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scooby: modeling multimodal genomic  
profiles from DNA sequence at  
single-cell resolution
 

Johannes C. Hingerl    1,2,9, Laura D. Martens    1,3,9, Alexander Karollus1,2, 
Trevor Manz    4, Jason D. Buenrostro    5,6, Fabian J. Theis    1,3,7 & 
Julien Gagneur    1,2,3,8 

Understanding how regulatory sequences shape gene expression across 
individual cells is a fundamental challenge in genomics. Joint RNA 
sequencing and epigenomic profiling provides opportunities to build 
models capturing sequence determinants across steps of gene expression. 
However, current models, developed primarily for bulk omics data, fail 
to capture the cellular heterogeneity and dynamic processes revealed 
by single-cell multimodal technologies. Here, we introduce scooby, a 
framework to model genomic profiles of single-cell RNA-sequencing 
coverage and single-cell assay for transposase-accessible chromatin using 
sequencing insertions from sequence at single-cell resolution. For this, we 
leverage the pretrained multiomics profile predictor Borzoi and equip it 
with a cell-specific decoder. Scooby recapitulates cell-specific expression 
levels of held-out genes and identifies regulators and their putative 
target genes. Moreover, scooby allows resolving single-cell effects of bulk 
expression quantitative trait loci and delineating their impact on chromatin 
accessibility and gene expression. We anticipate scooby to aid unraveling 
the complexities of gene regulation at the resolution of individual cells.

Modeling the relationship between genetic sequence and measured 
molecular traits is an effective strategy for uncovering the genetic basis 
of gene regulation and complex traits1. Deep learning modeling can 
be used to identify genetic determinants of genomic readouts and to 
predict the effects of genetic variants directly from DNA sequence2–8. 
With the advent of single-cell technologies, sequence-based mod-
els of single-cell omics assay were developed aiming at unraveling 
sequence determinants of cell-state-specific regulation and cell-fate 
decisions9–13. Early work modeled local chromatin accessibility by 

predicting data from the single-cell assay for transposase-accessible 
chromatin using sequencing (scATAC-seq) with convolutional neu-
ral networks operating on small input sequences (1 kb)9,11. While 
scATAC-seq provides valuable insights into chromatin state and 
transcription factor (TF) binding, gene expression remains the 
ultimate functional readout of regulatory activity. Therefore, local 
predictors of binarized or pseudobulked gene expression have been 
proposed10,13, yet their sequence context is limited and fails to capture 
cell-type-specific gene regulation12.
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We trained scooby on a 10x Single Cell Multiome dataset ( joint 
single-nuclei RNA-seq and ATAC-seq) comprising 63,683 human bone 
marrow mononuclear cells21 (NeurIPS dataset; Fig. 1b and Methods) 
across eight NVIDIA A40 GPUs for 2 days until convergence. A typical 
example of the model prediction for a single cell is shown in Fig. 1c for 
the SLC25A37 locus. Despite the inherent sparsity of single-cell data, 
the predicted profile for this single cell captures its expected profile 
as indicated by the empirical averages over its 100 neighboring cells. 
Moreover, the model precisely predicted the localization of scRNA-seq 
signal at the 3’ end of transcripts. This shows that scooby success-
fully adapted to the scRNA-seq assay, despite Borzoi being originally 
trained to model full-length RNA-seq coverage. Importantly, the model 
effectively captured the differential regulation of the SLC25A37 locus, 
accurately inferring lower expression in a megakaryocyte–erythroid 
progenitor cell compared to an erythroblast cell and highlighting 
distinct accessibility patterns between these cells (Fig. 1c).

To assess the performance of scooby globally, we first computed 
the Pearson correlation between observed single-cell profiles and 
the predicted profiles, on a logarithmic scale for a random subset of 
cells of each cell type across all test sequences (Fig. 1d and Methods). 
Assessing optimal performance for scRNA-seq and scATAC-seq profile 
prediction is challenging due to the lack of a true ground truth. As a 
practical upper bound, we used the correlation between individual 
cell profiles and the average profile of their 100 nearest neighbors, 
representing a smoothed, less noisy signal. Additionally, we compared 
each single-cell profile to its corresponding pseudobulk profile. We 
found scooby’s predictions to improve correlations compared to the 
corresponding pseudobulk profiles for both scRNA-seq (mean Pear-
son correlation = 0.15 versus 0.09) and scATAC-seq (mean Pearson 
correlation = 0.11 versus 0.08; Fig. 1d), yet these remained below the 
upper bound. However, when comparing scooby’s single-cell predic-
tions to the 100-nearest-neighbor average, correlations significantly 
increased (0.63 and 0.70 for scRNA-seq and scATAC-seq, respectively; 
Fig. 1d), indicating that scooby effectively captures the underlying 
signal in single-cell profiles despite their sparsity. Collectively, these 
results suggest that, while further model advances are possible, scooby 
models cell-specific regulation with increased finesse compared to 
pseudobulk averaging.

scooby precisely captures cell-type-specific gene expression
Given that marker genes exhibit distinct expression patterns across cell 
types, we reasoned that accurate prediction of these genes would pro-
vide initial evidence for scooby’s capacity to capture cell-state-specific 
gene expression. To derive gene expression counts, we summed the 
predicted scRNA-seq coverage across exons for each cell and compared 
these predicted counts to the observed single-cell counts (Fig. 2a and 
Methods). The model accurately captured cell-state-specific expres-
sion levels for marker genes unseen during training, even for small cell 
populations (Fig. 2b). In particular, it accurately recalled expression 
profiles of the markers ANK1, DIAPH3, SLC25A37 and AUTS2 that distin-
guish different cell types of erythroid differentiation (MK/E progeni-
tors, (pro-)erythroblasts, normoblasts).

For a quantitative analysis, we next evaluated scooby’s perfor-
mance at predicting pseudobulked gene expression profiles for each 
cell type (Fig. 2c). We calculated the log-fold change between predic-
tions and the observed pseudobulk expression levels for each gene 
within each annotated cell type. Across all cell types, we observed a 
mean Pearson correlation ranging from 0.82 to 0.88 (mean Pearson 
R = 0.86; Fig. 2d and Extended Data Fig. 3), demonstrating accuracy 
comparable to the original Borzoi model trained on bulk RNA-seq 
data (0.86 mean Pearson R). To assess the extent to which scooby 
captures differential expression patterns, we calculated the correla-
tion after subtracting both the gene-wise and cell-type-wise means 
on a logarithmic scale (Fig. 2c). This analysis, which focused on devia-
tions from the global mean expression, yielded a Pearson correlation  

To address this, the recently presented seq2cells12 model adapts 
Enformer7, a state-of-the-art sequence-based model for gene expres-
sion prediction trained on thousands of bulk omics assays to infer 
single-cell gene expression counts from 200 kb of sequence. However, 
seq2cells only models gene expression, relies on potentially ambigu-
ous transcription start site (TSS) annotations8, and models each cell 
with a separate output track, leading to computational intractability 
for large datasets.

