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Integrative gene and isoform co-expression
networks reveal regulatory rewiring in stress-related
psychiatric disorders
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SUMMARY

Isoform-specific expression patterns have been linked to stress-related psychiatric disorders such as major
depressive disorder (MDD). To further explore their involvement, we constructed co-expression networks us-
ing total gene expression (TE) and isoform ratio (IR) data from affected (n = 210, 81% with depressive symp-
toms) and unaffected (n = 95) individuals. Networks were validated using advanced graph generation
methods. Our analysis revealed distinct differences in network topology and structure. Shared hubs ex-
hibited unique co-regulatory patterns in each network, with key master hubs in the affected network showing
association with psychiatric disorders. Gene Ontology enrichment highlighted condition-specific biological
processes linked to each network’s master hubs. Notably, isoform-level data uncovered unique co-regulato-
ry interactions and enrichments not observed at the gene level. This is the first study to show network-level
differences of gene and isoform co-expression between affected and unaffected individuals of stress-related
psychiatric disorders, emphasizing the importance of isoforms in understanding the molecular mechanisms

of these conditions.

INTRODUCTION

Stress-related psychiatric disorders, such as major depressive
disorder (MDD), anxiety disorders, and post-traumatic stress dis-
orders (PTSD) share common pathophysiological, clinical, and
biological characteristics and impose a significant burden on indi-
viduals and society."? These conditions disrupt thinking, mood,
and daily functioning, leading to the diminished quality of life and
often long-lasting disability. This burden extends to healthcare
systems, where psychiatric disorders are a leading cause of
disability and contribute to poor outcomes in physical diseases.’
MDD exemplifies the challenges in understanding and treating
psychiatric disorders. As a highly polygenic disease, MDD is influ-
enced by numerous genetic variants, and its high comorbidity with
many other psychiatric disorders complicates its study.® Cross-
disorder psychiatric studies offer a valuable approach to investi-
gating shared biological processes beyond phenotypic features.”

Through Genome-Wide Association Studies (GWASs), the
majority of disease-associated variants were found to be in
non-coding regions, highlighting the importance of gene expres-
sion and splicing regulation in contributing to genetic risk. This
has led to increased interest in studying the gene expression
landscape and transcriptional regulation. Differential expression

analysis (DEA) is an important tool that allows researchers to
identify genes expressed at significantly different levels between
two or more conditions. Using samples from brain and blood tis-
sues, many studies have identified transcriptional dysregulation
patterns in patients with psychiatric disorders,”'° with multiple
differentially expressed genes being shared across several psy-
chiatric disorders.”"®

To unravel the complex biology of psychiatric disorders, it is
important to organize genes within their broader molecular system
and pathway context. However, DEA often focuses on individual
genes, potentially overlooking the complex interactions and regu-
latory relationships within biological systems. To this end, co-
expression networks have emerged as a powerful tool. This
approach involves constructing networks representing functional
relationships between genes, where nodes represent genes and
edges represent a correlation of expression patterns. Network
methods allow researchers to identify key regulatory genes and
modules of functionally related genes and link them to disease-
related pathways, offering a more comprehensive view of the mo-
lecular mechanisms underlying psychiatric disorders.''~"*

Network approaches have been widely used to investi-
gate the pathophysiology of psychiatric disorders.’”"'® For
example, studies have used network methods to explore gene
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Figure 1. Results of differential gene expression (DGE, orange) and differential transcript expression (DTE, gray) analysis

(A and B) Volcano plots visualize differentially expressed genes (A) and transcripts (B). See Tables S3, S4, and S7. The dashed line indicates the significance
threshold of 5% FDR (n = 450 genes and 269 transcripts). The top 5 up- and down-regulated entities (based on FDR) are labeled.

(C and D) Venn diagrams illustrate the overlap of upregulated (C) and downregulated (D) entities, see Figure S3. Orange represents genes, and gray represents
genes of transcripts, where transcripts were mapped to their corresponding genes for overlap analysis. (C) Up-regulated: 53 genes found both at gene and
transcript level, and 22 genes corresponding to 23 up-regulated transcripts found only at the transcript level. (D) Down-regulated: 101 genes found both at the
gene and transcript level, and 81 genes corresponding to 81 down-regulated transcripts found only at the transcript level.

(E) Significantly enriched (maximum of 10) Gene Ontology (GO) biological processes (based on BH adjusted p-values) are shown for upregulated genes and
transcripts. Rich factor quantifying the degree of enrichment is indicated by the dot size, and the -log10 BH adjusted p-values are represented by the color code,
ranging from blue (not significant) to red (significant). Non-significant enrichment values are also indicated by filled circles where available, otherwise left empty
(no dots).

(legend continued on next page)
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interactions, identifying key hub genes and modules associated
with MDD status from blood samples.'*'® However, most exist-
ing methods have focused on investigating gene-level interac-
tions,® %1316 disregarding the effect of post/co-transcriptional
modification processes, including alternative splicing (AS). AS
affects up to 95% of human genes,'” plays an important role in
gene regulation, and contributes to the diversity and complexity
of the proteome '®2° by producing different isoforms of the same
gene, with much research demonstrating that different isoforms
of the same gene may have different or even opposing func-
tions.?°%? Recently, considerable effort has been directed to-
ward studying AS and splicing dysregulation in psychiatric disor-
ders.”**° For instance, an increase in the expression of
specific isoforms of the neuregulin 1 receptor ERBB4 has been
reported in patients with schizophrenia.”® Another study identi-
fied differentially spliced genes, including splicing regulators, in
patients with autism spectrum disorder (ASD).>” Studies incor-
porating isoform-level data into differential expression and
network analysis have revealed larger effect sizes and more
informative disease-specific transcriptional profiles and biolog-
ical signals often missed when focusing solely on gene-level
expression.”?%?% For example, in a cross-disorder study of
ASD, SCZ, and BP, Gandal et al.” demonstrated that isoform-
level co-expression networks were more strongly associated
with disease-specific GWAS loci than gene-level networks.

While these studies have highlighted the importance of iso-
form-level analysis in understanding psychiatric disorders, there
remains a need for integrative approaches that combine both
gene-level and isoform-level data in a single network framework.
To address this need, we introduce an integrative network
approach to compare and unravel the complex underlying
biology between a network of affected individuals (AIN) with
stress-related psychiatric disorders (n = 210, 81% with depres-
sive symptoms) and a network of unaffected individuals (UIN)
(n = 95). As in the work studying tissue-specific transcription
and splicing by Saha et al.,* we combine both total gene
expression values (TE) and isoform ratios (IR) as two node mo-
dalities in our networks. Using advanced graph generation and
embedding techniques, we validate that these networks capture
biologically meaningful distinctions between the two groups. We
compare the two networks to reveal differences in co-regulatory
patterns both at gene and isoform levels. Additionally, we prior-
itize key genes and isoforms within the AIN that may play pivotal
roles in disease pathways and serve as potential targets for
therapeutics.

To elucidate the advantages of our network-based approach
over current standard methods such as differential expression
analysis, we perform DEA at both gene and transcript levels, fol-
lowed by pathway and GWAS enrichment analyses on both DEA
results and network findings. By constructing and comparing
integrative gene and isoform networks for affected and unaf-
fected individuals, we reveal changes in regulatory relationships
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and gain insights that are not captured from differential expres-
sion analysis alone.

