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% Check for updates Understanding how regulatory sequences shape gene expression across

individual cells is afundamental challenge in genomics. Joint RNA
sequencing and epigenomic profiling provides opportunities to build
models capturing sequence determinants across steps of gene expression.
However, current models, developed primarily for bulk omics data, fail

to capture the cellular heterogeneity and dynamic processes revealed

by single-cell multimodal technologies. Here, we introduce scooby, a
framework to model genomic profiles of single-cell RNA-sequencing
coverage and single-cell assay for transposase-accessible chromatin using
sequencinginsertions from sequence at single-cell resolution. For this, we
leverage the pretrained multiomics profile predictor Borzoi and equip it
with a cell-specific decoder. Scooby recapitulates cell-specific expression
levels of held-out genes and identifies regulators and their putative

target genes. Moreover, scooby allows resolving single-cell effects of bulk
expression quantitative traitloci and delineating their impact on chromatin
accessibility and gene expression. We anticipate scooby to aid unraveling

the complexities of gene regulation at the resolution of individual cells.

Modeling the relationship between genetic sequence and measured
molecular traitsis an effective strategy for uncovering the genetic basis
of gene regulation and complex traits'. Deep learning modeling can
beused toidentify genetic determinants of genomicreadoutsandto
predict the effects of genetic variants directly from DNA sequence®®.
With the advent of single-cell technologies, sequence-based mod-
els of single-cell omics assay were developed aiming at unraveling
sequence determinants of cell-state-specific regulation and cell-fate
decisions’ . Early work modeled local chromatin accessibility by

predicting data from the single-cell assay for transposase-accessible
chromatin using sequencing (scATAC-seq) with convolutional neu-
ral networks operating on small input sequences (1 kb)*". While
scATAC-seq provides valuable insights into chromatin state and
transcription factor (TF) binding, gene expression remains the
ultimate functional readout of regulatory activity. Therefore, local
predictors of binarized or pseudobulked gene expression have been
proposed'®®, yet their sequence context is limited and fails to capture
cell-type-specific gene regulation'.
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To address this, the recently presented seq2cells'> model adapts
Enformer’, a state-of-the-art sequence-based model for gene expres-
sion prediction trained on thousands of bulk omics assays to infer
single-cell gene expression counts from 200 kb of sequence. However,
seq2cells only models gene expression, relies on potentially ambigu-
ous transcription start site (TSS) annotations®, and models each cell
with a separate output track, leading to computational intractability
forlarge datasets.

To overcome these limitations, we present scooby, which jointly
models scATAC-seq and single-cell RNA-sequencing (scRNA-seq)
genomic profiles from sequence without the need for annotations
and easily scales to large datasets. scooby builds upon Borzoi®, a
recently released bulk omics model that uses RNA-seq coverage as
an annotation-free representation of gene regulation. Using Borzoi
as a foundation model, we equip it with a cell-specific decoder, and
fine-tuneits sequence embeddings to adapt it to the single-cell setting.
We call this adapted model ‘scooby’,anod to bothits single-cell focus
and its canine-named model ancestry. We demonstrate scooby’s capa-
bilities to accurately model genomic profiles at single-cell resolution,
identify lineage-specific regulators and their putative target genes, and
delineate cell-type-specific variant effects on amultiome hematopoie-
sis dataset, benchmarking it against state-of-the-art models.

Results

scooby enables modeling of genomic profiles at single-cell
resolution

Here, we present scooby, which models single-cell accessibility and
expression profiles from DNA sequence (Fig. 1a). Our model builds
upon Borzoi, a state-of-the-art sequence-based model for RNA-seq
coverage prediction, and leverages its trained convolutional and
transformer-based architecture to extract informative sequence
embeddings at 32-bp resolution. To tailor these embeddings to indi-
vidual single-cell datasets and achieve single-cell resolution profile
predictions, scooby introduces two key innovations (Fig. 1a and
Extended Data Fig.1).

First, to enable scooby to efficiently adapt to dataset-specific
features, we fine-tuned its sequence embeddings using low-rank adap-
tation (LoRA)", a parameter-efficient fine-tuning strategy. Following
the LoRA approach, we kept pretrained weights frozen and added train-
able low-rank matrices into the transformer and convolutional layers
(Methods). Advantageously, these matrices can be merged into the
existing weights after training, resultingin no overhead during model
inference'. We reasoned that this would allow scooby to capture effects
of regulatory sequencesrelevant to cell states that are absent from or
weakened in the bulk data Borzoi was trained on, but also to adjust to
characteristics inherent to single-cell assays, such as the 3’ coverage
bias commonin scRNA-seq".

Second, weimplemented alightweight decoder for gene expres-
sion and accessibility prediction at single-cell resolution. To this end,
scooby leverages low-dimensional, multiomic representations of cell
states, in this case derived from Poisson-MultiVI'*", to decode the
fine-tuned sequence embedding generated by Borzoiin a cell-specific
manner. This design differs from approaches that rely on separate
output heads for each cell?, whose number of parameters scales with
the number of cells and cannot, by design, effectively leverage simi-
larities between cells. For efficient analysis of large single-cell data-
sets with scooby, we developed an accessible workflow by adapting
SnapATAC2.0 (ref. 18) to store single-cell profiles in the widely used
AnnData”* format, which facilitates memory-efficient model training
(Extended DataFig. 2, Supplementary Fig.1and Methods).

We ensured robust evaluation by following the same
sequence-level train and test splits as our underlying foundation model
Borzoi.Moreover, genes and scATAC-seq peaks overlapping with valida-
tionor testregions were excluded from theinput data used to generate
the single-cell embeddings to avoid data leakage.

We trained scooby on a 10x Single Cell Multiome dataset (joint
single-nuclei RNA-seq and ATAC-seq) comprising 63,683 humanbone
marrow mononuclear cells® (NeurIPS dataset; Fig. 1b and Methods)
across eight NVIDIA A40 GPUs for 2 days until convergence. A typical
example of the model prediction for a single cell is shownin Fig. 1c for
the SLC25A37 locus. Despite the inherent sparsity of single-cell data,
the predicted profile for this single cell captures its expected profile
asindicated by the empirical averages over its 100 neighboring cells.
Moreover, the model precisely predicted the localization of sScRNA-seq
signal at the 3’ end of transcripts. This shows that scooby success-
fully adapted to the scRNA-seq assay, despite Borzoi being originally
trained to model full-length RNA-seq coverage. Importantly, the model
effectively captured the differential regulation of the SLC25437 locus,
accurately inferring lower expression in a megakaryocyte-erythroid
progenitor cell compared to an erythroblast cell and highlighting
distinct accessibility patterns between these cells (Fig. 1c).

To assess the performance of scooby globally, we first computed
the Pearson correlation between observed single-cell profiles and
the predicted profiles, on a logarithmic scale for arandom subset of
cells of each cell type across all test sequences (Fig. 1d and Methods).
Assessing optimal performance for scRNA-seq and scATAC-seq profile
prediction is challenging due to the lack of a true ground truth. As a
practical upper bound, we used the correlation between individual
cell profiles and the average profile of their 100 nearest neighbors,
representing asmoothed, less noisy signal. Additionally, we compared
each single-cell profile to its corresponding pseudobulk profile. We
found scooby’s predictions to improve correlations compared to the
corresponding pseudobulk profiles for both scRNA-seq (mean Pear-
son correlation = 0.15 versus 0.09) and scATAC-seq (mean Pearson
correlation = 0.11 versus 0.08; Fig. 1d), yet these remained below the
upper bound. However, when comparing scooby’s single-cell predic-
tions to the 100-nearest-neighbor average, correlations significantly
increased (0.63 and 0.70 for scRNA-seq and scATAC-seq, respectively;
Fig. 1d), indicating that scooby effectively captures the underlying
signal in single-cell profiles despite their sparsity. Collectively, these
results suggest that, while further model advances are possible, scooby
models cell-specific regulation with increased finesse compared to
pseudobulk averaging.

scooby precisely captures cell-type-specific gene expression
Giventhat marker genes exhibit distinct expression patternsacross cell
types, wereasoned that accurate prediction of these genes would pro-
videinitial evidence for scooby’s capacity to capture cell-state-specific
gene expression. To derive gene expression counts, we summed the
predicted scRNA-seq coverage across exons for each celland compared
these predicted counts to the observed single-cell counts (Fig. 2a and
Methods). The model accurately captured cell-state-specific expres-
sion levels for marker genes unseen during training, even for small cell
populations (Fig. 2b). In particular, it accurately recalled expression
profiles of the markers ANK1, DIAPH3, SLC25A37 and AUTS2that distin-
guish different cell types of erythroid differentiation (MK/E progeni-
tors, (pro-)erythroblasts, normoblasts).