To overcome these limitations, we present scooby, which jointly 
models scATAC-seq and single-cell RNA-sequencing (scRNA-seq) 
genomic profiles from sequence without the need for annotations 
and easily scales to large datasets. scooby builds upon Borzoi8, a 
recently released bulk omics model that uses RNA-seq coverage as 
an annotation-free representation of gene regulation. Using Borzoi 
as a foundation model, we equip it with a cell-specific decoder, and 
fine-tune its sequence embeddings to adapt it to the single-cell setting. 
We call this adapted model ‘scooby’, a nod to both its single-cell focus 
and its canine-named model ancestry. We demonstrate scooby’s capa-
bilities to accurately model genomic profiles at single-cell resolution, 
identify lineage-specific regulators and their putative target genes, and 
delineate cell-type-specific variant effects on a multiome hematopoie-
sis dataset, benchmarking it against state-of-the-art models.

Results
scooby enables modeling of genomic profiles at single-cell 
resolution
Here, we present scooby, which models single-cell accessibility and 
expression profiles from DNA sequence (Fig. 1a). Our model builds 
upon Borzoi, a state-of-the-art sequence-based model for RNA-seq 
coverage prediction, and leverages its trained convolutional and 
transformer-based architecture to extract informative sequence 
embeddings at 32-bp resolution. To tailor these embeddings to indi-
vidual single-cell datasets and achieve single-cell resolution profile 
predictions, scooby introduces two key innovations (Fig. 1a and 
Extended Data Fig. 1).

First, to enable scooby to efficiently adapt to dataset-specific 
features, we fine-tuned its sequence embeddings using low-rank adap-
tation (LoRA)14, a parameter-efficient fine-tuning strategy. Following 
the LoRA approach, we kept pretrained weights frozen and added train-
able low-rank matrices into the transformer and convolutional layers 
(Methods). Advantageously, these matrices can be merged into the 
existing weights after training, resulting in no overhead during model 
inference14. We reasoned that this would allow scooby to capture effects 
of regulatory sequences relevant to cell states that are absent from or 
weakened in the bulk data Borzoi was trained on, but also to adjust to 
characteristics inherent to single-cell assays, such as the 3′ coverage 
bias common in scRNA-seq15.

Second, we implemented a lightweight decoder for gene expres-
sion and accessibility prediction at single-cell resolution. To this end, 
scooby leverages low-dimensional, multiomic representations of cell 
states, in this case derived from Poisson-MultiVI16,17, to decode the 
fine-tuned sequence embedding generated by Borzoi in a cell-specific 
manner. This design differs from approaches that rely on separate 
output heads for each cell12, whose number of parameters scales with 
the number of cells and cannot, by design, effectively leverage simi-
larities between cells. For efficient analysis of large single-cell data-
sets with scooby, we developed an accessible workflow by adapting 
SnapATAC2.0 (ref. 18) to store single-cell profiles in the widely used 
AnnData19,20 format, which facilitates memory-efficient model training 
(Extended Data Fig. 2, Supplementary Fig. 1 and Methods).

We ensured robust evaluation by following the same 
sequence-level train and test splits as our underlying foundation model 
Borzoi. Moreover, genes and scATAC-seq peaks overlapping with valida-
tion or test regions were excluded from the input data used to generate 
the single-cell embeddings to avoid data leakage.
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Fig. 1 | scooby accurately predicts cell-state-specific expression and 
accessibility profiles from single-cell data. a, scooby integrates a pretrained 
sequence-to-profile model with a cell-state-specific decoder to model genomic 
profiles at single-cell resolution. The pretrained model is fine-tuned on the target 
dataset using a parameter-efficient strategy, generating an adapted sequence 
embedding at 32-bp resolution. The cell-state-specific decoder takes this 
sequence embedding together with embedding vectors of single cells as input to 
predict scATAC-seq insertion and scRNA-seq coverage profiles at single-cell level. 
b, Uniform manifold approximation and projection (UMAP) visualization of the 
10x multiome NeurIPS bone marrow dataset21 integrated with Poisson-MultiVI, 
colored by cell type. c, Representative example of predicted and observed gene 
expression (top) and accessibility (bottom) profiles of an erythroblast and a 
megakaryocyte–erythroid progenitor cell and its 100 nearest neighbors at the 
SLC25A37 locus (part of the test set). d, Distribution of the correlation between 

predicted and observed profiles on test sequences (n = 210 representative cells; 
Methods). Box plots showing the distribution of Pearson R values for different 
comparisons of single-cell ATAC-seq and RNA-seq profiles. Comparisons include 
single cells versus corresponding pseudobulk, single cells versus scooby, single 
cells versus 100 nearest neighbors and 100 nearest neighbors versus scooby. All 
pairwise comparisons per assay are statistically significant (two-sided Wilcoxon 
rank-sum test, ATAC: P = 3 × 10−36, 1 × 10−35, 7 × 10−34. RNA: P = 3 × 10−36, 4 × 10−36, 
5 × 10−20). In all box plots, the central line denotes the median, boxes represent 
the interquartile range and whiskers show the distribution except for outliers. 
Outliers are all points outside 1.5 times the interquartile range. B, B cell; T, T cell; 
Mono, monocyte; prog, progenitor; HSC, hematopoietic stem cell; ILC, innate 
lymphoid cell; Lymph, lymphoid; MK/E, megakaryocyte and erythrocyte; G/M, 
granulocyte and myeloid; NK, natural killer cell; cDC2, classical dendritic cell 
type 2; pDCs, plasmacytoid dendritic cells.
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of 0.54, indicating that scooby successfully recapitulated a substantial 
portion of the biological variation in gene expression across cell types 
(Fig. 2e). Notably, scooby substantially outperformed the count-based 
seq2cells model retrained on the NeurIPS dataset on shared Enformer 
and Borzoi test genes, with mean correlation across genes increasing 
from 0.77 to 0.87 and mean correlation across cell types increasing 
from 0.43 to 0.55 (Methods and Extended Data Fig. 4).

We next performed some comparative analyses to understand 
the basis of scooby’s performance (Extended Data Fig. 5). A scooby 
model trained on the scRNA-seq data and using embeddings purely 
derived from this modality performed worse than the multiomic model 
(across-gene Pearson R = 0.848, across cell types Pearson R = 0.496). 
Nevertheless, these results remain better than those of the seq2cells 
model and indicate that the increased performance of scooby is not 
limited to the fact it can leverage more data modalities.

To assess the contribution of dataset-specific fine-tuning, we 
tested a scooby variant without LoRA fine-tuning, but instead directly 
feeding Borzoi embeddings into the cell-specific decoder. This resulted 
in decreased prediction accuracy, particularly for relative expression 
between cell types (across cell types Pearson R = 0.501), highlighting 
the importance of fine-tuning all layers of the model to the dataset 

(Extended Data Fig. 5). Consistent with that observation, we found that 
simpler models which only had cell-state-specific decoders on top of 
Borzoi’s human RNA-seq predictions and on top of all Borzoi’s predicted 
human tracks also performed notably worse (Extended Data Fig. 5). Fur-
thermore, we designed a comparable model on pseudobulked profiles, 
which are predicted in a multi-task fashion while keeping the rest of the 
architecture the same. Still, scooby performed on par or slightly better 
on both cell-type-level metrics, showing that the scooby architecture 
does not trade cellular resolution for performance.

scooby predicts gene expression dynamics of unseen cells
A salient feature of scooby over seq2cells is that cell-specific predic-
tions are achieved using a single-cell embedding representation instead 
of modeling every single cell as a distinct task. This design enables 
application to unseen cells within similar cell states, which could be 
used in scenarios like atlas mapping, where new datasets are projected 
onto a reference. However, we do not expect scooby to generalize to 
drastically different cell types beyond its training domain.