RESULTS

Using gene and transcript expression data from 305 individuals
(210 affected and 95 unaffected by psychiatric disorders), we
first performed standard single-gene differential expression
analysis and subsequently compared these findings to those ob-
tained from our integrative network-based approach.

Differential expression analysis reveals distinct gene
and transcript-level dysregulation

After adjusting for biological variables (sex, age, BMI, and cell
type composition), and technical variables (sequencing run,
GC content, and total read pairs), we performed differential
gene expression and differential transcript expression analyses
incorporating both total gene expression counts (n = 7394
genes) and transcript expression counts (n = 7334 transcripts)
from 229 affected and 107 unaffected individuals (see STAR
Methods, Figure 1, and Table 1). Our DE analyses identified
450 differentially expressed genes (36% up-regulated) and 269
differentially expressed transcripts (30% up-regulated) at an
FDR of 5% (Figures 1A and 1B; and Tables S3 and S4). Notably,
we identified 104 transcripts showing differential transcript
expression, while their parent genes did not show concurrent dif-
ferential gene expression (Figures 1C and 1D; Figure S3). This in-
dicates isoform-specific regulation, where the relative abun-
dance of transcripts from these genes changes significantly
despite stable overall gene expression, consistent with previous
findings.”?%>"

To identify pathways and biological functions relevant to the
differentially expressed genes and transcripts, we carried out
enrichment analysis of differentially expressed genes and differ-
entially expressed transcripts using ClusterProfiler,® which re-
vealed distinct biological processes associated with upregulated
genes versus upregulated transcripts. Upregulated transcripts
were uniquely enriched (Benjamini-Hochberg (BH) correction,
p < 0.05) in leukocyte chemotaxis and leukocyte migration,
both related to immune system processes. On the other hand,
upregulated genes showed enrichment (BH, p < 0.05) in a
different set of immune processes, including granulocyte
chemotaxis, neutrophil chemotaxis, and granulocyte migration
(Figure 1E; Table S5). Neither downregulated genes nor downre-
gulated transcripts exhibited significant enrichment in any GO
biological processes. To link our findings on differential gene
and transcript expression to the genetic landscape of psychiatric
disorders, we performed a GWAS enrichment analysis using
MAGMA®**2* (Figure 1F). While the set of differentially expressed
genes captured more cross-disorder-related genes (beta = 0.13,
p = 0.04), the set of differentially expressed transcripts showed
a larger effect size for enrichment in MDD-related SNPs

(F) Enrichment of differentially expressed (DE) genes and transcripts in genes carrying SNPs associated with the GWAS traits schizophrenia, post-traumatic
stress disorder, major depressive disorder, bipolar disorder, autistic spectrum disorder, attention deficit hyperactivity disorder, and a psychiatric cross-disorder
GWAS. See Table S6. The GWAS trait of height was used as a baseline for comparison. Absolute beta values from the MAGMA analysis are indicated by the dot
size, with negative beta values represented by a triangle and positive beta values by a circle. -log 10 of BH adjusted p-values are represented by the color code,

ranging from blue (not significant) to red (significant).
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Table 1. Cohort characteristics

Major depression

Status Study N Age Female BMI or dysthymia diagnosis BDI-II Psychotropic drugs
Affected all 229 39.6 (13.2) 59% (135) 25.3 (6.3) 81% (186) 24.9 (13) 47% (107)
BeCOME 122 37.1 (12.5) 65% (79) 24.0 (4.4) 69% (84) 18.0 (12.8) 8% (10)
OPTIMA 107 42.4 (13.5) 52% (56) 26.9 (5.8) 95% (102) 33.0(7.7) 90% (97)
IST 0 = = = = = =
Unaffected all 107 29.9 (9.1) 60% (65) 23.7 (3.8) 0% (0) 2.6(5.2) 0% (0)
BeCOME 70 32.5(10.2) 66% (46) 23.4 (3.2 0% (0) 4.0 (6.0 0% (0)
OPTIMA 0 - - - - - -
IST 37 25 (3.0 51% (19) 24.4 (4.7) 0% (0) 4.0 (5.3) 0% (0)

This table presents cohort characteristics as percentages with absolute numbers in parentheses for categorical variables, or as means with standard
deviations in parentheses for continuous variables. Depression diagnoses, including both full and subthreshold diagnoses in the last 12 months, were
determined using the Munich-Composite International Diagnostic Interview (M-CIDI). Depression severity was assessed using the Beck Depression
Inventory-II (BDI-II). The ,column psychotropic drugs refer to the percentage of subjects taking psychopharmacological medications during the study
period. These medications include antidepressants, mood stabilizers, neuroleptics, tranquilizers, and herbal psychotropics.

(beta = 0.01, p = 0.70) compared to the set of differentially ex-
pressed genes (beta = —0.03, p = 0.70). Similarly, the set of
differentially expressed transcripts showed a larger effect size
for enrichment in bipolar disorder GWAS (beta = 0.01, p =
0.62) compared to the set of differentially expressed genes
(beta = —0.01, p = 0.62) (see Figure 1F). The complete results
of this analysis can be found in Table S6.

To identify the differentially expressed genes and transcripts
most directly relevant to psychiatric disorders, we prioritized
those with prior established associations in the literature. Specif-
ically, we intersected all differentially expressed genes and tran-
scripts (553 unigue genes) with a self-curated list of genes known
to be associated with psychiatric disorders (see Gene-disease
association analysis in STAR Methods), yielding 53 genes, 15
of which are associated with depression (Table S7).

Construction and validation of Co-expression networks

To investigate differences in co-expression patterns of genes
and isoforms between individuals affected (n = 210, 81% with
depressive symptoms) and unaffected (n = 95) by stress-related
psychiatric disorders, we constructed a co-expression network
for each group and compared them. We used the information
theoretic-based network inference approach ARACNE®® (see
STAR Methods) using both corrected total gene expression
(TE) values (n = 7394 genes) and isoform ratios (IR, n = 7097 ra-
tios) (Figure S1A). To select only high-confidence edges in both
networks, we applied thresholding based on the Ml values (see
STAR Methods). The resulting affected individuals’ network con-

sists of 7996 nodes and 10,702 edges, while the network for un-
affected individuals consists of 8272 nodes and 11,120 edges
(see Table 2), with a similar number of TE and IR nodes
(Figure 2A).

To assess whether the topological differences in our inferred
networks are truly driven by underlying biological signals distin-
guishing the two groups, rather than being the result of random
noise or limitations of the network inference method, we used
graph generation and embedding techniques (see STAR
Methods). Using the graph generation approach ARROW-
Diff,*® we created 100 simulated graphs for each network. We
then investigated the structural similarities between the gener-
ated graphs by embedding them using the Graph2Vec tech-
nique®” and then mapping the embeddings into a lower-dimen-
sional representation using PCA (Figure S1B). The results
revealed a clear separation between the two groups’ networks,
with a classification accuracy of 0.92 using a logistic regression,
Figure 2B). This quantitative assessment of the network topology
distinctiveness between groups ensures robust inference and
suggests that these networks reveal disease-specific patterns
relevant to psychiatric diseases beyond noise.

