it according to the
transformed attention scores corresponding to the key cell type of
interest. To set the individual filters into context, we computed the
average gradients of themodel outputs with respect to the activations
of the individual filters. We computed the frequencies of the different
cell types as neighborsof a cell type of interest per image and averaged
those values over the images per cancer grade to validate findings
from interpreting the filter weights. Plotted in Fig. 3e and Supp. Fig-
ure 4b are the differences of these averaged frequencies between
grade 1 and grade 3.

Cell saliency analysis. To determine how much individual cells
influence the GNNs predictions, we calculated gradients of the model
outputs with respect to the cell type indicators of the input nodes. We
deemed cells with positive gradients corresponding to a specific tissue
phenotype class as indicative for that phenotype.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
We used published datasets provided in the original studies. Jackson
et al.15: single cell data https://doi.org/10.5281/zenodo.4607374. Ali
et al.16: single cell data found in Image Data Resource (https://idr.
openmicroscopy.org/) under accession code idr0076. Schürch et al.14:
single cell data https://doi.org/10.17632/mpjzbtfgfr.1, imaging data
https://doi.org/10.7937/TCIA.2020.FQN0-0326.

Code availability
We summarized all models, training, and interpretation mechanisms
discussed here in a Python package centered around graph-level
supervision on spatial single-cell graphs (available at https://github.
com/theislab/tissue). The code is fully developed by the authors and is
released under the BSD-3-Clause License. The archived version is
available at Zenodo22.
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