For a quantitative analysis, we next evaluated scooby’s perfor-
mance at predicting pseudobulked gene expression profiles for each
cell type (Fig. 2c). We calculated the log-fold change between predic-
tions and the observed pseudobulk expression levels for each gene
within each annotated cell type. Across all cell types, we observed a
mean Pearson correlation ranging from 0.82 to 0.88 (mean Pearson
R =0.86; Fig. 2d and Extended Data Fig. 3), demonstrating accuracy
comparable to the original Borzoi model trained on bulk RNA-seq
data (0.86 mean Pearson R). To assess the extent to which scooby
captures differential expression patterns, we calculated the correla-
tion after subtracting both the gene-wise and cell-type-wise means
onalogarithmicscale (Fig. 2c). This analysis, which focused on devia-
tions from the global mean expression, yielded a Pearson correlation
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Fig.1|scooby accurately predicts cell-state-specific expression and
accessibility profiles from single-cell data. a, scooby integrates a pretrained
sequence-to-profile model with a cell-state-specific decoder to model genomic
profiles at single-cell resolution. The pretrained model is fine-tuned on the target
dataset using a parameter-efficient strategy, generating an adapted sequence
embedding at 32-bp resolution. The cell-state-specific decoder takes this
sequence embedding together with embedding vectors of single cells as input to
predict scATAC-seq insertion and scRNA-seq coverage profiles at single-cell level.
b, Uniform manifold approximation and projection (UMAP) visualization of the
10x multiome NeurIPS bone marrow dataset” integrated with Poisson-MultiVI,
colored by cell type. ¢, Representative example of predicted and observed gene
expression (top) and accessibility (bottom) profiles of an erythroblast and a
megakaryocyte-erythroid progenitor cell and its 100 nearest neighbors at the
SLC25A37locus (part of the test set). d, Distribution of the correlation between

Profile pearson R

predicted and observed profiles on test sequences (n = 210 representative cells;
Methods). Box plots showing the distribution of Pearson R values for different
comparisons of single-cell ATAC-seq and RNA-seq profiles. Comparisons include
single cells versus corresponding pseudobulk, single cells versus scooby, single
cells versus 100 nearest neighbors and 100 nearest neighbors versus scooby. All
pairwise comparisons per assay are statistically significant (two-sided Wilcoxon
rank-sumtest, ATAC: P=3x107¢,1x107%,7x 103* RNA: P=3 x107%,4 x 107,
5x107).Inallbox plots, the central line denotes the median, boxes represent
theinterquartile range and whiskers show the distribution except for outliers.
Outliers are all points outside 1.5 times the interquartile range. B, Bcell; T, T cell;
Mono, monocyte; prog, progenitor; HSC, hematopoietic stemcell; ILC, innate
lymphoid cell; Lymph, lymphoid; MK/E, megakaryocyte and erythrocyte; G/M,
granulocyte and myeloid; NK, natural killer cell; cDC2, classical dendritic cell
type 2; pDCs, plasmacytoid dendritic cells.
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Fig. 2| scooby accurately models cell-type-specific gene expression counts
and generalizes to unseen cell states. a, Predicted and observed profiles are
aggregated into a gene expression count matrix by summing coverage over
exons. We obtain pseudobulk counts by summing over all predictions of every
cellforeach cell type. b, Normalized gene expression matrix (Methods) for
cell-type-specific genes, observed (top) and predicted (bottom). Each row

is amarker gene from test (black) or validation (gray), and each columnisa
randomly selected cell. Cells are grouped by cell type (bottom track) ¢, We
evaluate scooby’s performance using two metrics: the correlation between
predicted and observed gene expression counts within each cell type (left) and
the model’s ability to capture cell-type-specific deviations of gene expression
to gene mean (right). d, Distribution of gene-level Pearson correlation
between log-transformed predicted and observed counts of scRNA-seq reads
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overlapping exons across cell types. e, Predicted against measured between-
cell-type deviations of gene expression. Exemplarily highlighted combinations
of marker gene and cell type show strong deviations from the mean expression
level. f, Across-gene Pearson correlation between log-transformed predicted
and observed normoblast gene expression counts using an ablated model

that was not trained on normoblast cells. Each bar corresponds to predictions
done using the single-cell embeddings of cells of a different cell type. g, Mean-
normalized observed and predicted gene expression of HEMGN along the
diffusion pseudotime axis representing erythropoietic differentiation. Both
the full and the no-normoblast model accurately recapitulate the expression
dynamics. Dots are colored by cell type, and lines are smoothed with arolling
mean (window size, 200 cells).

of 0.54, indicating that scooby successfully recapitulated a substantial
portion ofthe biological variationin gene expression across cell types
(Fig.2e). Notably, scooby substantially outperformed the count-based
seq2cellsmodelretrained on the NeurlPS dataset on shared Enformer
and Borzoi test genes, with mean correlation across genes increasing
from 0.77 to 0.87 and mean correlation across cell types increasing
from 0.43t0 0.55 (Methods and Extended DataFig. 4).

We next performed some comparative analyses to understand
the basis of scooby’s performance (Extended Data Fig. 5). A scooby
model trained on the scRNA-seq data and using embeddings purely
derived from this modality performed worse than the multiomic model
(across-gene Pearson R = 0.848, across cell types Pearson R = 0.496).
Nevertheless, these results remain better than those of the seq2cells
model and indicate that the increased performance of scooby is not
limited to the fact it can leverage more data modalities.

To assess the contribution of dataset-specific fine-tuning, we
tested ascooby variant without LoRA fine-tuning, but instead directly
feeding Borzoiembeddingsinto the cell-specific decoder. This resulted
indecreased prediction accuracy, particularly for relative expression
between cell types (across cell types Pearson R = 0.501), highlighting
the importance of fine-tuning all layers of the model to the dataset

(Extended DataFig. 5). Consistent with that observation, we found that
simpler models which only had cell-state-specific decoders on top of
Borzoi’shumanRNA-seq predictions and on top of all Borzoi’s predicted
human tracks also performed notably worse (Extended Data Fig. 5). Fur-
thermore, we designed acomparable model on pseudobulked profiles,
whichare predicted in amulti-task fashion while keeping the rest of the
architecture the same. Still, scooby performed on par or slightly better
onboth cell-type-level metrics, showing that the scooby architecture
does not trade cellular resolution for performance.

scooby predicts gene expression dynamics of unseen cells
A salient feature of scooby over seq2cells is that cell-specific predic-
tions are achieved using asingle-cell embedding representationinstead
of modeling every single cell as a distinct task. This design enables
application to unseen cells within similar cell states, which could be
usedinscenarios like atlas mapping, where new datasets are projected
onto areference. However, we do not expect scooby to generalize to
drastically different cell types beyond its training domain.

Toassess robustness of the single-cell decoder to slightly different
cell states, we evaluated a model where all normoblast cells, consti-
tuting the terminal cell type of the erythroid lineage, were withheld
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both during construction of the single-cell embedding and training
of scooby (Methods). Remarkably, using normoblast embeddings
that were projectedinto the learned embedding after training yielded
predictions with an accuracy close to the model trained on the full
dataset (0.79 Pearson R compared to 0.81 for the model trained with
normoblasts). Moreover, the best predictions were obtained using the
normoblast embeddings as input to the decoder, followed by using
embeddings of closely related cell types, indicative of scooby learning
meaningful representations in embedding space that can be used to
interpolate between different cell states (Fig. 2f).

Building on this observation, we investigated whether scooby’s
capacity to generalize to unseen but related cell states extends to
capturing the continuous gene expression changes that occur during
differentiation. As a case study, we considered hemogen (HEMGN), a
gene known to be upregulated during erythroid differentiation? that
was part of the sequences held out during model training. Using diffu-
sion pseudotime® to order cells along the erythroid trajectory, we com-
pared HEMGN expression dynamics predicted by both the full scooby
model and the model trained without normoblasts (Fig. 2g). Both
models, including the one trained without normoblasts, accurately
recapitulated the regulation of HEMGN along the erythroid lineage
(0.939 Pearson R for the fullmodel and 0.966 for the ablated model).

Altogether, these results indicate that scooby can be applied to
investigate unseen, but related cell states and continuous regulatory
programs similar to the ones observed during model training. This
makesitsuitabletouseasatoolinreference atlasintegration workflows
where one might want tointerpret novel datasets with related cell states
by mappingit to aknownreference.