Differential network analysis reveals distinct co-
expression patterns associated with stress-related
psychiatric diseases

To pinpoint key differences between the networks of affected
and unaffected individuals (illustrated in Figures 2E and 2F in

Table 2. Network statistics for the AIN and the UIN

Network #Nodes #Edges #TE-TE edges #TE-IR edges #IR-IR edges
Affected-Individuals (AIN) 14,300 21,324 11951 1946 7427

7996 10702 5997 983 3722
Unaffected-Individuals (UIN) 14,447 40,676 24199 6993 9484

8272 11120 4837 1382 4901

This table provides an overview of the number of nodes and edges, as well as the number of edges for each edge type, in the affected individuals’ and
unaffected individuals’ networks. Values are shown before (top row) and after (bottom row) the removal of edges with low mutual information (Ml)

values.
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the bottom), we focused on 1) investigating how common hub
nodes differ in terms of connectivity patterns between the two
networks, and 2) identifying key drivers of the underlying
network-specific biology by investigating master hub nodes.
To ensure that connectivity patterns are indeed distinct for
each network, we only considered an edge to be distinct/unique
to a network, if it is absent in the unthresholded version of the
other network. By systematically comparing the connection pat-
terns in the two networks, we aimed to uncover distinct patterns
linked to psychiatric diseases both at the gene and isoform
levels.

Common hub nodes show distinct connection patterns
between the affected and unaffected individuals’
networks

Hub nodes, characterized by their high connectivity, are thought
to play critical roles in the organization and regulation of biolog-
ical networks, and alterations in their connectivity patterns can
have significant functional consequences in disease states. To
identify potential disruptions in these key regulatory elements
in stress-related psychiatric disorders, we focused our analysis
on hub nodes within the affected (AIN) and unaffected (UIN) indi-
vidual networks (degree >10).

Hub nodes (degree >10) were identified in both networks. The
AIN contained 352 hubs (Table S8) and the UIN 268 (Table S9),
with 127 hubs common to both networks, as visualized in
Figure 2C and detailed in Table S10). These common hub nodes
showed a distinct connection pattern in each network. Specif-
ically, in the AIN, 1,696 of all common hubs’ connections
(82.4%) were unique. Similarly, 1,428 (79.7%) of all common
hubs’ connections in the UIN were unique. Only 363 edges
were shared between the two networks (Figure 2D).

To anchor this result, which suggests a rewiring pattern of
common hubs, back to the context of psychiatric disorders,
we searched the 127 common hubs (that include both TE and
IR node types) for genes known to be implicated in psychiatric
disorders. Of the 127 common hub nodes (Table S10), 22 genes
and genes of corresponding transcripts showed associations
with psychiatric disorders based on the DisGeNet resource
(see STAR Methods).® Six of which are differentially expressed
at the gene level and three at the transcript level (Table S10).
Figures 2E and 2F (e-bottom for AIN and f-bottom for UIN) illus-
trates the overall structure of the AIN und UNI, with zoom-in
views (top panels in Figures 2E and 2F) depicting two of these
22 genes, the Potassium Channel Tetramerization Domain Con-
taining 12 (KCTD12), which is associated with bipolar disorder,°

iScience

and the TNF Receptor Superfamily Member 1B (TNFRSF1B)
associated with depression.“® These two genes exhibit substan-
tially different connection patterns, with only 2 edges common to
both networks for the two genes (dashed lines in the zoom-in
view in Figures 2E and 2F).

Master hub nodes reveal genes and transcripts relevant
to stress-related psychiatric disorders in the affected
individuals’ network

Our analysis revealed 61 master hub nodes in the AIN exhibiting
substantial degree shifts, characterized by a minimum absolute
fold increase of two in connectivity compared to the UIN, and
adegree of at least 10. Of these, over half (n = 36) were IR nodes,
with six also showing differential expression, including Comple-
ment C5a Receptor 1 (C5AR1), Caveolae Associated Protein 2
(CAVIN2), Dynactin Subunit 4 (DCTN4), Eukaryotic Translation
Termination Factor 1 (ETF1), GIMAP4-201 transcript of the
gene GTPase, IMAP Family Member 4, and NUDT21-201 tran-
script of the gene Nudix Hydrolase 21 (NUDT21) (Figure 3). The
IR node NUDT21-201 appears as a master hub of degree 17 in
the affected individual’s network and is additionally a DE tran-
script (BH, p = 0.002, logFC = —0.11). The corresponding
NUDT21 gene is a known splicing factor and was identified in
a recent study as a differentially expressed RNA-modification-
related gene in MDD.*" In Table S11, we provide a list of all 61
master hub nodes in the AIN, with 31 (50%) showing evidence
for association with psychiatric disorders based on a manual
search in the PubMed repository, 17 of which appear in our anal-
ysis at the transcript level as IR master hubs. To summarize the
results from this analysis of master hubs in the AIN and to draw
better conclusions on potential new candidates for psychiatric
disorders, we assembled all relevant information in Figure 3.
The Figure shows the 61 master hub nodes of the AIN annotated
for different key information including DE status, roles as TFs or
SFs, whether the master hub is also a common hub (degree >10
in both networks), and the existence of evidence associating
each master hub to psychiatric disorders based either on
DisGeNet (see STAR Methods) or on our manual PubMed search
(Table S11).

Similarly, we found 61 master hubs in the UIN showing twice
as much connectivity compared to the AIN. A GO enrichment
analysis of each network’s master hubs (61 each) and their
first-order neighbors (AIN:1080, UIN:827), showed distinct bio-
logical processes related to each network (Figure 4A;
Table S12). The set of master hubs of the UIN and their first-order
neighbors indicated enrichments in the cytoplasmic translation,

Figure 2. Results of network inference and investigation of common hubs

(A) Barplot shows the number of total expression (TE, orange) and isoform ratio (IR, blue) nodes, separated by network: affected individuals (AIN, yellow) and
unaffected individuals (UIN, green) after filtering and thresholding (AIN: 4115 TE nodes, 3881 IR nodes, 7996 total nodes; UIN: 3514 TE nodes, 4758 IR nodes,
8272 total nodes).

(B) PCA plot of the Graph2vec embeddings of the simulated networks generated using the graph generative approach ARROWDiff. The PCA result shows a
separate clustering of the 100 simulated UINs (green) and the 100 simulated AINs (yellow), validating the group-specific network topology and the robustness of
network inference results. Dots indicate individual simulated networks.

(C) Venn diagram shows the overlap of hub genes (degree >10) between AIN (Table S8) and UIN (Table S9), with 127 common hubs (Table S10).

(D) Venn diagram illustrates the number of distinct connections of the 127 common hubs in the AIN and UIN, and their overlap.

(E and F) Visualization of the full affected individuals’ network (AIN, e-bottom left) and unaffected individuals’ network (UIN, f-bottom right). Total gene expression
of genes is represented by orange nodes. Isoform ratio (IR) nodes are represented by blue nodes. Zoomed-in views (top panels in E and F) focus on the first-order
neighbors of two common hub genes associated with psychiatric disorders: KCD12 and TNFRSF1B. Edges representing connections unique to either the AIN or
UIN are represented by solid lines. Transcription and splicing factors are highlighted by red borders around the nodes.
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Figure 3. Master hub nodes in the AIN

Heatmap of the 61 master hub nodes in the AIN (yellow) exhibiting a greater than 2-fold increase in degree compared to the unthresholded UIN (green). Node
degree is indicated by a color gradient from blue (low) to red (high). The 61 master hubs are also annotated for different key information including DE status, roles
as TFs or SFs, whether the master hub is also a common hub (degree >10 in both networks), and the existence of evidence associating each master hub to

psychiatric disorders based either on DisGeNet or on our manual PubMed search (Table S11).

the activation of immune response, and cell adhesion processes
(BH, p < 0.05), while the set of master hubs of the AIN and their
first-order neighbors showed enrichment in other biological pro-
cesses, including the positive regulation of catabolic process,
osteoblast differentiation, and mRNA processing.

