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SUMMARY

Isoform-specific expression patterns have been linked to stress-related psychiatric disorders such as major 

depressive disorder (MDD). To further explore their involvement, we constructed co-expression networks us

ing total gene expression (TE) and isoform ratio (IR) data from affected (n = 210, 81% with depressive symp

toms) and unaffected (n = 95) individuals. Networks were validated using advanced graph generation 

methods. Our analysis revealed distinct differences in network topology and structure. Shared hubs ex

hibited unique co-regulatory patterns in each network, with key master hubs in the affected network showing 

association with psychiatric disorders. Gene Ontology enrichment highlighted condition-specific biological 

processes linked to each network’s master hubs. Notably, isoform-level data uncovered unique co-regulato

ry interactions and enrichments not observed at the gene level. This is the first study to show network-level 

differences of gene and isoform co-expression between affected and unaffected individuals of stress-related 

psychiatric disorders, emphasizing the importance of isoforms in understanding the molecular mechanisms 

of these conditions.

INTRODUCTION

Stress-related psychiatric disorders, such as major depressive 

disorder (MDD), anxiety disorders, and post-traumatic stress dis

orders (PTSD) share common pathophysiological, clinical, and 

biological characteristics and impose a significant burden on indi

viduals and society.1,2 These conditions disrupt thinking, mood, 

and daily functioning, leading to the diminished quality of life and 

often long-lasting disability. This burden extends to healthcare 

systems, where psychiatric disorders are a leading cause of 

disability and contribute to poor outcomes in physical diseases.1

MDD exemplifies the challenges in understanding and treating 

psychiatric disorders. As a highly polygenic disease, MDD is influ

enced by numerous genetic variants, and its high comorbidity with 

many other psychiatric disorders complicates its study.3 Cross- 

disorder psychiatric studies offer a valuable approach to investi

gating shared biological processes beyond phenotypic features.4

Through Genome-Wide Association Studies (GWASs), the 

majority of disease-associated variants were found to be in 

non-coding regions, highlighting the importance of gene expres

sion and splicing regulation in contributing to genetic risk. This 

has led to increased interest in studying the gene expression 

landscape and transcriptional regulation. Differential expression 

analysis (DEA) is an important tool that allows researchers to 

identify genes expressed at significantly different levels between 

two or more conditions. Using samples from brain and blood tis

sues, many studies have identified transcriptional dysregulation 

patterns in patients with psychiatric disorders,5–10 with multiple 

differentially expressed genes being shared across several psy

chiatric disorders.7,8

To unravel the complex biology of psychiatric disorders, it is 

important to organize genes within their broader molecular system 

and pathway context. However, DEA often focuses on individual 

genes, potentially overlooking the complex interactions and regu

latory relationships within biological systems. To this end, co- 

expression networks have emerged as a powerful tool. This 

approach involves constructing networks representing functional 

relationships between genes, where nodes represent genes and 

edges represent a correlation of expression patterns. Network 

methods allow researchers to identify key regulatory genes and 

modules of functionally related genes and link them to disease- 

related pathways, offering a more comprehensive view of the mo

lecular mechanisms underlying psychiatric disorders.11–13

Network approaches have been widely used to investi

gate the pathophysiology of psychiatric disorders.12–16 For 

example, studies have used network methods to explore gene 
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Figure 1. Results of differential gene expression (DGE, orange) and differential transcript expression (DTE, gray) analysis 

(A and B) Volcano plots visualize differentially expressed genes (A) and transcripts (B). See Tables S3, S4, and S7. The dashed line indicates the significance 

threshold of 5% FDR (n = 450 genes and 269 transcripts). The top 5 up- and down-regulated entities (based on FDR) are labeled. 

(C and D) Venn diagrams illustrate the overlap of upregulated (C) and downregulated (D) entities, see Figure S3. Orange represents genes, and gray represents 

genes of transcripts, where transcripts were mapped to their corresponding genes for overlap analysis. (C) Up-regulated: 53 genes found both at gene and 

transcript level, and 22 genes corresponding to 23 up-regulated transcripts found only at the transcript level. (D) Down-regulated: 101 genes found both at the 

gene and transcript level, and 81 genes corresponding to 81 down-regulated transcripts found only at the transcript level. 

(E) Significantly enriched (maximum of 10) Gene Ontology (GO) biological processes (based on BH adjusted p-values) are shown for upregulated genes and 

transcripts. Rich factor quantifying the degree of enrichment is indicated by the dot size, and the -log10 BH adjusted p-values are represented by the color code, 

ranging from blue (not significant) to red (significant). Non-significant enrichment values are also indicated by filled circles where available, otherwise left empty 

(no dots). 

(legend continued on next page) 
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interactions, identifying key hub genes and modules associated 

with MDD status from blood samples.14,16 However, most exist

ing methods have focused on investigating gene-level interac

tions,8,12,13,16 disregarding the effect of post/co-transcriptional 

modification processes, including alternative splicing (AS). AS 

affects up to 95% of human genes,17 plays an important role in 

gene regulation, and contributes to the diversity and complexity 

of the proteome18–20 by producing different isoforms of the same 

gene, with much research demonstrating that different isoforms 

of the same gene may have different or even opposing func

tions.20–22 Recently, considerable effort has been directed to

ward studying AS and splicing dysregulation in psychiatric disor

ders.7,23–25 For instance, an increase in the expression of 

specific isoforms of the neuregulin 1 receptor ERBB4 has been 

reported in patients with schizophrenia.26 Another study identi

fied differentially spliced genes, including splicing regulators, in 

patients with autism spectrum disorder (ASD).27 Studies incor

porating isoform-level data into differential expression and 

network analysis have revealed larger effect sizes and more 

informative disease-specific transcriptional profiles and biolog

ical signals often missed when focusing solely on gene-level 

expression.7,28,29 For example, in a cross-disorder study of 

ASD, SCZ, and BP, Gandal et al.7 demonstrated that isoform- 

level co-expression networks were more strongly associated 

with disease-specific GWAS loci than gene-level networks.

While these studies have highlighted the importance of iso

form-level analysis in understanding psychiatric disorders, there 

remains a need for integrative approaches that combine both 

gene-level and isoform-level data in a single network framework. 

To address this need, we introduce an integrative network 

approach to compare and unravel the complex underlying 

biology between a network of affected individuals (AIN) with 

stress-related psychiatric disorders (n = 210, 81% with depres

sive symptoms) and a network of unaffected individuals (UIN) 

(n = 95). As in the work studying tissue-specific transcription 

and splicing by Saha et al.,30 we combine both total gene 

expression values (TE) and isoform ratios (IR) as two node mo

dalities in our networks. Using advanced graph generation and 

embedding techniques, we validate that these networks capture 

biologically meaningful distinctions between the two groups. We 

compare the two networks to reveal differences in co-regulatory 

patterns both at gene and isoform levels. Additionally, we prior

itize key genes and isoforms within the AIN that may play pivotal 

roles in disease pathways and serve as potential targets for 

therapeutics.

To elucidate the advantages of our network-based approach 

over current standard methods such as differential expression 

analysis, we perform DEA at both gene and transcript levels, fol

lowed by pathway and GWAS enrichment analyses on both DEA 

results and network findings. By constructing and comparing 

integrative gene and isoform networks for affected and unaf

fected individuals, we reveal changes in regulatory relationships 

and gain insights that are not captured from differential expres

sion analysis alone.

RESULTS

Using gene and transcript expression data from 305 individuals 

(210 affected and 95 unaffected by psychiatric disorders), we 

first performed standard single-gene differential expression 

analysis and subsequently compared these findings to those ob

tained from our integrative network-based approach.

