

Check for updates

Experimental Dermatology

Skin Microbiome Under Topical and Systemic Therapeutics in Atopic Dermatitis, a Cross-Sectional Analysis From ProRaD

¹Institute of Environmental Medicine and Integrative Health, Faculty of Medicine, University of Augsburg, Germany | ²Dermatology, Faculty of Medicine, University of Augsburg, Germany | ³Institute of Environmental Medicine, Helmholtz Munich, Augsburg, Germany | ⁴Christine-Kühne Center for Allergy Research and Education (CK-Care), Davos, Switzerland | ⁵ZIEL – Institute for Food & Health, Technical University of Munich, Freising, Germany

Correspondence: Claudia Traidl-Hoffmann (claudia.traidl-hoffmann@med.uni-augsburg.de)

Received: 27 January 2025 | Revised: 9 July 2025 | Accepted: 13 July 2025

Funding: This study was supported by institutional funding from the Augsburg University, Helmholtz Centre, and Christine-Kühne Centre for Allergy Research and Education (CK-Care). Robin Rohayem was supported by the clinician scientist programme ARISE by Else-Kröner-Fresenius Foundation.

ABSTRACT

Atopic dermatitis is a common and chronically relapsing inflammatory skin disease. Long-term management of the heterogeneous disease entity challenges patients and physicians globally. In our exploratory cross-sectional study, we investigated the correlation of local and systemic therapies with skin microbial changes in patients with atopic dermatitis (AD). We cross-sectionally evaluated the ProRaD cohort's study data between 2017 and 2019 at the Augsburg and Bonn study centres. Our analysis encompassed lesional skin microbiome swabs and medication data from 464 participants between 0 and 84 years of age. For comparative analysis, patients were grouped by disease severity. Categorisation of treatment levels was performed based on the treatment guideline for atopic dermatitis. In moderate AD, we found systemic therapy associated with a significantly lower relative abundance of *S. aureus* compared with patients receiving local treatment. However, skin microbial diversity did not significantly differ between therapeutic regimens. Furthermore, we observed a strong correlation between AD severity and relative *S. aureus* abundance in lesional skin swabs. Treatment choice, however, did not always align with disease severity, with substantial proportions of severely affected individuals receiving basic treatment only. Across all disease severities, patients receiving dupilumab tended to show a reduced *S. aureus* abundance compared to those receiving conventional immunosuppressive treatment and systemic glucocorticoids. Our findings align with recent research indicating reduced *S. aureus* abundance after systemic treatment with dupilumab, while topical anti-inflammatory treatment alone does not seem to affect skin microbial composition. Further research is needed to elucidate the microbial–immunological interactions and their implications for AD treatment.

1 | Background

Atopic dermatitis (AD, atopic eczema) is a chronic inflammatory skin disease affecting around 8% of adults and up to 20% of children and adolescents [1]. Clinical manifestations of

the heterogeneous disease entity include severe itch, dry skin, erosive skin lesions, and skin lichenification. While most disease courses remain mild or moderate, severe cases can result in skin infections and sleep loss, causing heavy psychological strain on patients and their caregivers [2]. Underlying

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2025 The Author(s). Experimental Dermatology published by John Wiley & Sons Ltd.

pathophysiological contributors of AD include genetic barrier dysfunction, a $T_{\rm H}2$ -tilted inflammatory skin phenotype, neuro-immunological processes, and cutaneous microbial dysbiosis [3].

Microbial dysbiosis, specifically bacterial overgrowth of the skin microbiome with *S. aureus*, has been reported in the lesional skin of atopic patients for 50 years [4]. While not all patients show skin microbial dysbiosis, increased *S. aureus* abundance seems to be associated with increased disease severity [5, 6]. However, the exact contribution of the skin microbiome in developing, exacerbating, and perpetuating atopic skin disease is to be elucidated [7].

Basic treatment with emollients and proactive and reactive antiinflammatory topical treatment are considered standard of care for mild and moderate disease manifestations [8]. Yet, since 2017, significant advances in systemic immunomodulatory treatment have reshaped the therapeutic landscape for moderate to severe atopic dermatitis. Of note, systemic immunomodulatory agents targeting select pathophysiological pathways in AD have found their way into treatment guidelines for moderate to severe AD, demonstrating strong efficacy in reducing inflammation and disease burden [9]. However, the effect of conventional and novel treatments on the cutaneous microbiome has only been assessed through small patient cohorts and over short periods, with varying results [10–12].