To further investigate whether master hubs reflect network-
specific biology, we focused on the top two master hubs with
the highest degree in each network. Figure 4B illustrates the
top two master hubs in the AIN, RC3H1-202 transcript of the
gene Ring Finger And CCCH-Type Domains 1, and SRSF6-201
transcript of the gene Serine and Arginine Rich Splicing Factor
6, along with their corresponding counterparts in the UIN. Simi-
larly, Figure 4C presents the top two master hubs in the UIN, the
Multiple EGF Like Domains 9 gene (MEGF9), and SYNCRIP-202
transcript of the gene Synaptotagmin Binding Cytoplasmic RNA
Interacting Protein (SYNCRIP), along with their respective ver-
sions in the AIN. In Figures 4B and 4C, we annotate the four mas-
ter hubs and their neighbors with key information such as differ-
ential expression status and known roles as transcription or
splicing factors. Focusing on these top two master hubs and
their two-hop neighbors, we conducted a GWAS enrichment
analysis for each network. Specifically, we investigated enrich-
ment in genes harboring SNPs associated with psychiatric disor-
ders (see STAR Methods). Our analysis revealed significant
enrichment of RC3H7-202, SRSF6-201, and their two-hop
neighbors (328 genes) in the AIN for genes implicated in cross
disorder and schizophrenia (beta = 0.18, p = 0.03, beta = 0.16,
p = 0.02 respectively). No corresponding significant enrichment
was found using the set of genes comprising the master hubs
MEGF9, SYNCRIP-202, and their two-hop neighbors (259
genes) in the UIN, see Figure 4D and Table S13.

Isoform ratio nodes show distinct co-regulatory patterns
compared to their total expression nodes and capture
different protein-protein interactions

Our analysis found that hub nodes are enriched for IR nodes,
with the proportion of IR nodes exhibiting a positive correlation
with increasing hub degree (e.g., >15 and >20, see Figure 5A).
This observation underscores the critical role of IR nodes within
these networks, prompting us to further investigate the unique
contribution of isoform-level data by carrying out the following
analysis. For each of the AIN and the UIN, we extracted the sub-

network comprising only TE-TE interactions and the subnetwork
comprising only IR-IR interactions, and investigated their over-
lap. In the AIN, out of all 5997 connections of the TE-TE subnet-
work, 5897 (98%) were unique, and out of 3722 connections of
the IR-IR subnetwork, 3597 (96%) were unique to that subnet-
work. Similarly, in the UIN, out of all 4837 connections of the
TE-TE subnetwork, 4739 (98%) were unique, and out of all
4901 connections of the IR-IR subnetwork, 4777 (97%) were
unique. These results highlight the distinct co-expression pat-
terns captured by isoform-level data compared to gene-level.
As an example, we present HNRNPH1-227, a hub IR node
(degree >10) in both networks and a known transcription and
splicing factor associated with neurodevelopmental disor-
ders.*>*3 In both networks, this node exhibits distinct connec-
tion patterns compared to its corresponding TE gene node, the
Heterogeneous Nuclear Ribonucleoprotein H1 (HNRNPHT).
Figures 5B and 5C depict the discrepancy between the connec-
tions of the gene node HNRNPH1 and isoform ratio node
HNRNPH1-227 in both networks, along with annotated nodes in-
formation. The investigation of this node in the BioGrid data-
base** showed that HNRNPH1-227 establishes connections
with a unique set of proteins diverging from those observed at
the gene level. More specifically, within the AIN, HNRNPH1-
227 interacts with isoforms of the proteins RPS6 and EIF4B,
whereas the corresponding TE gene node captures interactions
with EWSR1, SF1, HNRNPH3, HNRNPA1, and FUS. Likewise,
within the UIN, HNRNPH1-227 interacts with isoforms of the pro-
teins CHD2, and DDX17, while the corresponding TE gene node
interacts with EWSR1, HNRNPA1, SRSF5, HNRNPA2B, and
ILF3. The observed differences in interaction patterns between
isoform-specific nodes and their gene-level counterparts high-
light the potential for isoform-level data to reveal previously un-
recognized molecular relationships and functional specificities.
To systematically explore whether these unique isoform-level
co-expression patterns translate to distinct functional enrich-
ments, we repeated the GO-enrichment analysis (section
master hub nodes reveal genes and transcripts relevant to
stress-related psychiatric disorders in the affected individuals’
network) on master IR nodes and master TE nodes separately
and for each network. The results showed that in the AIN, IR
master hubs and their first-order neighbors (36 IR master hubs
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See Table S12.
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and 627 neighbors) were significantly enriched in ten GO biolog-
ical processes including mRNA processing, mRNA metabolic
process, positive regulation of catabolic process, and regulatory
ncRNA-mediated gene silencing. No significant enrichments
were found from gene-level nodes alone, i.e., by considering
TE master hubs and their first-order neighbors (25 TE master
hubs and 453 neighbors) (Figure 5D; Table S14). Similarly, in
the UIN, IR master hubs and their direct neighbors (30 IR master
hubs and 413 neighbors) showed additional enrichment not
found at the gene level, namely in mRNA metabolic processes
(Figure 5E; Table S15). This result emphasizes the role of iso-
form-level data in uncovering condition-specific processes that
are not visible when considering gene-level data alone.

DISCUSSION

In this work, we present an attempt to integrate gene expression
and isoform ratio data into a comprehensive network approach
to investigate co-expression patterns in individuals with and
without stress-related psychiatric disorders, with a focus on
depressive symptoms. This integrative approach allowed us to
capture a deeper understanding of the complex interplay be-
tween multiple genes and isoforms, rather than focusing on the
traditional gene-level analysis, revealing significant differences
in network architecture between the two groups of individuals.
We identified a total of 450 differentially expressed (DE) genes
and 269 DE transcripts, including 104 with isoform-specific DE
without corresponding DE at the gene-level. Of all DE genes
and transcripts (mapped to 553 unique genes), we found that
53 genes have been shown to be associated with psychiatric dis-
orders according to a DisGeNet query, 15 of which are associ-
ated with depression. Enrichment analyses on the DE genes
and transcripts further highlighted the unique signal arising
from isoform-level data to understand gene regulation in
stress-related psychiatric disorders. Specifically, the set of upre-
gulated transcripts showed significant enrichment in leukocyte
chemotaxis, not captured from DE genes. Leukocytes in
depressed patients show the dysregulation of genes involved
in synaptic and neuroimmune functions, bridging the immune
and the nervous system.*®

While DE analysis has been widely used to study psychiatric
disorders,®®'% incorporating isoform-level data into such ana-
lyses remains a relatively unexplored area. We compared our re-
sults to studies using blood samples from patients with MDD.
Ota et al.” found 8 DE genes in a longitudinal study of children
and adolescents, with one gene overlapping with our DE genes:
NADH:Ubiquinone Oxidoreductase Subunit A2 (NDUFA2). Wit-
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tenberg et al.'"® conducted a meta-analysis of MDD across

several blood transcriptome studies and provided a harmonized
list of 272 DE genes. Of these, only six overlapped with our DE
genes with concordant direction, namely MBNL7 Antisense
RNA 1 (MBNL1-AS1), IKAROS Family Zinc Finger 3 (IKZF3),
and BUB3 mitotic checkpoint protein (BUB3) as down-regu-
lated, and WD repeat domain 74 (WDR74), N-deacetylase and
N-sulfotransferase 1 (NDST7), and Fc alpha receptor (FCAR)
as up-regulated. Moreover, from the harmonized gene list, two
genes, namely calcium/calmodulin-dependent protein kinase ki-
nase 2 (CAMKK2), and protein tyrosine phosphatase non-recep-
tor type 4 (PTPN4) appear in our analysis as DE solely at the tran-
script level (CAMKK2-209, and PTPN4-201, respectively) with no
corresponding gene-level DE. Our differential transcript analysis
and the unique enrichment profile of DE transcripts highlight the
importance of isoform-level data, as it captures additional layers
of transcriptional complexity that may be missed by traditional
gene-level analyses.