Differential expression analysis reveals distinct gene 

and transcript-level dysregulation

After adjusting for biological variables (sex, age, BMI, and cell 

type composition), and technical variables (sequencing run, 

GC content, and total read pairs), we performed differential 

gene expression and differential transcript expression analyses 

incorporating both total gene expression counts (n = 7394 

genes) and transcript expression counts (n = 7334 transcripts) 

from 229 affected and 107 unaffected individuals (see STAR 

Methods, Figure 1, and Table 1). Our DE analyses identified 

450 differentially expressed genes (36% up-regulated) and 269 

differentially expressed transcripts (30% up-regulated) at an 

FDR of 5% (Figures 1A and 1B; and Tables S3 and S4). Notably, 

we identified 104 transcripts showing differential transcript 

expression, while their parent genes did not show concurrent dif

ferential gene expression (Figures 1C and 1D; Figure S3). This in

dicates isoform-specific regulation, where the relative abun

dance of transcripts from these genes changes significantly 

despite stable overall gene expression, consistent with previous 

findings.7,28,31

To identify pathways and biological functions relevant to the 

differentially expressed genes and transcripts, we carried out 

enrichment analysis of differentially expressed genes and differ

entially expressed transcripts using ClusterProfiler,32 which re

vealed distinct biological processes associated with upregulated 

genes versus upregulated transcripts. Upregulated transcripts 

were uniquely enriched (Benjamini-Hochberg (BH) correction, 

p < 0.05) in leukocyte chemotaxis and leukocyte migration, 

both related to immune system processes. On the other hand, 

upregulated genes showed enrichment (BH, p < 0.05) in a 

different set of immune processes, including granulocyte 

chemotaxis, neutrophil chemotaxis, and granulocyte migration 

(Figure 1E; Table S5). Neither downregulated genes nor downre

gulated transcripts exhibited significant enrichment in any GO 

biological processes. To link our findings on differential gene 

and transcript expression to the genetic landscape of psychiatric 

disorders, we performed a GWAS enrichment analysis using 

MAGMA33,34 (Figure 1F). While the set of differentially expressed 

genes captured more cross-disorder-related genes (beta = 0.13, 

p = 0.04), the set of differentially expressed transcripts showed 

a larger effect size for enrichment in MDD-related SNPs 

(F) Enrichment of differentially expressed (DE) genes and transcripts in genes carrying SNPs associated with the GWAS traits schizophrenia, post-traumatic 

stress disorder, major depressive disorder, bipolar disorder, autistic spectrum disorder, attention deficit hyperactivity disorder, and a psychiatric cross-disorder 

GWAS. See Table S6. The GWAS trait of height was used as a baseline for comparison. Absolute beta values from the MAGMA analysis are indicated by the dot 

size, with negative beta values represented by a triangle and positive beta values by a circle. -log 10 of BH adjusted p-values are represented by the color code, 

ranging from blue (not significant) to red (significant).
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(beta = 0.01, p = 0.70) compared to the set of differentially ex

pressed genes (beta = − 0.03, p = 0.70). Similarly, the set of 

differentially expressed transcripts showed a larger effect size 

for enrichment in bipolar disorder GWAS (beta = 0.01, p = 

0.62) compared to the set of differentially expressed genes 

(beta = − 0.01, p = 0.62) (see Figure 1F). The complete results 

of this analysis can be found in Table S6.

To identify the differentially expressed genes and transcripts 

most directly relevant to psychiatric disorders, we prioritized 

those with prior established associations in the literature. Specif

ically, we intersected all differentially expressed genes and tran

scripts (553 unique genes) with a self-curated list of genes known 

to be associated with psychiatric disorders (see Gene-disease 

association analysis in STAR Methods), yielding 53 genes, 15 

of which are associated with depression (Table S7).

Construction and validation of Co-expression networks

To investigate differences in co-expression patterns of genes 

and isoforms between individuals affected (n = 210, 81% with 

depressive symptoms) and unaffected (n = 95) by stress-related 

psychiatric disorders, we constructed a co-expression network 

for each group and compared them. We used the information 

theoretic-based network inference approach ARACNE35 (see 

STAR Methods) using both corrected total gene expression 

(TE) values (n = 7394 genes) and isoform ratios (IR, n = 7097 ra

tios) (Figure S1A). To select only high-confidence edges in both 

networks, we applied thresholding based on the MI values (see 

STAR Methods). The resulting affected individuals’ network con

sists of 7996 nodes and 10,702 edges, while the network for un

affected individuals consists of 8272 nodes and 11,120 edges 

(see Table 2), with a similar number of TE and IR nodes 

(Figure 2A).

To assess whether the topological differences in our inferred 

networks are truly driven by underlying biological signals distin

guishing the two groups, rather than being the result of random 

noise or limitations of the network inference method, we used 

graph generation and embedding techniques (see STAR 

Methods). Using the graph generation approach ARROW- 

Diff,36 we created 100 simulated graphs for each network. We 

then investigated the structural similarities between the gener

ated graphs by embedding them using the Graph2Vec tech

nique37 and then mapping the embeddings into a lower-dimen

sional representation using PCA (Figure S1B). The results 

revealed a clear separation between the two groups’ networks, 

with a classification accuracy of 0.92 using a logistic regression, 

Figure 2B). This quantitative assessment of the network topology 

distinctiveness between groups ensures robust inference and 

suggests that these networks reveal disease-specific patterns 

relevant to psychiatric diseases beyond noise.

Differential network analysis reveals distinct co- 

expression patterns associated with stress-related 

psychiatric diseases

To pinpoint key differences between the networks of affected 

and unaffected individuals (illustrated in Figures 2E and 2F in 

Table 2. Network statistics for the AIN and the UIN

Network #Nodes #Edges #TE-TE edges #TE-IR edges #IR-IR edges

Affected-Individuals (AIN) 14,300 21,324 11951 1946 7427

7996 10702 5997 983 3722

Unaffected-Individuals (UIN) 14,447 40,676 24199 6993 9484

8272 11120 4837 1382 4901

This table provides an overview of the number of nodes and edges, as well as the number of edges for each edge type, in the affected individuals’ and 

unaffected individuals’ networks. Values are shown before (top row) and after (bottom row) the removal of edges with low mutual information (MI) 

values.

Table 1. Cohort characteristics

Status Study N Age Female BMI

Major depression 

or dysthymia diagnosis BDI-II Psychotropic drugs

Affected all 229 39.6 (13.2) 59% (135) 25.3 (5.3) 81% (186) 24.9 (13) 47% (107)

BeCOME 122 37.1 (12.5) 65% (79) 24.0 (4.4) 69% (84) 18.0 (12.8) 8% (10)

OPTIMA 107 42.4 (13.5) 52% (56) 26.9 (5.8) 95% (102) 33.0 (7.7) 90% (97)

IST 0 – – – – – –

Unaffected all 107 29.9 (9.1) 60% (65) 23.7 (3.8) 0% (0) 2.6 (5.2) 0% (0)

BeCOME 70 32.5 (10.2) 66% (46) 23.4 (3.2) 0% (0) 4.0 (6.0) 0% (0)

OPTIMA 0 – – – – – –

IST 37 25 (3.0) 51% (19) 24.4 (4.7) 0% (0) 4.0 (5.3) 0% (0)

This table presents cohort characteristics as percentages with absolute numbers in parentheses for categorical variables, or as means with standard 

deviations in parentheses for continuous variables. Depression diagnoses, including both full and subthreshold diagnoses in the last 12 months, were 

determined using the Munich-Composite International Diagnostic Interview (M-CIDI). Depression severity was assessed using the Beck Depression 

Inventory-II (BDI-II). The ,column psychotropic drugs refer to the percentage of subjects taking psychopharmacological medications during the study 

period. These medications include antidepressants, mood stabilizers, neuroleptics, tranquilizers, and herbal psychotropics.
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the bottom), we focused on 1) investigating how common hub 

nodes differ in terms of connectivity patterns between the two 

networks, and 2) identifying key drivers of the underlying 

network-specific biology by investigating master hub nodes. 