To assess robustness of the single-cell decoder to slightly different 
cell states, we evaluated a model where all normoblast cells, consti-
tuting the terminal cell type of the erythroid lineage, were withheld 
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Fig. 2 | scooby accurately models cell-type-specific gene expression counts 
and generalizes to unseen cell states. a, Predicted and observed profiles are 
aggregated into a gene expression count matrix by summing coverage over 
exons. We obtain pseudobulk counts by summing over all predictions of every 
cell for each cell type. b, Normalized gene expression matrix (Methods) for 
cell-type-specific genes, observed (top) and predicted (bottom). Each row 
is a marker gene from test (black) or validation (gray), and each column is a 
randomly selected cell. Cells are grouped by cell type (bottom track) c, We 
evaluate scooby’s performance using two metrics: the correlation between 
predicted and observed gene expression counts within each cell type (left) and 
the model’s ability to capture cell-type-specific deviations of gene expression 
to gene mean (right). d, Distribution of gene-level Pearson correlation 
between log-transformed predicted and observed counts of scRNA-seq reads 

overlapping exons across cell types. e, Predicted against measured between-
cell-type deviations of gene expression. Exemplarily highlighted combinations 
of marker gene and cell type show strong deviations from the mean expression 
level. f, Across-gene Pearson correlation between log-transformed predicted 
and observed normoblast gene expression counts using an ablated model 
that was not trained on normoblast cells. Each bar corresponds to predictions 
done using the single-cell embeddings of cells of a different cell type. g, Mean-
normalized observed and predicted gene expression of HEMGN along the 
diffusion pseudotime axis representing erythropoietic differentiation22. Both 
the full and the no-normoblast model accurately recapitulate the expression 
dynamics. Dots are colored by cell type, and lines are smoothed with a rolling 
mean (window size, 200 cells).
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both during construction of the single-cell embedding and training 
of scooby (Methods). Remarkably, using normoblast embeddings 
that were projected into the learned embedding after training yielded 
predictions with an accuracy close to the model trained on the full 
dataset (0.79 Pearson R compared to 0.81 for the model trained with 
normoblasts). Moreover, the best predictions were obtained using the 
normoblast embeddings as input to the decoder, followed by using 
embeddings of closely related cell types, indicative of scooby learning 
meaningful representations in embedding space that can be used to 
interpolate between different cell states (Fig. 2f).

Building on this observation, we investigated whether scooby’s 
capacity to generalize to unseen but related cell states extends to 
capturing the continuous gene expression changes that occur during 
differentiation. As a case study, we considered hemogen (HEMGN), a 
gene known to be upregulated during erythroid differentiation22 that 
was part of the sequences held out during model training. Using diffu-
sion pseudotime23 to order cells along the erythroid trajectory, we com-
pared HEMGN expression dynamics predicted by both the full scooby 
model and the model trained without normoblasts (Fig. 2g). Both 
models, including the one trained without normoblasts, accurately 
recapitulated the regulation of HEMGN along the erythroid lineage 
(0.939 Pearson R for the full model and 0.966 for the ablated model).

Altogether, these results indicate that scooby can be applied to 
investigate unseen, but related cell states and continuous regulatory 
programs similar to the ones observed during model training. This 
makes it suitable to use as a tool in reference atlas integration workflows 
where one might want to interpret novel datasets with related cell states 
by mapping it to a known reference.

TF motif effect scoring allows investigating TF activity
Having established scooby’s capability to predict cell-state-specific 
gene expression, we next sought to understand the sequence deter-
minants influencing its predictions. Given the central role of TFs 
in regulating gene expression, we aimed to identify TFs that drive 
lineage-specific gene expression predictions. To quantify the impor-
tance of TFs on gene expression, we introduced a TF motif effect score, 
which measures the impact of mutating TF binding sites on predicted 
gene expression in single cells. Specifically, we focused our analysis 
on 83 TFs that are significantly differentially expressed between cell 
types of the bone marrow dataset. For each TF, we used established 
position weight matrices (PWMs)24 to map candidate TF binding sites 
located within 524 kb centered on the gene body of the 3,681 genes 
differentially expressed across the dataset (Fig. 3a and Methods). 
We mutated all matching sites in silico at the same time by substitut-
ing them with random sequences. Cell-level TF motif effect scores 
were defined as the log-fold change of scooby’s predicted expression 
between reference sequence and in silico mutated sequences, averaged 
across genes. TF motif effect scores are directional, being positive for 
activators and negative for repressors.

To assess the reliability of scooby’s TF motif effect scores, we com-
pared their agreement with observed cognate TF expression, as a proxy 
for true TF activity (Methods). We benchmarked against chromVAR25 
and scBasset9, two widely used sequence-based methods for inferring 
TF activity from scATAC-seq data by comparing the correlation of their 
scores with TF expression. We found that scooby’s TF motif effect 
scores correlate significantly better with gene expression than those 
of chromVAR (P = 5.4 × 10−9, Wilcoxon two-sided; Fig. 3b) and scBasset 
(P = 0.04, Wilcoxon two-sided; Extended Data Fig. 6a). Remarkably, 
training scooby only with scRNA-seq data led to TF motif effect scores 
on par or better than the two alternative methods chromVAR and 
scBasset, which use scATAC-seq data (Fig. 3c, Extended Data Fig. 6b and 
Methods). This result indicates that scooby could alleviate the need for 
scATAC-seq data for the purpose of TF activity inference.

Having established TF motif effect scores, we next leveraged 
them to investigate the regulatory role of activating or repressing TF 

sequence elements on gene expression in a cell-type-specific man-
ner. We observed scooby to recapitulate the importance of known 
motifs for cell types of the main hematopoietic lineages (Fig. 3d 
and Extended Data Fig. 7a). For example, the GATA1 motif family 
exhibited the highest score in erythroblasts26, the EBF1 motif in B1 
B cells27, the C/EBP motif family in monocytes28 and the RUNX motif 
family in T cells29. The SOX motif family, containing a TF known to 
drive multipotent hematopoietic stem cells toward the B cell line-
age (SOX4)30, displayed the strongest effect in these cell types, and 
showed stronger activity in the early stages of each differentiation 
lineage. Furthermore, scooby captured early lineage commitment 
within G/M progenitor cells, as their TF motif effect scores closely 
resembled those of both differentiated myeloid cells and the pro-
genitor populations. Additionally, the model identified repressors 
of gene expression such as BACH2, a TF known to be repressive of the 
myeloid program in B cells31. However, we also observed that TFs with 
similar motifs are scored similarly (that is, GATA1, TRPS1 and GATA3; 
Extended Data Fig. 7a), which is a limitation of TF binding site match-
ing by motifs only. Despite this caveat, scooby’s ability to distinguish 
lineage-specific patterns of TF activity suggests its potential for 
further exploration of the regulatory mechanisms underlying cell- 
fate decisions.