The prospective cohort study ProRaD is a multi-centre, longitudinal study investigating large patient numbers within study centres in Zurich, St. Gallen, Davos, Bonn, and Augsburg. Study visits include extended physical examination focusing on skin condition, extended anamnesis, and the retrieval of skin swabs and biomaterials [13].

2 | Questions Addressed

This pilot study aimed to investigate the relevance of topical and systemic immunomodulatory therapies in the modulation of the skin microbiome of AD patients within the ProRaD-cohort.

3 | Experimental Design

3.1 | Patient Collective

A subset of 464 participants was recruited within the prospective longitudinal cohort study ProRaD. Lesional skin microbiome swabs were obtained at a single time point during the patient's study visits between 2017 and 2019 in Bonn and Augsburg. Patients were asked not to wash, bathe, use emollients, detergents, or other substances on their skin in the 24 h preceding skin microbiome sampling. Other treatments and patient symptoms were communicated by the participants during their study visit. Treatment administered to the patient at the time of the study visit was used to classify patients into treatment levels according to the stepped-care plan proposed through the EuroGuiDerm treatment guidelines [8, 9] (Grade 1-Grade 4). Patients receiving basic therapy with emollients were assigned to grade 1. Patients receiving topical anti-inflammatory treatment were assigned

to grade 2 and 3, depending on the strength of the topical corticosteroid administered. Separation between grade 2 and 3 followed the grading system for topical treatment suggested by Niedner [14]. The exclusive use of topical calcineurin inhibitors was also assigned to grade 2. Patients receiving systemic treatment were assigned to grade 4. Only the treatment at the highest treatment level was considered for patient classification. Disease severity was assessed using SCORAD at the time of skin microbiome sampling. SCORAD was chosen as an established surrogate for disease severity for all analyses due to its inclusion of subjective parameters and its use in defining therapeutic boundaries throughout current guideline treatment recommendations. SCORAD values were.

Ethical clearance was approved by the ethics committee vote at the Technical University of Munich (112/16S) on 17 May 2017. Swiss-Ethics approval was granted for Augsburg, Bonn, Davos, St. Gallen, and Zurich (EK2016-00301).

3.2 | Microbiome Sequencing

Microbiome analysis was conducted using amplicon-based next-generation 16S rRNA gene sequencing (NGS) in analogy to our previous work [15]. NGS was performed in cooperation with the Microbiome Core Facility at the Central Institute of Food and Nutrition Research (ZIEL), Technical University of Munich. Swab samples, pipeline negative controls, and water samples were sequenced using the Illumina MiSeq platform, utilising 2 × 300 bp paired-end reads. The MiSeq Reagent Kit v3 600 cycles was applied following the manufacturer's guidelines. Data processing, visualisation, and exportation were executed using the instrument's proprietary software, Illumina Software MiSeq Reporter and Illumina Sequence Analysis Viewer. Denoising of sequences was conducted through the implementation of DADA2 [16], and the resulting amplicon sequence variants (ASVs) were annotated using our in-house-developed AnnotIEM [17] algorithm. An assessment of sequencing depth sufficiency was performed by correlating the read number and the number of distinct ASVs, aiming to ascertain adequate sequencing depth.

3.3 | Taxonomic Analysis

NGS microbiome taxonomic analysis was performed using MicrobIEM. MicrobIEM is a toolset developed by our group that facilitates decontamination, quality control, and fundamental analysis of the microbiome using 16S rRNA amplicon sequencing data. It is embedded within the R Studio statistical software package [18]. Graphical visualisation and statistical analysis were performed using GraphPad Prism v.10.

A total of 1077 samples from 582 study subjects were analysed. After methodical quality control, only 974 samples remained. Of these, 889 samples came from participants diagnosed with AD. Of these, 721 swabs were taken from lesional locations. After excluding samples with unclear metadata and excluding duplicate swabs from the same subject, 464 microbiome samples remained for further analysis. Statistical analysis and visualisation were performed using GraphPad Prism 10.

2 of 7 Experimental Dermatology, 2025

4 | Results

4.1 | Patient Characteristics

The analysed cohort consisted of participants ranging from 0 to 84 years, with a median age of 31 years. While the age of the participants approximated Gaussian distribution, it showed significant peaks for children and adolescents. The distribution of biological sex varied considerably among treatment groups, with more female than male participants enrolled (Table 1).