To ensure that connectivity patterns are indeed distinct for 

each network, we only considered an edge to be distinct/unique 

to a network, if it is absent in the unthresholded version of the 

other network. By systematically comparing the connection pat

terns in the two networks, we aimed to uncover distinct patterns 

linked to psychiatric diseases both at the gene and isoform 

levels.

Common hub nodes show distinct connection patterns 

between the affected and unaffected individuals’ 

networks

Hub nodes, characterized by their high connectivity, are thought 

to play critical roles in the organization and regulation of biolog

ical networks, and alterations in their connectivity patterns can 

have significant functional consequences in disease states. To 

identify potential disruptions in these key regulatory elements 

in stress-related psychiatric disorders, we focused our analysis 

on hub nodes within the affected (AIN) and unaffected (UIN) indi

vidual networks (degree ≥10).

Hub nodes (degree ≥10) were identified in both networks. The 

AIN contained 352 hubs (Table S8) and the UIN 268 (Table S9), 

with 127 hubs common to both networks, as visualized in 

Figure 2C and detailed in Table S10). These common hub nodes 

showed a distinct connection pattern in each network. Specif

ically, in the AIN, 1,696 of all common hubs’ connections 

(82.4%) were unique. Similarly, 1,428 (79.7%) of all common 

hubs’ connections in the UIN were unique. Only 363 edges 

were shared between the two networks (Figure 2D).

To anchor this result, which suggests a rewiring pattern of 

common hubs, back to the context of psychiatric disorders, 

we searched the 127 common hubs (that include both TE and 

IR node types) for genes known to be implicated in psychiatric 

disorders. Of the 127 common hub nodes (Table S10), 22 genes 

and genes of corresponding transcripts showed associations 

with psychiatric disorders based on the DisGeNet resource 

(see STAR Methods).38 Six of which are differentially expressed 

at the gene level and three at the transcript level (Table S10). 

Figures 2E and 2F (e-bottom for AIN and f-bottom for UIN) illus

trates the overall structure of the AIN und UNI, with zoom-in 

views (top panels in Figures 2E and 2F) depicting two of these 

22 genes, the Potassium Channel Tetramerization Domain Con

taining 12 (KCTD12), which is associated with bipolar disorder,39

and the TNF Receptor Superfamily Member 1B (TNFRSF1B) 

associated with depression.40 These two genes exhibit substan

tially different connection patterns, with only 2 edges common to 

both networks for the two genes (dashed lines in the zoom-in 

view in Figures 2E and 2F).

Master hub nodes reveal genes and transcripts relevant 

to stress-related psychiatric disorders in the affected 

individuals’ network

Our analysis revealed 61 master hub nodes in the AIN exhibiting 

substantial degree shifts, characterized by a minimum absolute 

fold increase of two in connectivity compared to the UIN, and 

a degree of at least 10. Of these, over half (n = 36) were IR nodes, 

with six also showing differential expression, including Comple

ment C5a Receptor 1 (C5AR1), Caveolae Associated Protein 2 

(CAVIN2), Dynactin Subunit 4 (DCTN4), Eukaryotic Translation 

Termination Factor 1 (ETF1), GIMAP4-201 transcript of the 

gene GTPase, IMAP Family Member 4, and NUDT21-201 tran

script of the gene Nudix Hydrolase 21 (NUDT21) (Figure 3). The 

IR node NUDT21-201 appears as a master hub of degree 17 in 

the affected individual’s network and is additionally a DE tran

script (BH, p = 0.002, logFC = − 0.11). The corresponding 

NUDT21 gene is a known splicing factor and was identified in 

a recent study as a differentially expressed RNA-modification- 

related gene in MDD.41 In Table S11, we provide a list of all 61 

master hub nodes in the AIN, with 31 (50%) showing evidence 

for association with psychiatric disorders based on a manual 

search in the PubMed repository, 17 of which appear in our anal

ysis at the transcript level as IR master hubs. To summarize the 

results from this analysis of master hubs in the AIN and to draw 

better conclusions on potential new candidates for psychiatric 

disorders, we assembled all relevant information in Figure 3. 

The Figure shows the 61 master hub nodes of the AIN annotated 

for different key information including DE status, roles as TFs or 

SFs, whether the master hub is also a common hub (degree ≥10 

in both networks), and the existence of evidence associating 

each master hub to psychiatric disorders based either on 

DisGeNet (see STAR Methods) or on our manual PubMed search 

(Table S11).

Similarly, we found 61 master hubs in the UIN showing twice 

as much connectivity compared to the AIN. A GO enrichment 

analysis of each network’s master hubs (61 each) and their 

first-order neighbors (AIN:1080, UIN:827), showed distinct bio

logical processes related to each network (Figure 4A; 

Table S12). The set of master hubs of the UIN and their first-order 

neighbors indicated enrichments in the cytoplasmic translation, 

Figure 2. Results of network inference and investigation of common hubs 

(A) Barplot shows the number of total expression (TE, orange) and isoform ratio (IR, blue) nodes, separated by network: affected individuals (AIN, yellow) and 

unaffected individuals (UIN, green) after filtering and thresholding (AIN: 4115 TE nodes, 3881 IR nodes, 7996 total nodes; UIN: 3514 TE nodes, 4758 IR nodes, 

8272 total nodes). 

(B) PCA plot of the Graph2vec embeddings of the simulated networks generated using the graph generative approach ARROWDiff. The PCA result shows a 

separate clustering of the 100 simulated UINs (green) and the 100 simulated AINs (yellow), validating the group-specific network topology and the robustness of 

network inference results. Dots indicate individual simulated networks. 

(C) Venn diagram shows the overlap of hub genes (degree ≥10) between AIN (Table S8) and UIN (Table S9), with 127 common hubs (Table S10). 

(D) Venn diagram illustrates the number of distinct connections of the 127 common hubs in the AIN and UIN, and their overlap. 

(E and F) Visualization of the full affected individuals’ network (AIN, e-bottom left) and unaffected individuals’ network (UIN, f-bottom right). Total gene expression 

of genes is represented by orange nodes. Isoform ratio (IR) nodes are represented by blue nodes. Zoomed-in views (top panels in E and F) focus on the first-order 

neighbors of two common hub genes associated with psychiatric disorders: KCD12 and TNFRSF1B. Edges representing connections unique to either the AIN or 

UIN are represented by solid lines. Transcription and splicing factors are highlighted by red borders around the nodes.
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the activation of immune response, and cell adhesion processes 

(BH, p < 0.05), while the set of master hubs of the AIN and their 

first-order neighbors showed enrichment in other biological pro

cesses, including the positive regulation of catabolic process, 

osteoblast differentiation, and mRNA processing.

