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Benchmarking scRNA-seq copy number
variation callers

Katharina T. Schmid 1, Aikaterini Symeonidi1,2, Dmytro Hlushchenko 1,
Maria L. Richter1, Andréa E. Tijhuis3, Floris Foijer 3 &
Maria Colomé-Tatché 1,2,4

Copy number variations (CNVs), the gain or loss of genomic regions, are
associated with disease, especially cancer. Single cell technologies offer new
possibilities to capture within-sample heterogeneity of CNVs and identify
subclones relevant for tumor progression and treatment outcome. Several
computational tools have been developed to identify CNVs from scRNA-seq
data. However, an independent benchmarking of them is lacking. Here, we
evaluate six popular methods in their ability to correctly identify ground truth
CNVs, euploid cells and subclonal structures in 21 scRNA-seq datasets. We
discover dataset-specific factors influencing the performance, including
dataset size, the number and type of CNVs in the sample and the choice of the
reference dataset. Methods which include allelic information perform more
robustly for large droplet-based datasets, but require higher runtime. Fur-
thermore, the methods differ in their additional functionalities. We offer a
benchmarking pipeline to identify the optimal method for new datasets, and
improve methods’ performance.

Copy number variations (CNVs) describe the gain or loss of genomic
regions, from small sequences up to complete chromosomes. These
genomic alterations lead to aneuploidy and are associated with dif-
ferent diseases and cancer types1. Specific CNVs are hallmarks for the
classification of tumors, and are related to tumor progression and
treatment outcomes2–4. However, the direct functional consequences
of CNVs arenot yet fully understood4. Tumors are very heterogeneous,
with different tumor cells having distinct molecular phenotypes. This
also applies to CNVs, which can differ substantially between cellular
subclones among samples and within the same sample, emphasizing
the importance of cell-specific analyses5–7. Single-cell whole-genome
sequencing is considered the gold-standard technique to obtain per-
cell CNV profiles8, as changes in DNA copy number should lead to
observable changes in the read sequencing depth. However, the
technology is not frequently used in the laboratory compared to other
single-cell technologies.

Instead, computational methods have been developed to infer the
CNV profiles from single-cell RNA-seq data5,9–14 and single-cell assay for
transposase-accessible chromatin with sequencing (scATAC-seq)
data15,16. These approaches have the advantage that, apart from the copy
number gains and losses, the information about the cellular state can
also be obtained from the samemeasurement (gene expression or open
chromatin). For scATAC-seq, the read-out is relatively similar to whole-
genome sequencing, as the genome is also sequenced, and therefore,
the read coverage provides information about ploidy. However, for
scRNA-seq, the inference of CNVs is challenging, as the expression level
of genes is highly affected by regulatory mechanisms, and therefore, it
provides only indirect information about the CNV state. Nevertheless,
the general assumption of all computational methods that infer CNVs
from scRNA-seq data is that genes in gained regions show higher
expression, and in lost regions lower expression, compared to genes in

Received: 12 November 2024

Accepted: 21 July 2025

Check for updates

1Biomedical Center (BMC), Physiological Chemistry, Faculty of Medicine, LMU Munich, Munich, Planegg-Martinsried, Germany. 2Institute of Computational
Biology, Computational Health Center, Helmholtz ZentrumMünchen, German Research Center for Environmental Health, Neuherberg, Germany. 3European
Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands. 4Hospital del Mar
Research Institute (HMRIB), Barcelona, Spain. e-mail: maria.colome@bmc.med.lmu.de

Nature Communications |         (2025) 16:8777 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-7082-1099
http://orcid.org/0000-0001-7082-1099
http://orcid.org/0000-0001-7082-1099
http://orcid.org/0000-0001-7082-1099
http://orcid.org/0000-0001-7082-1099
http://orcid.org/0009-0001-9468-5682
http://orcid.org/0009-0001-9468-5682
http://orcid.org/0009-0001-9468-5682
http://orcid.org/0009-0001-9468-5682
http://orcid.org/0009-0001-9468-5682
http://orcid.org/0000-0003-0989-3127
http://orcid.org/0000-0003-0989-3127
http://orcid.org/0000-0003-0989-3127
http://orcid.org/0000-0003-0989-3127
http://orcid.org/0000-0003-0989-3127
http://orcid.org/0000-0002-2224-7560
http://orcid.org/0000-0002-2224-7560
http://orcid.org/0000-0002-2224-7560
http://orcid.org/0000-0002-2224-7560
http://orcid.org/0000-0002-2224-7560
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-62359-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-62359-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-62359-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-62359-9&domain=pdf
mailto:maria.colome@bmc.med.lmu.de
www.nature.com/naturecommunications


diploid regions. This requires all methods to have sophisticated data
normalization strategies, using generally reference diploid samples,
often in combination with denoising approaches, before the different
CNV inference strategies can be applied.

Because of the wealth of scRNA-seq data available, the correct
identification of CNVs from this datamodality is crucial to studying the
role of CNVs in cancer and other aneuploid tissues. scRNA-seq CNV
callers are currently used in many applications, e.g., ref. 17–20. How-
ever, there is no independent validation that shows whether scRNA-
seq CNV callingmethods can correctly identify CNVs, andwhich of the
CNV callers works the best.

In this work, we benchmark six popular CNV callers for scRNA-seq
data using 21 different datasets. We include datasets generated with
different technologies, droplet-based and plate-based, and from dif-
ferent organisms, such as humans and mice. We evaluate the general
CNVprediction performance for eachmethod, comparing its results to
a ground truth provided by an orthogonal CNV measurement (either
(single cell) whole-genome sequencing ((sc)WGS) or whole exome
sequencing (WES)), using correlation, area under the curve (AUC)
values andF1 scores.We alsoassess thepredictionofCNVson adiploid
sample, the correctness of the inferred clonal structure, the impact of
the selected reference dataset on the performance, and the runtime
and memory requirements. In addition, we evaluate the automatic
identification of cancer cells for the methods that allow it. Our eva-
luation is publicly available with a reproducible Snakemake pipeline
(https://github.com/colomemaria/benchmark_scrnaseq_cnv_callers)21.
This enables the direct testing of new datasets to determine optimal
CNV calling strategies, and it facilitates comparisons betweenmethods
to improve the performance of newly developed computational tools.

Results
scRNA-seq CNV calling benchmarking
We included in our benchmarking study six CNV calling methods that
were developed specifically for scRNA-seq data (Table 1). Themethods
can be broadly classified into two categories: one class that uses only
the expression levels per gene, consisting of InferCNV5, copyKat12,
SCEVAN13 and CONICSmat9; and a second class that combines the
expression values with minor allele frequency (AF) information, con-
sisting of CaSpER11 andNumbat14. CaSpER andNumbatuseAFs per SNP
called directly from the scRNA-seq reads, and bothmodels implement
a Hidden Markov Model (HMM) to call CNVs. Also, InferCNV identifies
CNVs using anHMM,but based on expression levels only. copyKat and
SCEVAN both apply a segmentation approach, while CONICSmat
estimates theCNVs based on aMixtureModel. Allmethodswere run as
recommended in the respective tutorials or based on default
parameters.

The output of the CNV prediction depends on the method
(Table 1). Half of the methods report the results per cell (CONICSmat,
copyKat and CaSpER), while InferCNV, SCEVAN and Numbat group

cells into subclones with the same CNV profile. Also, the resolution
differs, with CONICSmat reporting the results only per chromosome
arm, and all other methods either per gene or per segment consisting
ofmultiple genes. Several of themethods have two possible outputs: a
discrete CNV prediction and a normalized expression score; in these
cases, both outputs were included separately in the evaluation and
were abbreviated as “(CNV)” and “(Expr)”, respectively. More details
can be found in the Methods.

We tested all scRNA-seq CNV callers on 21 different single cell
RNA-seq datasets (Fig. 1), comprising 13 human cancer cell lines (nine
gastric cell lines, two colorectal adenocarcinoma lines (COLO320,
HCT116), one breast cancer line (MCF7) and one melanoma cell line
(A375)), six human primary tumor samples (three acute lymphoblastic
leukemia samples (iAMP21, ALL1, ALL2), two basal cell carcinoma
(BCC) samples and one multiple myeloma (MM) sample), one mouse
primary tumor sample and one human diploid dataset (peripheral
bloodmononuclear cells (PBMCs)) (Supplementary Data 1). Seventeen
datasets weremeasuredwith droplet-based technologies, and the four
others with a plate-based technology.

Different metrics were included for benchmarking, most of
them based on the comparison with a ground truth for the CNVs. We
obtained this ground truth from either (sc)WGS or WES data (Sup-
plementary Data 1). The different datasets showed large variation in
CNV distribution, with CNVs covering between 7% and 93% of the
total genome, and more gained regions than lost regions in the
majority of the datasets (Supplementary Fig. 1). Since the scRNA-seq
methods are only able to predict the CNV status for genomic regions
comprising genes, while the WGS ground truth covers (nearly) the
complete genome, we could only compare modalities in gene
regions. As in most cases, the ground truth was not measured in the
same set of cells as the scRNA-seq, and was, in some cases, obtained
from bulk measurements, we combined the per-cell results from the
scRNA-seq methods to an average CNV profile, called pseudobulk,
before the comparison. For the plate-based datasets, where scRNA-
seq and scWGS were measured in the same cells, a cell-by-cell com-
parison was also performed.

We applied threshold-independent evaluation metrics using
correlation and AUC scores. For the AUC scores, predictions were
evaluated separately for gain versus all and loss versus all,
resulting in two scores. Not the complete range of thresholds is
biologically meaningful for classifying regions as gains or losses,
as every method defines a baseline score. For this reason, we
chose to additionally calculate a partial AUC22,23, with a maximal
sensitivity defined by the baseline score so that only thresholds
up to the baseline score were evaluated for losses and only scores
higher than the baseline score were evaluated for gains (see
Methods, Supplementary Fig. 2). Of note, partial AUC values
below 0.5 indicate that most thresholds are outside the biologi-
cally meaningful value range (see Methods).