While DE analysis provides information about individual genes
and transcripts, it examines them in isolation, failing to capture
the complex interplay between multiple genes and transcripts.
Network co-expression analysis approaches represent a valu-
able tool, providing a comprehensive framework that captures
the intricate interactions and functional relationships between
genes and transcripts. Many studies have shown that the wiring
of networks changes under different conditions, reflecting the
pathophysiological states associated with diseases,*®™° such
as in breast cancer.”® In psychiatric disorders, existing network
approaches have focused on DE genes as input for network
inference.’®*%°" However, hub nodes in biological networks
have been found to play a critical biological function even if the
gene itself does not show differential expression.”*%5%:5% More-
over, most methods focused on gene-level networks without
considering isoform-level co-regulatory changes.®'"12:°0:5
While gene-level analyses provide valuable insights, incorpo-
rating isoform-level data is crucial for capturing the full
complexity of gene regulation in psychiatric disorders. Isoforms
can have distinct functions and interactions, and their dysregula-
tion may contribute to disease pathogenesis in ways that are not
apparent at the gene level.?*?°5

Therefore, we introduce an integrative approach combining
both total gene expression values (TEs) and isoform ratios (IRs)
to construct separate co-expression networks for affected and
unaffected individuals (AIN vs. UIN), thereby using all genes
and transcripts that passed our quality control (n = 7394, n =
7097). We ensured the robustness of ARACNE network infer-
ence in capturing biological differences between the two groups

(B and C) Visualization of the Top 2 master hubs in each network. Total gene expression of genes is represented by orange nodes. Isoform ratio (IR) nodes are
represented by blue nodes. Transcription and splicing factors are highlighted by red borders around the nodes. Edges representing connections unique to either
the AIN or UIN are represented by solid lines. Network nodes that are differentially expressed in our DE analysis are represented by a triangle shape. (B) Top 2
master hubs (highest degree) in the AIN RC3H1-202 and SRSF6-201 (left) showing a distinct connection pattern compared to their corresponding nodes in the
UIN (right). (C) Top 2 master hubs (highest degree) in the UIN MEGF9 and SYNCRIP-202 show distinct connection patterns compared to their corresponding

nodes in the AIN (left).

(D) Enrichment of the top 2 master hubs and their two-hop neighbors in each network in genes that carry SNPs associated with the GWAS traits schizophrenia,
post-traumatic stress disorder, major depressive disorder, bipolar disorder, autistic spectrum disorder, attention deficit hyperactivity disorder, and a psychiatric
cross-disorder GWAS. See Table S13. The GWAS trait of height was used as a baseline for comparison. Absolute beta values from the MAGMA analysis are
indicated by the dot size, with negative beta values represented by a triangle and positive beta values by a circle. -log10 of BH adjusted p-values are represented

by the color code, ranging from blue (not significant) to red (significant).
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(A) Bar plots show the distribution of Isoform Ratio (IR) and Total Expression (TE) nodes in hubs with varying degree thresholds (>10, >15, >20) in both the
affected individuals’ network (AIN) and the unaffected individuals’ network (UIN).
(B and C) HNRNPH1 and HNRNPH1-227 network visualizations: Total gene expression of genes is represented by orange nodes. Isoform ratio (IR) nodes are
represented by blue nodes. Transcription and splicing factors are highlighted by red borders around the nodes. Edges represent connections unique to either the
AIN or UIN are represented by solid lines. Network nodes that are differentially expressed in our DE analysis are represented by a triangle shape. (B) Network
visualization of the heterogeneous nuclear ribonucleoprotein H1 (HNRNPH1) shows a distinct connection pattern in each network. HNRNPH1 is an RNA-binding
protein involved in pre-mRNA splicing and RNA processing and is known to be associated with neurodevelopmental disorders. (C) Network visualization of the
hub IR node HNRNPH1-227, a transcript of the gene HNRNPH1, and its first-order neighbors. In both networks, first-order neighbors of HNRNPH1-227 are
substantially different from the first-order neighbors of its TE node HNRNPH1.
(D and E) Significantly enriched (maximum of 10) GO biological processes (BH adj p-values) for master IR nodes and master TE nodes separately and for each
network. Non-significant enrichment values are also indicated by filled circles where available, otherwise left empty (no dots).
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using advanced graph generation and embedding techniques.
This marks the first attempt to leverage Al techniques, such as
graph embeddings and graph generation, for the validation of
network inference, enhancing the reliability of the network anal-
ysis results by confirming the distinctiveness of the network to-
pologies. Hub nodes were a key focus of our network analysis.
We identified hub nodes in both networks, with 127 common
hubs showing distinct connection patterns between the AIN
and UIN. Specifically, 82.4% of the edges connected to these
common hubs in the AIN were unique to that network, while
79.7% of the edges connected to the same hubs in the UIN
were unique to the UIN. This suggests a potential rewiring of reg-
ulatory interactions in psychiatric disorders, which could have
downstream effects on pathways and cellular functions, such
as synaptic plasticity, neurotransmitter signaling, or the immune
response.*® Of the 127 common hubs, we found that 22 genes
(and genes of transcripts) have known associations to psychiat-
ric disorders according to a DisGeNet query. These 22 genes
and their neighbors constitute important candidates for further
investigation, which could provide insights into the molecular
mechanisms underlying disease pathogenesis.

Focusing on the AIN, our analysis revealed 61 master hub no-
des. Master hubs represent highly influential nodes, exhibiting at
least 2-fold degree change in one network compared to the
other. The investigation of these master hubs in the AIN showed
significant associations with psychiatric disorders, particularly
those related to psychiatric cross-disorder phenotype, suggest-
ing their involvement in shared disease processes across
different diagnoses. In a study by Wei et al.®" investigating
MDD in the dentate gyrus (DG) and anterior cingulate cortex
(ACC) regions of a mouse brain, the authors created an interac-
tion network of DE genes and identified important differentially
expressed TFs that regulate many hubs, including the TF gene
chromodomain helicase DNA binding protein 2 (CHD2). CHD2
was predicted to upregulate the expression of DE genes related
to MDD in the DG region. In our analysis, CHD2 appears as an
important gene with differential expression found at the tran-
script level (CHD2-201). This transcript-level DE provides a
more nuanced view of CHD2 dysregulation compared to previ-
ous studies that focused on gene-level expression. Furthermore,
CHD2 is a master hub node in the AIN with a degree of 34
compared to 12 in the UIN, suggesting altered regulatory interac-
tions in the context of psychiatric disorders. Further investigation
of the 61 master hubs, especially those which are differentially
expressed (C5AR1, CAVIN2, DCTN4, ETF1, GIMAP4-201, and
NUDT21-201), may reveal novel therapeutic targets for psychiat-
ric disorders, particularly depression, which represents the ma-
jor portion of the clinical phenotype studied here.