To further investigate whether master hubs reflect network- 

specific biology, we focused on the top two master hubs with 

the highest degree in each network. Figure 4B illustrates the 

top two master hubs in the AIN, RC3H1-202 transcript of the 

gene Ring Finger And CCCH-Type Domains 1, and SRSF6-201 

transcript of the gene Serine and Arginine Rich Splicing Factor 

6, along with their corresponding counterparts in the UIN. Simi

larly, Figure 4C presents the top two master hubs in the UIN, the 

Multiple EGF Like Domains 9 gene (MEGF9), and SYNCRIP-202 

transcript of the gene Synaptotagmin Binding Cytoplasmic RNA 

Interacting Protein (SYNCRIP), along with their respective ver

sions in the AIN. In Figures 4B and 4C, we annotate the four mas

ter hubs and their neighbors with key information such as differ

ential expression status and known roles as transcription or 

splicing factors. Focusing on these top two master hubs and 

their two-hop neighbors, we conducted a GWAS enrichment 

analysis for each network. Specifically, we investigated enrich

ment in genes harboring SNPs associated with psychiatric disor

ders (see STAR Methods). Our analysis revealed significant 

enrichment of RC3H1-202, SRSF6-201, and their two-hop 

neighbors (328 genes) in the AIN for genes implicated in cross 

disorder and schizophrenia (beta = 0.18, p = 0.03, beta = 0.16, 

p = 0.02 respectively). No corresponding significant enrichment 

was found using the set of genes comprising the master hubs 

MEGF9, SYNCRIP-202, and their two-hop neighbors (259 

genes) in the UIN, see Figure 4D and Table S13.

Isoform ratio nodes show distinct co-regulatory patterns 

compared to their total expression nodes and capture 

different protein-protein interactions

Our analysis found that hub nodes are enriched for IR nodes, 

with the proportion of IR nodes exhibiting a positive correlation 

with increasing hub degree (e.g., ≥15 and ≥20, see Figure 5A). 

This observation underscores the critical role of IR nodes within 

these networks, prompting us to further investigate the unique 

contribution of isoform-level data by carrying out the following 

analysis. For each of the AIN and the UIN, we extracted the sub

network comprising only TE-TE interactions and the subnetwork 

comprising only IR-IR interactions, and investigated their over

lap. In the AIN, out of all 5997 connections of the TE-TE subnet

work, 5897 (98%) were unique, and out of 3722 connections of 

the IR-IR subnetwork, 3597 (96%) were unique to that subnet

work. Similarly, in the UIN, out of all 4837 connections of the 

TE-TE subnetwork, 4739 (98%) were unique, and out of all 

4901 connections of the IR-IR subnetwork, 4777 (97%) were 

unique. These results highlight the distinct co-expression pat

terns captured by isoform-level data compared to gene-level. 

As an example, we present HNRNPH1-227, a hub IR node 

(degree ≥10) in both networks and a known transcription and 

splicing factor associated with neurodevelopmental disor

ders.42,43 In both networks, this node exhibits distinct connec

tion patterns compared to its corresponding TE gene node, the 

Heterogeneous Nuclear Ribonucleoprotein H1 (HNRNPH1). 

Figures 5B and 5C depict the discrepancy between the connec

tions of the gene node HNRNPH1 and isoform ratio node 

HNRNPH1-227 in both networks, along with annotated nodes in

formation. The investigation of this node in the BioGrid data

base44 showed that HNRNPH1-227 establishes connections 

with a unique set of proteins diverging from those observed at 

the gene level. More specifically, within the AIN, HNRNPH1- 

227 interacts with isoforms of the proteins RPS6 and EIF4B, 

whereas the corresponding TE gene node captures interactions 

with EWSR1, SF1, HNRNPH3, HNRNPA1, and FUS. Likewise, 

within the UIN, HNRNPH1-227 interacts with isoforms of the pro

teins CHD2, and DDX17, while the corresponding TE gene node 

interacts with EWSR1, HNRNPA1, SRSF5, HNRNPA2B, and 

ILF3. The observed differences in interaction patterns between 

isoform-specific nodes and their gene-level counterparts high

light the potential for isoform-level data to reveal previously un

recognized molecular relationships and functional specificities. 

To systematically explore whether these unique isoform-level 

co-expression patterns translate to distinct functional enrich

ments, we repeated the GO-enrichment analysis (section 

master hub nodes reveal genes and transcripts relevant to 

stress-related psychiatric disorders in the affected individuals’ 

network) on master IR nodes and master TE nodes separately 

and for each network. The results showed that in the AIN, IR 

master hubs and their first-order neighbors (36 IR master hubs 

Figure 3. Master hub nodes in the AIN 

Heatmap of the 61 master hub nodes in the AIN (yellow) exhibiting a greater than 2-fold increase in degree compared to the unthresholded UIN (green). Node 

degree is indicated by a color gradient from blue (low) to red (high). The 61 master hubs are also annotated for different key information including DE status, roles 

as TFs or SFs, whether the master hub is also a common hub (degree ≥10 in both networks), and the existence of evidence associating each master hub to 

psychiatric disorders based either on DisGeNet or on our manual PubMed search (Table S11).
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D

Figure 4. Combined analysis of master hubs in the AIN and the UIN 

(A) Significantly enriched (maximum of 10) GO biological processes (BH adj p-values) for the 61 master hubs and their first-order neighbors in the AIN and UIN. 

See Table S12. 

(legend continued on next page) 
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and 627 neighbors) were significantly enriched in ten GO biolog

ical processes including mRNA processing, mRNA metabolic 

process, positive regulation of catabolic process, and regulatory 

ncRNA-mediated gene silencing. No significant enrichments 

were found from gene-level nodes alone, i.e., by considering 

TE master hubs and their first-order neighbors (25 TE master 

hubs and 453 neighbors) (Figure 5D; Table S14). Similarly, in 

the UIN, IR master hubs and their direct neighbors (30 IR master 

hubs and 413 neighbors) showed additional enrichment not 

found at the gene level, namely in mRNA metabolic processes 

(Figure 5E; Table S15). This result emphasizes the role of iso

form-level data in uncovering condition-specific processes that 

are not visible when considering gene-level data alone.

DISCUSSION

In this work, we present an attempt to integrate gene expression 

and isoform ratio data into a comprehensive network approach 

to investigate co-expression patterns in individuals with and 

without stress-related psychiatric disorders, with a focus on 

depressive symptoms. This integrative approach allowed us to 

capture a deeper understanding of the complex interplay be

tween multiple genes and isoforms, rather than focusing on the 

traditional gene-level analysis, revealing significant differences 

in network architecture between the two groups of individuals. 

We identified a total of 450 differentially expressed (DE) genes 

and 269 DE transcripts, including 104 with isoform-specific DE 

without corresponding DE at the gene-level. Of all DE genes 

and transcripts (mapped to 553 unique genes), we found that 

53 genes have been shown to be associated with psychiatric dis

orders according to a DisGeNet query, 15 of which are associ

ated with depression. Enrichment analyses on the DE genes 

and transcripts further highlighted the unique signal arising 

from isoform-level data to understand gene regulation in 

stress-related psychiatric disorders. Specifically, the set of upre

gulated transcripts showed significant enrichment in leukocyte 

chemotaxis, not captured from DE genes. Leukocytes in 

depressed patients show the dysregulation of genes involved 

in synaptic and neuroimmune functions, bridging the immune 

and the nervous system.45

While DE analysis has been widely used to study psychiatric 

disorders,6,8–10 incorporating isoform-level data into such ana

lyses remains a relatively unexplored area. We compared our re

sults to studies using blood samples from patients with MDD. 

Ota et al.9 found 8 DE genes in a longitudinal study of children 

and adolescents, with one gene overlapping with our DE genes: 

NADH:Ubiquinone Oxidoreductase Subunit A2 (NDUFA2). Wit

tenberg et al.10 conducted a meta-analysis of MDD across 

several blood transcriptome studies and provided a harmonized 

list of 272 DE genes. Of these, only six overlapped with our DE 

genes with concordant direction, namely MBNL1 Antisense 

RNA 1 (MBNL1-AS1), IKAROS Family Zinc Finger 3 (IKZF3), 

and BUB3 mitotic checkpoint protein (BUB3) as down-regu

lated, and WD repeat domain 74 (WDR74), N-deacetylase and 

N-sulfotransferase 1 (NDST1), and Fc alpha receptor (FCAR) 

as up-regulated. Moreover, from the harmonized gene list, two 

genes, namely calcium/calmodulin-dependent protein kinase ki

nase 2 (CAMKK2), and protein tyrosine phosphatase non-recep

tor type 4 (PTPN4) appear in our analysis as DE solely at the tran

script level (CAMKK2-209, and PTPN4-201, respectively) with no 

corresponding gene-level DE. Our differential transcript analysis 

and the unique enrichment profile of DE transcripts highlight the 

importance of isoform-level data, as it captures additional layers 

of transcriptional complexity that may be missed by traditional 

gene-level analyses.