Table 1 | CNV calling methods from scRNA-seq

Method (tested version) Model Input Output resolution Explicit
reference optional

Cancer cell
identification

InferCNV (v1.10.0) HMM & Bayesian MM Expression Gene and subclone No No

CONICSmat (v0.0.0.1) Mixture model Expression Chromosome arm
and cell

Yes No

CaSpER (v0.2.0) Expression HMM & BAF signal shift Expression &
Genotypes

Segment and cell No No

copyKat (v1.1.0) integrative Bayesian segmentation Expression Gene and cell Yes Yes

Numbat (v1.4.0) haplotyping AFs & combined HMM Expression &
Genotypes

Gene and subclone (Yes) Yes

SCEVAN (v1.0.1) segmentation with a variational region
growing algorithm

Expression Segment and
subclone

Yes Yes

HMM hidden Markov model, MM mixture mode, (B)AF (B-)allele frequency.
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With the same systematic, we evaluated the optimal gain and loss
thresholds based on a multi-class F1 score (Supplementary Fig. 3),
testing again only biologically meaningful gain and loss thresholds.
These thresholds were then used to obtain sensitivity and specificity
values for gains and losses.

Every scRNA-seq method requires a set of euploid reference cells
to normalize the expression of the analyzed cells. For the primary
tissue samples, the common assumption is that the measured tissues
are amixtureof tumor andnormal cells, ofwhich the latter canbe used
as a reference. Some methods rely on cell type annotations provided
by the user to specify the reference, while other methods provide two
options: user-provided cell type annotations or automatic detection of
normal cells. To ensure reproducibility between methods, cells were
annotated manually into tumor and healthy cells per sample, and the
same healthy cells were used as reference for all methods unless spe-
cified otherwise. We applied the published cell type annotation for the
BCC and ALL datasets and performed manual annotation based on
Louvain clustering and known marker genes for the MM, the iAMP21
and the mouse datasets (see Methods).

For the cancer cell lines there exist no directly matched reference
cells and therefore we chose, for each dataset, a matched external
reference dataset with healthy cells from the same or at least very
similar cell types (Supplementary Data 1). Since the choice of the
reference euploid dataset used for normalization may affect the final
CNV calling results, we tested the impact of different references on the
prediction quality.

Another challenge for scRNA-seq callers is the ability to detect
completely euploid datasets, with no presence of CNVs. The methods'
performance on aneuploiddatasetwas not evaluated in the associated
publications. However, the identification of the lack of CNVs is also an
important asset. For this reason, we included an euploid dataset,
comprising PBMCs from a healthy donor24, in our performance test
and calculated the mean square error deviation for every method
compared to a diploid reference genome. Thereby, we explored how
the performance changes depending on the choice of the reference
dataset. Furthermore, for the methods with automatic detection of
normal cells, we estimated the accuracy of this feature by comparing

the methods’ cell assignment to the ground truth cell type obtained
from the analysis of the scRNA-seq data.

All the tested methods can detect heterogeneity in the analyzed
samples. CaSpER, CopyKat and CONICSmat estimate the CNV profiles
per cell, which can be clustered afterwards into subclones, while
Numbat, InferCNV and SCEVAN cluster the cells already during the
analysis to improve the CNV prediction. To explore how well the
methods can map cells to separate sub-clones with distinct CNV pro-
files, we mixed patient data from tumors that have been shown to
display high inter-individual heterogeneity in their CNV profiles into
one dataset. Running everymethodon this dataset, we quantified their
ability to recover the different donors as different clones.

All evaluations were set-up within a Snakemake pipeline21, so that
both new methods and new datasets can be easily integrated into the
benchmarking.

Benchmarking scRNA-seqCNVprediction compared to genomic
ground truth in droplet-based data
We evaluated all CNV callers on 15 different human cancer datasets
measured with droplet-based scRNA-seq technologies (Supplemen-
taryData 1) using variousmetrics. On average, Numbat (Expr), copyKat
and InferCNV (Expr) had the highest maximal F1 scores (between 0.59
and 0.57), and also scored high for all other metrics (Fig. 2A, Supple-
mentary Fig. 4). However, comparing themaximal F1 scores shows that
the performance differences between the callers were in most cases
non-significant (Supplementary Fig. 5). More significant differences
were visible for the correlation and partial AUC scores. Furthermore,
all metric scores for all methods showed a large standard deviation
across datasets (Fig. 2A, Supplementary Fig. 4). Due to these aspects,
no method can be seen as clearly superior to the others.

The different metrics give insights into different aspects of the
prediction. The maximal F1 score puts equal weight on predicting all
three CNV classes (gain, base and loss), independent of their occur-
rence in the dataset. This is important as most of the datasets have
more gains than losses, and some of the cell lines (HGC27, KATOIII and
SNU16) have very extreme profiles with >75% of gained regions (Sup-
plementary Fig. 1). A method/dataset combination with high maximal

Fig. 1 | Overview of the benchmarking workflow. Input data in blue, evaluation results in pink.
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F1 score indicates that the method was able to predict all three classes
accurately. The AUC and partial AUC scores evaluate instead the
separate performance between calling gains and losses. The correla-
tion score indicates how well the overall genome-wide profile is
recovered, and may reflect only the majority call.

We see that three of the CNV callers (CONICSmat, Numbat (CNV)
& InferCNV (CNV)) are better at predicting gains, as they show a sig-
nificantly higher sensitivity for gains compared to losses (Wilcoxon
signed rank test, FDR <0.05; Supplementary Fig. 6). Two more meth-
ods show at least slightly significantly higher sensitivity for gains
(InferCNV (Expr)&CaSpER; FDR <0.1). For example, in the SNU638 cell

line, which contains gains but nearly no losses (Supplementary Fig. 1),
Numbat (CNV) predicts the gains very well, visible in high gain sensi-
tivity and precision (>0.9), but it does not identify any loss regions
(loss sensitivity = 0) (Fig. 2A). For this reason, the maximal F1 score is
only 0.65. However, themethod exhibits a very high correlation (0.93)
in that dataset, because despite not identifying any loss region at all,
the overall profile was correctly predicted (Supplementary Fig. 4).

CNVs can be further classified, based on their length, into focal
CNVs of short length and broad CNVs25. There are different biological
mechanisms behind both types, and often focal CNVs are associated
with cancer-driving genes26. However, the detection of focal CNVs is
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coefficient of variation across genes, the fraction of gained regions from all ground
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general dataset characteristics with the highest mean absolute correlation to the
performance, all features are shown in the supplement (Supplementary Fig. 8).
CMethod comparison within the SNU601 dataset. D, E Karyogram of the SNU601
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standard deviation. Source data are provided as a Source Data file.
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difficult due to their size, prompting us to analyze specifically howwell
the different callers can identify them. The high resolution of the
ground truth scWGS data allowed us to categorize the CNVs into focal
and broad for the respective datasets. We tested three different defi-
nitions of focal amplifications, based on their size: focal type 1 (size
<3Mb)1,26,27, focal type 2 and focal type 3 (size <50% or <95% of a
chromosome arm, respectively)25,28. All datasets contained several
focal CNVs for all threedefinitions; however, for focal type 1CNVs, only
a few overlapped the regions analyzed by the CNV calling methods
(Supplementary Fig. 7A, B). This highlights a general coverage problem
of all scRNA-seq callers for very small CNVs. Also, the sensitivity of the
individual callers for this subset of focal type 1 CNVs was very low
(Supplementary Fig. 7C). However, the detection sensitivity of focal
type 2 & 3 CNVs was similarly high to the one for all CNVs, so we see
that only focal CNVs according to the most strict definition are affec-
ted. For this subset, we conclude that all scRNA-seq callers are, in
general, not suitable for identifying them.

To study the variable performancebetween datasets, we explored
different data characteristics influencing the CNV calling (Fig. 2B,
Supplementary Fig. 8). We saw a positive correlation between perfor-
mance (maximal F1 score) and number of cancer cells, number of
expressed genes, aswell as read coverage (UMI counts). Vice versa, the
performance was negatively correlated with the dropout rate and
moderately with the gene expression variation between cells. The
strongest negative correlation, however, was observed with the frac-
tion of genomic aberrations: the larger the fraction of the genome in
the gain state, the more difficulties all methods had in inferring the
correct CNV profile. This is probably due to the fact that all methods
seemed to have a problem identifying the baseline ploidy in these
extreme cases (Supplementary Fig. 1, Supplementary Data 2). The
same trend was also visible for the fraction of CNV regions in general,
which is, however, strongly correlated with the fraction of gained
regions for the tested datasets. In summary, several dataset char-
acteristics explained the deviations in performance between datasets,
and all methods were similarly affected.

For someof theCNV callers, the predictions tended to agreemore
between methods than when compared to the genetic ground truth
(Fig. 2C, D, Supplementary Fig. 9, Supplementary Data 2). This was in
particular the case for InferCNV, copyKat, SCEVAN and Numbat (Expr)
(i.e., correlation ofNumbat (Expr)with InferCNV, copyKat and SCEVAN
was significantly higher than with the ground truth (Wilcoxon signed
rank test, FDR <0.05)). This could be caused by true CNV differences
between the scRNA-seq and genetic datasets, because the cells ana-
lyzed as genetic referencewere not the same ones used for the scRNA-
seq analysis. It could also reflect technical and biological biases of
scRNA-seq data, which were picked up by all top-performing methods
similarly, such as problems with lowly expressed genes or with path-
ways upregulated in cancer.