TF motif effect scoring allows investigating TF activity

Having established scooby’s capability to predict cell-state-specific
gene expression, we next sought to understand the sequence deter-
minants influencing its predictions. Given the central role of TFs
in regulating gene expression, we aimed to identify TFs that drive
lineage-specific gene expression predictions. To quantify the impor-
tance of TFs on gene expression, we introduced a TF motif effect score,
which measures theimpact of mutating TF binding sites on predicted
gene expression in single cells. Specifically, we focused our analysis
on 83 TFs that are significantly differentially expressed between cell
types of the bone marrow dataset. For each TF, we used established
position weight matrices (PWMs)* to map candidate TF binding sites
located within 524 kb centered on the gene body of the 3,681 genes
differentially expressed across the dataset (Fig. 3a and Methods).
We mutated all matching sites in silico at the same time by substitut-
ing them with random sequences. Cell-level TF motif effect scores
were defined as the log-fold change of scooby’s predicted expression
betweenreference sequence andinsilicomutated sequences, averaged
across genes. TF motif effect scores are directional, being positive for
activators and negative for repressors.

To assess the reliability of scooby’s TF motif effect scores, we com-
paredtheir agreement with observed cognate TF expression, asa proxy
for true TF activity (Methods). We benchmarked against chromVAR?
and scBasset’, two widely used sequence-based methods for inferring
TF activity from scATAC-seq data by comparing the correlation of their
scores with TF expression. We found that scooby’s TF motif effect
scores correlate significantly better with gene expression than those
of chromVAR (P=5.4 x107%, Wilcoxon two-sided; Fig. 3b) and scBasset
(P=0.04, Wilcoxon two-sided; Extended Data Fig. 6a). Remarkably,
training scooby only with scRNA-seq dataled to TF motif effect scores
on par or better than the two alternative methods chromVAR and
scBasset, which use scATAC-seq data (Fig. 3¢, Extended DataFig. 6b and
Methods). Thisresultindicates that scooby could alleviate the need for
scATAC-seq datafor the purpose of TF activity inference.

Having established TF motif effect scores, we next leveraged
themtoinvestigate theregulatory role of activating or repressing TF

sequence elements on gene expression in a cell-type-specific man-
ner. We observed scooby to recapitulate the importance of known
motifs for cell types of the main hematopoietic lineages (Fig. 3d
and Extended Data Fig. 7a). For example, the GATA1 motif family
exhibited the highest score in erythroblasts®, the EBF1 motif in B1
B cells”, the C/EBP motif family in monocytes®® and the RUNX motif
family in T cells*. The SOX motif family, containing a TF known to
drive multipotent hematopoietic stem cells toward the B cell line-
age (SOX4)*°, displayed the strongest effect in these cell types, and
showed stronger activity in the early stages of each differentiation
lineage. Furthermore, scooby captured early lineage commitment
within G/M progenitor cells, as their TF motif effect scores closely
resembled those of both differentiated myeloid cells and the pro-
genitor populations. Additionally, the model identified repressors
of gene expression such as BACH2,a TF known to berepressive of the
myeloid programin B cells®. However, we also observed that TFs with
similar motifs are scored similarly (thatis, GATA1, TRPS1and GATA3;
Extended DataFig. 7a), whichis alimitation of TF binding site match-
ing by motifs only. Despite this caveat, scooby’s ability to distinguish
lineage-specific patterns of TF activity suggests its potential for
further exploration of the regulatory mechanisms underlying cell-
fate decisions.

TFs canexert distinct effects on accessibility and expression due
to temporal lags and repression mechanisms, some of which oper-
ate independently of chromatin accessibility changes. To support
the investigation of motif effects on those two regulatory layers, we
defined a TF motif effect score on the overall chromatin accessibil-
ity across a gene locus, analogously to the TF motif effect score on
expression (Fig. 3a and Methods). Applied to GATAL, an established
master regulator during erythropoiesis, insilico alteration of its bind-
ing sites indicated an early impact on chromatin accessibility across
loci, whereas the effect on gene expression was delayed (Fig. 3e). This
is consistent with the role of GATA1 as a pioneer factor and shows that
scooby can be used to delineate the effect of motifs on accessibility
from the effect on expression®.

scooby suggests cell-state-specific TF target genes

Identifying the genes regulated by a TF in a specific cell stateisimpor-
tant to pinpoint the regulatory cascades driving cell-fate decision
and differentiation. With scooby, we can obtain TF target genes by
investigating the TF motif effect on a per-gene basis. We applied
scooby to explore putative target gene regulation by three key eryth-
roid regulators—GATAI, TAL1and KLF1. Target genes were defined as
genes predicted to show differential expressioninerythroid cell types
upon cognate motif mutation (Extended Data Fig. 7b and Methods).
While direct validation of these predicted targets using experimental
datasuchas from chromatinimmunoprecipitation using sequencing
(ChIP-seq) is beyond the scope of this study, these putative target
geneswere overall enriched for Gene Ontology (GO) terms related to
erythropoiesis (heme biosynthetic process P=2.5 x1075, regulation
of erythrocyte differentiation P= 5.7 x 10"%; Methods), consistent with
the known roles of GATA1, TAL1 and KLF1. As expected, the erythroid
master regulator GATA1 was predicted to affect the largest number
of genes. For TAL1, known to bind cooperatively with GATAI (ref. 33),
the modelrecapitulated the connection to known target genes such as
HBB, SLC4A1and TRIM10, as well as other erythroid regulators (GATAL,
KLFI)®. Finally, we observed distinct clusters of genes controlled by
combinations of GATAIL, TAL1and KLF1. For instance, cluster 6 (RHAG,
RHD, ALAS2, TFRC, TSPO2), enriched for iron ion homeostasis and
ammonium transmembrane transport GO terms, was shown to be
impacted by both GATAl1 and KLF1 deletion. These predictions are
corroborated by previous reports in human and mice (as reviewed in
Perkins etal.**). Altogether, our analysis demonstrates that scooby can
beusedtoinvestigate the complexregulatory roles of lineage-specific
TFson target genes.
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Fig. 3 | Insilico motif mutation enables TF motif effect scoring and reveals
lineage and cell-state-specific regulators. a, Schematic of TF motif effect
scoring via in silico motif mutation. b, Pearson correlation of TF motif effect
score with TF expression for scooby against chromVAR. The gray area marks

the zone of improvement. We used a one-sided Wilcoxon test to compute the
Pvalue. c, Same as b for ascooby model trained on scRNA-seq only.d, Heat map
of average TF motif effect score per TF family (columns) across cell types (rows).
e, Median-normalized effect of GATAlin silico motif mutation on accessibility
and expression (top) and median-normalized expression of GATAI along the
diffusion pseudotime axis representing erythropoietic differentiation (bottom).

Dots are colored by cell type, and lines are smoothed with a rolling mean (window
size, 200 cells). f, UMAP visualization of multiomic metacells obtained from
paired scRNA-seq and scATAC-seq data of epicardioid cells across multiple days,
colored by cell type. The JCF cells (circle) and their transitions (arrows) to their
two descendant cell types—cardiomyocytes and epicardial cells—are highlighted.
g, CellRank transition probabilities toward epicardial and cardiomyocyte states
within the JCF population. h, Correlation of TF motif effect scores with transition
probability toward the cardiomyocyte (blue) and epicardial fate (yellow).

i, Min-max scaled TF motif effect scores of GATA4 (left) and FOS (right) in the

JCF cluster.

scooby dissects TF activity withina cell type

While previous analysis focused on TF motif effects across distinct
lineages, we next investigated scooby’s ability to resolve TF activity
within a defined cell type. To this end, we trained scooby on a pub-
lished multiome dataset of human heart organoids®, leveraging the

experimentally validated heterogeneity within the juxta-cardiac field
progenitors (JCFs; Fig. 3f and Extended Data Fig. 8a,b). Specifically,
the original study used lineage tracing to demonstrate the dual fate
of JCF progenitors, showing their differentiation into either cardio-
myocytes or epicardial cells. This dual fate was mapped in scATAC-seq
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Fig. 4 |scooby-predicted variant effects are concordant with reported effects
for bulk and single-cell eQTL studies and exhibit cell-type specificity.
a, Spearman correlation of predicted effects (log-fold change) with observed
normalized eQTL effects for scooby against Borzoi. Each point indicates a cell
type (OneKIK) or atissue (GTEx). Dashed line marks y = x. Scooby significantly
outperforms track-matched Borzoi across the OneK1K cell types (Wilcoxon rank-
sum, two-sided, P=0.001). b, Same as a, but for scooby against seq2cells. Scooby
significantly outperforms seq2cells (Wilcoxon rank-sum, two-sided, P=5 x107).
¢, Predicted aggregated effects (log-fold change) versus observed whole-blood
eQTL effect sizes. Red dotted lines mark thresholds below which predicted

fold changes are deemed negligible (absolute fold change, 3.5%). Percentages
quantify variants within each quadrant: blue indicates all variants; red denotes
variants passing the 3.5% predicted effect threshold. d, Proportion of concordant
eQTL predictions (same direction as observed), as a function of distance to the
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and scRNA-seq data using CellRank’**¥, identifying JCF subpopula-
tions with higher transition probabilities toward each fate (Fig. 3g).
Subsequently, gene regulatory network modeling® was used to infer
putative TFs regulatingJCF lineage commitment. We leveraged scooby’s
TF motif effect scores computed for TFs with adifferential expression
of five-fold or more in at least one cell type to independently identify
putative drivers of JCF lineage commitment by correlating them with
CellRank-derived transition probabilities (Fig. 3h,i and Methods). We
observed high correlations for bonafide epicardial fate factors, such as
FOS, EPAS1, TBX1and TFAP2A/TFAP2B/TFAP2C, and for cardiomyocyte
fate regulators like GATA4, MSX1and ISL1(refs.35,38,39). Insummary,
these results demonstrate scooby’s potential to uncover single-cell
heterogeneity and its ability to dissect TF activity withina cell type.