To further investigate the functional roles of master hubs, we
performed pathway enrichment analysis of the master hubs in
each network and their first-order neighbors. The set of master
hubs of the AIN and their first-order neighbors showed enrich-
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ment in the positive regulation of catabolic processes, osteo-
blast differentiation, and mRNA processes. The enrichment of
mRNA processes in the AIN could suggest the dysregulation of
RNA processing and splicing, potentially leading to altered iso-
form expression and downstream functional consequences.
While seemingly unrelated to psychiatric disorders at first
glance, enrichment in osteoblast differentiation may have
intriguing implications. Osteoblast differentiation is crucial for
bone formation and remodeling, and dysregulation of this
process is implicated in osteoporosis. Studies have shown a
complex interplay between osteoporosis, chronic stress, and
inflammation.®® Chronic stress, a well-established risk factor
for psychiatric disorders such as depression, activates the hypo-
thalamic-pituitary-adrenal (HPA) axis, leading to prolonged
cortisol release. Excess glucocorticoids suppress osteoblast dif-
ferentiation by downregulating Wnt/p-catenin and insulin-like
growth factor 1 (IGF-1) signaling, which is critical for bone forma-
tion.®® This suggests a potential link between the enriched oste-
oblast differentiation pathway in the AIN and the chronic stress
often experienced by individuals with psychiatric disorders.
Further investigation of this pathway may uncover novel connec-
tions between bone health, stress response, and mental health.

Since the UIN represents the healthy control group, pathways
enrichments of the master hubs and their first-order neighbors
may reflect normal biological processes and regulatory path-
ways that are essential for maintaining healthy functions in the
body. For instance, the enrichment of cytoplasmic translation
processes could be crucial for supporting protein synthesis
and synaptic plasticity, which are essential for learning, memory,
and cognitive flexibility. Since the list of significant biological pro-
cesses associated with master hubs in the AIN and UIN is fully
distinct, it suggests that the two networks represent different
molecular pathways involved in disease pathogenesis, poten-
tially leading to the identification of network-specific therapeutic
targets.

Our analysis found that hubs and master hubs were enriched
in isoform ratio nodes, underscoring the importance of isoform-
level nodes in our networks. To further investigate the advantage
of isoform-level data as another data modality, we extracted the
subnetwork comprising all TE-TE interactions and the subnet-
work comprising all IR-IR interactions. The results showed
that, for each of the AIN and the UIN, the two subnetworks are
largely distinct in their interactions (IR-IR interactions were map-
ped to their corresponding gene-level). These results highlight
the distinct co-expression patterns captured by isoform-level
data compared to gene-level data, and highlight the potential
for isoform-level data to reveal previously unrecognized molecu-
lar relationships and functional specificities. Hence, to systemat-
ically explore the functional enrichments of isoform-level data,
we carried out GO enrichment analysis on the TE master hubs
and the IR master hubs separately and for each network. The re-
sults revealed that isoform-level data (IR master hubs and their

(D) In the AIN, IR master hubs and their first-order neighbors (36 IR master hubs and 627 neighbors) showed significant enrichment in GO biological processes,
including in mRNA processing, mRNA metabolic process, positive regulation of catabolic process, and regulatory ncRNA-mediated gene silencing. No significant
enrichments were found at the gene-level (TE master hubs and their neighbors). See Table S14.

(E) In the UIN, considering IR master hubs and their first-order neighbors (30 IR master hubs and 413 neighbors) showed additional enrichment not found at the

gene level, namely in mRNA metabolic processes. See Table S15.
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first-order neighbors) are enriched in unique biological pro-
cesses not captured at the gene-level. For example, in the AIN,
the set of IR master hubs and their first-order neighbors was
significantly enriched in ten GO biological processes including
mRNA processing, mMRNA metabolic process, and positive regu-
lation of catabolic process, whereas no significant enrichment
was found at the gene-level, i.e., by considering TE master
hubs and their neighbors.

Throughout our analysis, we highlighted examples of hub and
master hub nodes associated with psychiatric disorders,
providing concrete evidence for the relevance of our network-
based approach. Moreover, our study provides evidence for
the importance of isoform-level analysis in understanding the
complex landscape of gene regulation in psychiatric disorders.
Consequently, our findings emphasize the need for the compre-
hensive functional annotation of isoforms to better understand
their roles in complex biological processes and disease
mechanisms.

Limitations of the study

This work presents opportunities for future research to build
upon our findings. For example, while we used ARACNE for
network inference, which effectively captures non-linear rela-
tionships between genes and isoform ratios, future studies could
assess the robustness of our findings using alternative ap-
proaches. Similarly, while our network analysis reveals co-regu-
latory changes and network-specific biomarkers, exploring
alternative methods for differential network analysis such as
BoostDiff°” and chNet,*® could provide an alternative way to un-
derstand network alterations. While module analysis represents
a powerful approach for dissecting network organization, our
initial attempts to identify condition-specific modules using
spectral clustering were largely driven by the inherent differ-
ences between gene-level (TE) and isoform-level (IR) data
(Figures 2E and 2F, bottom). This strong influence of data modal-
ity on module structure made it challenging to directly attribute
module-level enrichments to the affected or unaffected states.
However, we acknowledge the potential value of exploring
network modules, particularly in the context of the distinct wiring
patterns observed for common hub nodes. Future research
could investigate alternative module detection algorithms or
methods specifically designed for multi-modal network data to
further elucidate the functional consequences of the observed
regulatory rewiring in stress-related psychiatric disorders. Addi-
tionally, exploring gene expression patterns in other tissues,
such as the central nervous system or the gut, could provide a
more comprehensive understanding of the molecular processes
underlying psychiatric disorders.®® A limitation of our study is the
potential confounding effect of pharmacotherapy, given that a
significant portion of the affected individuals were medicated.
While we showed limited direct correlation between broad medi-
cation categories and key gene expression patterns, future
research should prioritize more granular sensitivity analyses,
including stratification by specific medications and dosages,
as well as more sophisticated covariate adjustment techniques.
Combining this with longitudinal data will be crucial for a more
accurate understanding of disease mechanisms and their tem-
poral dynamics, independent of treatment effects. The cell
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type heterogeneity in blood samples, especially the imbalance
between PBMCs used for affected individuals and the mix of
PBMCs and whole blood samples for unaffected individuals,
could have affected our results. While we adjusted for different
blood cell type compositions, further investigation using more
homogenous cell populations or advanced deconvolution
methods could refine our understanding of cell-type-specific ef-
fects. Finally, exploring alternative representations of splicing
events, such as exon-level values, could offer more granular in-
sights into splicing dynamics.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Human PBMC cells BeCOME and OPTIMA cohorts https://doi.org/10.1186/s12888-020-02541-z
https://doi.org/10.1159/000535492