The methods differed in their data quality filtering steps, which
ultimately led to a different number of included genes and included
cells in the CNV analysis. Amore lenient gene expression filtering leads
to more annotated genomic regions for CNVs. In our evaluations, we
compared the CNV callers using only the overlap of all the considered
regions. We therefore tested the change in performance when con-
sidering all covered regions per method, instead of only the intercept,
using the SNU601 dataset, and observed no change in performance
(Supplementary Fig. 10). CaSpER and CONICSmat kept themost genes
(Supplementary Fig. 11). Despite callingCNVs for a larger portionof the
genome, the permissive expression filter can negatively affect a
method’s performance. This is the case for CaSpER, one of the meth-
ods with the lowest correlation values on average and no maximal
F1 score above 0.65 on any dataset (Supplementary Fig. 4). To show
how the expression filtering influenced the performance, we exem-
plarily ran CaSpER with a more strict cutoff on the SNU601 cell line
(keeping 8847 genes instead of 13,196 genes) and saw a clear

improvement in the CNV calling results (Supplementary Table 1).
CONICSmat might not be as affected by the lenient expression cutoff,
as it provides CNV predictions per chromosome arm, while all other
methods allow for a far higher resolution. In general, an extensive
parameter optimization of all methods is out of the scope of this
benchmarking. We ran each method with the recommended default
parameters. The users should, however, be aware that methods might
perform better with other parameters.

In addition to the pseudobulk evaluations, we also checked the
per-cell estimates. For the SNU601 cell line, the pseudobulk CNVswere
closer to the ground truth compared to the per-cell results for all
methods, probably due to the reduction of noise (Supplementary
Figs. 12 and 13). We saw a performance difference between the meth-
ods, which output subclone or per-cell CNVs, where the first showed
smaller deviation from the pseudobulk profiles. This is expected, as
the subclonal aggregation is conceptually similar to the pseudobulk
aggregation, but on a smaller scale. Still, independent of the
approach, the mean per cell correlation was over 0.45 for all methods
except CaSpER and CONICSmat. So, the per-cell CNV profiles of the
methods are reasonable for use in downstream analysis, although an
aggregation to the subclonal or dataset level provides more reliable
results.

Benchmarking CNV prediction in other organisms and sequen-
cing technologies
We extended the performance evaluation using other single-cell
technologies and organisms. This includes paired methods, which
enable the analysis of RNA andWGS in the same cell and thereby a per-
cell comparison of the CNV prediction results between RNA andWGS.
In total, we included four paired plate-based datasets, measured with
DNTR-seq29, and one mouse dataset (droplet-based) (Supplementary
Data 1). In principle, all methods allow the running of data generated
by plate-based RNA technologies and data from other species apart
from humans. The newer CNV callers copyKat, Numbat and SCEVAN,
however, were developed mainly for human data generated by
droplet-based methods.

First, we analysed the CNV results for the two paired plate-based
cell lines HCT116 and A375. For the expression-based methods, the
performance was close to the mean performance of the droplet-based
datasets (Fig. 2A, E, Supplementary Fig. 4, Supplementary
Data 3 and 4). However, for the methods including AF information,
CaSpER andNumbat, theperformancedropped considerably, with few
to no CNVs identified. This could be due to the fact that, compared to
droplet-based datasets, an order of magnitude fewer SNPs could be
called, likely due to the low number of cells per experiment (Supple-
mentary Fig. 14). We analysed the other two plate-based paired data-
sets, ALL1 and ALL2, only using the expression-based methods, where
they showed above-average performance (Fig. 2A, Supplementary
Fig. 4, Supplementary Data 5 and 6).

Thanks to the paired information, we could perform a cell-by-cell
comparison of CNV profiles (Supplementary Data 3–6, Supplementary
Fig. 15). The HCT116 cell line and the ALL2 dataset were very homo-
genousbasedon theDNACNVs, and the samehomogeneitywas visible
at the RNA CNV level (Supplementary Data 3 and 6). In contrast, the
A375 cell line and the ALL1 dataset showed more heterogeneous CNV
profiles across cells in the DNA data (Supplementary Data 4+5). Based
onCNVs called from the scWGSdata, the cells of the ALL1 dataset were
categorized into two subclones in the original publication29, the larger
with an additional gain in chromosome 6. All methods performed
significantly better at predicting the profiles of the larger subclone
(Wilcoxon rank sum test, FDR <0.05; Supplementary Fig. 15C). Gen-
erally, the per cell performance was on average lower than the pseu-
dobulk performance (Supplementary Fig. 15), similar to the results for
the SNU601 cell line discussed previously (Supplementary Fig. 13).
Especially for ALL2, it was visible again that themethods which groups
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cells into subclones (InferCNV (CNV) and SCEVAN (CNV)) had esti-
mates which were closer to the pseudobulk results.

Finally, we tested the performance of the methods on another
species, a mouse droplet-based dataset from a T-cell lymphoma. Some
of the CNV RNAmethods are restricted by the organisms they can run
on. In particular, copyKat, Numbat and SCEVAN offer only human and
mouse annotations as options. All expression-based methods showed
very good performance on the tested mouse data, above average
compared to the human droplet dataset (Fig. 2A, Supplementary
Fig. 4). Numbat requires haplotype information, which was not avail-
able for the analysedmouse dataset and therefore could not be tested
here. CaSpER could not detect SNPs on this dataset.

In conclusion, we saw that the CNV prediction methods also
worked for scRNA-seq plate-based technologies and non-human spe-
cies. However, the methods that incorporate AF information were
more restricted due to the low number of inferred SNPs in the plate-
based datasets and the need for haplotype information. These meth-
ods performed worse than the expression-based ones for the plate-
based datasets.

Benchmarking CNV prediction on euploid samples
Another important criterion for CNV prediction algorithms, which is
usually not explored in the original methods papers, is the correct
identification of euploid datasets, which display no CNVs. To consider
this, we included in our benchmarking a diploid dataset consisting of
CD4 + T cells from a PBMC dataset24, combined with four different
reference datasets. Defining a matched reference dataset for the CNV
prediction is a common and crucial step for all scRNA-seq CNV calling
methods. It should consist of an euploid version of the same (or
similar) cell type, in order to normalize the tested cells and distinguish
expression changes caused by CNVs from cell type-specific expression
changes.

We randomly selected 50% of CD4 +T cells for the analysis, and
the four reference datasets consisted of the remaining 50% of
CD4 + T cells from the same sample, CD14+ Monocytes from the same
sample (exemplifying the use of another cell type for normalization)
(Fig. 3A, B); aswell asCD4 +T cells andCD14+Monocytes fromanother
dataset30 (exemplifying the situation where normal cells of the same
cell type are not captured in the sample) (Supplementary Fig. 16).

We calculated the Root Mean Square Error (RMSE) between the
method scores and a diploid baseline (see Methods). When using
CD4 + T cells from the same dataset as reference, all methods showed
medium to good performance, visible from the karyogram plots and
the low RMSE scores (Fig. 3A, C). CONICSmat performed the worst
with the highest divergence from a diploid genome (RMSE =0.49),
followed by CaSpER (RMSE =0.46). InferCNV (CNV & Expr) and copy-
Kat found minimal CNV presence (RMSE =0.03, 0.07 and 0.04,
respectively), while Numbat (CNV) was the only method to identify a
fully diploid genome (RMSE =0).

The RMSE values rose considerablywhen using CD14+Monocytes
instead as a normalizing reference (Fig. 3B, C). Here, copyKat, aswell as
the methods that include AF information, i.e., Numbat and CaSpER,
performed clearly better (RMSE <0.5). Numbat (CNV) was again the
only method able to identify a fully diploid genome (RMSE =0). All
othermethods identified a large portion of the genome as non-diploid.

The RMSE values were much higher when using an external
reference dataset30, independent of whether we used CD4 +T cells or
CD14+ Monocytes as a diploid reference. Again, Numbat, CaSpER and
copyKat were the best-performing methods (Fig. 3C, Supplementary
Fig. 16). Interestingly, Numbat (CNV) was again able to identify a fully
diploid genome.

The two PBMC datasets used here were both generated with the
10X Genomics technology; however, they were produced in different
versions and in different laboratories, which likely had an impact on

the CNV results. These technical factors cannot be overcome by batch
integration, as raw counts are required as input for calling CNVs. Even
small mapping differences can influence the CNV calling performance.
To show that, for the second reference PBMC dataset, we repeated the
analysis with the same data but mapped with an older version of
CellRanger. This reduced the performance even more (paired T test p
value = 0.0038 for the CD4 +T cells and p value = 0.0008 for the
CD14+ Monocyte; see Methods) (Supplementary Fig. 17).

Our results show that, in general, most methods can identify
diploid samples given that an appropriate reference dataset with the
same cell type is provided. In cases where closely matching reference
cells are not available or at least not easily identifiable, CNV calling
methods with allelic information are a good option, as they are less
affected by wrongly matched reference datasets. Numbat (CNV) con-
sistently detected a fully diploid genome in all tested scenarios.

Benchmarking the impact of the reference on CNV detection for
aneuploid datasets
In real applications with cancer data, the identification of a diploid
population of the same cell type is more challenging than for the
euploid example. Within tumor microenvironments measured in pri-
mary samples, a mixture of many cell types exists. Niche cells can also
carry CNVs, despite not being cancer cells, which in these cases would
distort CNV calling if using them as reference31. In the analysis of cell
lines, no naturally matched healthy cells exist, and an external
reference is always required. As discussed before, when the
reference euploid dataset comes from a different sample, batch inte-
gration to minimize technical variation cannot be performed before
CNV calling.

To better assess the influence of the reference dataset on the CNV
results for the cancer samples, we analyzed two of the cancer datasets,
MM and SNU601, with different references (Fig. 3D, E, Supplementary
Fig. 18). For the MM primary cancer sample, the reference cells in the
default analysis were the healthy cells from the tumor microenviron-
ment. Here, additionally, we also tested different PBMC cell types as
reference (T cells, B cells and monocytes from 10X Genomics24)
(Fig. 3D, Supplementary Fig. 18A). We challenged the methods further
by including as reference a healthy gastric dataset32 (mix of fibroblasts,
immune cells (B + T cells), endothelial cells, enteroendocrine cells,
Chief cells, pit mucous cells, and intestinal metaplasia) as well as gas-
tric cancer cells, which harbor CNVs on themselves (SNU601 cells33).
For every other tested reference dataset, the quality of the CNV calls
dropped significantly compared to the original reference from the
same dataset (Wilcoxon signed rank test, FDR <0.05; see Methods).