scooby improves cell-type-specific variant effect prediction
Accurately predicting the regulatory impact of genetic variants on
cell-state-specific gene expression remains a major challenge in
genomics*®™*2, While sequence-based models including Borzoi and
its predecessor Enformer have shown promise in distinguishing
causal expression quantitative trait loci (eQTLs) from those in link-
age disequilibrium”®, these analyses were limited to bulk data such
as the tissue-specific eQTLs collected by the GTEx project*. Here, we
leveraged the OneK1K cohort, a large-scale single-cell eQTL resource
comprising over 1 million peripheral blood mononuclear cells (PBMCs)
from 982 donors with statistically fine-mapped, cell-type-specific
eQTLs***, which we used to assess scooby’s capabilities to predict
cell-type-specific eQTL effects. Moreover, we used bulk whole-blood
eQTLs from the GTEx project** to compare scooby to bulk RNA-seq
gene expression predictors.

We trained ascooby model onthe OneK1K dataset, whichis derived
from the same tissue as the GTEx whole-blood resource (Methods
and Extended Data Fig. 8b,c). We first benchmarked scooby against
Borzoi, evaluated using its corresponding GTEx whole-blood track
forthe GTExeQTLs and cell-type-matched RNA-seq tracks for OneK1K
eQTLs (Methods). While scooby nearly matched Borzoi’s performance
on GTExwhole-blood eQTLs (0.45 versus 0.47, Spearman correlation),
scooby significantly outperformed Borzoi across all cell types on the
OneK1K cohort (Fig.4a). We additionally compared scooby to seq2cells,
which we could only train on a subset 0f 100,000 cells of the OneK1K
dataset due toits poor scalability. Scooby significantly improved upon
seq2cellsonboth GTEx whole blood and the OneK1K cohorteQTLs on
the common variant-gene subset (Fig. 4b).

Investigating individual whole-blood GTEx eQTL predictions,
we found that scooby predicted a high proportion of variants to
have negligible effects (with log, effect less than 0.05, that is, 3.5%
fold change; Fig. 4c), akin to seq2cells as originally reported by the
authors'? and recapitulated here (Extended Data Fig. 9a). Discarding
these small-effect predictions, correlations on the remaining set of
eQTLs increased from 0.45 to 0.78 with most predictions having the
correct sign (sign concordance of 91.6%). Borzoi predictions showed
the same qualitative behavior on the same set of eQTLs, indicating
that thisisnot a characteristic of scooby itself (Extended Data Fig. 9b).

Acrossall predictions, the fraction of sign-concordant predictions
exceeded 47% when the fine-mapped variant was located within 1kb
of the TSS and then declined with distance (Fig. 4d). This shows that,
like for other sequence-based models’®*°, capturing the effects of
distal regulatory elements ongene expression remains a challenge for
scooby. Nonetheless, non-negligible predictions (log, effect greater
than 0.05) remain concordantinsignindependently of the distance to
the TSS (Fig. 4d and Extended Data Fig. 9c,d for seq2cells and Borzoi).
These results suggest that scooby should advantageously be applied
by focusing on its strong effect predictions, whereas predictions of
negligible effects may not provide reliable evidence of lack of effects.

For many applications it is interesting not only to predict effect
sizes but also to identify the cell type in which a variant acts. To assess

the capacity of scooby at deconvolving bulk eQTLs into their cell-
type-specific effects, we used the cell-type-specific fine-mapped
eQTLs of OneK1K as ground truth. Specifically, among variants with
a scooby-predicted variable effect across cell types, we defined the
positive set to contain all cell type-variant pairs for which there was a
significant fine-mapped eQTL in the OneK1K cohort. We then assessed
whether scooby predicted a higher variant effect in these cell types
compared to cell types without significant fine-mapping hits (Meth-
ods). We compared scooby to two realistic baseline approaches reflect-
ing the common situation in which an expert has access to generic
single-cell omics data but not to extensive individual-level single-cell
omics data from genotyped cohorts like OneKI1K. In the first baseline
approach, cell-type specificity was inferred using the cell-type-specific
accessibility in the closest or overlapping ATAC peak, leveraging acces-
sibility data of the same cell types from a different study*® (Methods).
In the second baseline, cell-type specificity was inferred by ranking
cell types according to pseudobulked expression levels of the target
eGene across the entire cohort (Fig. 4€). Scooby outperformed both
baseline approaches as well as the cell-type matched Borzoi (Fig. 4f).
This indicates that scooby can be used to resolve cell-type-specific
variant effects better than current sequence-based bulk models and
simple baselines.

scooby allows cell-type-specific delineation of bulk eQTLs

While the OneK1K eQTL analyses provided validation for scooby’s ability
to deconvolve eQTLs, scooby could also be used to uncover regulatory
mechanisms in situations where no cell-type-specific ground truth is
available. Therefore, we chose to perform a case study in which we
deconvolved GTEx bulk whole-blood eQTL effects in bone marrow,
using the scooby model trained on the NeurIPS bone marrow dataset.

While predicted eQTL effects generally agreed across cell types,
substantial variations were observed, reflecting relationships between
celltypes (Fig. 5a). Notably, the erythroid, the monocyte and the early
progenitor cell types each showed distinct predicted eQTL effects. To
explore the potential functional relevance of this cell-type specific-
ity, we focused on the 15% most-variable eQTLs previously associated
with a human trait in genome-wide association studies (GWAS Cata-
log"; Fig. 5b and Methods). We found several cases where predicted
cell-type-specific effects were consistent with the biology of the associ-
ated GWAS traits. For example, the SLC14A1eQTL, linked to ‘Immature
fraction of reticulocytes’ exhibited strong effects specifically within
the erythroid lineage. Similarly, the MIR34AHG and NDST1eQTLs, both
associated with ‘Monocyte count’ showed pronounced effects in the
monocytes. These findings suggest that scooby can provide insights
into the cellular context of GWAS associations.

As anillustrative example of how scooby can reveal cell-type-
specific regulatory mechanisms, we examined an eQTL (variant
rs143664050) with a negative effect on testin (TES) expression in
CD14"monocytes yet anegligible effectin erythroblasts (Fig. 5c). The
alternative allele was associated with a predicted loss of an accessible
region in monocytes, which could explain the observed reduction in
TES expression. In contrast, no change in accessibility was predicted
in erythroblasts, consistent with the negligible predicted effect on
expression. Applying a gradient-based model interpretation method
indicated that the eQTL disrupts a predicted binding site for the TF SPI1
(Fig. 5cand Methods). Notably, SP/1is only expressed in myeloid cells,
including monocytes, but not in erythroblasts (Fig. 5d), providing an
explanation for the observed cell-type specificity of thiseQTL's effect
(Fig. Se). In contrast, the variant rs62032983 provided an example of
an eQTL predicted to reduce expression of the gene DCTNS5 across all
cell types. Model interpretation attributed this effect to the disrup-
tion of a predicted binding site for the ubiquitously expressed TF
ELF1(Extended Data Fig.10). Altogether, these analyses demonstrate
scooby’s ability to link cell-type-specific variant effects, whichwould be
missed inbulk-level analyses, to the underlying regulatory mechanism.
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Discussion

Thisworkintroduced scooby, which models single-cell gene expression
and chromatin accessibility profiles directly from sequence contexts
of half a megabase while scaling efficiently with the number of cells.
This is achieved by equipping the pretrained multiomics profile pre-
dictor Borzoiwith acell-specific decoder and fine-tuning its sequence
embeddings. The model shows generalizability across cells and cell
types and improved the state-of-the-art model in single-cell gene
expression prediction from a Pearson correlation of 0.77 to 0.87 on
unseen sequences. Insilico motif mutations led to TF motif effect scores
showing strong concordance with TF expression levels, improving
upon TF activity inference methods utilizing chromatin accessibility
data. Strong concordance also held for ascooby model when training
exclusively on RNA-seq data, suggesting that it can effectively leverage
sequenceinformation to infer TF motif effect scores without requiring
matched accessibility data. Furthermore, we used scooby to dissect
regulatory mechanisms within a seemingly homogeneous popula-
tion of JCF progenitors, showcasing scooby’s potential to propose
hypotheses ondrivers of cell-fate decisions at afiner resolution. Lastly,
leveraging scooby’s single-cell resolution together with interpretation

methods allowed for finer-grained analysis of variant effects, uncover-
ing cell-type-specific eQTLs that are masked in bulk studies and the
underlying TFs.