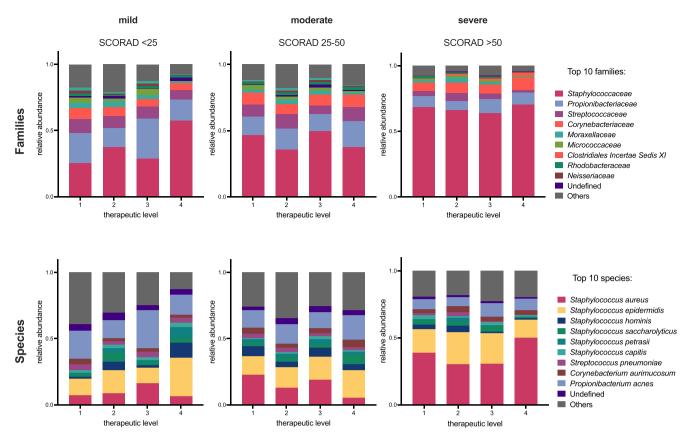
Participants reported both chronic-constant and recurrent AD disease courses in equal proportions. Most participants were moderately affected (~43.9%), with SCORAD values ranging between 25 and 50. Based on current medication use, most participants were classified as receiving basic or topical anti-inflammatory treatment (treatment levels 1–3). Eight percent of the patients reported ongoing systemic immunomodulatory treatment (treatment level 4). Despite the general trend of higher therapeutic regimens with increasing disease severity, many patients with severe AD reported solely relying on basic therapy (Table 1).

4.2 | Increase of S. aureus Correlates With Disease Severity

Before assessing therapeutic interventions' influence on the microbiome, an examination of potential confounders was carried out. No correlation was found between the relative abundance

of *S. aureus* in lesional samples and age or gender (data not shown). However, a strong correlation was identified between more severe skin disease and higher *S. aureus* relative abundance (Appendix S1).

Distinct differences in the skin microbiome were evident across AD severity levels (Figure 1). To minimise bias, patients were grouped by mild (SCORAD < 25), moderate (SCORAD 25–50), and severe (SCORAD > 50) disease. An increasing dominance of *Staphylococcus* species, particularly *S. aureus*, was observed in taxonomic analysis with worsening skin conditions (Figure 1). As *S. aureus* abundance increased, we found that species, such as *Cutibacterium acnes* and coagulase-negative staphylococci, such as *S. epidermidis* and *S. hominis*, decreased in relative abundance (Figure 1).


Among patients with moderate AD receiving systemic immunosuppressive therapy (therapeutic regimen 4), a significant reduction in S. aureus was observed compared to those on topical therapies (therapeutic regimens 2 & 3) or basic treatment (therapeutic regimen 1) (Figure 2). However, measures of microbial diversity (Richness, Evenness, Shannon Diversity Index) showed no significant differences between treatment groups. Likewise, bacterial β -diversity showed no significant differences across therapy groups (Appendix S3).

Patients receiving systemic treatment comprised a heterogeneous group with treatments of differential mechanisms of action and effectiveness, forming the highest escalation step in the current stepped-care treatment approach. A more detailed

TABLE 1 | Study population characteristics and systemic treatment agents.

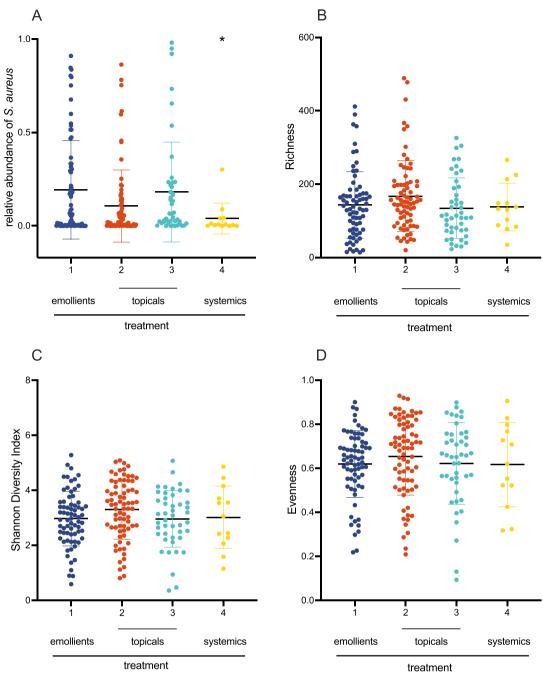
	Treatment level			
	I	II	III	IV
Characteristics $n = 464^{a}$	Basic treatment (n = 193)	Topical anti-inflammatory Grade 2 (n=48)	Topical anti-inflammatory Grade 3 (n=187)	Systemic immuno-modulatory (n = 36)
Age, median (min; max)	31 (0; 80)	35 (1;76)	33 (0;84)	51 (5;84)
Biological sex				
Male (in %)	73 (38%)	17 (35%)	84 (45%)	22 (61%)
Female (in %)	120 (62%)	31 (65%)	103 (55%)	14 (39%)
SCORAD - mean (SD)	33.5 (20.1)	36.2 (13.4)	41.1 (18.6)	42.3 (21.2)
EASI – mean (SD)	7.5 (9.6)	6.0 (5.1)	12.3 (12.6)	13.3 (13.3)
Systemic treatment				Patients (swabs)
Prednisolone (p.o.)				20 (32)
Cyclosporine A (p.o.)				4 (8)
Dupilumab (s.c.)				5 (8)
Azathioprine (p.o.)				2 (3)
Methotrexate (s.c./p.o.)				3 (4)
excluded ^a				2