TFs can exert distinct effects on accessibility and expression due 
to temporal lags and repression mechanisms, some of which oper-
ate independently of chromatin accessibility changes. To support 
the investigation of motif effects on those two regulatory layers, we 
defined a TF motif effect score on the overall chromatin accessibil-
ity across a gene locus, analogously to the TF motif effect score on 
expression (Fig. 3a and Methods). Applied to GATA1, an established 
master regulator during erythropoiesis, in silico alteration of its bind-
ing sites indicated an early impact on chromatin accessibility across 
loci, whereas the effect on gene expression was delayed (Fig. 3e). This 
is consistent with the role of GATA1 as a pioneer factor and shows that 
scooby can be used to delineate the effect of motifs on accessibility 
from the effect on expression32.

scooby suggests cell-state-specific TF target genes
Identifying the genes regulated by a TF in a specific cell state is impor-
tant to pinpoint the regulatory cascades driving cell-fate decision 
and differentiation. With scooby, we can obtain TF target genes by 
investigating the TF motif effect on a per-gene basis. We applied 
scooby to explore putative target gene regulation by three key eryth-
roid regulators—GATA1, TAL1 and KLF1. Target genes were defined as 
genes predicted to show differential expression in erythroid cell types 
upon cognate motif mutation (Extended Data Fig. 7b and Methods). 
While direct validation of these predicted targets using experimental 
data such as from chromatin immunoprecipitation using sequencing 
(ChIP–seq) is beyond the scope of this study, these putative target 
genes were overall enriched for Gene Ontology (GO) terms related to 
erythropoiesis (heme biosynthetic process P = 2.5 × 10−8, regulation 
of erythrocyte differentiation P = 5.7 × 10−6; Methods), consistent with 
the known roles of GATA1, TAL1 and KLF1. As expected, the erythroid 
master regulator GATA1 was predicted to affect the largest number 
of genes. For TAL1, known to bind cooperatively with GATA1 (ref. 33), 
the model recapitulated the connection to known target genes such as 
HBB, SLC4A1 and TRIM10, as well as other erythroid regulators (GATA1, 
KLF1)33. Finally, we observed distinct clusters of genes controlled by 
combinations of GATA1, TAL1 and KLF1. For instance, cluster 6 (RHAG, 
RHD, ALAS2, TFRC, TSPO2), enriched for iron ion homeostasis and 
ammonium transmembrane transport GO terms, was shown to be 
impacted by both GATA1 and KLF1 deletion. These predictions are 
corroborated by previous reports in human and mice (as reviewed in 
Perkins et al.34). Altogether, our analysis demonstrates that scooby can 
be used to investigate the complex regulatory roles of lineage-specific 
TFs on target genes.
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scooby dissects TF activity within a cell type
While previous analysis focused on TF motif effects across distinct 
lineages, we next investigated scooby’s ability to resolve TF activity 
within a defined cell type. To this end, we trained scooby on a pub-
lished multiome dataset of human heart organoids35, leveraging the 

experimentally validated heterogeneity within the juxta-cardiac field 
progenitors ( JCFs; Fig. 3f and Extended Data Fig. 8a,b). Specifically, 
the original study used lineage tracing to demonstrate the dual fate 
of JCF progenitors, showing their differentiation into either cardio-
myocytes or epicardial cells. This dual fate was mapped in scATAC-seq 

0.1

0.2

0.8

0.9

0.5

1.0

0

0.5

1.0

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

chromVAR

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

sc
oo

by
-R

N
A-

on
ly

 T
F 

m
ot

if 
e�

ec
t s

co
re

KLF1

TAL1

CUX1
BACH2

GATA1

MXI1

ESR2

E2F2 E2F7
KLF6

ETV6

MEF2C

PAX5

ETS1
EBF1

ZEB2

NFIA

P = 2.0 × 10−7

Correlation with TF expression

0

1

2

3 4

5
6

7

89

10

11

12

13

14
15

16

17
18

19

20

21

22

23

−0.50

−0.25

0

0.25

0.50

Pe
ar

so
n 

co
rr

el
at

io
n

Cardio-
myocyte

Motif

vs.

ATAC

RNA

Motif

Motif Motif

vs.

524 kb

Epicardial

GATA4

JCF
JCF

Epicardial

Cardiomyocyte

Average TF motif e�ect score per TF family
Myeloid T cell Erythroid Lymphoid HSC and progenitor cells

f g

b

d

ca

e

Transition probabilities

scooby TF motif e�ect score

h

i

JCF

0

1

N
or

m
al

iz
ed

 T
F 

ac
tiv

ity GATA1 motif e�ect on acc.
GATA1 motif e�ect on expr. 

0 0.2 0.4 0.6 0.8 1.0

Pseudotime

0

1
N

or
m

al
iz

ed
 e

xp
re

ss
io

n

GATA1 expr.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

chromVAR

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

sc
oo

by
 T

F 
m

ot
if 

e�
ec

t s
co

re

KLF6
E2F7

ETV6

ZEB2

E2F2

MEF2C

GATA1

ETS1

BACH2

PAX5

MXI1

SOX6

ESR2

KLF1

TAL1

CUX1

NFIA
EBF1

P = 5.4 × 10−9

Correlation with TF expression

FOS

FO
S

EP
AS

1
FO

XH
1

TB
X1

SP
5

PR
D

M
1

AP
2A

M
ES

P1
G

RH
L2

SR
Y

AP
2B

AP
2C

TW
ST

1
E2

F7
H

EY
1

TB
X5

TB
XT

FO
XA

2
FO

XA
3

ZI
C

5
FO

XD
3

FO
XA

1
ZF

P4
2

SI
X3

EO
M

ES
ZI

C
3

PO
4F

1
ZI

C
2

N
AN

O
G

SO
X1

7
SO

X2
PO

5F
1

RF
X6

P5
F1

B
H

AN
D

1
N

R5
A2

C
D

X1
H

N
F4

A
M

YB
B

H
XB

6
N

KX
25

G
SC

N
KX

23
H

XA
1

M
EI

S1
O

VO
L2

VE
N

TX IS
L1

H
M

E1
O

TX
2

H
XB

1
H

XB
5

M
IX

L1
G

AT
A4

M
SX

1
PR

RX
1

NFIA

TE
AD2

GATA
1, G

ATA
3, T

RPS1
CUX1

HIC
1

MEIS1, P
BX1, P

BX3
MYB

MEF2
C
TA

L1

ERG, E
TS

1, E
TV

6, F
LI1

, S
PI1, 

SPIB

MBNL2
XBP1

MITF
, M

XI1, 
TF

AP4, T
FE

C

AHR, H
IF1

A

IRF1,
 IR

F4
, IR

F5

GLI1
, P

RDM1

EOMES, T
BX21

ZEB1, Z
EB2

FO
XO3, F

OXP1, F
OXP2

LE
F1,

 TC
F7

NR6A1

KLF
1, K

LF
12,

 KLF
2, 

KLF
4, K

LF
6, K

LF
8

RUNX1, R
UNX2, 

RUNX3

STA
T4

E2F
2, 

E2F
7, 

E2F
8, T

FD
P1

CEBPD, H
LF

MAF, 
MAFF

RXRA

FO
S, F

OSB, F
OSL2

, J
DP2

BACH1, B
ACH2, 

CREB5, J
UN, J

UNB, N
FE

2

ESR1, E
SR2

RORA, R
ORB

REL

SOX13
, S

OX30, S
OX4, S

OX5, S
OX6

ASCL2
EBF1

PAX5

Normoblast
Erythroblast
Proerythroblast
HSC
MK/E prog
G/M prog
pDC
CD14+ mono
CD16+ mono
cDC2
ILC
NK
CD8+ T naive
CD8+ T activated
CD4+ T activated
CD4+ T naive
Early Lymphoid
Transitional B
Plasma
B1 B
Naive CD20+ B