The architecture of scooby allows incorporating further modali-
ties in two ways. Firstly, profile-based modeling is a generic approach
that flexibly permits the prediction and interpretation of awide range
of additional single-cell modalities, such as methylation or ChIP-seq,
in contrast to genome annotation-based methods. Secondly, scooby
canin principle work with any cell-state representation. For instance,
incorporating other datamodalities such as CITE-seq into the embed-
ding could allow for afiner resolution of cellular state.

We chose to mainly evaluate scooby on a 10x multiome hemat-
opoiesis dataset, as it provides both paired scATAC-seq and scRNA-seq
profiles for joint modeling and well-characterized differentiation
lineages for validating TF motif effects and target gene predictions,
making it an ideal test bed for our study. As scooby predicts RNA-seq
coverage, it could in principle be used to predict differential isoform
usage; however, the 10x scRNA-seq 3’ coverage bias limits the signal
for splice sites and TSS choice®. Furthermore, we observed little evi-
dence for differential isoform usage in the dataset, concordant with
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studies finding that alternative transcript usage is most pronounced in
brain and muscle tissues*®, Thus, future work applying scooby to more
diverse cell types or applications to alternative single-cell protocols
such as SMART-seq* orlong-read sequencing’ is needed to assess the
potential of scooby to model isoform-specific expression.

We obtained promising results when comparing scooby-based
variant effect prediction with reported eQTL effects. Of practical
relevance, when scooby predicted non-negligible effects foran eQTL,
the effect direction was typically correct and the predicted cell-type
specificity was more accurate than baseline approaches including
cell-type-specific target gene expression and chromatin accessibility
of the variant. This indicates that scooby can be useful to delineate
cell-type specificity of eQTLs established on bulk data and to pro-
vide mechanistic hypotheses about GWAS hits. As reported previ-
ously for other sequence-based models*’, we also observe scooby
to excessively underestimate the amplitudes of the effects of distal
eQTLs, suggesting that this remains an area of improvement for
future models.

We have demonstrated scooby’s easy applicability to a large
single-cell resource of 1.2 million cells**, and to a small heterogene-
ous organoid dataset® using the same hyperparameter settings. In
the future, we envision scooby to aid interpretation of large single-cell
atlases’ as the framework shows robust and efficient scaling behav-
ior to large numbers of cells. This could be further improved by
replacing the underlying base model, Borzoi, by a more efficient ver-
sion®’. Moreover, we foresee its application to learn about conserved
cell-type-specific regulation by integrating diverse multispecies data-
sets. To facilitate adoption, we provide a streamlined workflow for
applying scooby to new datasets.

In summary, scooby establishes a paradigm for connecting
single-cell genomics and sequence-to-function modeling. Its modu-
lar nature and ability to integrate multimodal data and to capture
cell-state-specific gene expression dynamics positionsitasavaluable
tool for uncovering the genetic basis of gene regulation and complex
traits at single-cell resolution.

Online content
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Methods

Data acquisition and processing

NeurlPS hematopoiesis dataset. We obtained scRNA-seq and
scATAC-seq data for the multiome hematopoiesis dataset used in the
NeurlIPS 2021 challenge?®. Specifically, we downloaded scRNA-seq
BAM files from the Sequence Read Archive (SRA) under accession
SRP356158 and scATAC-seq fragment files from the AWS bucket s3://
openproblems-bio/public/post_competition/multiome/. Preprocessed
gene count and peak count matrices were retrieved from the Gene
Expression Omnibus (GEO) under accession code GSE194122.

We performed all scRNA-seq data analyses using Scanpy (v1.10)*.
We utilized the predefined filtered cell and gene sets, as well as the
highest-resolution cell-type annotations (12_cell_type key) provided
in the original publication. We identified and removed doublet cell
populations using Scrublet with default parameters®. Doublet calls
were based on a threshold that primarily captured cells clustering in
discrete locations on the UMAP embedding.

We normalized raw gene expression counts using the nor-
malize_total function in Scanpy and applied a log(expression +1)
transformation for downstream analyses. We inferred pseudotime
trajectories on the integrated dataset using diffusion pseudotime®
with default parameters.

Epicardioids dataset. Raw sequencing data for scATAC-seq and
scRNA-seq from the original publication® were retrieved from the
SRA with accessionnumbers SRP359250 and SRP359249, respectively.
We aligned the scATAC-seq data using Cell Ranger ATAC (v2.1.0) with
the Cell Ranger reference package refdata-cellranger-arc-GRCh38-
2020-A-2.0.0. Similarly, scRNA-seq data were processed using
Cell Ranger (v8.0.1) with refdata-gex-GRCh38-2020-A. In the origi-
nal study, scGLUE> was used to generate a joint embedding, and
pseudo-multiome metacells were constructed by pairing RNA and
ATAC cells from this embedding. We obtained the preprocessed gene
countand peak count matrices cluster labels (leiden_res1key), scGLUE
embeddings, CellRank*** transition probabilities and metacell map-
pings from the original publication. For downstream analyses, we
retained cells for which we had a scRNA-seq and scATAC-seq match.

OneK1K dataset. Raw sequencing datafor scRNA-seq from the original
publication** were obtained from the SRA under accession number
SRP359840. scRNA-seq data were processed using the Cell Ranger
pipeline (v6.1.1) with the reference package refdata-gex-GRCh38-
2020-A. A preprocessed gene count matrix as well as cell-type labels
were downloaded from CZ CELLXGENE®® https://cellxgene.czisci-
ence.com/collections/dde06e0f-ab3b-46be-96a2-a8082383c4a/.
We removed the cell types ‘Platelets’ and ‘Erythrocytes’ to retain only
immune cell types.

Generation of cellembeddings

To prevent information leakage from the cell embeddings to the gene
expression and accessibility prediction models, we identified and
excluded genes and peaks presentinthe test and validation sets using
pyRanges” (v0.0.129) before computing the embedding. We further
filtered out genes and peaks present in fewer than 1% of all cells to
reduce dimensionality.

For the NeurIPS dataset, we then used the MultiVImodel from the
scvi package (v1.1.2, https://github.com/lauradmartens/scvi-tools/
tree/poissonmultivi/)'*® to generate a unified embedding of both
scRNA-seq and scATAC-seq data. Following previous work demon-
strating improved performance’®, we adapted the model to utilize raw
fragment counts for scATAC-seq data, modeling these using a Poisson
distributioninstead of binarized counts (Poisson-MultiVI). Otherwise,
we trained the model with default parameters, incorporating sample
information as the batch key during data integration. This process
generated an embedding vector of dimension 14 for each cell. The

100 nearest neighbors for the profile evaluations for each cell were
computed using the Scanpy function sc.pp.neighbors.

For the NeurIPS RNA-only model, we reran the embedding gen-
eration using only the RNA modality by running the scVI model with
n_latent set to14.

Giventhelarge number of donorsin the OneK1K dataset, we used
the scPoli model® from the scarches package® (v0.6.1) to create the
embedding. The model was trained using the ‘sample’ key as the condi-
tion key and the ‘cell_label’ key for cell-type annotation, with all other
parameters set to their default values.

Efficient read coverage extraction for RNA-seq and
ATAC-seqdata
Togenerate the scRNA-seq and the scATAC-seq profiles used for train-
ing, we used an adapted version of SnapATAC2 (ref. 18; v1.0.1, https://
github.com/lauradmartens/SnapATAC2/), an efficient Rust software
package (rustup v1.28.1, rustc v1.85.0) initially designed for ATAC-seq
data processing. SnapATAC2 achieves efficient storage of SCATAC-seq
data within the AnnData” format by recording only the start position
and length of each fragment and supports out-of-memory reading.
In contrast to scATAC-seq data, scRNA-seq aligned reads con-
tain split reads due to RNA splicing. Therefore, we modified the code
of sp.pp.make_fragment_file function of SnapATAC2 to parse and
store split reads as multiple entries in the AnnData, with each entry
representing a contiguous fragment and its corresponding length
(Extended Data Fig. 2).