^a11 patients were later excluded from analysis due to missing or unclear data. Treatment levels were defined according to the guideline for treating atopic dermatitis [8].

FIGURE 1 | Taxonomic distribution of the ten most abundant prokaryotic families and species in lesional cutaneous microbiome swabs from mildly (SCORAD < 25; n = 129), moderately (SCORAD 25–50; n = 204), and severely (SCORAD > 50; n = 126) affected patients. Therapeutic regimens were assessed individually based on atopic dermatitis severity to avoid confounding. A separate analysis of the correlation between disease severity and *S. aureus* abundance is provided in Appendix S1.

comparison of systemic therapies was made despite the small patient numbers (n=36) receiving these treatments. The skin microbiome of participants receiving biologics exhibited overall low relative *S. aureus* abundance compared to participants receiving systemic corticosteroids, which displayed more heterogeneous results and higher *S. aureus* levels (Appendix S2).

5 | Conclusion and Perspectives


Our study underscores the pivotal role of *S. aureus* in disrupting the skin microbial equilibrium in individuals with atopic dermatitis (AD). By examining participants within the ProRaD cohort, we demonstrated a robust positive correlation between AD severity, as quantified by SCORAD scores, and the relative abundance of *S. aureus* in lesional skin. Our findings substantiate those of prior studies, which describe bacterial overgrowth of *S. aureus* as a pivotal factor in reducing microbial diversity in AD [6, 19]. Furthermore, our results lend further support to the hypothesis that *S. aureus* colonisation may exacerbate skin barrier dysfunction, thereby acting as a crucial pathophysiological co-factor in the pathogenesis of barrier impairment, inflammatory immune dysregulation, and imbalance of the skin microbiome [20, 21].

The comparative analysis of different therapeutic interventions revealed no statistically significant alteration in skin microbial diversity or relative abundance of *S. aureus* in patients

treated topically with anti-inflammatory agents. This finding is consistent with the results of other studies [11, 22, 23] that call into question topical corticosteroids' ability to reinstate skin microbial balance. However, these findings remain controversial as opposing observations were made in studies evaluating short-term topical anti-inflammatory treatment effects on the skin microbiome [24, 25]. This discrepancy may in part be explained through short-term modulation of skin barrier properties during topical anti-inflammatory treatment. Additionally, skin microbial modulation through topicals heavily depends on the composition and potential antimicrobial activity of the administered substance [26]. To create solid evidence for skin microbial modulation through topicals, further high-quality trials and grouped comparisons by antimicrobial mode of action will be needed [23, 27]. To date, the exact role of skin microbiota in the pathogenesis of atopic dermatitis remains controversial [28]. In our study, we observed a significant reduction in S. aureus relative abundance in moderately affected participants who received systemic treatment compared to those receiving topical treatment. An in-depth analysis of systemic treatment by mode of action demonstrated a trend towards a decrease in the abundance of S. aureus in patients undergoing treatment with dupilumab compared to other systemics (App. S1). Patients receiving systemic corticosteroids exhibited a more heterogeneous response and varied in skin microbial dysbiosis. Our cross-sectional analysis hints that with more data on patients undergoing systemic treatment becoming available, statistical power could be increased