–0.5 0 0.5 1.0

With cardiomyocyte transition probability
With epicardial transition probability

Fig. 3 | In silico motif mutation enables TF motif effect scoring and reveals 
lineage and cell-state-specific regulators. a, Schematic of TF motif effect 
scoring via in silico motif mutation. b, Pearson correlation of TF motif effect 
score with TF expression for scooby against chromVAR. The gray area marks  
the zone of improvement. We used a one-sided Wilcoxon test to compute the  
P value. c, Same as b for a scooby model trained on scRNA-seq only. d, Heat map 
of average TF motif effect score per TF family (columns) across cell types (rows). 
e, Median-normalized effect of GATA1 in silico motif mutation on accessibility 
and expression (top) and median-normalized expression of GATA1 along the 
diffusion pseudotime axis representing erythropoietic differentiation (bottom). 

Dots are colored by cell type, and lines are smoothed with a rolling mean (window 
size, 200 cells). f, UMAP visualization of multiomic metacells obtained from 
paired scRNA-seq and scATAC-seq data of epicardioid cells across multiple days, 
colored by cell type. The JCF cells (circle) and their transitions (arrows) to their 
two descendant cell types—cardiomyocytes and epicardial cells—are highlighted. 
g, CellRank transition probabilities toward epicardial and cardiomyocyte states 
within the JCF population. h, Correlation of TF motif effect scores with transition 
probability toward the cardiomyocyte (blue) and epicardial fate (yellow).  
i, Min–max scaled TF motif effect scores of GATA4 (left) and FOS (right) in the  
JCF cluster.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-025-02854-5

eSNP

Predicted cell-type-
specific variant

e�ect

Cell-type-specific
accessibility in

closest peak

Cell-type-specific
expression of

eGene

eGene

Reference
vs.

A

G

eSNP

Top k

Cell type 1/2

2. Rank cell types by variant e�ect

3. Check if ground truth in top k

1. Compute variant e�ect

A�ects
Does not 

a�ect

Cell type 3

G

eGene

d

e

Correlation of variant e�ect predictions against 
observed e�ects 

(±262 kb around TSS, Spearman ρ)

Correlation of variant e�ect predictions against 
observed e�ects 

(±98 kb around TSS)

a b

c

–0.1 0 0.1 0.2 0.3 0.4

0.2

0.4

0.6

Borzoi, track matched

Sc
oo

by GTEx, whole blood
OneK1K

-0.2 0 0.2 0.4

0

0.2

0.4

0.6

Seq2cells

Sc
oo

by

−1 0 1 2

eQTL beta

−1

0

1

2

Pr
ed

ic
te

d 
SN

P 
e�

ec
t

33.9%

15.2%

17.8%

32.8%

45.1%

3.5%

4.9%

46.5%

Spearman corr: 0.449
n = 908

Spearman corr: 0.78
n = 226

0–1 
kb

1–2
 kb

2–
5 kb

5–10
 kb

10
–2

0 kb

20
–5

0 kb

50–10
0 kb

10
0–15

0 kb

15
0–2

62 k
b

Distance to TSS

0

0.2

0.4

0.6

0.8

1.0

 P
ro

po
rt

io
n 

of
 c

on
co

rd
an

t e
Q

TL
 p

re
di

ct
io

ns

n 
= 

22
2

n 
= 

11
3

*
n 

= 
69

n 
= 

27
*

n 
= 

96
n 

= 
22

*
n 

= 
87

n 
= 

16
*

n 
= 

12
6

n 
= 

23
*

n 
= 

17
3

n 
= 

15
*

n 
= 

80
n 

= 
7

n 
= 

26
n 

= 
2

n 
= 

29
n 

= 
1

No filtering Pred. abs. e�ect > 3.5%

f

1 5 10 15 20

Top k cell types

0

0.1

0.2

0.3

0.4

Pr
ec

is
io

n

* * * * Scooby
Target gene expression
ATAC peaks
Borzoi, track matched
Random performance

Fig. 4 | scooby-predicted variant effects are concordant with reported effects 
for bulk and single-cell eQTL studies and exhibit cell-type specificity.  
a, Spearman correlation of predicted effects (log-fold change) with observed 
normalized eQTL effects for scooby against Borzoi. Each point indicates a cell 
type (OneK1K) or a tissue (GTEx). Dashed line marks y = x. Scooby significantly 
outperforms track-matched Borzoi across the OneK1K cell types (Wilcoxon rank-
sum, two-sided, P = 0.001). b, Same as a, but for scooby against seq2cells. Scooby 
significantly outperforms seq2cells (Wilcoxon rank-sum, two-sided, P = 5 × 10−4). 
c, Predicted aggregated effects (log-fold change) versus observed whole-blood 
eQTL effect sizes. Red dotted lines mark thresholds below which predicted 
fold changes are deemed negligible (absolute fold change, 3.5%). Percentages 
quantify variants within each quadrant: blue indicates all variants; red denotes 
variants passing the 3.5% predicted effect threshold. d, Proportion of concordant 
eQTL predictions (same direction as observed), as a function of distance to the 

TSS when filtering for non-negligible predicted effect (red) or without filtering 
(blue). Dashed blue line indicates the mean proportion of concordant eQTL 
predictions across all distances (0.23). Stars indicate significance over random 
performance (Binomial test). e, Schematic of the cell-type-specific evaluation. 
Cell-type-specific effects are obtained from model predictions, from the 
cell-specific accessibility in the peak closest to the variant position or via the 
pseudobulk expression levels of the eGene. For each approach, cell types are 
ranked by the absolute magnitude of the effect to distinguish cell types with and 
without fine-mapped eQTL associations. f, Precision in recovering cell types with 
fine-mapped eQTL associations when considering the top k most highly ranked 
cell types using methods from e. Asterisks indicate significance when comparing 
Scooby to the target gene expression baseline (two-sided Fisher exact test, 
P = 0.04, 0.02, 0.01, 0.03). eSNP, eQTL single-nucleotide polymorphism.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-025-02854-5

and scRNA-seq data using CellRank36,37, identifying JCF subpopula-
tions with higher transition probabilities toward each fate (Fig. 3g). 
Subsequently, gene regulatory network modeling35 was used to infer 
putative TFs regulating JCF lineage commitment. We leveraged scooby’s 
TF motif effect scores computed for TFs with a differential expression 
of five-fold or more in at least one cell type to independently identify 
putative drivers of JCF lineage commitment by correlating them with 
CellRank-derived transition probabilities (Fig. 3h,i and Methods). We 
observed high correlations for bona fide epicardial fate factors, such as 
FOS, EPAS1, TBX1 and TFAP2A/TFAP2B/TFAP2C, and for cardiomyocyte 
fate regulators like GATA4, MSX1 and ISL1 (refs. 35,38,39). In summary, 
these results demonstrate scooby’s potential to uncover single-cell 
heterogeneity and its ability to dissect TF activity within a cell type.