While DE analysis provides information about individual genes 

and transcripts, it examines them in isolation, failing to capture 

the complex interplay between multiple genes and transcripts. 

Network co-expression analysis approaches represent a valu

able tool, providing a comprehensive framework that captures 

the intricate interactions and functional relationships between 

genes and transcripts. Many studies have shown that the wiring 

of networks changes under different conditions, reflecting the 

pathophysiological states associated with diseases,46–49 such 

as in breast cancer.48 In psychiatric disorders, existing network 

approaches have focused on DE genes as input for network 

inference.15,50,51 However, hub nodes in biological networks 

have been found to play a critical biological function even if the 

gene itself does not show differential expression.7,48,52,53 More

over, most methods focused on gene-level networks without 

considering isoform-level co-regulatory changes.8,11,12,50,51

While gene-level analyses provide valuable insights, incorpo

rating isoform-level data is crucial for capturing the full 

complexity of gene regulation in psychiatric disorders. Isoforms 

can have distinct functions and interactions, and their dysregula

tion may contribute to disease pathogenesis in ways that are not 

apparent at the gene level.24,25,54

Therefore, we introduce an integrative approach combining 

both total gene expression values (TEs) and isoform ratios (IRs) 

to construct separate co-expression networks for affected and 

unaffected individuals (AIN vs. UIN), thereby using all genes 

and transcripts that passed our quality control (n = 7394, n = 

7097). We ensured the robustness of ARACNE network infer

ence in capturing biological differences between the two groups 

(B and C) Visualization of the Top 2 master hubs in each network. Total gene expression of genes is represented by orange nodes. Isoform ratio (IR) nodes are 

represented by blue nodes. Transcription and splicing factors are highlighted by red borders around the nodes. Edges representing connections unique to either 

the AIN or UIN are represented by solid lines. Network nodes that are differentially expressed in our DE analysis are represented by a triangle shape. (B) Top 2 

master hubs (highest degree) in the AIN RC3H1-202 and SRSF6-201 (left) showing a distinct connection pattern compared to their corresponding nodes in the 

UIN (right). (C) Top 2 master hubs (highest degree) in the UIN MEGF9 and SYNCRIP-202 show distinct connection patterns compared to their corresponding 

nodes in the AIN (left). 

(D) Enrichment of the top 2 master hubs and their two-hop neighbors in each network in genes that carry SNPs associated with the GWAS traits schizophrenia, 

post-traumatic stress disorder, major depressive disorder, bipolar disorder, autistic spectrum disorder, attention deficit hyperactivity disorder, and a psychiatric 

cross-disorder GWAS. See Table S13. The GWAS trait of height was used as a baseline for comparison. Absolute beta values from the MAGMA analysis are 

indicated by the dot size, with negative beta values represented by a triangle and positive beta values by a circle. -log10 of BH adjusted p-values are represented 

by the color code, ranging from blue (not significant) to red (significant).
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Figure 5. Isoform-specific network differences 

(A) Bar plots show the distribution of Isoform Ratio (IR) and Total Expression (TE) nodes in hubs with varying degree thresholds (≥10, ≥15, ≥20) in both the 

affected individuals’ network (AIN) and the unaffected individuals’ network (UIN). 

(B and C) HNRNPH1 and HNRNPH1-227 network visualizations: Total gene expression of genes is represented by orange nodes. Isoform ratio (IR) nodes are 

represented by blue nodes. Transcription and splicing factors are highlighted by red borders around the nodes. Edges represent connections unique to either the 

AIN or UIN are represented by solid lines. Network nodes that are differentially expressed in our DE analysis are represented by a triangle shape. (B) Network 

visualization of the heterogeneous nuclear ribonucleoprotein H1 (HNRNPH1) shows a distinct connection pattern in each network. HNRNPH1 is an RNA-binding 

protein involved in pre-mRNA splicing and RNA processing and is known to be associated with neurodevelopmental disorders. (C) Network visualization of the 

hub IR node HNRNPH1-227, a transcript of the gene HNRNPH1, and its first-order neighbors. In both networks, first-order neighbors of HNRNPH1-227 are 

substantially different from the first-order neighbors of its TE node HNRNPH1. 

(D and E) Significantly enriched (maximum of 10) GO biological processes (BH adj p-values) for master IR nodes and master TE nodes separately and for each 

network. Non-significant enrichment values are also indicated by filled circles where available, otherwise left empty (no dots). 

(legend continued on next page) 
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using advanced graph generation and embedding techniques. 

This marks the first attempt to leverage AI techniques, such as 

graph embeddings and graph generation, for the validation of 

network inference, enhancing the reliability of the network anal

ysis results by confirming the distinctiveness of the network to

pologies. Hub nodes were a key focus of our network analysis. 

We identified hub nodes in both networks, with 127 common 

hubs showing distinct connection patterns between the AIN 

and UIN. Specifically, 82.4% of the edges connected to these 

common hubs in the AIN were unique to that network, while 

79.7% of the edges connected to the same hubs in the UIN 

were unique to the UIN. This suggests a potential rewiring of reg

ulatory interactions in psychiatric disorders, which could have 

downstream effects on pathways and cellular functions, such 

as synaptic plasticity, neurotransmitter signaling, or the immune 

response.45 Of the 127 common hubs, we found that 22 genes 

(and genes of transcripts) have known associations to psychiat

ric disorders according to a DisGeNet query. These 22 genes 

and their neighbors constitute important candidates for further 

investigation, which could provide insights into the molecular 

mechanisms underlying disease pathogenesis.

Focusing on the AIN, our analysis revealed 61 master hub no

des. Master hubs represent highly influential nodes, exhibiting at 

least 2-fold degree change in one network compared to the 

other. The investigation of these master hubs in the AIN showed 

significant associations with psychiatric disorders, particularly 

those related to psychiatric cross-disorder phenotype, suggest

ing their involvement in shared disease processes across 

different diagnoses. In a study by Wei et al.51 investigating 

MDD in the dentate gyrus (DG) and anterior cingulate cortex 

(ACC) regions of a mouse brain, the authors created an interac

tion network of DE genes and identified important differentially 

expressed TFs that regulate many hubs, including the TF gene 

chromodomain helicase DNA binding protein 2 (CHD2). CHD2 

was predicted to upregulate the expression of DE genes related 

to MDD in the DG region. In our analysis, CHD2 appears as an 

important gene with differential expression found at the tran

script level (CHD2-201). This transcript-level DE provides a 

more nuanced view of CHD2 dysregulation compared to previ

ous studies that focused on gene-level expression. Furthermore, 

CHD2 is a master hub node in the AIN with a degree of 34 

compared to 12 in the UIN, suggesting altered regulatory interac

tions in the context of psychiatric disorders. Further investigation 

of the 61 master hubs, especially those which are differentially 

expressed (C5AR1, CAVIN2, DCTN4, ETF1, GIMAP4-201, and 

NUDT21-201), may reveal novel therapeutic targets for psychiat

ric disorders, particularly depression, which represents the ma

jor portion of the clinical phenotype studied here.