Human whole blood samples IST cohort https://doi.org/10.1159/000535492

Deposited data

Raw and processed RNA-seq data This paper GEO: GSE289146

from human PBMC cells

Raw and processed RNA-seq data from This paper GEO: GSE289144

human whole blood samples

Code for data preprocessing, network This paper, GitHub https://github.com/cellmapslab/Netlso/

inference, and all network-related analyses

Software and algorithms

STAR aligner v2.7.7a Dobin et al. https://doi.org/10.1002/0471250953.bi1114s51

RSEM v1.3.3 Bo Li et al. https://doi.org/10.1186/1471-2105-12-323

Cutadapt v2.10 Martin, M et al. https://doi.org/10.14806/ej.17.1.200

Granulator v1.2.0 Bioconductor https://doi.org/10.18129/B9.bioc.granulator

Limma v3.50.1 Bioconductor https://doi.org/10.18129/B9.bioc.limma

ClusterProfiler v4.12.6 Bioconductor https://doi.org/10.18129/B9.bioc.clusterProfiler

ARROW-Diff GitHub https://github.com/marsico-lab/arrow-diff

ARACNE minet

TFLink Liska et al.”” Liska O, Bohar B, Hidas A, Korcsmaros T,
Papp B, Fazekas D, Ari E (2022) TFLink: An
integrated gateway to access transcription
factor - target gene interactions for multiple
speciesTFLink: An integrated gateway to
access transcription factor - target gene
interactions for multiple species. Database,
baac083

BioRender BioRender https://www.biorender.com/

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Samples selection
This study included 336 Caucasian participants selected based on the availability of matching RNA sequencing (RNAseq) and pheno-
typic data from three cohorts recruited at the Max Planck Institute of Psychiatry in Munich: The Biological Classification of Mental
Disorders (BeCOME) study (ClinicalTrials.gov: NCT03984084,%%), the Imaging Stress Test (IST) study, and The OPtimized Treatment
Identification at the Max Planck Institute study (OPTIMA) (ClinicalTrials.gov: NCT03287362,°"). Individuals were assessed as
affected/unaffected based on the Munich-Composite International Diagnostic Interview (DIA-X/M-CIDI).%:5°

In total, our samples comprised 229 affected individuals (BeCOME: 122, OPTIMA: 107) who met either threshold or subthreshold
DSM-IV-based DIA-X/M-CIDI criteria for any substance use, affective or anxiety disorder, including post-traumatic stress disorder
and obsessive-compulsive disorder, within the last 12 months of enroliment. 186 of these participants had a (subthreshold) DSM-IV
diagnosis of major depression or dysthymia. Unaffected individuals (BeCOME: 70, IST: 37) were defined as those without any DSM-
IV-based DIA-X/M-CIDI diagnosis. However, to focus on a more specific set of psychiatric disorders, cases with pure nicotine depen-
dence (without any other comorbid diagnosis) were excluded from the affected group and moved to the unaffected group, resulting in
a total of 107 unaffected individuals.

All participants were assessed by the Beck Depression Inventory (BDI) [I°* and the Montgomery—Asberg Depression Rating Scale
(MADRS).?® An overview of the sample characteristics is provided in Table 1.
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The studies were approved by the ethics board of the Ludwig Maximilians University (approval BeCOME:#350-14, OPTIMA:#17-
395, IST:#121-14) and conducted in accordance with the Declaration of Helsinki.

METHOD DETAILS

RNA extraction and sequencing

Blood samples were collected in the morning under fasted conditions. RNA was extracted from peripheral blood mononuclear cells
(PBMCs) from OPTIMA and BeCOME cohorts and stored at the MPI biobank. Ribosomal RNA (rRNA) was depleted to enrich for
messenger RNA (mRNA) and improve the detection of other transcripts using RiboCop rRNA Depletion Kits. Libraries were prepared
with the Lexogen CORALL total RNA-Seq V1 Library Prep Kit and sequenced on a NovaSeq 6000 (lllumina, San Diego, USA) with a
target depth of 30 million reads per sample, as previously described in more detail in.°® RNA was extracted from whole blood samples
from the IST cohort. rRNA was depleted with RiboCop and libraries were prepared with the Lexogen CORALL total RNA-Seq V2 Li-
brary Prep Kit. Sequencing was performed on a NovaSeq 6000 in a separate batch with a target depth of 15.6 million reads per sam-
ple. Raw and processed sequencing data have been deposited in GEO under accession numbers GSE289144 and GSE289146.

RNA-seq alignment and QC

Paired-end FASTQ files were aligned against the GRCh38.p12 primary assembly using the GENCODE v31 annotation®” with STAR
aligner v2.7.7a. Alignment was performed using the option quantMode = TranscriptomeSAM, following protocol 7 of Dobin and Gin-
geras,®® which involves generating a transcriptome index and using it for alignment and quantification to produce output in transcrip-
tomic coordinates. Gene and transcript-level expression were then quantified using RSEM v1.3.3%° for paired-end reads.

Gene and transcript-level reads were filtered for unwanted sequences using Cutadapt’® v2.10. Zero-length reads were removed
and only those with a count > 10 in at least 95% of samples were retained, resulting in 9777 genes and 11427 transcripts.

Cell type deconvolution was calculated using Granulator v1.2.0”" and the LM22 reference matrix.”? Principal components (PCs) of
the cell type proportions were calculated for inclusion in downstream models (see Methods S1).

To account for confounding effects from different sequencing runs, we first corrected the gene and transcript-level data for the
sequencing run using the ‘removeBatchEffect’ function from the limma R package.”*"* Subsequently, we performed Surrogate Var-
iable Analysis (SVA)"® to identify additional hidden batch effects. A canonical correlation analysis (CCA) identified high correlations
between the calculated SVs and the PCs of gene expression values (corrected for sequencing run), where e.g., sv1 was highly corre-
lated with pc1 (r=0.99), and sv2 with pc2 (r=0.97), indicating that the svs effectively capture the variation represented by the pcs of
gene expression data. The CCA also showed a high correlation between the GC content and pc1/sv1 (r=0.79), and a moderate cor-
relation between the total read pairs and pc2/sv2 (r=0.46). We supported our CCA by ANOVA tests. Since these technical factors
could confound our analysis, we further corrected gene and transcript-level data for GC content and total read pairs. We also
removed the first five principal components of cell type proportions due to the different cell type composition across our samples,
as well as the effect of sex, age, body mass index (BMI), as these biological factors could also introduce unwanted variation. More-
over, we investigated the effect of the different medications consumed by the affected individuals (Table 1) and found no significant
association to the variation of gene expression data according to the ANOVA tests (Methods S1, Figure S2; Table S16). Finally, we
removed genes and transcripts with negative values due to the subtraction of the modeled biological and technical effects, resulting
in 7394 genes and 7334 transcripts, which we used for differential gene and transcript analysis.

We removed technical and biological covariates to ensure that network inference primarily reflects the intrinsic differences be-
tween the affected and unaffected groups, preventing the network structure from being influenced by unrelated variations. For con-
sistency, we used the same batch-corrected data for both differential expression analysis and network analysis.

Differential gene expression and transcript expression analysis

We carried out differential gene expression (DGE) and differential transcript expression (DTE) analysis on the corrected data using the
limma-trend method.”®"® For this purpose, we transformed the corrected gene and transcript count data to log2-counts per million
values (logCPM) and fitted the linear models using the functions ImFit and eBayes from limma. The design matrix included diagnosis
(affected/unaffected) as the main factor of interest. Significant genes and transcripts were identified at an FDR of 5%.