scooby improves cell-type-specific variant effect prediction
Accurately predicting the regulatory impact of genetic variants on 
cell-state-specific gene expression remains a major challenge in 
genomics40–42. While sequence-based models including Borzoi and 
its predecessor Enformer have shown promise in distinguishing 
causal expression quantitative trait loci (eQTLs) from those in link-
age disequilibrium7,8, these analyses were limited to bulk data such 
as the tissue-specific eQTLs collected by the GTEx project43. Here, we 
leveraged the OneK1K cohort, a large-scale single-cell eQTL resource 
comprising over 1 million peripheral blood mononuclear cells (PBMCs) 
from 982 donors with statistically fine-mapped, cell-type-specific 
eQTLs44,45, which we used to assess scooby’s capabilities to predict 
cell-type-specific eQTL effects. Moreover, we used bulk whole-blood 
eQTLs from the GTEx project43,45 to compare scooby to bulk RNA-seq 
gene expression predictors.

We trained a scooby model on the OneK1K dataset, which is derived 
from the same tissue as the GTEx whole-blood resource (Methods 
and Extended Data Fig. 8b,c). We first benchmarked scooby against 
Borzoi, evaluated using its corresponding GTEx whole-blood track 
for the GTEx eQTLs and cell-type-matched RNA-seq tracks for OneK1K 
eQTLs (Methods). While scooby nearly matched Borzoi’s performance 
on GTEx whole-blood eQTLs (0.45 versus 0.47, Spearman correlation), 
scooby significantly outperformed Borzoi across all cell types on the 
OneK1K cohort (Fig. 4a). We additionally compared scooby to seq2cells, 
which we could only train on a subset of 100,000 cells of the OneK1K 
dataset due to its poor scalability. Scooby significantly improved upon 
seq2cells on both GTEx whole blood and the OneK1K cohort eQTLs on 
the common variant–gene subset (Fig. 4b).

Investigating individual whole-blood GTEx eQTL predictions, 
we found that scooby predicted a high proportion of variants to 
have negligible effects (with log2 effect less than 0.05, that is, 3.5% 
fold change; Fig. 4c), akin to seq2cells as originally reported by the 
authors12 and recapitulated here (Extended Data Fig. 9a). Discarding 
these small-effect predictions, correlations on the remaining set of 
eQTLs increased from 0.45 to 0.78 with most predictions having the 
correct sign (sign concordance of 91.6%). Borzoi predictions showed 
the same qualitative behavior on the same set of eQTLs, indicating 
that this is not a characteristic of scooby itself (Extended Data Fig. 9b).

Across all predictions, the fraction of sign-concordant predictions 
exceeded 47% when the fine-mapped variant was located within 1 kb 
of the TSS and then declined with distance (Fig. 4d). This shows that, 
like for other sequence-based models7,8,40, capturing the effects of 
distal regulatory elements on gene expression remains a challenge for 
scooby. Nonetheless, non-negligible predictions (log2 effect greater 
than 0.05) remain concordant in sign independently of the distance to 
the TSS (Fig. 4d and Extended Data Fig. 9c,d for seq2cells and Borzoi). 
These results suggest that scooby should advantageously be applied 
by focusing on its strong effect predictions, whereas predictions of 
negligible effects may not provide reliable evidence of lack of effects.

For many applications it is interesting not only to predict effect 
sizes but also to identify the cell type in which a variant acts. To assess  

the capacity of scooby at deconvolving bulk eQTLs into their cell- 
type-specific effects, we used the cell-type-specific fine-mapped 
eQTLs of OneK1K as ground truth. Specifically, among variants with 
a scooby-predicted variable effect across cell types, we defined the 
positive set to contain all cell type–variant pairs for which there was a 
significant fine-mapped eQTL in the OneK1K cohort. We then assessed 
whether scooby predicted a higher variant effect in these cell types 
compared to cell types without significant fine-mapping hits (Meth-
ods). We compared scooby to two realistic baseline approaches reflect-
ing the common situation in which an expert has access to generic 
single-cell omics data but not to extensive individual-level single-cell 
omics data from genotyped cohorts like OneK1K. In the first baseline 
approach, cell-type specificity was inferred using the cell-type-specific 
accessibility in the closest or overlapping ATAC peak, leveraging acces-
sibility data of the same cell types from a different study46 (Methods). 
In the second baseline, cell-type specificity was inferred by ranking 
cell types according to pseudobulked expression levels of the target 
eGene across the entire cohort (Fig. 4e). Scooby outperformed both 
baseline approaches as well as the cell-type matched Borzoi (Fig. 4f). 
This indicates that scooby can be used to resolve cell-type-specific 
variant effects better than current sequence-based bulk models and 
simple baselines.

scooby allows cell-type-specific delineation of bulk eQTLs
While the OneK1K eQTL analyses provided validation for scooby’s ability 
to deconvolve eQTLs, scooby could also be used to uncover regulatory 
mechanisms in situations where no cell-type-specific ground truth is 
available. Therefore, we chose to perform a case study in which we 
deconvolved GTEx bulk whole-blood eQTL effects in bone marrow, 
using the scooby model trained on the NeurIPS bone marrow dataset.

While predicted eQTL effects generally agreed across cell types, 
substantial variations were observed, reflecting relationships between 
cell types (Fig. 5a). Notably, the erythroid, the monocyte and the early 
progenitor cell types each showed distinct predicted eQTL effects. To 
explore the potential functional relevance of this cell-type specific-
ity, we focused on the 15% most-variable eQTLs previously associated 
with a human trait in genome-wide association studies (GWAS Cata-
log47; Fig. 5b and Methods). We found several cases where predicted 
cell-type-specific effects were consistent with the biology of the associ-
ated GWAS traits. For example, the SLC14A1 eQTL, linked to ‘Immature 
fraction of reticulocytes’ exhibited strong effects specifically within 
the erythroid lineage. Similarly, the MIR34AHG and NDST1 eQTLs, both 
associated with ‘Monocyte count’ showed pronounced effects in the 
monocytes. These findings suggest that scooby can provide insights 
into the cellular context of GWAS associations.