For the SNU601 dataset, we tested a second healthy gastric
dataset34, considering three different cell groups as euploid reference
(epithelial and endothelial cells, fibroblasts and smooth muscle cells,
and immune cells). In general, the CNV calling performance was very
similar across references (Fig. 3E, Supplementary Fig. 18B), except for
SCEVAN and CONICSmat, whose performance dropped when the
gastric cancer cells were normalized using fibroblasts and smooth
muscle cells. Additionally, we tested normalizing the SNU601 cells with
the cancer cells from the MM dataset, to again exemplify how much
the CNV results diverged when normalizing by a distant cell type that
also contains CNVs itself (Fig. 3E, Supplementary Fig. 18B). Here, the
performance dropped only significantly for the MM dataset as refer-
ence dataset (Wilcoxon signed rank test, FDR <0.05; see Methods).

Overall, we see that the choice of the reference dataset has an
effect on the CNV detection in aneuploid samples. If cells from the
same sample are available, they tend to be the best reference dataset.
In case an external reference is necessary, biological and technical
differences shouldbe kept as small aspossible. If a cell type that itself is
harboring aneuploidies is used as a reference, the CNV predictions
become less reliable.
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Benchmarking automatic identification of tumor cells
In order to overcome the problem of selecting the appropriate refer-
ence dataset, CopyKat, SCEVAN, CONICSmat and Numbat can be run
without the input of a reference (euploid) cell set. Importantly, in the
previous sections these four methods were run with an
explicit annotation of reference cells, to make the results comparable
between methods. Here we explored how well these four methods
worked without the reference annotation. We studied the CNV calling
performance changes, as well as the correct identification of
aneuploid cells.

The methods use different strategies to call CNVs without the
explicit annotation of reference cells. Both CopyKat and SCEVAN
automatically identify putative normal cells in the dataset, which are
then internally used as a reference for the CNV calling. CopyKat first
clusters the cells basedongene expression anddefines the clusterwith
theminimal estimated variance in gene expression as the diploid cells.
In contrast, SCEVAN uses public gene signatures of cells from the
tumormicroenvironment, stromal and immune cells to identify highly
confident normal cells and extends this annotation to similar cells via
expression clustering; after CNV analysis, cells are clustered again
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Fig. 3 | Performance of CNV callers depending on the reference dataset for
euploid and aneuploid datasets. A, B Karyograms of CNVs in CD4+ T cells when
using either CD4 + T cells (A) and CD14+ Monocytes (B) from the same dataset as
reference cells. C Root mean squared error (RMSE) between CNV predictions of
each method and diploid baseline as ground truth. The methods with the lowest
RMSE perform best. Panel title shows chosen reference cells. D, E Performance of
the methods with different reference datasets for the MM dataset (D) and the
SNU601dataset (E). For theMMdataset, we tested a second healthy PBMCdataset,

which we split into B cells, T cells andMonocytes (mono). We additionally tested a
healthy gastric dataset and a gastric cancer dataset (SNU601). For the SNU601, we
tested a second healthy gastric reference, which we split into three groups: epi-
thelial and endothelial cells (epiendo), fibroblasts and smooth muscle cells (fib-
som) and immune cells. We also tested the MM dataset as a reference.
F Karyograms showing the difference between using a manual reference and an
automatic one for the dataset iAMP21. Source data are provided as a Source
Data file.
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based on their predicted CNV profiles for the final annotation of non-
malignant cells. In contrast to CopyKat and SCEVAN, CONICSmat does
not automatically report identified diploid cells. It instead uses a two-
component Gaussian Mixture Model (GMM) per genomic region to
identify regions with a different coverage profile as potential CNVs.
Finally, Numbat uses an external reference if no internal is provided:
the method contains a large gene expression reference set based on
the human cell atlas and automatically matches the closest reference
cell type for each cell. After running theCNV calling, the normal cells in
the dataset are identified based on the aneuploidy probability, calcu-
lated from the posterior probabilities of the HMM. We tested these
methods on four primary cancer datasets, MM, iAMP21, BCC06 and
BCC06post (i.e., posttreatment) (Supplementary Data 1), which are
supposed to be a mixture of cancer and normal cells. Their cell type
annotations were taken directly from the publication for the two BCC
dataset35 or were manually annotated based on known marker genes
for the MM and the iAMP21 dataset.

We first investigated the agreement between the marker-gene-
based cell type annotation and the annotation of tumor and normal
cells, which is provided by three of the four methods: CopyKat, SCE-
VAN and Numbat. In most cases, all methods showed very high con-
cordance when predicting tumor vs normal cells (Table 2). Numbat
reached values over 95% accuracy for all four scenarios. SCEVAN per-
formed well in all scenarios except for the iAMP21 dataset, where it
classified many tumor cells as normal. This could be due to an incor-
rect initial identification of confidential normal cells, which is based on
a default marker gene list. SCEVAN also provides the option to include
other marker genes for this analysis.

CopyKat performed very well on the MM and BCC06post
datasets, but had problems with the BCC06 and the iAMP21 sample,
as it classified about half of the manually annotated tumor cells as
diploid (accuracy of 44.3% and 59.2%, respectively). According to
the manual cell type annotation, the BCC06 and the iAMP21 data-
sets have a very low percentage of diploid cells (2% and 6%) com-
pared to the other datasets (16% and 47%). Probably for this reason,
CopyKat does not work in that scenario. CopyKat identifies diploid
cells as the cluster of cells with the smallest gene expression var-
iation, which can be incorrect when diploid cells do not build a large
cluster. In contrast, SCEVAN includes tumor markers and Numbat
CNV profiles, which both give additional evidence for the identifi-
cation of normal cells.

We then explored howmuch the actual CNV predictions differed
when running the methods without providing the cancer cell annota-
tionmanually (Fig. 3F, Supplementary Figs. 19 and 20). For theMMand
BCC06post datasets, because the automatic identification of cancer/
normal cells performed well (Table 2) the differences were very small
between the different modes for all methods (Supplementary
Figs. 19A, B and 20). For the BCC06 dataset, however, copyKat
underperformed when the reference was not provided (Supplemen-
tary Figs. 19C and 20), most likely due to the wrong identification of
normal cells (Table 2). The same is visible for the iAMP21 dataset for
copyKat and SCEVAN (Fig. 3F, Supplementary Fig. 20), again most
likely causedbywrong cell annotations (Table 2). Surprisingly, theCNV
results for SCEVAN in the BCC06 data improved when no reference
was provided.

Overall, these results show that the automatic identification of
reference cells is a good approach to overcome the additional effort of
choosing a correctdiploid reference, as thepredicted resultswere very
similar to the manual annotations overall. However, when the number
of diploid cells in the sample is low, this strategymay fail, especially for
CopyKat. On the other hand, the marker gene-based approach of
SCEVAN might not work equally well for each tumor type. Finally, this
approachworks onlywhen normal cells are found in the dataset, which
is not always the case, especially on cell lines.

Benchmarking the identification of subclones
The big advantage of single cell data for CNV calling, compared to
traditional approaches, is that subclonal structures, i.e. tumor het-
erogeneity, can be identified. Each of the tested methods provide
information about the subclonal structure identified based on the
predicted CNVs. Some methods directly define clones (Numbat,
InferCNV and SCEVAN),while others produce a dendrogram (CopyKat,
CONICSmat and CaSpER) that can be split to determine clones.

Obtaining independent ground truth data about the clonal
structure within a cancer sample is challenging. To overcome this
difficulty, we artificially created a dataset with known clonal structure
by merging different cancer samples belonging to the same cancer
type, but coming from different patients with different CNV profiles.
To do that, we used four BCC samples35. CNV analysis of every patient
separately shows that different patients have different CNV profiles
(Supplementary Fig. 21). Therefore, we can evaluate how effective the
different methods are at sorting the patients into different CNV
clusters.

All the algorithms identified several subclones in this mixed
dataset (Fig. 4A). We extracted one pseudobulk CNV profile per
method and clone. The discovered pseudobulk clones clustered based
on the donor rather than on the used method, suggesting that overall
the methods were able to distinguish between donors.

To quantify the performance of every method, we calculated
AdjustedRand Indices (ARI) andHomogeneity Scores for the identified
clusters compared to the true donor composition. CopyKat, InferCNV,
SCEVAN and Numbat all obtained Homogeneity Scores close to 1,
meaning that most clones contained mostly cells from one donor
alone. All fourmethodshad lowerARI values (Fig. 4B), probably caused
by the fact that they identified multiple CNV clusters inside each
donor, which is to be expected given the individual CNV results per
donor (Supplementary Fig. 21). However, SCEVAN had an ARI of 0.
Despite providing a cell-type annotation file as input, SCEVAN identi-
fied only the cells from one donor (BCC08) as tumor cells (clusters
scevan_1, 2, 3, and 4) and all the other donor cells were classified as
normal (in this case, no CNV profile was outputted for them). CON-
ICSmat and CaSpER had lower Homogeneity Scores, as they grouped a
large number of cells from all four donors together into one big clone
(clone conicsmat_1 and casper_1). All methods had some problems
distinguishing between donors BCC05 and BCC07, which could be
caused by relatively similar CNV profiles of both donors (Supplemen-
tary Fig. 21).

Overall, we see that CopyKat, InferCNV and Numbat are the best-
performing methods in terms of clonal structure identification, as all
three were able to separate donors based on their CNV profiles.