Isoform ratios

Changes in the expression values of isoforms are influenced by various splicing regulatory processes and were shown to be asso-
ciated with many diseases.”®’"~" Depending on the study objective, isoform-level information can be represented and modeled in
several ways, including absolute isoform counts, isoform proportions, or isoform ratios relative to their parent genes.'®?%° Similar to
the work of Saha et al.,>° we modeled isoform abundances as ratios. Isoform ratios normalize transcript expression to the overall
gene expression, reducing biases from gene-level variability and highlighting isoform-specific changes. The isoform ratio (IR) for
each transcript was computed by dividing the corrected and logCPM-transformed transcript counts by the corresponding gene
counts. Mapping isoforms to their genes was done using GENCODE V31 annotation.®” We removed transcripts whose genes had
been filtered at previous steps. When none of the isoforms of a gene were expressed (0/0 divisions), the mean of the IR across all
samples was taken.®° Hence, the final dataset for network inference includes 7394 genes (TEs) and 7097 isoform ratios (IRs).
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Regulatory network inference for affected and unaffected individuals

Before constructing the networks for the affected and unaffected individuals, we performed principal component analysis (PCA)ESO'81
on the logCPM gene count and the IR data separately. Outliers were identified based on a visual inspection of the first two principal
components from the PCA, with a focus on data points that deviated by more than 2 standard deviations from the mean on either PC1
or PC2. A total of 31 outliers (19 affected and 12 unaffected) were removed. This resulted in 210 affected and 95 unaffected individ-
uals being included in the network inference.

For both the affected individuals’ and unaffected individuals’ networks, we used ARACNE (Algorithm for the Reconstruction of Ac-
curate Cellular Networks),®° an information theoretic-based method designed for the reverse engineering of regulatory networks.
ARACNE uses mutual information (M) to identify potential interactions and the data processing inequality (DPI) to remove indirect
relationships.®? We used both gene expression and isoform ratios as input for ARACNE and removed edges connecting features
of the same gene to reduce bias,*® see Methods S1 and Figure S1A.

The initial results showed that the UIN has twice as many edges compared to the AIN with lower Ml values of the inferred edges.
This is likely due to a reduced inference power caused by the smaller sample size in the unaffected group (see Methods S1 and
Figure S4). To enable meaningful and fair comparison, we applied a threshold based on the median Ml value of each edge type in
the affected network (Figure S5), resulting in two networks with similar statistics (Table 2 and Methods S1).

Validation of topological differences between the constructed networks

In this analysis, we assessed the robustness of the network inference step in capturing group-specific biological processes reflected
in a distinct topological structure, as schematically illustrated in Figure S1B. To this end, we leveraged ARROW-Diff,® a novel
approach for efficient large-scale graph generation. ARROW-Diff incorporates two key components in an iterative procedure to
generate graphs that closely resemble an input ground truth graph in terms of structural properties. The first component is an
auto-regressive random walk-based diffusion model, which learns the generative process of random walks sampled from the input
ground truth graph. This model captures the original network’s structural characteristics and local connectivity patterns. The second
component is a Graph Convolutional Network (GCN),®® which is trained to predict the validity of the proposed edges from the first
component.

Utilizing ARROW-Diff, we generated 100 graphs for each network (affected and unaffected individuals’ networks). These simulated
graphs capture the structure of the corresponding input graph in terms of various graph statistics, including global clustering coef-
ficient, triangle count, assortativity, and other relevant graph metrics on which the graph generation is evaluated. By generating simu-
lated networks that resemble each of the affected/unaffected individuals’ networks, we introduce variability/noise to the networks
inferred by ARACNE. This is because ARROW-Diff can add or remove edges from the generated graph while maintaining the intrinsic
graph structure.

We hypothesize that if the network inference captures group-specific properties reflected in distinct topological structures, the
simulated graphs should also exhibit such distinctiveness between the two groups, even with the introduced variability. To analyze
the structural similarities and differences between the generated graphs, we employed a two-step dimensionality reduction
approach. First, we embedded the 200 generated graphs using Graph2Vec®’ with an embedding dimension of 128 in order to capture
the structure of such large graphs. This step transforms each graph into a high-dimensional vector representation, capturing its to-
pological features. Subsequently, we applied a PCA®° to map these high-dimensional embeddings into a lower-dimensional space,
facilitating visualization and analysis of the clustering patterns among the embedded graphs. To assess how well the Graph2Vec
embeddings can predict a binary class label 1 vs. 0 (affected vs. unaffected), we fit a logistic regression model on the 100 simulated
AINs and the 100 simulated UINs, we split the data into 80% for training and 20% for testing and report the mean accuracy repre-
senting the fraction of correct predictions.

Functional enrichment

Enrichment analysis of biological processes and psychiatric risk

We conducted an enrichment analysis of the DE genes, DE transcripts, and master hubs’ neighbors within the networks of affected
and unaffected individuals using enrichGO from ClusterProfiler®” v4.12.6. This analysis was based on Gene Ontology (GO) biological
processes.®*®° To enhance the clarity and interpretability of the results, we applied the simplification process from ClusterProfiler
with default parameters to remove redundancy among enriched GO terms, focusing on the most representative biological processes.
Furthermore, using the Generalized Gene-Set Analysis of GWAS Data (MAGMA),**>** we assessed the enrichment in genes carrying
single nucleotide polymorphisms (SNPs) with genome-wide association to the following traits: Attention Deficit Hyperactivity Disor-
der (ADHD), Autistic Spectrum Disorder (ASD), Bipolar Disorder (BP), Major Depressive Disorder (MDD), Post-traumatic Stress Dis-
order (PTSD), and a Psychiatric Cross Disorder phenotype. To provide a comparative baseline, we included a GWAS for Height as a
control trait. To run MAGMA, we used the NCBI gene location file build 37 and the 1,000 Genomes reference data file for SNP
locations.

Gene-disease association analysis for psychiatric disorders

To investigate the associations between genes and psychiatric disorders, we used the DisGeNET resource, a comprehensive plat-
form integrating information on gene-disease associations from various expert-curated databases, GWAS catalogs, animal models,
and scientific literature.®® We queried DisGeNET for a wide range of mental and psychiatric conditions, including anxiety disorders,
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major depressive disorder, and various substance abuse and dependency disorders (Table S1). To ensure the reliability of our anal-
ysis, we applied a filtering criterion, considering only gene-disease associations (GDAs) with a score greater than 0.4. We used gene
names of both genes and genes of corresponding isoforms for all enrichment analyses according to the GENCODE V31 annotation.

Network annotation

We compiled an extensive list from multiple resources to annotate the nodes within the networks for known transcription and splicing
regulators. For splicing factors, we integrated data from SpliceAid-F, a curated database of human splicing factors and their RNA
binding sites,®® which provided 67 splicing factors. Additionally, we incorporated a collection of 277 genes involved in pre-mRNA
splicing from,®” and 406 splicing factor genes from.?® For transcription factors, we leveraged the TFLink resource,’ a gateway
for transcription factor-target gene interactions. This integration resulted in a final compilation of 1,606 known transcription factors
and 517 known splicing factors (Table S2). To maintain consistency and facilitate cross-referencing, we utilized gene names for the
annotation process throughout our analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

ANOVA tests for the batch effects exploratory analysis (\Methods S1) was performed using the built-in R functions anova and Im. Dif-
ferential gene expression (DGE) and differential transcript expression (DTE) analysis were performed using the limma-trend method
from the R package limma. For adjusting the p-values for multiple testing, we used the toptable function from the limma package,
employing its default parameters, which applies the Benjamini-Hochberg (BH) method to control the False Discovery Rate (FDR).
Significant genes and transcripts were identified at an FDR of 5%.
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