4 of 7 Experimental Dermatology, 2025

16000625, 2025, 8, Downloaded from

FIGURE 2 | Relative abundance of *S. aureus* (A) and α-diversity (B–D) of lesional swabs of the skin microbiome across different therapeutic regimens in patients with moderate atopic dermatitis (SCORAD 25–50; n = 204). Diversity measures include Richness (B), Evenness (D), and Shannon Diversity Index (C), with mean values and standard deviations shown. Each point represents a lesional skin swab from a participant, classified by therapeutic regimen. Statistical analysis of group differences was performed using the Kruskal-Wallis test, with significance accepted at p < 0.05 (pA = 0.02 (*); pB = 0.17 (ns); pC = 0.15 (ns); pD = 0.46 (ns)). For confirmation of differences in relative abundance between topical and systemically treated patients, additional statistical testing was performed using one-tailed Man–Whitney U testing between group 1–3 and group 4 (p = 0.027).

in future analyses of the collective. As earlier studies have shown, demographics can act as significant confounding factors; therefore, in future studies, more demographic data would prove useful in the interpretation of the results [29].

Our findings indicate the efficacy of T_H^2 -directed systemic interventions in reducing S. aureus overgrowth in lesional skin. This effect can be explained through the reinstating effect of T_H^2 -blocking on anti-microbial peptide (AMP) production, as

observed in other studies [10, 30–32]. Therefore, we believe that targeted systemic T_H2-directed substances should be considered to directly contribute to the cutaneous microbial equilibrium. In clinical practice, effectively reducing *S. aureus* in AD patients' lesional skin areas through targeted treatments with biologicals like dupilumab has been shown to reduce incidences of secondary infections and help improve clinical outcomes [33]. These effects may be critical for the affected individuals, given persistent challenges in AD management through conventional

topical treatments that are insufficiently preventing recurring skin infections [10].

In summary, our results encourage more integrated therapeutic approaches incorporating early disease modification through systemic interventions for moderate to severe AD cases.

However, the interpretation of our study underlies several limitations. One of the most notable limitations stems from the crosssectional pilot study design. While correlations between disease severity, microbial imbalance, and therapeutic effects were identified, the results remain descriptive as the cross-sectional analysis does not allow the determination of causal relationships. Consequently, longitudinal evaluations of the ProRaD cohort will be needed to sufficiently illustrate the long-term effects of local and systemic therapies on the cutaneous microbiome. While the investigated cohort reflects a heterogeneous patient collective, the generalisability of the findings remains limited, mainly due to the potential selection bias of a voluntary central European atopic dermatitis study population [6]. Treatment data were assessed shortly after the introduction of dupilumab as a systemic treatment. Repeating the analysis with more recent data would show an increased proportion of moderately and severely affected patients receiving systemic treatment, lending more statistical power to the claim of a microbiome modulating effect from systemic treatment [34]. Further limitations include methodological aspects. While 16S-rRNA amplicon-based nextgeneration sequencing delivers a detailed image of the prokaryotic kingdom, other commensals of the skin microbiome remain undetected. These include fungi, viruses, and phages, which interact with the host and skin bacteria and thus may play an important role in AD pathogenesis [20, 35]. For a more holistic approach, future studies could benefit from incorporating whole metagenome shotgun sequencing (WMS) to capture the entire skin microbial ecosystem and allow for microbial differentiation down to strain level. A longitudinal design, an increase in systemically treated patients within the cohort, and strain level differentiation in microbiome evaluations could be meaningful in future evaluations of the cohort.

In conclusion, our pilot study underscores the complex relationship between the skin microbiome, immune dysregulation, and barrier dysfunction in AD. Our early findings hint that $T_{\rm H}2$ -targeted therapies may offer the dual benefit of reducing inflammation and restoring microbial homeostasis. Thereby, they could potentially prevent AD exacerbation and reduce the risk of secondary infections. However, whether skin microbial imbalance is merely a symptom or causative of worsened skin conditions in AD remains to be elucidated [7]. Future longitudinal observations are needed to better understand the immunomicrobial relationship in AD and other inflammatory skin diseases.

Author Contributions

Robin Rohayem performed conceptualisation, formal data analysis, investigation, writing the original draft, and writing – review and editing. Claudia Hülpüsch contributed to conceptualisation, methodology, project management, writing – review and editing, investigation, and formal analysis. Luise Rauer, Avidan Neumann, and Matthias Reiger were involved in methodology, writing – review, and editing. Claudia

Traidl-Hoffmann contributed to project management, writing – review and editing, and funding acquisition.