Table 2 | Accuracy of each method in predicting the cancer cells in the respective dataset

Accuracy prediction cancer cells

Method MM BCC06 BCC06 post iAMP21

CopyKat 97.8% (99.3%) 44.3% (44.3%) 95.7% (95.8%) 59.2% (59.5%)

SCEVAN 97.9% (99.3%) 97.7% (97.7%) 95.5% (95.7%) 27.7% (27.8%)

Numbat 99.4% (99.4%) 100% (100%) 95.5% (95.5%) 97.9% (97.9%)

The first number shows total accuracy, including all cells; the number in brackets shows the accuracy when excluding cells defined as bad quality by the respective method.
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Overall comparison of the methods
In summary, the methods differed more in their additional function-
alities than in their ability to predict CNVs (Fig. 5), as the performance
metrics for the CNV predictions on the cancer datasets showed only
minor differences. The characteristics of the dataset, with enough
coverage and a not too extreme CNV profile, were far more relevant
than the choice of the exact CNV caller for the droplet-based human
datasets. For the plate-based human datasets, all expression-based
methods performed well; only the AF-based methods Numbat (CNV)
and CaSpER had performance problems, likely because they found
fewer SNPs compared to the droplet-based datasets. Also on the
mouse data, all four expression-based methods performed well, while
Numbat and CaSpER could not be run due to lack of haplotype/SNP
information. Differences between methods were visible in the analysis
of euploid samples. Numbat and CaSpER were better at identifying
completely diploid datasets, even when choosing a reference sample
that was not closely matching the right cell type.

The automatic annotation of tumor cells worked very well for
Numbat in all tested datasets, while for copyKat and SCEVAN the
performance was variable depending on the dataset. This additional
functionality increases the usability of the methods. When testing the
identification of CNV clones, the methods were able to assign most of
the cells correctly except for CaSpER, CONICSmat and SCEVAN which
did not succeed. In the caseof SCEVAN, it did not distinguish anyof the

donors as different clones, potentially as the tested dataset was very
heterogeneous.

As the performance differences were relatively small in many
tested scenarios, and the dataset sizes are constantly increasing, the
runtime and memory requirements of the methods should also be
taken into account. We observed that the methods differed quite
substantially in their resource requirements (Fig. 5, Supplementary
Fig. 22). CONICSmat and CopyKat were the most efficient methods in
termsof runtimeandmemory requirements. Fromthese, CopyKat also
showed good performance results in all categories, making it a good
choice combining prediction accuracy and resource efficiency. Also
SCEVAN was quite fast and memory efficient, especially given that the
standard analysis already includes several downstream analyses such
as gene enrichments. On the other hand, InferCNV, CaSpER and
Numbat had the longest runtimes. InferCNV is the oldest method and
was probably designed with smaller datasets in mind. CaSpER and
Numbat include AF information in their analysis; their increased
robustness, shown in the detection of diploid cells, comes at the cost
of more runtime. We ran each method with only one thread for better
comparison, but all methods except CaSpER and CONICSmat offer
options formulti-threading. Finally, CaSpER and InferCNV required the
most memory, which can become a problem when running datasets
with many cells. As dataset sizes grow overall, the use of certain
methods will become infeasible in these cases without a large
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computational infrastructure. Efficiently implemented methods, like
CONICSmat, CopyKat and Numbat, will clearly be an advantage here.

Discussion
This study provides a comprehensive and independent benchmarking
for scRNA-seq CNV callers. We used 21 different datasets, comprising
cell lines, primary cancer tissues and a diploid dataset, and extensively
evaluated six methods in their ability to recover the ground truth CNV
profiles, their capacity to identify the lack of CNVs in diploid samples,
the correct identification of tumor vs healthy cells, and the accurate
identification of subclonal CNV structure in the data. We carefully
selected anddesigned a set ofmetrics, as theCNVprediction is a three-
class problem with continuous scores, but a restricted, biologically
meaningful value range. We applied either threshold independent
evaluationmetrics, such as the correlation and (partial) AUC scores, or
chose the thresholds that produced the maximal F1 scores.

The benchmarking did not identify one single method that out-
performed all others in all tasks. While Numbat (Expr), copyKat and
InferCNV (Expr) outperformed at predicting CNVs in aneuploid data-
sets from droplet-based methods, the expression-only methods were
better suited for plate-based methods. Numbat (CNV) outperformed
all othermethods at detecting the right CNVprofile in euploid samples
regardless of the reference diploid dataset used. The adequateness of
the cell type used as a diploid reference had a strong effect on the
correct identification of diploid cells for all other methods. Further-
more, using cells fromanexternal reference reduced the performance,
even when using a matching cell type. This is to be kept in mind when
designing experiments, if the reference euploid cells are measured
separately from the aneuploid ones. The effect of the best matching
reference sample was also visible on the CNV discovery in aneuploid
samples, where again reference cells from the same dataset gave the
best performance.

Dataset quality had far more impact on the CNV results than the
chosen algorithmic solution. In particular, both the number of cancer
cells and the total UMI counts in the dataset positively influenced the
performance of all methods, while the dropout rate, the amount of
gene expression variation between cells, and the fraction of the gen-
ome in the gain state negatively influenced it. For several methods,
losses were more difficult to identify compared to gains. Specifically

for the sparse single-cell data, differentiation between dropouts and
low coverage due to copy number losses is challenging. Furthermore,
previous studies about CNVs reported that losses occur more fre-
quently in genomic regions of low gene density28, another dis-
advantage for scRNA-seq callers. Also, the size of the CNV has an effect
on the detection sensitivity, as short focal CNVs were more difficult to
detect.

The methods had very different performances in their other
functionalities. Three of the evaluatedmethods, copyKat, SCEVAN and
Numbat, are able to identify tumor vs healthy cells. Numbat out-
performed all othermethods at this task.When only a few normal cells
were present in the sample, copyKat wrongly identified some of the
cancer cells as normal. SCEVAN did not work in the leukemia dataset,
likely because the marker genes used by SCEVAN for cell type identi-
fication were not suitable for identifying normal cell types in this
dataset. Finally, allmethods provide information about theCNV clones
present in the analyzed sample. CopyKat, InferCNV and Numbat were
able to identify the right clonality, while on the opposite side of the
spectrum, SCEVAN was not able to disentangle any clones. In general,
CNV clones called from scRNA-seq data could also be caused by reg-
ulatory changes of gene clusters that lead to expression changes, such
as cell cycle effects, and need to be evaluated carefully.

In terms of resources, CONICSmat was the most resource-
efficient method (both runtime andmemory), but its CNV detection
performance showed weaknesses and was highly influenced by the
choice of reference cells. Moreover, themethod could not correctly
disentangle the clones present in a mixed dataset. CopKat and
SCEVAN were fast methods. CopyKat’s performance was high in all
tests, except for the automatic identification of healthy cells if these
were not numerous in the sample. SCEVAN instead had variable
performance at the CNV identification tests and could not identify
clones in a mixed sample, but it performed well at the identification
of healthy vs tumor cells in three of four cases. InferCNV took the
longest runtime and used the second most memory of all tested
methods, but performed relatively well in all evaluated categories.
CaSpER and Numbat were runtime-intensive methods, probably
due to the incorporation of AF information. Between the two,
Numbat offers more additional functionalities and scored better
overall than CaSpER in all of our tests.
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We focused our study on the basic distinction between gain, base
and loss CNV classes to homogenize results between methods. How-
ever, some methods allow more detailed differentiation of the CNV
states. For example, InferCNV reports the exact ploidy up to three
gained copies. Both Numbat and CaSpER report additionally the copy-
neutral loss ofheterozygosity,which is possible only as they includeAF
information. Depending on the exact use case, these additional func-
tionalities might be helpful. Methods including AF information cannot
be applied to data from mouse strains, which carry too little hetero-
zygous variation.

We included both primary cancer samples and cell lines in the
benchmarking, which differ slightly in their analysis, as cell lines
require external reference datasets. This issue applies not only to the
commercial cell lines we used in our test cases, but also to any newly
established cell line in the laboratory. This makes our results, specifi-
cally for analyzing cell lines, relevant for different scenarios. We see,
however, no significant differences in method performance between
the cell lines and the primary cancer samples (Wilcoxon rank sum test,
FDR >0.05).

The usability of the tools was not evaluated, as an objective
quantitative metric for this is difficult to obtain. All analyzed methods
provided a tutorial with installation instructions and an example ana-
lysis. CopyKat, Numbat and SCEVAN can only be run for a predefined
set of gene annotations; therefore, they can only be applied to human
and mouse datasets on a limited set of genome versions. Some of the
methods, i.e., Numbat, SCEVAN and InferCNV, report discrete CNV
classes; all othermethods output a continuous CNV score, which is not
straightforward to discretize and interpret by the users. Moreover,
methods differ largely in their downstream functions, which were not
benchmarked here. As several of the methods were developed
recently, an active user community can potentially help with their
feedback to overcome current limitations. We tested but did not
include two additional CNV calling methods, HoneyBadger10 and
sciCNV36. HoneyBadger did not terminate running on the SNU601
dataset (5880 cells) after multiple days, likely because it was not
developed for droplet-based datasets with many cells. For sciCNV,
there were errors in the code, which prevented us from executing the
method’s tutorial.

There is a general debate whether CNV profiles can be accurately
inferred from scRNA-seq data, as the gene expression is only indirectly
associated with the CNV profile and additionally influenced by other
regulatory factors, and RNA-seq data covers only a small part of the
genome.Nevertheless, as it is themost abundant single-cell technology,
the prediction of CNVs from it represents an appealing possibility. In
our benchmarking,we showed that all testedRNACNVcallerswere able
to infer the CNV profile with relative accuracy, given that the analyzed
dataset had sufficient coverage and a not too extreme CNV profile.

We have previously shown that the prediction of CNVs fromother
omics layers, such as scATAC-seq, performs better in comparison to
scRNA-seq16. The establishment of multi-omics methods offers pro-
mising new opportunities to improve CNV calling in the future37. Fur-
thermore, CNV callingmethods are currently being extended to spatial
transcriptomics data38,39. Our benchmarking not only provides a
guideline for the analysis of scRNA-seq CNVs but also represents the
basis for developing and improving CNV calling methods. To support
the community, we have provided a reproducible Snakemake
pipeline21, such that users can test their datasets against all imple-
mented methods, and developers can test the performance of their
new methods against a wide range of datasets and functionalities.

Methods
Ethical statement
All animal protocols were approved by the Central Committee for
Animal experiments (CCD; permit AVD10500202215846) and UMCG
Committee for Animal Care (IvD).