As an illustrative example of how scooby can reveal cell-type- 
specific regulatory mechanisms, we examined an eQTL (variant 
rs143664050) with a negative effect on testin (TES) expression in 
CD14+ monocytes yet a negligible effect in erythroblasts (Fig. 5c). The 
alternative allele was associated with a predicted loss of an accessible 
region in monocytes, which could explain the observed reduction in 
TES expression. In contrast, no change in accessibility was predicted 
in erythroblasts, consistent with the negligible predicted effect on 
expression. Applying a gradient-based model interpretation method 
indicated that the eQTL disrupts a predicted binding site for the TF SPI1 
(Fig. 5c and Methods). Notably, SPI1 is only expressed in myeloid cells, 
including monocytes, but not in erythroblasts (Fig. 5d), providing an 
explanation for the observed cell-type specificity of this eQTL’s effect 
(Fig. 5e). In contrast, the variant rs62032983 provided an example of 
an eQTL predicted to reduce expression of the gene DCTN5 across all 
cell types. Model interpretation attributed this effect to the disrup-
tion of a predicted binding site for the ubiquitously expressed TF 
ELF1 (Extended Data Fig. 10). Altogether, these analyses demonstrate 
scooby’s ability to link cell-type-specific variant effects, which would be 
missed in bulk-level analyses, to the underlying regulatory mechanism.
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Discussion
This work introduced scooby, which models single-cell gene expression 
and chromatin accessibility profiles directly from sequence contexts 
of half a megabase while scaling efficiently with the number of cells. 
This is achieved by equipping the pretrained multiomics profile pre-
dictor Borzoi with a cell-specific decoder and fine-tuning its sequence 
embeddings. The model shows generalizability across cells and cell 
types and improved the state-of-the-art model in single-cell gene 
expression prediction from a Pearson correlation of 0.77 to 0.87 on 
unseen sequences. In silico motif mutations led to TF motif effect scores 
showing strong concordance with TF expression levels, improving 
upon TF activity inference methods utilizing chromatin accessibility 
data. Strong concordance also held for a scooby model when training 
exclusively on RNA-seq data, suggesting that it can effectively leverage 
sequence information to infer TF motif effect scores without requiring 
matched accessibility data. Furthermore, we used scooby to dissect 
regulatory mechanisms within a seemingly homogeneous popula-
tion of JCF progenitors, showcasing scooby’s potential to propose 
hypotheses on drivers of cell-fate decisions at a finer resolution. Lastly, 
leveraging scooby’s single-cell resolution together with interpretation 

methods allowed for finer-grained analysis of variant effects, uncover-
ing cell-type-specific eQTLs that are masked in bulk studies and the 
underlying TFs.

The architecture of scooby allows incorporating further modali-
ties in two ways. Firstly, profile-based modeling is a generic approach 
that flexibly permits the prediction and interpretation of a wide range 
of additional single-cell modalities, such as methylation or ChIP–seq, 
in contrast to genome annotation-based methods. Secondly, scooby 
can in principle work with any cell-state representation. For instance, 
incorporating other data modalities such as CITE-seq into the embed-
ding could allow for a finer resolution of cellular state.

We chose to mainly evaluate scooby on a 10x multiome hemat-
opoiesis dataset, as it provides both paired scATAC-seq and scRNA-seq 
profiles for joint modeling and well-characterized differentiation 
lineages for validating TF motif effects and target gene predictions, 
making it an ideal test bed for our study. As scooby predicts RNA-seq 
coverage, it could in principle be used to predict differential isoform 
usage; however, the 10x scRNA-seq 3’ coverage bias limits the signal 
for splice sites and TSS choice15. Furthermore, we observed little evi-
dence for differential isoform usage in the dataset, concordant with 
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studies finding that alternative transcript usage is most pronounced in 
brain and muscle tissues48. Thus, future work applying scooby to more 
diverse cell types or applications to alternative single-cell protocols 
such as SMART-seq49 or long-read sequencing50 is needed to assess the 
potential of scooby to model isoform-specific expression.

We obtained promising results when comparing scooby-based 
variant effect prediction with reported eQTL effects. Of practical 
relevance, when scooby predicted non-negligible effects for an eQTL, 
the effect direction was typically correct and the predicted cell-type 
specificity was more accurate than baseline approaches including 
cell-type-specific target gene expression and chromatin accessibility 
of the variant. This indicates that scooby can be useful to delineate 
cell-type specificity of eQTLs established on bulk data and to pro-
vide mechanistic hypotheses about GWAS hits. As reported previ-
ously for other sequence-based models40, we also observe scooby 
to excessively underestimate the amplitudes of the effects of distal 
eQTLs, suggesting that this remains an area of improvement for 
future models.

We have demonstrated scooby’s easy applicability to a large 
single-cell resource of 1.2 million cells44, and to a small heterogene-
ous organoid dataset35 using the same hyperparameter settings. In 
the future, we envision scooby to aid interpretation of large single-cell 
atlases51 as the framework shows robust and efficient scaling behav-
ior to large numbers of cells. This could be further improved by 
replacing the underlying base model, Borzoi, by a more efficient ver-
sion52. Moreover, we foresee its application to learn about conserved 
cell-type-specific regulation by integrating diverse multispecies data-
sets. To facilitate adoption, we provide a streamlined workflow for 
applying scooby to new datasets.

In summary, scooby establishes a paradigm for connecting 
single-cell genomics and sequence-to-function modeling. Its modu-
lar nature and ability to integrate multimodal data and to capture 
cell-state-specific gene expression dynamics positions it as a valuable 
tool for uncovering the genetic basis of gene regulation and complex 
traits at single-cell resolution.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
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Methods
Data acquisition and processing
NeurIPS hematopoiesis dataset. We obtained scRNA-seq and 
scATAC-seq data for the multiome hematopoiesis dataset used in the 
NeurIPS 2021 challenge21. Specifically, we downloaded scRNA-seq 
BAM files from the Sequence Read Archive (SRA) under accession 
SRP356158 and scATAC-seq fragment files from the AWS bucket s3://
openproblems-bio/public/post_competition/multiome/. Preprocessed 
gene count and peak count matrices were retrieved from the Gene 
Expression Omnibus (GEO) under accession code GSE194122.

We performed all scRNA-seq data analyses using Scanpy (v1.10)53. 
We utilized the predefined filtered cell and gene sets, as well as the 
highest-resolution cell-type annotations (l2_cell_type key) provided 
in the original publication. We identified and removed doublet cell 
populations using Scrublet with default parameters54. Doublet calls 
were based on a threshold that primarily captured cells clustering in 
discrete locations on the UMAP embedding.

We normalized raw gene expression counts using the nor-
malize_total function in Scanpy and applied a log(expression + 1) 
transformation for downstream analyses. We inferred pseudotime 
trajectories on the integrated dataset using diffusion pseudotime23 
with default parameters.

Epicardioids dataset. Raw sequencing data for scATAC-seq and 
scRNA-seq from the original publication35 were retrieved from the 
SRA with accession numbers SRP359250 and SRP359249, respectively. 
We aligned the scATAC-seq data using Cell Ranger ATAC (v2.1.0) with 
the Cell Ranger reference package refdata-cellranger-arc-GRCh38-
2020-A-2.0.0. Similarly, scRNA-seq data were processed using 
Cell Ranger (v8.0.1) with refdata-gex-GRCh38-2020-A. In the origi-
nal study, scGLUE55 was used to generate a joint embedding, and 
pseudo-multiome metacells were constructed by pairing RNA and 
ATAC cells from this embedding. We obtained the preprocessed gene 
count and peak count matrices cluster labels (leiden_res1 key), scGLUE 
embeddings, CellRank36,37 transition probabilities and metacell map-
pings from the original publication. For downstream analyses, we 
retained cells for which we had a scRNA-seq and scATAC-seq match.