Processing of RNA BAM files and ATAC fragment files

Because the 10x BAM files included all reads (also low-quality ones),
we filtered for reads that were marked as valid by the Cell Ranger pipe-
line (xf:i:25 flag) by implementing this filtering option to the sp.pp.
make_fragment file function (xf filter = true). We used our modified
sp.pp.make_fragment_file function, specifying the appropriate bar-
code and unique molecular identifier tags (‘CB’and ‘UB’) for our data
to convert the reads in the BAM file into a fragment file. We removed
duplicate reads using SnapATAC2’s automatic read deduplication. For
processing of sScRNA-seq reads, we set the is_paired argument to ‘false’
and both shift_left and shift_right arguments to O.

Weimported the processed fragment file into an AnnData object
using sp.pp.import_data and the hg38 genome assembly. To ensure
consistency with our scRNA-seq count data, we set min_num_frag-
ments = 0 and used the whitelist argument to retain only cells present
inthe pre-filtered scRNA-seq AnnData object.

Weimported ATAC-seq fragment files using the sp.pp.import_data
function with the parameters described above. Tomodel TnSinsertion
sites, we converted fragment locationsintoinsertion sites by recording
the fragment ends.

Data preparation for training

We used the SnapATAC-processed coverage AnnData directly during
training and created coverage tracks per cell on the fly. Following the
procedure described for Borzoi®, we first aggregated the coverage and
insertions in a 32-bp window. For RNA profiles, we followed the same
squashed-scale approach as Borzoi, but set clip_soft to 5, such that the
fraction of soft-clipped values at the single-cell level was similar to the
one of Borzoi’s tracks. For ATAC profiles, we scaled the output by 0.05
toensure they were on the same scale as the RNA coverage tracks. For
faster evaluation on pseudobulks, we exported read aggregates per
cell type to the bigWig format using sp.ex.export_coverage.

Model

scooby builds upon Borzoi®, a deep learning model for predicting
RNA-seq profiles, which operates at 32-bp resolution on 524,288 bp
of DNA sequence, outputting profiles for the center 6,144 bins (cor-
responding to 196,608 bp). We adapted a publicly available PyTorch
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implementation of Borzoi (v0.0.2, https://github.com/johahi/
borzoi-pytorch/), removing the original human and mouse-specific
output heads and retaining the convolutional and transformer layers
responsible for sequence encoding. We integrated LoORA modules™,
eachwitharankof 8,intoall convolutional layers and the query, value
and MLP projection matrices within the transformer layers using an
adapted version of peft® (v0.10.1, https://github.com/lauradmartens/
peft/). While used separately during training, these LoORA modules were
merged back into the original model weights after training, resulting
inno additional overhead during inference.

Furthermore, we introduced a trainable layer with Gaussian
error linear unit nonlinearity on top of Borzoi’s penultimate layer.
The weights of this layer were randomly initialized and trained from
scratch, allowing for potential refinement of Borzoi’s embeddings for
the single-cell context. The output of this layer was then passed to the
cell-state-specific decoder. This decoder operates on the sequence
embeddings of the center 6,144 bins. Specifically, the decoder con-
sists of a1 x 1 convolution along the sequence dimension (effectively
a position-wise linear transformation). The weights of this convolu-
tional filter were not fixed but were dynamically generated for each
cell based on its corresponding cell embedding. To this end, a small
multilayer perceptron was added that receives the cell embedding
as input and outputs a vector to parameterize the convolutional fil-
ter used to produce the final predicted profiles for that cell from the
sequence embedding. We visualize the exact model architecture in
Extended Data Fig. 1. For stranded RNA predictions, the multilayer
perceptron outputs a weight matrix of shape (1921, 2, 1), encompass-
ing the filter weights (1,920 dimensions) and biases (1 dimension) for
each strand. For ATAC predictions (unstranded), it outputs a weight
matrix of shape (1921, 1,1).

To efficiently scale scooby to a large number of cells, we imple-
mented two optimizations. First, weintroduced a cachingmechanism
forthe sequence embeddings, reducing redundant computations when
predicting profiles for multiple cells from the same genomic region.
Second, we performed cell-state-specific decoding for expression
only on the embedding slices that overlap with exons (or gene body)
of interest.

Training procedure

We initialized scooby’s Borzoi backbone with pretrained weights
from Borzoi’s replicate O (test fold 3, validation fold 4), converted
from the original TensorFlow implementation to PyTorch. These pre-
trained weights correspond to a model trained on the human and
mouse reference genome (hg38, mm10 assembly). We maintained
the same train-val-test split as Borzoi for scooby’s training. During
training, we only updated the parameters of the LORA modules, the
cell-state-specific convolutional filter weights and the weights of the
additionallayer with Gaussian error linear unit nonlinearity introduced
after Borzoi’s penultimate layer. With PyTorch (v2.1.0), we used the
AdamW optimizer withalearningrate of 4 x 10™*for the cell-state con-
volutional layer and 2 x 10~ for the LoRA modules and the additional
layer to stabilize training. Both learning rates were warmed up over
thefirst1,000 steps and decayed linearly afterward over 40 epochs. To
stabilize training during the first step, we froze the batch normalization
layers from the pretrained Borzoi model and disabled dropout within
Borzoi. We then unfroze the batch normalization layers and enabled
dropout to prevent overfitting.

We monitored validation performance using the Pearson corre-
lation between the predicted and observed total counts (gene count
evaluation, log,-transformed pseudobulk counts with anadded pseu-
docountof1)andretained the model with the largest correlationacross
cell types.

All models were trained with a batch size of eight sequences
across eight A40 GPUs, using mixed precision to accelerate training.
Per training sequence, the model predicted RNA and ATAC profiles

for 64 randomly sampled cells in a multi-task learning fashion. We
randomly augmented training sequences by shifting them by up to
threebase pairsineither direction and reverse-complementing them.
To ensure consistent strand orientation, we reverse-flipped the tar-
get profiles when training on reverse-complemented sequences. We
used the same weighting scheme for the Poisson and multinomial
loss terms as in the original Borzoi implementation. The gradient
clipping threshold was set to 1.0, and weight decay was set to 107 for
alltrainable parameters. Due to computational constraints, extensive
hyperparameter optimization was not performed.

Ablations and other models

To train the model without normoblasts, we used the same hyper-
parameters and training procedure as described above. However, to
prevent leakage, werecreated the MultiVlembedding without normo-
blasts and normoblast cells were excluded from the random sampling
of cells during training. To train the RNA-only ablation, we followed
the above steps, but instead removed scATAC-seq targets and output
heads and used an embedding based on RNA-seq only. For the model
without LoRA, we removed the trainable LoRA weights while maintain-
ing the model architecture elsewhere. We additionally trained models
withscooby heads onthe outputs of Borzoi when usingall 7,611 output
tracks, or when subsetting on the RNA-seq track only (n=1,543). In
contrast to all other models, these training runs diverged, which was
circumvented using alower learning rate (5 x107).

We downloaded seq2cells from the official GitHub repository
(https://github.com/GSK-Al/seq2cells)'* and processed files to fit the
required format. For comparability, we used a cell x gene matrix with
counts generated by summing over the observed profile. We matched
geneDs to gene names, retaining 15,892 genes, and followed the same
datasplit as Enformer’, upon which seq2cells is based. We trained the
model using the training configuration provided in the repository, but
longer for up to40 epochs to stay comparable to scooby, and evaluated
the best checkpoint.

Inference

To obtain model predictions, we performed inference on both the
input sequence and its reverse complement. The output tracks for
the reverse complement were reverse-flipped, and both predictions
were averaged to produce the final profiles. We then reversed the
squashed-scale transformation to obtain raw expression values,
and scaled accessibility profiles by 20 to reverse the transforma-
tion applied during training. We used mixed-precision inference to
accelerate computations.

Profile-level evaluation

To quantitatively assess profile prediction accuracy, we calculated
the Pearson correlation on alogarithmic scale between the predicted
profiles and the observed profiles (with and without averaging across
100 cellneighbors) over all test sequences for arandom subset of cells
of each cell type. Additionally, we compared each single-cell profile
to the pseudobulk (averaged) profile of the same cell type, and to its
averaged 100 nearest-neighbor profile in the same fashion. Genomic
annotations were plotted using trackplot (v0.4.0)%.