Acknowledgements

Special thanks go to the entire Institute for Environmental Medicine and Integrative Health, CK-Care for providing the data and funding, the University Hospital in Bonn and its staff for providing samples and patients, as well as the Microbiome Core Facility at the Central Institute of Food and Nutrition Research (ZIEL) under the leadership of Dr. Klaus Neuhaus for assistance in sample sequencing. The graphical abstract was created in BioRender. Rohayem, R. (2025) https://BioRender.com/a47g650. We would also like to thank the reviewers of the manuscript for their time and valuable suggestions. Open Access funding enabled and organized by Projekt DEAL.

Conflicts of Interest

Prof. Dr. med. Traidl-Hoffmann reports institutes grants from Sebapharma, Germany, Beiersdorf, Germany, L'Oreal, Germany; personal fees from Novartis, Germany, Sanofi, Germany, Lilly pharma, Germany, grants and Töpfer GmbH, Bencard, Germany, Danone nutricia, Lancome, Germany, Loreal, Germany, outside the submitted work—Dr. med. Matthias Reiger reports personal fees from Novartis, Germany, Reviderm Germany, Bencard Allergy and La Roche Posay outside the submitted work. Dr. rer nat. Claudia Hülpüsch reports personal fees from Reviderm, Germany, and Sebapharma, Germany, outside the submitted work. Dr. med. Robin Rohayem reports personal fees from Novartis outside the submitted work.

Data Availability Statement

The authors confirm that the data supporting the findings of this study are available from the corresponding author upon reasonable request.

References

- 1. E. Kowalska-Olędzka, M. Czarnecka, and A. Baran, "Epidemiology of Atopic Dermatitis in Europe," *Journal of Drug Assessment* 8, no. 1 (2019): 126–128, https://doi.org/10.1080/21556660.2019.1619570.
- 2. T. Bieber, "Atopic Dermatitis: An Expanding Therapeutic Pipeline for a Complex Disease," *Nature Reviews Drug Discovery* 21, no. 1 (2022): 21–40, https://doi.org/10.1038/s41573-021-00266-6.
- 3. S. M. Langan, A. D. Irvine, and S. Weidinger, "Atopic Dermatitis," *Lancet* 396, no. 10247 (2020): 345–360, https://doi.org/10.1016/s0140-6736(20)31286-1.
- 4. J. J. Leyden, R. R. Marples, and A. M. Klingman, "Staphylococcus aureus in the Lesions of Atopic Dermatitis," British Journal of Dermatology 90, no. 5 (1974): 525, https://doi.org/10.1111/j.1365-2133.1974.tb06447.x.
- 5. H. H. Kong, J. Oh, C. Deming, et al., "Temporal Shifts in the Skin Microbiome Associated With Disease Flares and Treatment in Children With Atopic Dermatitis," *Genome Research* 22, no. 5 (2012): 850–859, https://doi.org/10.1101/gr.131029.111.
- 6. L. Rauer, M. Reiger, M. Bhattacharyya, et al., "Skin Microbiome and Its Association With Host Cofactors in Determining Atopic Dermatitis Severity," *Journal of the European Academy of Dermatology and Venereology* 37 (2023): 772–782, https://doi.org/10.1111/jdv.18776.
- 7. T. Bieber, "Targeting T2 Inflammation by Dupilumab Impacts on the Microbiomic "Ménage à Trois" of Atopic Dermatitis," *Journal of Investigative Dermatology* 140, no. 1 (2020): 15–17, https://doi.org/10.1016/j.jid.2019.07.680.
- 8. A. Wollenberg, M. Kinberger, B. Arents, et al., "European Guideline (EuroGuiDerm) on Atopic Eczema Part II: Non-Systemic Treatments and Treatment Recommendations for Special AE Patient Populations," *Journal of the European Academy of Dermatology and Venereology* 36, no. 11 (2022): 1904–1926, https://doi.org/10.1111/jdv.18429.