To further investigate the functional roles of master hubs, we 

performed pathway enrichment analysis of the master hubs in 

each network and their first-order neighbors. The set of master 

hubs of the AIN and their first-order neighbors showed enrich

ment in the positive regulation of catabolic processes, osteo

blast differentiation, and mRNA processes. The enrichment of 

mRNA processes in the AIN could suggest the dysregulation of 

RNA processing and splicing, potentially leading to altered iso

form expression and downstream functional consequences. 

While seemingly unrelated to psychiatric disorders at first 

glance, enrichment in osteoblast differentiation may have 

intriguing implications. Osteoblast differentiation is crucial for 

bone formation and remodeling, and dysregulation of this 

process is implicated in osteoporosis. Studies have shown a 

complex interplay between osteoporosis, chronic stress, and 

inflammation.55 Chronic stress, a well-established risk factor 

for psychiatric disorders such as depression, activates the hypo

thalamic-pituitary-adrenal (HPA) axis, leading to prolonged 

cortisol release. Excess glucocorticoids suppress osteoblast dif

ferentiation by downregulating Wnt/β-catenin and insulin-like 

growth factor 1 (IGF-1) signaling, which is critical for bone forma

tion.56 This suggests a potential link between the enriched oste

oblast differentiation pathway in the AIN and the chronic stress 

often experienced by individuals with psychiatric disorders. 

Further investigation of this pathway may uncover novel connec

tions between bone health, stress response, and mental health.

Since the UIN represents the healthy control group, pathways 

enrichments of the master hubs and their first-order neighbors 

may reflect normal biological processes and regulatory path

ways that are essential for maintaining healthy functions in the 

body. For instance, the enrichment of cytoplasmic translation 

processes could be crucial for supporting protein synthesis 

and synaptic plasticity, which are essential for learning, memory, 

and cognitive flexibility. Since the list of significant biological pro

cesses associated with master hubs in the AIN and UIN is fully 

distinct, it suggests that the two networks represent different 

molecular pathways involved in disease pathogenesis, poten

tially leading to the identification of network-specific therapeutic 

targets.

Our analysis found that hubs and master hubs were enriched 

in isoform ratio nodes, underscoring the importance of isoform- 

level nodes in our networks. To further investigate the advantage 

of isoform-level data as another data modality, we extracted the 

subnetwork comprising all TE-TE interactions and the subnet

work comprising all IR-IR interactions. The results showed 

that, for each of the AIN and the UIN, the two subnetworks are 

largely distinct in their interactions (IR-IR interactions were map

ped to their corresponding gene-level). These results highlight 

the distinct co-expression patterns captured by isoform-level 

data compared to gene-level data, and highlight the potential 

for isoform-level data to reveal previously unrecognized molecu

lar relationships and functional specificities. Hence, to systemat

ically explore the functional enrichments of isoform-level data, 

we carried out GO enrichment analysis on the TE master hubs 

and the IR master hubs separately and for each network. The re

sults revealed that isoform-level data (IR master hubs and their 

(D) In the AIN, IR master hubs and their first-order neighbors (36 IR master hubs and 627 neighbors) showed significant enrichment in GO biological processes, 

including in mRNA processing, mRNA metabolic process, positive regulation of catabolic process, and regulatory ncRNA-mediated gene silencing. No significant 

enrichments were found at the gene-level (TE master hubs and their neighbors). See Table S14. 

(E) In the UIN, considering IR master hubs and their first-order neighbors (30 IR master hubs and 413 neighbors) showed additional enrichment not found at the 

gene level, namely in mRNA metabolic processes. See Table S15.
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first-order neighbors) are enriched in unique biological pro

cesses not captured at the gene-level. For example, in the AIN, 

the set of IR master hubs and their first-order neighbors was 

significantly enriched in ten GO biological processes including 

mRNA processing, mRNA metabolic process, and positive regu

lation of catabolic process, whereas no significant enrichment 

was found at the gene-level, i.e., by considering TE master 

hubs and their neighbors.

Throughout our analysis, we highlighted examples of hub and 

master hub nodes associated with psychiatric disorders, 

providing concrete evidence for the relevance of our network- 

based approach. Moreover, our study provides evidence for 

the importance of isoform-level analysis in understanding the 

complex landscape of gene regulation in psychiatric disorders. 

Consequently, our findings emphasize the need for the compre

hensive functional annotation of isoforms to better understand 

their roles in complex biological processes and disease 

mechanisms.

Limitations of the study

This work presents opportunities for future research to build 

upon our findings. For example, while we used ARACNE for 

network inference, which effectively captures non-linear rela

tionships between genes and isoform ratios, future studies could 

assess the robustness of our findings using alternative ap

proaches. Similarly, while our network analysis reveals co-regu

latory changes and network-specific biomarkers, exploring 

alternative methods for differential network analysis such as 

BoostDiff57 and chNet,48 could provide an alternative way to un

derstand network alterations. While module analysis represents 

a powerful approach for dissecting network organization, our 

initial attempts to identify condition-specific modules using 

spectral clustering were largely driven by the inherent differ

ences between gene-level (TE) and isoform-level (IR) data 

(Figures 2E and 2F, bottom). This strong influence of data modal

ity on module structure made it challenging to directly attribute 

module-level enrichments to the affected or unaffected states. 

However, we acknowledge the potential value of exploring 

network modules, particularly in the context of the distinct wiring 

patterns observed for common hub nodes. Future research 

could investigate alternative module detection algorithms or 

methods specifically designed for multi-modal network data to 

further elucidate the functional consequences of the observed 

regulatory rewiring in stress-related psychiatric disorders. Addi

tionally, exploring gene expression patterns in other tissues, 

such as the central nervous system or the gut, could provide a 

more comprehensive understanding of the molecular processes 

underlying psychiatric disorders.58 A limitation of our study is the 

potential confounding effect of pharmacotherapy, given that a 

significant portion of the affected individuals were medicated. 

While we showed limited direct correlation between broad medi

cation categories and key gene expression patterns, future 

research should prioritize more granular sensitivity analyses, 

including stratification by specific medications and dosages, 

as well as more sophisticated covariate adjustment techniques. 

Combining this with longitudinal data will be crucial for a more 

accurate understanding of disease mechanisms and their tem

poral dynamics, independent of treatment effects. The cell 

type heterogeneity in blood samples, especially the imbalance 

between PBMCs used for affected individuals and the mix of 

PBMCs and whole blood samples for unaffected individuals, 

could have affected our results. While we adjusted for different 

blood cell type compositions, further investigation using more 

homogenous cell populations or advanced deconvolution 

methods could refine our understanding of cell-type-specific ef

fects. Finally, exploring alternative representations of splicing 

events, such as exon-level values, could offer more granular in

sights into splicing dynamics.
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cade, S., Schlüter, A., et al. (2020). HNRNPH1-related syndromic intellec

tual disability: Seven additional cases suggestive of a distinct syndromic 

neurodevelopmental syndrome. Clin. Genet. 98, 91–98.

43. Pilch, J., Koppolu, A.A., Walczak, A., Murcia Pienkowski, V.A., Biernacka, 

A., Skiba, P., Machnik-Broncel, J., Gasperowicz, P., Kosi�nska, J., Rydza

nicz, M., et al. (2018). Evidence for HNRNPH1 being another gene for Bain 

type syndromic mental retardation. Clin. Genet. 94, 381–385.

44. Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., and 

Tyers, M. (2006). BioGRID: a general repository for interaction datasets. 