Running the CNV RNA-seq methods
We ran each method on the droplet-based datasets with their default
parameters or the parameters suggested for droplet-based datasets in
their tutorials. The human datasets were run on annotations based on
hg38, the mouse dataset based on mm10; otherwise, all other para-
meters were kept the same. For the DNTR-seq datasets29, we followed
the recommendations for Smart-seq data, using the raw readmatrix as
input unless described otherwise for the specificmethod. Runtime and
memory consumption of each method were automatically tracked
within the snakemake workflow40 (v7.32.4), which was used to apply
each method to all datasets.

Details about each method are described in the following,
including changes implemented for the DNTR-seq datasets:

InferCNV
InferCNV identifies CNVs based on an HMM model, which is followed
by a Bayesian Mixture Model to remove potential false positive pre-
dictions. It is available as an R-package on BioConductor, we evaluated
version 1.10.0. We ran the default six-state HMM model with the ana-
lysis mode subclusters to identify potential different CNV states
between subclones. The default analysis mode is sample, but the
documentation states that the subcluster mode is slower, but more
accurate, so we chose this. Gene annotations were taken from the
tutorial website, based on Gencode hg38 annotations. For the droplet-
based datasets, the filtering parameter cutoff was set to 0.1, which
represents the minimal average count threshold per gene among the
reference cells. This value was recommended for 10X data in the
tutorial. All other parameters were kept to their default values. For the
DNTR-seq datasets, we changed the expression cutoff from 0.1 to 1.

The final results comprise two different outcomes: a matrix with
relative expression intensities and a matrix with pruned CNV predic-
tions in 6 states. Both outputs are evaluated independently as
InferCNV (Expr) and InferCNV (CNV), respectively. The 6 outcome
states are grouped into gain - base - losswith states 1 and 2 being loss, 3
being base, and 4 to 6 being gain.

CONICSmat
CONICSmat is an adaptation of the tool CONICS, which uses DNA
sequencing data in combination with scRNA-seq data to analyze CNVs.
In contrast to CONICS, CONICSmat requires no genomic data. There-
fore, we included only CONICSmat in our analysis, as the inputs are
comparable to those of the other tools.

CNVs are estimated based on a two-component GMM of the
expression data of each cell and region. The regions can either be
predefined as potential copy number alterations based on genomic
data or, as in our case, without any additional data, each chromosome
arm is defined as one region. CONICSmat requires a dataset with
euploid and aneuploid cells to fit the two-component GMMs, but an
annotation of euploid cells is optional. The tool can alsobe runwithout
providing an explicit reference.We tested both options, oncewith and
once without defining an explicit reference. Regions where the two-
componentGMM is statisticallymore likely thanauniformdistribution
are defined as CNV regions, and their type (gain or loss) is assigned
based on the expression levels. We tested the R package version
v0.0.0.1 in our benchmarking.

CaSpER
CaSpER combines the expression signal with loss of heterozygosity
information, based on SNPs called from the single-cell data. It per-
forms multi-scale smoothing of the expression signal, followed by a
5-state HMM model for each scale. The outcome is combined with a
multi-scale smoothed beta-allele frequency (BAF) shift signal to con-
firm the intermediateHMMCNVstates. CNVcalls are obtained for each
combination of expression HMM and BAF shift signal. We apply 3
different scales for both expression and BAF signal, resulting in 9 CNV
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calls for each segment. Following the tutorial, summary gains and
losses are defined when they are called at least 7 of 9 possible times.

Preprocessing of the datasets was done with Seurat analogously
to the tutorial; the cells were normalized to 1 million counts per cell
and logarithmized before running CaSpER. We chose an expression
threshold of 0.1 for the droplet-based datasets (parameter expr.cut-
off), as applied in the 10X specific tutorial of CaSpER. For DNTR-seq
data, wemerged the individual bam files per cell to one combined file,
used the TPM matrix (transcripts per million) as the input matrix and
increased the expression cutoff to 4.5.We tested version 0.2.0 of the R
package.

As an additional remark, the complete CaSpER object, generated
by the package, can become very large. To save memory, we stopped
storing this object as an RDS file in the end.

copyKat
CopyKat attempts to overcome the issue of manually defining refer-
ence cells by automatic annotation of normal cells in mixed samples
from tumormicroenvironments. Normal cells are labeled based on the
assumption that they cluster together and display the lowest variance
compared to tumor cells. The CNV profile is identified via an inte-
grative Bayesian segmentation approach.

We tested version 1.1.0, using the default parameters for filtering
and segmentation. The gene position file is provided internally, but
only for human (hg20) andmouse (mm10). Themethodwas evaluated
twice, once with specified reference cells and oncewithout, so that the
reference cells were identified automatically. The output file contains
relative copy number ratios (instead of discrete CNV states).

Numbat
Numbat aims to improve CNV detection by combining expression and
genotype information. In contrast to CaSpER, it uses population-based
phasing to get haplotype information. This ismore sensitive compared
to using SNPs directly, as it can overcome the sparsity to a certain
extent. Expression and haplotype frequencies are combined in an
HMMmodel. The method also infers the phylogenetic tree during the
CNV prediction, so that information from cells belonging to the same
subclone can be aggregated to pseudobulk, again to reduce the
sparsity. For this, it alternates between CNV prediction and recon-
structing the phylogenetic tree based on the identified CNVs. In the
end, tumor and normal cells can be classified based on posterior
probabilities for the baseline CNV.

Numbat provides a large external reference dataset for the ana-
lysis with many cell types from the Human Cell Atlas. However, we
generated our own reference set per dataset, so that the same refer-
ence is used between all methods and the comparability is increased.
For the DNTR-seq datasetes, the SNP calling with the respective script
pileup_and_phase.R was run with the option --smartseq, the gamma
parameter (the dispersion in the allelemodel) was changed from20 to
5, and the min_cells parameter was reduced to 10 instead of 50. We
tested the R package version 1.4.0. To check how much the AF infor-
mation adds to the CNV detection, we included the normalized
expressionprofiles of the single cells asNumbat (Expr), which does not
contain any genotype information, and the clone-level pseudobulk
CNV profiles as Numbat (CNV), which contains both expression and
genotype information.

SCEVAN
Similar to CopyKat, SCEVANoffers the option to automatically identify
normal cells as a reference, however, with adifferent approach. A set of
so-called confidential non-malignant cells is identified based on gene
profiles of malignant and non-malignant cells, and then this set is
extended to similar cells based on expression clustering. With this
reference, genes are normalized and smoothed before a joint seg-
mentation across all cells together identifies common breakpoints.

Cells are clustered afterwards to identify both healthy diploid cells and
then different subclones. Afterwards, one CNV profile is obtained per
subclone.

SCEVAN includes in its workflow several further analyses, such as
pathway enrichment analysis, which can facilitate the interpretation of
CNV results, but are not included in our benchmarking. We tested
version 1.0.1 of theRpackage.Weevaluated thenormalized expression
per cell, aggregated topseudobulk, in SCEVAN (Expr) and thefinalCNV
profile per subclone, again aggregated to pseudobulk, in SCEVAN
(CNV). The final CNV prediction was simplified to 0 and 1, both being
loss, 2 being base and 3 and 4 being gain. The method was evaluated
twice, once with specified reference cells and oncewithout, so that the
reference cells were identified automatically.

Experimental procedure to generate the mouse dataset. T-ALL
tumour cells were isolated from the thymi of two adult mice with
mixed genetic background, one male mouse with a Mad2 f/f; p53 f/f;
Lck-Cre+ genotype (T989)41 and one female mouse with Msh2 −/−
genotype (eT)42. Themicewere kept on a day/night rhythmof 12 hours
light and 12 hours dark. Humidity was controlled to be between 45 and
65% and the temperature between 20 and 24 °C with a setpoint of
21.5 °C. Sex was not considered in the downstream analyses, as it is not
relevant for CNV calling in autosomal chromosomes.

The thymi were dissociated into single cells and frozen until fur-
ther processing. Single-cell RNA sequencing library preparation was
performed using the 10x Chromium Next GEM Single Cell 3’ protocol
v3.1 (eT) and the Seekgene SeekOne DD Single Cell 3’ Transcriptome
protocol (T989). Libraries were sequenced on a NextSeq 500 (eT;
Illumina; up to 70 cycles - paired end) and NextSeq 2000 (T989; Illu-
mina; up to 100 cycles - paired end). Sequencing data was aligned
using STAR43 (v2.7.11a).

For single-cell whole-genomesequencing, cellswere suspended in
media, washed, and pelleted. To generate nuclei, cells were resus-
pended in cell lysis buffer (100mM Tris-HCl pH 7.4, 154mM NaCl,
1mM CaCl2, 500 µM MgCl2, 0.2% BSA, 0.1% NP-40, 10 µg/mL Hoechst
33358, 2 µg/mL propidium iodide in ultra-pure water) and incubated
on ice in the dark for 15minutes to complete lysis. Resulting cell nuclei
were gated for G1 phase (as determined by Hoechst and propidium
iodide staining) and sorted into wells of 384-well plates on a MoFlo
Astrios cell sorter (Beckman Coulter). For single-cell sequencing, a
single nucleus was deposited per well. Library preparation was done at
the ERIBA Research Sequencing Facility.

Libraries were sequenced on a NextSeq 2000 machine (Illumina;
up to 77 cycles – single end), and aligned to the murine reference
genome (GRCm38/mm10) using Bowtie244 (v2.2.4 and v2.3.4.1).
Duplicate reads were marked with BamUtil45 (v1.0.3) or Samtools46

markdup (v1.9).

Preprocessing the single-cell datasets
The required input files for our pipeline are a count matrix with cell
type annotations, which defines, most importantly, the cancer cells,
and a BAM file to estimate AFs for Numbat and CaSpER. Bam files and
count matrices were generated from the fastq files by running Cell-
Ranger (v7.0.0), except for the BCC dataset, where the annotated
count matrix was taken directly from GEO (based on CellRanger
v2.1.0). For iAMP21, we obtained bam files, which we first converted
back to fastq files using bamtofastq from CellRanger (v7.0.0).