- 9. A. Wollenberg, M. Kinberger, B. Arents, et al., "European Guideline (EuroGuiDerm) on Atopic Eczema: Part I—Systemic Therapy," *Journal of the European Academy of Dermatology and Venereology* 36, no. 9 (2022): 1409–1431, https://doi.org/10.1111/jdv.18345.
- 10. C. Callewaert, T. Nakatsuji, R. Knight, et al., "IL-4Rα Blockade by Dupilumab Decreases *Staphylococcus aureus* Colonization and Increases Microbial Diversity in Atopic Dermatitis," *Journal of Investigative Dermatology* 140, no. 1 (2020): 191–202.e197, https://doi.org/10.1016/j.jid.2019.05.024.
- 11. V. D. Khadka, F. M. Key, C. Romo-González, et al., "The Skin Microbiome of Patients With Atopic Dermatitis Normalizes Gradually During Treatment," *Frontiers in Cellular and Infection Microbiology* 11 (2021): 720674, https://doi.org/10.3389/fcimb.2021.720674.
- 12. C. M. Olesen, A. C. Ingham, S. F. Thomsen, et al., "Changes in Skin and Nasal Microbiome and Staphylococcal Species Following Treatment of Atopic Dermatitis With Dupilumab," *Microorganisms* 9, no. 7 (2021): 1487, https://doi.org/10.3390/microorganisms9071487.
- 13. T. Bieber, C. Traidl-Hoffmann, G. Schäppi, R. Lauener, C. Akdis, and P. Schmid-Grendlmeier, "Unraveling the Complexity of Atopic Dermatitis: The CK-CARE Approach Toward Precision Medicine," *Allergy* 75, no. 11 (2020): 2936–2938, https://doi.org/10.1111/all.14194.
- 14. T. Werfel, A. Heratizadeh, W. Aberer, et al., "S3 Guideline Atopic Dermatitis: Part 1 General Aspects, Topical and Non-Drug Therapies, Special Patient Groups," *Journal of the German Society of Dermatology* 22, no. 1 (2024): 137–153, https://doi.org/10.1111/ddg.15230.
- 15. A. De Tomassi, A. Reiter, M. Reiger, et al., "Combining 16S Sequencing and qPCR Quantification Reveals *Staphylococcus aureus* Driven Bacterial Overgrowth in the Skin of Severe Atopic Dermatitis Patients," *Biomolecules* 13, no. 7 (2023): 1030, https://doi.org/10.3390/biom13071030.
- 16. B. J. Callahan, P. J. McMurdie, M. J. Rosen, A. W. Han, A. J. A. Johnson, and S. P. Holmes, "DADA2: High-Resolution Sample Inference From Illumina Amplicon Data," *Nature Methods* 13, no. 7 (2016): 581–583, https://doi.org/10.1038/nmeth.3869.
- 17. M. Bhattacharyya, M. Reiger, L. Rauer, et al., "L-34: AnnotIEM: A Novel Algorithm for Species Level Annotation of 16S Gene Based Microbial OTUs," *F1000Research* 8 (2019): 1660, https://doi.org/10.7490/f1000research.1117510.1.
- 18. C. Hülpüsch, L. Rauer, T. Nussbaumer, et al., "Benchmarking MicrobIEM A User-Friendly Tool for Decontamination of Microbiome Sequencing Data," *BMC Biology* 21, no. 1 (2023): 269, https://doi.org/10.1186/s12915-023-01737-5.
- 19. C. Altunbulakli, M. Reiger, A. U. Neumann, et al., "Relations Between Epidermal Barrier Dysregulation and Staphylococcus Species–Dominated Microbiome Dysbiosis in Patients With Atopic Dermatitis," *Journal of Allergy and Clinical Immunology* 142, no. 5 (2018): 1643–1647. e1612, https://doi.org/10.1016/j.jaci.2018.07.005.
- 20. A. L. Byrd, Y. Belkaid, and J. A. Segre, "The Human Skin Microbiome," *Nature Reviews Microbiology* 16, no. 3 (2018): 143–155, https://doi.org/10.1038/nrmicro.2017.157.
- 21. T. Nakatsuji, T. H. Chen, A. M. Two, et al., "Staphylococcus aureus Exploits Epidermal Barrier Defects in Atopic Dermatitis to Trigger Cytokine Expression," Journal of Investigative Dermatology 136, no. 11 (2016): 2192–2200, https://doi.org/10.1016/j.jid.2016.05.127.
- 22. S. Kwon, J. Y. Choi, J. W. Shin, et al., "Changes in Lesional and Non-Lesional Skin Microbiome During Treatment of Atopic Dermatitis," *Acta Dermato-Venereologica* 99, no. 3 (2019): 284–290, https://doi.org/10.2340/00015555-3089.
- 23. L. Tingting, P. Zhang, L. Yang, R. Li, and R. Wang, "The Effects of Topical Antimicrobial-Corticosteroid Combination Therapy in Comparison to Topical Steroids Alone on the Skin Microbiome of Patients With Atopic Dermatitis," *Journal of Dermatological Treatment* 36, no. 1 (2025): 2470379, https://doi.org/10.1080/09546634.2025.2470379.