Gene count evaluation

To generate cell-type-specific counts, we first centered the input
sequence on the gene body as annotated with GENCODE release (v32)%.
We summed the expression profile for each bin overlapping an exon
using the output track that matched the strand of the gene. This was
repeated for each celland summed across all cells of the same cell type
to obtain pseudobulk counts. Finally, we log,-transformed both the
predicted and target pseudobulk counts, and added a pseudocount
of 1to calculate the Pearson correlation across genes for each cell
type. To obtain a metric quantifying how well the model captures
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cell-type-specific expression, we subtracted the mean across genes
of the cell-type x gene log,-transformed expression matrix, and then
subtracted the meanacross cells for both predictions and observations
and correlated the results. For the no-normoblast ablation, we pre-
dicted all test gene counts pseudobulked for each cell type as described
above and correlated their predicted expression with the observation
ofthe normoblast cell type. For the comparison with seq2cells, we only
retained genes overlapping the Enformer test set (used in seq2cells)
and the Borzoi test set (used in this study). Predicted and observed
gene counts along the diffusion pseudotime axis were smoothed using
arolling window of 200 cells with mean aggregation.

Motif deletion experiments for the NeurIPS hematopoiesis
dataset

To investigate the impact of TF binding sites on scooby’s predictions,
we performed in silico motif deletion experiments. We first obtained
alist of TF PWMs from the HOCOMOCO v12 core database (https://
hocomocol2.autosome.org/final_bundle/hocomocol12/H12CORE/
formatted_motifs/HI2CORE_meme_format.meme)*. Tofocuson TFs
with potential regulatory roles in the relevant cell types, we filtered
the list for TFs overlapping the set of differentially expressed genes
per lineage. Differential gene expression analysis was conducted for
eachlineage against the others using the Wilcoxon rank-sum test, with
asignificance threshold of P< 0.05 after correcting for multiple testing
with the Benjamini-Hochberg procedure using the Scanpy function
sc.tl.rank_gene_groups with groupby =‘11_cell_type’. We selected the
motif with the most evidence and lowest motif subtype for each TF,
drawing randomly if multiple candidates exist.

We used tangermeme FIMO (v0.2.3)°* to scan input sequences
centered on differentially expressed genes, identifying putative TF
binding sites based on their PWMs using default significance cutoffs of
0.0001 after converting pwm-matching log-odds scoresinto Pvalues.
We generated alternative sequences by substituting each predicted
binding site with a random nucleotide sequence of the same length,
repeating this procedure ten times per sequence to mitigate spurious
motifintroduction.

We used scooby to predict gene expression and accessibility pro-
files for both the original and motif-deleted sequencesin each cell. For
gene expression, we summed the predicted RNA-seq coverage over
all exons within a gene. For accessibility, we summed the predicted
scores across the entire 6,144 x 32-bp output bins. We averaged over
thetendistinct randomreplacements. The prediction foreach cell was
divided by the size factor of its corresponding reference prediction
and scaled by its median reference size factor. For each cell, we calcu-
lated the mean log,-fold change between the reference and alternative
sequence predictions across differentially expressed genes, yielding
asingle TF score per cell.

For the chromVAR® comparison, we used pychromVAR (v0.0.4)
with default configuration, except that we used the PWMs of the HOCO-
MOVO v12 core database for consistency. For scBasset’, we followed
the scVItutorial (https://docs.scvi-tools.org/en/stable/tutorials/note-
books/atac/scbasset.html) to obtain TF activity scores.

Tocompare TF scores and target TF expression, we then computed
the Pearson correlation of each TF score (from scooby, chromVAR and
scBasset) with log-normalized TF expression.

To identify putative target genes of GATA1, TAL1and KLF1in the
erythrocyte lineage (MK/E progenitor, proerythroblast, erythro-
blast), we examined TF motif effects on a per-gene basis, rather than
gene-averaged effects. Target genes were defined as those exhibiting
anabsolute predicted effect size exceeding 0.1. These target genes were
then clustered based on their effect sizes using seaborn’s clustermap
function, using the ‘seuclidean’ metric and ‘ward’ linkage method.
Clusters were determined via hierarchical clustering with the SciPy
(v1.13.1) fcluster function, using the criterion = ‘maxclust’ parameter.
Gene-set enrichment analysis was subsequently performed using

Enrichr® through the GSEApy Python package®® (v1.1.3), utilizing the
GO Biological Process 2021 gene set.

Motif analysis for the epicardioid dataset

The motif analysis was performed as described above except that dif-
ferential expression was calculated between cell types and not lineages.
Differentially expressed genes were defined using a log-fold-change
threshold of 2 and an adjusted P-value threshold of 0.01. Moreover, for
computational reasons, we restricted the analysis to the 58 differen-
tially expressed TFs in cardiomyocytes and epicardial clusters whose
maximum absolute fold change was larger than 5. The inferred TF motif
effect scores were then correlated within the JCF population with the
CellRank transition probabilities from the original study.

eQTL effect benchmark

We evaluated the ability of scooby to pinpoint likely causal nucleotide
variants driving gene expression changes withinfine-mapped eQTLs from
GTEx*and OneKIK. We used the publicly available summarystatisticsand
uniformly generated fine-mapping results fromthe eQTL Catalog (https://
www.ebi.ac.uk/eqtl/)*. Following Linder et al.®, we used single-nucleotide
variants with aposteriorinclusion probability (PIP) > 0.9 andfiltered out
allnon-single-nucleotide variants such as indels and deletions.

For eachvariant, we centered the input sequence on the eSNP and
recorded the effect ongene expression (sum over exons) and accessibil-
ity (sum over the whole region) for the reference and the alternative
nucleotide of the true eSNP. We then computed cell-type-level variant
effects by summingthe predicted gene expression levels onthe natural
scale over all cells of that cell type and computing the log,-fold change
of alternative versusreference predictions, adding a pseudocount of 1.
For ageneral variant effect, we averaged the effect over all cell types.

To be able to compare Borzoi to scooby, we used the ‘GTEX: RNA
blood’ track for comparisons on the GTEX whole-blood tissue, and
matched the Borzoi RNA tracks to OneKIK cell types where possible,
manually selecting the closest group of cell types if no matching track
was found (Supplementary Table 1). For comparison to seq2cells, we
trained aseq2cells model onasubset of the OneK1K dataset consisting
0f 100,000 randomly sampled cells of the full dataset, as amodel on
the full dataset used too much memory to be trainable.

eQTL deconvolution benchmark

Because the GTEx whole-blood sample size is larger than the OneK1K
cohort, we extended our OneK1K eQTL set (cell-type-level PIP > 0.9) by
variants that were fine-mapped with PIP > 0.9 in GTEx blood but were
below the 0.9 PIP threshold for aspecific cell type in OneKIK. For each
variant, we recorded the cell types the variant was fine-mapped in as
our ground-truth positives, regarding all other cell types as negatives.

We then filtered for variants where scooby predicted a non-
negligible effect (predicted effect size greater than 3.5%) and validated
whether scooby ranks cell types belonging to cell types from the above
set most highly. We used the cell-type matched Borzoi tracks to simi-
larly rank cell types for each variant.

Forthetarget gene expression baseline, we ranked cell types by the
pseudobulked gene expression of the eGene after size-factor normal-
izing the single-cell counts.

For the ATAC baseline, we used a PBMC scATAC-seq dataset of
9,030 cells from 10x Genomics, which was downloaded from the Azi-
muth web application*® (https://app.azimuth.hubmapconsortium.
org/app/human-pbmc-atac) and contains the same cell types as the
OneK1K study. We pseudobulked ATAC fragment counts per peak after
size-factor normalizing each cell. We ranked cell types according to
the accessibility of the eSNP’s overlapping or nearest ATAC-seq peak.

eQTL deconvolution in the NeurlPS dataset
Toidentify eQTLs with cell-type-specific effects, we focused on variants
demonstrating both a strong overall effect and substantial variability
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across cell types. We first filtered for variants with asubstantial average
effect size (log,(mean effect) > 0.05) across all cell types. We labeled
eQTLs as cell-type specific if their effect sizes showed high variability
across cell types, specifically within the top 15% of variance. We clus-
tered the variants on their effect size using seaborn clustermap with
metric = ‘seuclidean’and method = ‘ward’. We downloaded v1.0 of the
GWAS Catalog from https://www.ebi.ac.uk/gwas/docs/file-downloads
and matched GTEx variants using rs_id_dbSNP151_GRCh38p7, manu-
ally adding matches where possible using dbSNP (https://www.ncbi.
nim.nih.gov/snp/)®’. We report up to three randomly selected terms
matching variant and target gene combination.

Tolink eSNPs to TF motifs, we generated gradient-weighted PWMs
encompassing a10-bp window centered on each variant. Specifically,
we derived the PWM of the 10-bp window by performing exponentia-
tion of 2 with the gradient of each nucleotide per position, and subse-
quently sum-normalized each position. We then used Tomtom (v5.5.2)
to scan these PWMs against the HOCOMOCO v12 core database using
the default MEME parameters®®. To account for potential redundancy
among TFs with similar motifs, we filtered the results to include only
TFsexpressedinatleast1%ofall cells. Since TF nomenclature canvary
between databases, we used a Python interface to UniProt (Unipressed
v1.3.0) to map protein names from HOCOMOCO to their correspond-
ing gene symbols.