Nucleic Acids Res. 34, D535–D539.
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STAR★METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Samples selection

This study included 336 Caucasian participants selected based on the availability of matching RNA sequencing (RNAseq) and pheno

typic data from three cohorts recruited at the Max Planck Institute of Psychiatry in Munich: The Biological Classification of Mental 

Disorders (BeCOME) study (ClinicalTrials.gov: NCT03984084,60), the Imaging Stress Test (IST) study, and The OPtimized Treatment 

Identification at the Max Planck Institute study (OPTIMA) (ClinicalTrials.gov: NCT03287362,61). Individuals were assessed as 

affected/unaffected based on the Munich-Composite International Diagnostic Interview (DIA-X/M-CIDI).62,63

In total, our samples comprised 229 affected individuals (BeCOME: 122, OPTIMA: 107) who met either threshold or subthreshold 

DSM-IV-based DIA-X/M-CIDI criteria for any substance use, affective or anxiety disorder, including post-traumatic stress disorder 

and obsessive-compulsive disorder, within the last 12 months of enrollment. 186 of these participants had a (subthreshold) DSM-IV 

diagnosis of major depression or dysthymia. Unaffected individuals (BeCOME: 70, IST: 37) were defined as those without any DSM- 

IV-based DIA-X/M-CIDI diagnosis. However, to focus on a more specific set of psychiatric disorders, cases with pure nicotine depen

dence (without any other comorbid diagnosis) were excluded from the affected group and moved to the unaffected group, resulting in 

a total of 107 unaffected individuals.

All participants were assessed by the Beck Depression Inventory (BDI) II64 and the Montgomery–Åsberg Depression Rating Scale 

(MADRS).65 An overview of the sample characteristics is provided in Table 1.

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Human PBMC cells BeCOME and OPTIMA cohorts https://doi.org/10.1186/s12888-020-02541-z

https://doi.org/10.1159/000535492

Human whole blood samples IST cohort https://doi.org/10.1159/000535492

Deposited data

Raw and processed RNA-seq data 

from human PBMC cells

This paper GEO: GSE289146

Raw and processed RNA-seq data from 

human whole blood samples

This paper GEO: GSE289144

Code for data preprocessing, network 

inference, and all network-related analyses

This paper, GitHub https://github.com/cellmapslab/NetIso/

Software and algorithms

STAR aligner v2.7.7a Dobin et al. https://doi.org/10.1002/0471250953.bi1114s51

RSEM v1.3.3 Bo Li et al. https://doi.org/10.1186/1471-2105-12-323

Cutadapt v2.10 Martin, M et al. https://doi.org/10.14806/ej.17.1.200

Granulator v1.2.0 Bioconductor https://doi.org/10.18129/B9.bioc.granulator

Limma v3.50.1 Bioconductor https://doi.org/10.18129/B9.bioc.limma

ClusterProfiler v4.12.6 Bioconductor https://doi.org/10.18129/B9.bioc.clusterProfiler

ARROW-Diff GitHub https://github.com/marsico-lab/arrow-diff

ARACNE minet

TFLink Liska et al.59 Liska O, Bohár B, Hidas A, Korcsmáros T, 

Papp B, Fazekas D, Ari E (2022) TFLink: An 

integrated gateway to access transcription 

factor - target gene interactions for multiple 

speciesTFLink: An integrated gateway to 

access transcription factor - target gene 

interactions for multiple species. Database, 

baac083

BioRender BioRender https://www.biorender.com/
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The studies were approved by the ethics board of the Ludwig Maximilians University (approval BeCOME:#350–14, OPTIMA:#17– 

395, IST:#121-14) and conducted in accordance with the Declaration of Helsinki.

METHOD DETAILS

RNA extraction and sequencing

Blood samples were collected in the morning under fasted conditions. RNA was extracted from peripheral blood mononuclear cells 

(PBMCs) from OPTIMA and BeCOME cohorts and stored at the MPI biobank. Ribosomal RNA (rRNA) was depleted to enrich for 

messenger RNA (mRNA) and improve the detection of other transcripts using RiboCop rRNA Depletion Kits. Libraries were prepared 

with the Lexogen CORALL total RNA-Seq V1 Library Prep Kit and sequenced on a NovaSeq 6000 (Illumina, San Diego, USA) with a 

target depth of 30 million reads per sample, as previously described in more detail in.66 RNA was extracted from whole blood samples 

from the IST cohort. rRNA was depleted with RiboCop and libraries were prepared with the Lexogen CORALL total RNA-Seq V2 Li

brary Prep Kit. Sequencing was performed on a NovaSeq 6000 in a separate batch with a target depth of 15.6 million reads per sam

ple. Raw and processed sequencing data have been deposited in GEO under accession numbers GSE289144 and GSE289146.

RNA-seq alignment and QC

Paired-end FASTQ files were aligned against the GRCh38.p12 primary assembly using the GENCODE v31 annotation67 with STAR 

aligner v2.7.7a. Alignment was performed using the option quantMode = TranscriptomeSAM, following protocol 7 of Dobin and Gin

geras,68 which involves generating a transcriptome index and using it for alignment and quantification to produce output in transcrip

tomic coordinates. Gene and transcript-level expression were then quantified using RSEM v1.3.369 for paired-end reads.

Gene and transcript-level reads were filtered for unwanted sequences using Cutadapt70 v2.10. Zero-length reads were removed 

and only those with a count ≥ 10 in at least 95% of samples were retained, resulting in 9777 genes and 11427 transcripts.

Cell type deconvolution was calculated using Granulator v1.2.071 and the LM22 reference matrix.72 Principal components (PCs) of 

the cell type proportions were calculated for inclusion in downstream models (see Methods S1).

To account for confounding effects from different sequencing runs, we first corrected the gene and transcript-level data for the 

sequencing run using the ‘removeBatchEffect‘ function from the limma R package.73,74 Subsequently, we performed Surrogate Var

iable Analysis (SVA)75 to identify additional hidden batch effects. A canonical correlation analysis (CCA) identified high correlations 

between the calculated SVs and the PCs of gene expression values (corrected for sequencing run), where e.g., sv1 was highly corre

lated with pc1 (r=0.99), and sv2 with pc2 (r=0.97), indicating that the svs effectively capture the variation represented by the pcs of 

gene expression data. The CCA also showed a high correlation between the GC content and pc1/sv1 (r=0.79), and a moderate cor

relation between the total read pairs and pc2/sv2 (r=0.46). We supported our CCA by ANOVA tests. Since these technical factors 

could confound our analysis, we further corrected gene and transcript-level data for GC content and total read pairs. We also 

removed the first five principal components of cell type proportions due to the different cell type composition across our samples, 

as well as the effect of sex, age, body mass index (BMI), as these biological factors could also introduce unwanted variation. More

over, we investigated the effect of the different medications consumed by the affected individuals (Table 1) and found no significant 

association to the variation of gene expression data according to the ANOVA tests (Methods S1, Figure S2; Table S16). Finally, we 

removed genes and transcripts with negative values due to the subtraction of the modeled biological and technical effects, resulting 

in 7394 genes and 7334 transcripts, which we used for differential gene and transcript analysis.

We removed technical and biological covariates to ensure that network inference primarily reflects the intrinsic differences be

tween the affected and unaffected groups, preventing the network structure from being influenced by unrelated variations. For con

sistency, we used the same batch-corrected data for both differential expression analysis and network analysis.

Differential gene expression and transcript expression analysis

We carried out differential gene expression (DGE) and differential transcript expression (DTE) analysis on the corrected data using the 

limma-trend method.73,76 For this purpose, we transformed the corrected gene and transcript count data to log2-counts per million 

values (logCPM) and fitted the linear models using the functions lmFit and eBayes from limma. The design matrix included diagnosis 

(affected/unaffected) as the main factor of interest. Significant genes and transcripts were identified at an FDR of 5%.