- 24. E. J. Nilsson, C. G. Henning, and J. Magnusson, "Topical Corticosteroids and *Staphylococcus aureus* in Atopic Dermatitis," *Journal of the American Academy of Dermatology* 27, no. 1 (1992): 29–34, https://doi.org/10.1016/0190-9622(92)70151-5.
- 25. L. B. Nørreslet, S. M. Edslev, A. Bregnhøj, et al., "Topical Corticosteroids Reduce the Density of *Staphylococcus aureus* in Hand Eczema," *Journal of the European Academy of Dermatology and Venereology* 36, no. 4 (2022): e318–e319, https://doi.org/10.1111/jdv.17844.
- 26. A. L. Demessant-Flavigny, S. Connétable, D. Kerob, M. Moreau, L. Aguilar, and A. Wollenberg, "Skin Microbiome Dysbiosis and the Role of *Staphylococcus aureus* in Atopic Dermatitis in Adults and Children: A Narrative Review," *Journal of the European Academy of Dermatology and Venereology* 37, no. Suppl 5 (2023): 3–17, https://doi.org/10.1111/jdv. 19125.
- 27. S. M. George, S. Karanovic, D. A. Harrison, et al., "Interventions to Reduce *Staphylococcus aureus* in the Management of Eczema," *Cochrane Database of Systematic Reviews* 2019, no. 10 (2019): CD003871, https://doi.org/10.1002/14651858.CD003871.pub3.
- 28. T. Bieber, A. S. Paller, K. Kabashima, et al., "Atopic Dermatitis: Pathomechanisms and Lessons Learned From Novel Systemic Therapeutic Options," *Journal of the European Academy of Dermatology and Venereology* 36, no. 9 (2022): 1432–1449, https://doi.org/10.1111/jdv.18225.
- 29. L. Maintz, M.-T. Schmitz, N. Herrmann, et al., "Atopic Dermatitis: Correlation of Distinct Risk Factors With Age of Onset in Adulthood Compared to Childhood," *Allergy* 78, no. 8 (2023): 2181–2201, https://doi.org/10.1111/all.15721.
- 30. J. Hartmann, L. Moitinho-Silva, N. Sander, et al., "Dupilumab but Not Cyclosporine Treatment Shifts the Microbiome Towards a Healthy Skin Flora in Patients With Moderate to Severe Atopic Dermatitis," *Allergy* 78 (2023): 2290–2300, https://doi.org/10.1111/all.15742.
- 31. J.-M. Leyva-Castillo, A. McGurk, and R. S. Geha, "IL-4 and IL-13 Produced During Allergic Skin Inflammation Exacerbate Mouse Model of Cutaneous *Staphylococcus aureus* Infection," *Journal of Allergy and Clinical Immunology* 143, no. 2 (2019): AB66, https://doi.org/10.1016/j.jaci.2018.12.201.
- 32. E. L. Simpson, P. M. Schlievert, T. Yoshida, et al., "Rapid Reduction in *Staphylococcus aureus* in Atopic Dermatitis Subjects Following Dupilumab Treatment," *Journal of Allergy and Clinical Immunology* 152, no. 5 (2023): 1179–1195, https://doi.org/10.1016/j.jaci.2023.05.026.
- 33. A. S. Paller, L. A. Beck, A. Blauvelt, et al., "Infections in Children and Adolescents Treated With Dupilumab in Pediatric Clinical Trials for Atopic Dermatitis—A Pooled Analysis of Trial Data," *Pediatric Dermatology* 39, no. 2 (2022): 187–196, https://doi.org/10.1111/pde.14909.
- 34. K. Hagenström, K. Sauer, N. Mohr, et al., "Prevalence and Medications of Atopic Dermatitis in Germany: Claims Data Analysis," *Clinical Epidemiology* 13 (2021): 593–602, https://doi.org/10.2147/clep.S315888.
- 35. J. S. Meisel, G. D. Hannigan, A. S. Tyldsley, et al., "Skin Microbiome Surveys Are Strongly Influenced by Experimental Design," *Journal of Investigative Dermatology* 136, no. 5 (2016): 947–956, https://doi.org/10.1016/j.jid.2016.01.016.

Supporting Information

Additional supporting information can be found online in the Supporting Information section. **Appendix S1:** exd70141-sup-0001-AppendicesS1-S3.docx.