The cell type annotation is only relevant for the primary cancer
samples, as the cell lines are assumed to be a homogenous set of cells
and all labeled as the cell line. For the BCC dataset, the published cell
type annotation was used. For the MM dataset, a manual annotation
was performed, using Louvain clustering and knownmarker genes for
MM (CD38, IGHM, MZB1), after performing some standard filtering
steps (removing cells with low counts or high mitochondrial fraction).
In the same way, a manual cell type annotation of the iAMP21 dataset
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wasdonewith the following key annotationmarker genes:MS4A1 forB
cells, HBD for erythroid cells, CD3D for T and NK cells and TNFRSF17
for the cancer cells.

The aneuploid T cell lymphoma from the mouse (T989) was
annotated the same way. It contained mostly T cells (identified using
Cd3e as amarker) and a small fraction of B cells (using Cd74 & Itgax as
markers). We removed the B cells, so that the dataset contained only
aneuploid T cells. As a reference for this dataset, the count matrix of
the second euploid T cell lymphoma (eT) was used, again after basic
quality control.

In contrast, the cell lines required an external reference dataset.
We selected them to match the original tissue of the cell line, i.e.,
intestine for SNU601, colon for COLO320 and breast for MCF7 (see
Supplementary Data 1). We furthermore matched the technology,
using a droplet-based reference for a droplet-based cancer dataset and
a plate-based reference for a plate-based cancer dataset.

The DNTR-seq cell lines (HCT116 and A375) were downloaded in
raw form and had to be processed, following the pipeline of the
publication29. Briefly, the raw fastq files were trimmed using prinseq-
lite47 (v0.20.4), in afirst round, trimming thefirst 10 bases of each read,
low quality bases, and low complexity reads. A second round of trim-
ming removed orphan reads, and for the removal of adapters that
followed trim-gallore48 (v0.6.11) was employed. After the reads were
cleaned, they were aligned to the hg38 genome, using STAR43 (v2.7.1a),
with parameters as proposed by the authors. Following the alignment,
the reads were filtered for duplicate reads, using the MarkDuplicates
software from the Picard tools49 (v3.0.0). The count matrix was gen-
erated using HTseq50 (v2.0.5). To run CaSpER on the datasets, the
individual bam files per cell were merged into one using
bamtools51 (v2.5.1).

The two primary DNTR-seq ALL samples were obtained already
processed in the form of count matrices, including a cell type
annotation.

Preprocessing the genomic ground truth
The raw reads of the low-pass WGS MCF7 cell line52, as well as the WES
reads of the BCC SU006 (pre- and posttreatment)35, called BCC06 and
BCC06post in the following, and the Multiple Myeloma (sample
MM199)36, were first trimmed in order to remove low quality reads,
using Trimmomatic (v0.39) (removing the first and last bases with
quality less than 5, slidingwindowof size 4 and cumulative quality of 15,
removing readswith length less than 36bases). The trimmed readswere
aligned to the human genome, version hg38, using BWA53 (v0.7.17). The
aligned reads were filtered for duplicate reads (PCR artifacts), using the
MarkDuplicates software from the Picard tools49 (v3.0.0). For all the
WES tumor-control paired samples, CNVswere calledusing theGATK454

(v4.4.0.0). Best Practices recommendations55,56, tuned forWESdatasets.
For the low-pass WGS MCF7 sample, CNVs were identified using
ichorCNA57 (v0.2.0) and in accordance with the tool manual.

The CNVs of the COLO320 WGS dataset58 was performed using
CNVkit59 (v0.9.10), with parameters set for WGS as suggested in the
manual.

For the gastric cell lines33 and themouse dataset generated in this
study, the scWGS ground truth copy numbers were called with the
same process as in the publication16 for the SNU601 cell line using
Aneufinder60 (v1.30.0). For the mouse data, the genome and blacklist
files of mm10 were used.

The scWGSdata for the iAMP2161 dataset was initially downloaded
aligned to the hg19 genome version. In order to be consistent with the
scRNAseq dataset, we first converted the bam files back to unaligned
fastq files, using the bamtofastq command from the bedtools62 suite
(v2.28.0), after sorting each bam file by read name, to maintain the
pairs in correct order, using samtools46 (v1.8). For each cell we used
BWA53 (v0.7.17) to align to the hg38 genome. The copy numbers were
then called the same way as for the scWGS of the gastric cell lines.

For both cell lines of the DNTR-seq dataset29, the scWGS part of
the multiome was processed as described in the publication. Briefly,
the sequencing data per cell was corrected for quality, using Trim-
momatic (v0.39), then the reads were aligned to the hg38 genome,
using BWA (v0.7.17) and finally the aligned reads were filtered for
duplicates, using the MarkDuplicates software from the Picard tools
(v3.0.0). After the reads were prepared, Aneufinder (v1.30.0) was used
to call the groundtruth copy numbers per cell. For two ALL samples
from the same dataset, the copy numbers of the groundtruth were
given directly from the authors of the publication29.

Evaluation metrics for comparison to genomic ground truth
Different approaches were implemented to compare the continuous
CNV estimates from the CNV scRNA-seq methods with the genomic
ground truth datasets. Before the evaluation, the CNV scores from
each scRNA-seq method are aggregated to pseudobulk scores, com-
bining all cells annotated as tumor cells. In case the genomic ground
truth was also generated from single-cell data, here the pseudobulk is
calculated. Genomic CNV results were obtained in 100kB bins. The
CNV scores from the scRNA-seq methods exist in different formats,
either per gene or for longer segments. Each version was mapped to
the 100 kB bins by calculating overlaps with the R package Genomi-
cRanges (v1.46.1)63. If multiple genes or segments overlapped with one
100kB bin, the average score was taken. This resulted in two vectors of
continuous CNV scores per bin, one for the genomic ground truth and
one for the CNV estimates.

We chose several threshold independent metrics for the bench-
marking, namely Pearson correlation between scRNA-seq CNV calls
and the genomic ground truth, and different versions of the AUC. For
the AUC scores, an AUC (gain) was calculated for predicting gain ver-
sus the other CNV types (base or loss) and an AUC (loss) for predicting
loss versus the other CNV types (gain or base) using the R package
ROCR (v1.0-11)64.

However, not all thresholds are reasonable for gain or loss pre-
diction, respectively. Everymethod has a baseline value, usually 0, and
only loss values lower than the baseline and gain values higher than the
baseline are biologically reasonable. Therefore, we calculated addi-
tionally a partial AUC restricted for sensitivities between 0 and s_max
using the R package pROC (v1.18.2)65. s_max is thereby defined by the
baseline. We reported the partial AUC loss and gain values on top of
the standard AUC values.

The interpretation of partial AUC values below 0.5 is different
compared to classic AUC values. For classic AUC analyses, values close
to 0 suggest swapped class labels, which we however never observed
for the CNV predictions. For partial AUC values, it usually shows that
the baseline level was assigned wrong, so that most thresholds were
outside the biologically meaningful value range.

For the AUC calculations, a discrete ground truth is required. For
the bulk data, this is given directly, for the scWGS, loss values are
defined by at least 50% of the cells having a loss at this segment and
gain values as at least 50% of cells having a gain there.

Furthermore, to obtain sensitivity and specificity values for gains
and losses, we evaluated the optimal gain and loss thresholds,
respectively. For each method, the multi-class F1 score was calculated
for each possible threshold combination, again limiting the search to
biologically meaningful gain and loss values. The multi-class F1
threshold was estimated based on the mean of the gain F1 score, the
base F1 score and the loss F1 score using the R package crfsuite
(v0.4.2)66. By giving each CNV the same weight, the identification of
rare CNV classes also remains important.

We compared the performance of the methods to determine if
they were significantly different from each other, using two-sided
Wilcoxon signed-rank tests for the four main metrics (maximal
F1 score, correlation, partial AUC (gain) and partial AUC (losses), and
adjusted the p-values using Benjamini–Hochberg (BH). A similar
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approach was chosen to test whether the methods are more closely
related to each other than the ground truth. For this, we compared the
correlation of the top-performing method Numbat (Expr) with the
other methods to the correlation of Numbat (Expr) with the genomic
ground truth, using one-sided Wilcoxon signed-rank tests (greater
than) and BH-adjustment for p-values.

Analyzing the performance for focal CNVs
We analyzed the performance to identify focal CNVs for all human
droplet-based datasets, for which a scWGS ground truth dataset was
available. As before, the CNV calls from the scWGS were first dis-
cretized: loss values are definedby at least 50%of the cells having a loss
at this segment, and gain values are defined by at least 50% of cells
having a gain there. Next, neighbouring segments with the same CNV
status were combined. All CNVs (gains or losses) smaller than 3MB
were defined as focal type 1. Next, the overlap between CNVs and
chromosome arms was calculated. CNVs that lie completely within a
chromosome arm and have additionally a size smaller than 50% or 95%
of the overlapping chromosome arm, respectively, were defined as
focal CNV types 2 and 3. Then, the sensitivity of detecting gains and
losses for each of the focal classes was calculated with the same
approach as for the general CNVs, taking the same optimal gain and
loss thresholds estimated before for the general CNVs.

Exploring performance differences across datasets
Each tested cancer dataset was described with different character-
istics. Several values were taken from the scRNA-seq count matrices:
the number of cells in the dataset, the mean number of UMI per cell,
the total number of UMI in the dataset, themean number of expressed
(i.e., non-zero) genes per cell, the mean dropout rate per cell, and the
mean coefficient of variation across genes. The coefficient of variation
is calculated based on the standard deviation σ of the log-normalized
counts with the formula67

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eσ2 � 1
p

.
Specifically for the evaluation of Numbat and CaSpER, the iden-

tification of SNPs in each dataset was also explored: the total number
of identified SNPs by CaSpER and Numbat, respectively, as well as the
number of cells with at least one SNP according to Numbat. CaSpER
identifies the SNPs only per sample, not separately in each cell.

From the genomic ground truth data, we extracted several char-
acteristics to describe the expected CNV distribution: the fraction of
loss bins andgain bins fromall annotatedbins, the fraction ofCNVbins
of any type, i.e., loss or gain, and the number of breakpoints, where the
CNV status changes. A higher number of breakpoints shows that there
are more (and potentially shorter) CNV segments. Lastly, we included
the total number of genomic bins, each of size 100 kB, which were
evaluated for each dataset.