Isoform ratios

Changes in the expression values of isoforms are influenced by various splicing regulatory processes and were shown to be asso

ciated with many diseases.26,77–79 Depending on the study objective, isoform-level information can be represented and modeled in 

several ways, including absolute isoform counts, isoform proportions, or isoform ratios relative to their parent genes.19,28,30 Similar to 

the work of Saha et al.,30 we modeled isoform abundances as ratios. Isoform ratios normalize transcript expression to the overall 

gene expression, reducing biases from gene-level variability and highlighting isoform-specific changes. The isoform ratio (IR) for 

each transcript was computed by dividing the corrected and logCPM-transformed transcript counts by the corresponding gene 

counts. Mapping isoforms to their genes was done using GENCODE V31 annotation.67 We removed transcripts whose genes had 

been filtered at previous steps. When none of the isoforms of a gene were expressed (0/0 divisions), the mean of the IR across all 

samples was taken.30 Hence, the final dataset for network inference includes 7394 genes (TEs) and 7097 isoform ratios (IRs).
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Regulatory network inference for affected and unaffected individuals

Before constructing the networks for the affected and unaffected individuals, we performed principal component analysis (PCA)80,81

on the logCPM gene count and the IR data separately. Outliers were identified based on a visual inspection of the first two principal 

components from the PCA, with a focus on data points that deviated by more than 2 standard deviations from the mean on either PC1 

or PC2. A total of 31 outliers (19 affected and 12 unaffected) were removed. This resulted in 210 affected and 95 unaffected individ

uals being included in the network inference.

For both the affected individuals’ and unaffected individuals’ networks, we used ARACNE (Algorithm for the Reconstruction of Ac

curate Cellular Networks),35 an information theoretic-based method designed for the reverse engineering of regulatory networks. 

ARACNE uses mutual information (MI) to identify potential interactions and the data processing inequality (DPI) to remove indirect 

relationships.82 We used both gene expression and isoform ratios as input for ARACNE and removed edges connecting features 

of the same gene to reduce bias,30 see Methods S1 and Figure S1A.

The initial results showed that the UIN has twice as many edges compared to the AIN with lower MI values of the inferred edges. 

This is likely due to a reduced inference power caused by the smaller sample size in the unaffected group (see Methods S1 and 

Figure S4). To enable meaningful and fair comparison, we applied a threshold based on the median MI value of each edge type in 

the affected network (Figure S5), resulting in two networks with similar statistics (Table 2 and Methods S1).

Validation of topological differences between the constructed networks

In this analysis, we assessed the robustness of the network inference step in capturing group-specific biological processes reflected 

in a distinct topological structure, as schematically illustrated in Figure S1B. To this end, we leveraged ARROW-Diff,36 a novel 

approach for efficient large-scale graph generation. ARROW-Diff incorporates two key components in an iterative procedure to 

generate graphs that closely resemble an input ground truth graph in terms of structural properties. The first component is an 

auto-regressive random walk-based diffusion model, which learns the generative process of random walks sampled from the input 

ground truth graph. This model captures the original network’s structural characteristics and local connectivity patterns. The second 

component is a Graph Convolutional Network (GCN),83 which is trained to predict the validity of the proposed edges from the first 

component.

Utilizing ARROW-Diff, we generated 100 graphs for each network (affected and unaffected individuals’ networks). These simulated 

graphs capture the structure of the corresponding input graph in terms of various graph statistics, including global clustering coef

ficient, triangle count, assortativity, and other relevant graph metrics on which the graph generation is evaluated. By generating simu

lated networks that resemble each of the affected/unaffected individuals’ networks, we introduce variability/noise to the networks 

inferred by ARACNE. This is because ARROW-Diff can add or remove edges from the generated graph while maintaining the intrinsic 

graph structure.

We hypothesize that if the network inference captures group-specific properties reflected in distinct topological structures, the 

simulated graphs should also exhibit such distinctiveness between the two groups, even with the introduced variability. To analyze 

the structural similarities and differences between the generated graphs, we employed a two-step dimensionality reduction 

approach. First, we embedded the 200 generated graphs using Graph2Vec37 with an embedding dimension of 128 in order to capture 

the structure of such large graphs. This step transforms each graph into a high-dimensional vector representation, capturing its to

pological features. Subsequently, we applied a PCA80 to map these high-dimensional embeddings into a lower-dimensional space, 

facilitating visualization and analysis of the clustering patterns among the embedded graphs. To assess how well the Graph2Vec 

embeddings can predict a binary class label 1 vs. 0 (affected vs. unaffected), we fit a logistic regression model on the 100 simulated 

AINs and the 100 simulated UINs, we split the data into 80% for training and 20% for testing and report the mean accuracy repre

senting the fraction of correct predictions.

Functional enrichment

Enrichment analysis of biological processes and psychiatric risk

We conducted an enrichment analysis of the DE genes, DE transcripts, and master hubs’ neighbors within the networks of affected 

and unaffected individuals using enrichGO from ClusterProfiler32 v4.12.6. This analysis was based on Gene Ontology (GO) biological 

processes.84,85 To enhance the clarity and interpretability of the results, we applied the simplification process from ClusterProfiler 

with default parameters to remove redundancy among enriched GO terms, focusing on the most representative biological processes. 

Furthermore, using the Generalized Gene-Set Analysis of GWAS Data (MAGMA),33,34 we assessed the enrichment in genes carrying 

single nucleotide polymorphisms (SNPs) with genome-wide association to the following traits: Attention Deficit Hyperactivity Disor

der (ADHD), Autistic Spectrum Disorder (ASD), Bipolar Disorder (BP), Major Depressive Disorder (MDD), Post-traumatic Stress Dis

order (PTSD), and a Psychiatric Cross Disorder phenotype. To provide a comparative baseline, we included a GWAS for Height as a 

control trait. To run MAGMA, we used the NCBI gene location file build 37 and the 1,000 Genomes reference data file for SNP 

locations.

Gene-disease association analysis for psychiatric disorders

To investigate the associations between genes and psychiatric disorders, we used the DisGeNET resource, a comprehensive plat

form integrating information on gene-disease associations from various expert-curated databases, GWAS catalogs, animal models, 

and scientific literature.38 We queried DisGeNET for a wide range of mental and psychiatric conditions, including anxiety disorders, 
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major depressive disorder, and various substance abuse and dependency disorders (Table S1). To ensure the reliability of our anal

ysis, we applied a filtering criterion, considering only gene-disease associations (GDAs) with a score greater than 0.4. We used gene 

names of both genes and genes of corresponding isoforms for all enrichment analyses according to the GENCODE V31 annotation.

Network annotation

We compiled an extensive list from multiple resources to annotate the nodes within the networks for known transcription and splicing 

regulators. For splicing factors, we integrated data from SpliceAid-F, a curated database of human splicing factors and their RNA 

binding sites,86 which provided 67 splicing factors. Additionally, we incorporated a collection of 277 genes involved in pre-mRNA 

splicing from,87 and 406 splicing factor genes from.88 For transcription factors, we leveraged the TFLink resource,59 a gateway 

for transcription factor-target gene interactions. This integration resulted in a final compilation of 1,606 known transcription factors 

and 517 known splicing factors (Table S2). To maintain consistency and facilitate cross-referencing, we utilized gene names for the 

annotation process throughout our analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

ANOVA tests for the batch effects exploratory analysis (Methods S1) was performed using the built-in R functions anova and lm. Dif

ferential gene expression (DGE) and differential transcript expression (DTE) analysis were performed using the limma-trend method 

from the R package limma. For adjusting the p-values for multiple testing, we used the toptable function from the limma package, 

employing its default parameters, which applies the Benjamini-Hochberg (BH) method to control the False Discovery Rate (FDR). 

Significant genes and transcripts were identified at an FDR of 5%.
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