Writing

A large language model was used to assist with refining the phrasing
and clarity of the manuscript. All suggestions generated by the large
language model were carefully reviewed and edited by the authors.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The scRNA-seq, scATAC-seq and preprocessed count matrices
for the multiome hematopoiesis dataset are available from the
NeurlPS 2021 challenge, SRA (accession SRP356158), AWS (s3://
openproblems-bio/public/post_competition/multiome/) and GEO
(accession GSE194122). The epicardioids dataset raw data (scATAC-seq,
scRNA-seq) are available from SRA (accessions SRP359250 and
SRP359249). The OneK1K dataset raw data (scRNA-seq) are available
from SRA (accession SRP359840). Preprocessed OneK1K data are
available from CZ CELLXGENE (https://cellxgene.cziscience.com/
collections/dde06e0f-ab3b-46be-96a2-a8082383c4al/). We used the
Cell Ranger references refdata-cellranger-arc-GRCh38-2020-A-2.0.0
and refdata-gex-GRCh38-2020-A. We used the GENCODE release
v32 GTF file and the GO Biological Process 2021 gene set. TF posi-
tion weight matrices were obtained from HOCOMOCO v12 (https://
hocomocol2.autosome.org/final_bundle/hocomocol12/H12CORE/
formatted_motifs/HI2CORE_meme_format.meme). GTEx eQTL and
OneK1K summary statistics and fine-mapping results are available
at https://www.ebi.ac.uk/eqtl/. The scATAC-seq PBMC dataset was
downloaded from https://app.azimuth.hubmapconsortium.org/app/
human-pbmec-atac/. The GWAS Catalog (v1.0) was downloaded from
https://www.ebi.ac.uk/gwas/docs/file-downloads. We matched SNP
IDs using dbSNP (rs_id_dbSNP151_GRCh38p7, https://www.ncbi.nlm.
nih.gov/snp/).

Code availability

The scooby modelincluding training scripts and dataloaders are avail-
ableathttps://github.com/gagneurlab/scooby/.Jupyter notebooks and
scripts to reproduce our analysis and figures are available at https://
github.com/gagneurlab/scooby_reproducibility/. The adapted ver-
sion of SnapATAC2 is available at https://github.com/lauradmartens/
SnapATAC2/.The code alongwith datato reproduce the findings have

additionally been archived and are available via Zenodo at https://doi.
org/10.5281/zenodo0.15517764 (ref. 69) and https://doi.org/10.5281/
zenodo.15517072 (ref. 70).
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Extended Data Fig. 9| Variant effect prediction performance on GTEx whole
blood eQTLs for seq2cells and Borzoi. a, Seq2cells predicted aggregated effects
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

|:| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] Adescription of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
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Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used to collect data.

Data analysis We used the following python packages with Python (v3.9.19): scanpy (v1.10), CellRanger ATAC (v2.1.0), Cell Ranger (v8.0.1), Cell Ranger
(v6.1.1), pyRanges (v0.0.129), scvi (v1.1.2, https://github.com/lauradmartens/scvi-tools/tree/poissonmultivi), SnapATAC2 (v1.0.1, https://
github.com/lauradmartens/SnapATAC2), rustup (v1.28.1), rustc (v1.85.0), scarches (v0.6.1), Borzoi (v0.0.2, https://github.com/johahi/borzoi-
pytorch), peft (v0.10.1, https://github.com/lauradmartens/peft), trackplot (v0.4.0), PyTorch (v2.1.0), tangermeme (v0.2.3), pychromvar
(v0.0.4), seq2cells (https://github.com/GSK-Al/seq2cells), Unipressed (v1.3.0), Meme suite, scipy(v1.13.1), gseapy (v1.1.3), seq2cells (https://
github.com/GSK-Al/seq2cells), jupyterlab (v4.2.0), tomtom (v5.5.2).

The scooby model including training scripts and data loaders are available at https://github.com/gagneurlab/scooby. Jupyter notebooks and
scripts to reproduce our analysis and figures are available at https://github.com/gagneurlab/scooby_reproducibility. The adapted version of
SnapATAC2 is available at https://github.com/lauradmartens/SnapATAC2. The scooby model including training scripts and data loaders are
available at https://github.com/gagneurlab/scooby. Jupyter notebooks and scripts to reproduce our analysis and figures are available at
https://github.com/gagneurlab/scooby_reproducibility. The adapted version of SnapATAC?2 is available at https://github.com/lauradmartens/
SnapATAC2. The code along with data to reproduce the findings have additionally been archived and are available on Zenodo at https://
doi.org/10.5281/zenodo0.15517764 and https://doi.org/10.5281/zenodo.15517072.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The scRNA-seq, scATAC-seq, and pre-processed count matrices for the multiome hematopoiesis dataset are available from the NeurIPS 2021 challenge, SRA
(accession SRP356158), AWS (s3://openproblems-bio/public/post_competition/multiome/), and GEO (accession GSE194122). The epicardioids dataset raw data
(scATAC-seq, scRNA-seq) is available from SRA (accessions SRP359250, SRP359249). The OneK1K dataset raw data (scRNA-seq) is available from SRA (accession
SRP359840). Pre-processed OneK1K data is available from CZ CELLXGENE: https://cellxgene.cziscience.com/collections/dde06e0f-ab3b-46be-96a2-a8082383c4al.
We used the Cell Ranger references refdata-cellranger-arc-GRCh38-2020-A-2.0.0 and refdata-gex-GRCh38-2020-A. We used the GENCODE release v32 GTF file and
the GO Biological Process 2021 gene set. TF position weight matrices were obtained from HOCOMOCO v12 (https://hocomocol2.autosome.org/downloads_v12).
GTEx eQTL and OneK1K summary statistics and fine-mapping results are available at https://www.ebi.ac.uk/eqtl/. The scATAC-seq PBMC dataset was downloaded
from https://app.azimuth.hubmapconsortium.org/app/human-pbmc-atac. The GWAS Catalog (v1.0) was downloaded from https://www.ebi.ac.uk/gwas/docs/file-
downloads. We matched SNP IDs using dbsnp (rs_id_dbSNP151_GRCh38p7, https://www.ncbi.nIm.nih.gov/snp/).

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender n/a

Reporting on race, ethnicity, or n/a
other socially relevant

groupings

Population characteristics n/a
Recruitment n/a
Ethics oversight n/a

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The study utilized three primary single-cell datasets (NeurlPS Hematopoiesis dataset, OneK1K Cohort, Heart Organoid dataset), supplemented
by GTEx bulk eQTLs, to comprehensively evaluate scooby's diverse capabilities. Collectively, these datasets were sufficient as they enabled
assessment across different biological contexts, scales, analytical tasks (profile modeling, TF activity, eQTL prediction), and allowed
benchmarking against existing methods, supporting the paper's main claims.

Data exclusions  Peaks and genes from the datasets were excluded when they had counts in less than 1% of the cells. We identified and removed doublet cell
populations in the Neurips dataset using Scrublet with default parameters. Doublet calls were based on a threshold that primarily captured
cells clustering in discrete locations on the Uniform Manifold Approximation and Projection (UMAP) embedding. We removed the cell types
'Platelets' and 'Erythrocytes' to retain only immune cell types for the OneK1K dataset. For the epicardioids dataset we retained cells for which
we had a scRNA-seq and scATAC-seq match.

Replication We ensured robust evaluation by following the same sequence-level train and test splits as our underlying foundation model Borzoi.
Moreover, genes and scATAC-seq peaks overlapping with validation or test regions were excluded from the input data used to generate the
single-cell embeddings to avoid data leakage. No experimental findings were disclosed, hence no replication was performed.

Randomization  Random allocation is not relevant as this is a computational modeling study using pre-existing datasets. Unbiased evaluation is ensured
through fixed train/validation/test splits of genomic data, preventing data leakage, even from the underlying Borzoi model. Scooby explicitly
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accounts for key covariates like cell type by conditioning predictions on cell-specific embeddings. Performance is then assessed with objective
metrics, often stratified by these known biological factors, ensuring robust and fair evaluation.

Blinding Blinding of investigators to group allocation during data collection was not relevant to this study. The research involves the development,
training, and evaluation of a computational model (scooby) applied to pre-existing, publicly available single-cell multi-omics datasets (e.g.,
NeurlPS hematopoiesis dataset, OneK1K cohort, Heart organoid dataset)
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system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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