We evaluated the impact of all dataset characteristics on the
performance by calculating the Pearson correlation between each
feature and the maximal F1 score.

Evaluation of diploid samples
We evaluated how well the CNV prediction methods perform on
diploid datasets by testing them on CD4 + T cells from a PBMC
dataset of a healthy donor24. First, we annotated the cell types in the
dataset using classical marker genes, following the muon tutorial68.
Then, we randomly split the CD4 + T cells and used 50% as a test
dataset for the prediction in combination with four different refer-
ence datasets. As references, we tested the other 50% of the
CD4 + T cells and the CD14+ Monocytes from the same dataset, as
well as CD4 + T cells and CD14+ Monocytes from a second PBMC
dataset30. As the second dataset was originally mapped with an old
version of CellRanger (v1.0), which did not count intronic reads, we
remapped it with a newer version of CellRanger (v7.0). We addi-
tionally tested the differences when using the newly mapped matrix
and the original published matrix from GEO.

For the evaluation, we assume a completely diploid ground truth,
i.e., every bin is base. This requires different evaluation metrics than
for the cancer datasets. Here, we calculated the RMSE of each method
from the zero baseline. As the magnitude of the scores is different, we
first normalized the scores based on their standard deviation in the
SNU601 dataset. This way, we can interpret the deviation dependent
on a typical deviation seen in a cancer dataset.

We tested whether there were significant differences between the
results based on the new and the old version of CellRanger by applying
a paired T test. For this,we confirmed the normality of theRMSE values
using QQ-plots and Shapiro-Wilk tests.

Performance of aneuploid datasets with different reference sets
We tested for two of the cancer datasets different reference datasets,
SNU601 and MM. For each reference dataset, we repeated the whole
evaluation workflow, i.e. running every method and comparing the
results to the genome ground truth. For the MM dataset, we tested
different immune blood cells as reference, taking the diploid dataset
we evaluated before24.We tested three different subsets, T cells, B cells
and Monocytes. Additionally, we tested two extreme references, the
SNU601 dataset33 and the gastric reference of the SNU60132.

For SNU601, we tested a second gastric dataset34, which we split
into three subsets dependent on the published cell type annotation.
The first subset contains epithelial and endothelial cells, the second
subset fibroblasts and smooth muscle cells and the third dataset all
types of immune cells. Additionally, we tested the SNU601, taking the
cancer cells from the MM dataset as a reference, an extreme case
where the reference itself contains CNVs.

For both datasets (MM and SNU601), we tested whether there are
significant differences between the datasets. We performed a Wil-
coxon signed rank test between the originally chosen reference data-
set and all other tested reference datasets, one-sided (whether the
original chosen is better), corrected for multiple testing with FDR.

Evaluation of automatic cancer cell identification
There are four scRNA-seq CNV calling methods which can be run
without providing an explicit cell type annotation: CONICSmat,
CopyKat, Numbat and SCEVAN. In the previous analyses, they were
always run with a defined reference annotation to increase the com-
parability with the othermethods.Here, eachwas tested a second time
without explicit reference cells for the four primary tumor datasets
(MM, iAMP21, BCC06 andBCC06post). These four datasets comprise a
mixture of tumor and euploid cells. The performance was evaluated
with the same metrics as in the previous analyses, and the differences
with and without the explicit reference cells were compared.

Three of the methods (CopyKat, Numbat and SCEVAN) addition-
ally annotate the cells as cancer cells vs euploid cells when running
without an explicit annotation.We compared these annotations to our
own manual cell type annotations for the MM dataset and the iAMP21
dataset and to the published cell type annotations for the two BCC
datasets.

Evaluation of the identified subclonal structure
A known ground truth was required to evaluate howwell eachmethod
can distinguish different CNV clones. For this, the pre-treatment data
of four donors of the BCC dataset were chosen, selecting the donors
with at least 20 cancer cells. To maintain consistent naming through-
out the manuscript, the samples, originally called su00x in their pub-
lication, are called BCC0x here. First, we ran each donor separately
with copyKat and clustered the per-cell CNV predictions afterward to
verify that the donors have indeed distinguishable CNV profiles, i.e.,
can be seen as separate clones.

Then, a combined count matrix and BAM file were generated to
mix the four samples, excluding all donor information in the analysis.
Afterward, the standard CNV calling pipeline was run. Numbat,
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InferCNV and SCEVAN directly provide a classification of cells into
distinct groups, i.e., subclones, while CopyKat, CONICSmat and CaS-
pER return only a hierarchical clustering. For the last three methods,
we cut the tree at a height of 4 to obtain distinct groups for the
evaluation.

We used two different metrics to compare the clusters to the
ground truth of patient annotations, the adjusted Rand Index (ARI)
using the R packagemclust (v6.1.1)69 and the Homogeneity score using
the package clevr (v0.1.2)70. The ARI evaluates the similarity between
the two clustering results. However, some of the methods split the
cells of one patient into multiple clusters, so potentially multiple
subclones per patient, which we can not verify with this dataset. This
problem is overcome with the Homogeneity score, which evaluates
whether all cells from one cluster belong to the same group, here to
the same patient. Splitting one patient into several subclones is
thereby not punished.

Of note, analyzing different donors with different SNP profiles
together is not the recommended approach for the AF-basedmethods
CaSpER and Numbat. Differences in heterozygous sites between
donors are an additional unwanted source of variation not related to
cancer mutations. Nevertheless, Numbat was capable of performing
very well in the analyses above, with the same accuracy as purely
expression-based methods.

Statistics & reproducibility
No statisticalmethodwas used to predefine the sample size. We chose
the datasets to reflect different cancer types, scRNA-seq technologies
and organisms, as well as a diploid dataset to get a broad representa-
tion of use cases for scRNA-seq CNV callers. From the SNU601 scWGS
dataset, a set of 134 cells was excluded from the corresponding com-
parison because of their very high ploidy, which did not align with the
majority of the cells. Since the cell lines were measured in different
laboratories, clonal variation among them can be expected. No ran-
domization and blinding took place in the study; we used all available
datasets.

We applied Wilcoxon tests to compare the performance metrics,
further details about the different statistical analyses can be found in
the respective method sections. All CNV callers were tested on 20
different cancer datasets to ensure reproducibility of the performance
metrics. We provide a snakemake pipeline to ensure reproducibility
for other users.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The mouse data generated in this study have been deposited in the
Biostudies database under accession code S-BSST1928. The previously
published datasets used in this study are available here: For the nine
gastric cell lines33, the scWGS data were downloaded from the SRA
repository, with accession number PRJNA498809. The corresponding
scRNA-seq data were downloaded from the SRA repository
PRJNA598203, and the control samples for the scRNA-seq32 data from
the GEO repository with accession number GSE150290. A second
gastric dataset34 was tested as an alternative reference for the SNU601,
downloaded from GEO (accession number GSE159929, the stomach
dataset GSM4850590). For the breast cancer cell lineMCF752, ultra-low
pass whole-genome sequencing data were downloaded from the ENA,
project PRJNA398960 (Biosample SAMN07519582), while the scRNA-
seq dataset was downloaded from GEO (accession number
GSM3142233). As a reference for the MCF7 cell line, the mammary
gland dataset from the Tabula Sapiens cell atlas71 was used [https://
figshare.com/articles/dataset/Tabula_Sapiens_release_1_0/14267219].
TheMMwhole exome sequencing dataset36 was downloaded from the

GEO (accession number GSM4200481 for the control sample [https://
www.ncbi.nlm.nih.gov/sra/?term=GSM4200481] and GSM4200480
for the tumor sample), while the corresponding scRNA-seq dataset
was downloaded from GEO (accession number GSM4200471). The
COLO320HSR whole-genome sequencing dataset58 was downloaded
from the SRA accession PRJNA506071 (sample SRS4831935 [https://
www.ncbi.nlm.nih.gov/sra/SRX5930165[accn]]), the multiome data72

of the same cell line from the SRA accession PRJNA672109 (sample
SRS7587918), and the control scRNA-seq samples73 were acquired from
the gut cell atlas [https://www.gutcellatlas.org/]. The BCC35 scRNA-seq
samples were downloaded from the GEO repository with the number
GSE123814 (GSM3511758 for su006 and GSM3511761 for su006 post,
GSM3511753 for su005, GSM3511763 for su007 and GSM3511767 for
su008). For the BCC sample su006 WES data were downloaded from
the SRA accession PRJNA533341 (sample SRS4645189 [https://www.
ncbi.nlm.nih.gov/sra/SRX5705755[accn]]). The two DNTR-seq cell
lines29 (HCT116 and A375) were downloaded from the GEO repository,
accession number GSE144296. The respective reference cells for the
HCT116 cell line74 were taken from the GEO repository with accession
number GSE95435, and the reference cells for the A375 cell line75 from
GEO with accession number GSE151091. The two primary samples of
the DNTR-seq data (ALL1 and ALL2) were obtained directly from the
authors29. Access to these datasets is restricted, due to being primary
patient data, but can be requested from the corresponding author, Dr.
med.Martin Engee. Theprimary sample of ALLwith intrachromosomal
amplification in chromosome 21 (iAMP21)61 was downloaded from the
European Genome-Phenome Archive (EGA). The accession number of
the scWGS sample is EGAD00001010288, and the corresponding
scRNA sample is EGAD00001009504. Access to these datasets is
restricted, as they are primary patient data. Access can be requested
directly through the above links. The two PBMC datasets were down-
loaded from 10x Genomics [https://www.10xgenomics.com/datasets/
pbmc-from-a-healthy-donor-no-cell-sorting−10-k-1-standard-2-0-0]
and GEO accession GSE9658330 (sample GSM2560248, batch
A). Source data are provided with this paper.

Code availability
All code written for this study, especially the benchmarking pipeline
with snakemake, can be found on GitHub: https://github.com/
colomemaria/benchmark_scrnaseq_cnv_callers21.
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