OneK1K dataset. Raw sequencing data for scRNA-seq from the original 
publication44 were obtained from the SRA under accession number 
SRP359840. scRNA-seq data were processed using the Cell Ranger 
pipeline (v6.1.1) with the reference package refdata-gex-GRCh38-
2020-A. A preprocessed gene count matrix as well as cell-type labels 
were downloaded from CZ CELLxGENE56 https://cellxgene.czisci-
ence.com/collections/dde06e0f-ab3b-46be-96a2-a8082383c4a/. 
We removed the cell types ‘Platelets’ and ‘Erythrocytes’ to retain only 
immune cell types.

Generation of cell embeddings
To prevent information leakage from the cell embeddings to the gene 
expression and accessibility prediction models, we identified and 
excluded genes and peaks present in the test and validation sets using 
pyRanges57 (v0.0.129) before computing the embedding. We further 
filtered out genes and peaks present in fewer than 1% of all cells to 
reduce dimensionality.

For the NeurIPS dataset, we then used the MultiVI model from the 
scvi package (v1.1.2, https://github.com/lauradmartens/scvi-tools/
tree/poissonmultivi/)17,58 to generate a unified embedding of both 
scRNA-seq and scATAC-seq data. Following previous work demon-
strating improved performance16, we adapted the model to utilize raw 
fragment counts for scATAC-seq data, modeling these using a Poisson 
distribution instead of binarized counts (Poisson-MultiVI). Otherwise, 
we trained the model with default parameters, incorporating sample 
information as the batch key during data integration. This process 
generated an embedding vector of dimension 14 for each cell. The 

100 nearest neighbors for the profile evaluations for each cell were 
computed using the Scanpy function sc.pp.neighbors.

For the NeurIPS RNA-only model, we reran the embedding gen-
eration using only the RNA modality by running the scVI model with 
n_latent set to 14.

Given the large number of donors in the OneK1K dataset, we used 
the scPoli model59 from the scarches package60 (v0.6.1) to create the 
embedding. The model was trained using the ‘sample’ key as the condi-
tion key and the ‘cell_label’ key for cell-type annotation, with all other 
parameters set to their default values.

Efficient read coverage extraction for RNA-seq and  
ATAC-seq data
To generate the scRNA-seq and the scATAC-seq profiles used for train-
ing, we used an adapted version of SnapATAC2 (ref. 18; v1.0.1, https://
github.com/lauradmartens/SnapATAC2/), an efficient Rust software 
package (rustup v1.28.1, rustc v1.85.0) initially designed for ATAC-seq 
data processing. SnapATAC2 achieves efficient storage of scATAC-seq 
data within the AnnData19 format by recording only the start position 
and length of each fragment and supports out-of-memory reading.

In contrast to scATAC-seq data, scRNA-seq aligned reads con-
tain split reads due to RNA splicing. Therefore, we modified the code 
of sp.pp.make_fragment_file function of SnapATAC2 to parse and 
store split reads as multiple entries in the AnnData, with each entry 
representing a contiguous fragment and its corresponding length 
(Extended Data Fig. 2).

Processing of RNA BAM files and ATAC fragment files
Because the 10x BAM files included all reads (also low-quality ones), 
we filtered for reads that were marked as valid by the Cell Ranger pipe-
line (xf:i:25 flag) by implementing this filtering option to the sp.pp.
make_fragment_file function (xf_filter = true). We used our modified 
sp.pp.make_fragment_file function, specifying the appropriate bar-
code and unique molecular identifier tags (‘CB’ and ‘UB’) for our data 
to convert the reads in the BAM file into a fragment file. We removed 
duplicate reads using SnapATAC2’s automatic read deduplication. For 
processing of scRNA-seq reads, we set the is_paired argument to ‘false’ 
and both shift_left and shift_right arguments to 0.

We imported the processed fragment file into an AnnData object 
using sp.pp.import_data and the hg38 genome assembly. To ensure 
consistency with our scRNA-seq count data, we set min_num_frag-
ments = 0 and used the whitelist argument to retain only cells present 
in the pre-filtered scRNA-seq AnnData object.

We imported ATAC-seq fragment files using the sp.pp.import_data 
function with the parameters described above. To model Tn5 insertion 
sites, we converted fragment locations into insertion sites by recording 
the fragment ends.

Data preparation for training
We used the SnapATAC-processed coverage AnnData directly during 
training and created coverage tracks per cell on the fly. Following the 
procedure described for Borzoi8, we first aggregated the coverage and 
insertions in a 32-bp window. For RNA profiles, we followed the same 
squashed-scale approach as Borzoi, but set clip_soft to 5, such that the 
fraction of soft-clipped values at the single-cell level was similar to the 
one of Borzoi’s tracks. For ATAC profiles, we scaled the output by 0.05 
to ensure they were on the same scale as the RNA coverage tracks. For 
faster evaluation on pseudobulks, we exported read aggregates per 
cell type to the bigWig format using sp.ex.export_coverage.

Model
scooby builds upon Borzoi8, a deep learning model for predicting 
RNA-seq profiles, which operates at 32-bp resolution on 524,288 bp 
of DNA sequence, outputting profiles for the center 6,144 bins (cor-
responding to 196,608 bp). We adapted a publicly available PyTorch 
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implementation of Borzoi (v0.0.2, https://github.com/johahi/
borzoi-pytorch/), removing the original human and mouse-specific 
output heads and retaining the convolutional and transformer layers 
responsible for sequence encoding. We integrated LoRA modules14, 
each with a rank of 8, into all convolutional layers and the query, value 
and MLP projection matrices within the transformer layers using an 
adapted version of peft61 (v0.10.1, https://github.com/lauradmartens/
peft/). While used separately during training, these LoRA modules were 
merged back into the original model weights after training, resulting 
in no additional overhead during inference.

Furthermore, we introduced a trainable layer with Gaussian 
error linear unit nonlinearity on top of Borzoi’s penultimate layer. 
The weights of this layer were randomly initialized and trained from 
scratch, allowing for potential refinement of Borzoi’s embeddings for 
the single-cell context. The output of this layer was then passed to the 
cell-state-specific decoder. This decoder operates on the sequence 
embeddings of the center 6,144 bins. Specifically, the decoder con-
sists of a 1 × 1 convolution along the sequence dimension (effectively 
a position-wise linear transformation). The weights of this convolu-
tional filter were not fixed but were dynamically generated for each 
cell based on its corresponding cell embedding. To this end, a small 
multilayer perceptron was added that receives the cell embedding 
as input and outputs a vector to parameterize the convolutional fil-
ter used to produce the final predicted profiles for that cell from the 
sequence embedding. We visualize the exact model architecture in 
Extended Data Fig. 1. For stranded RNA predictions, the multilayer 
perceptron outputs a weight matrix of shape (1921, 2, 1), encompass-
ing the filter weights (1,920 dimensions) and biases (1 dimension) for 
each strand. For ATAC predictions (unstranded), it outputs a weight 
matrix of shape (1921, 1, 1).

To efficiently scale scooby to a large number of cells, we imple-
mented two optimizations. First, we introduced a caching mechanism 
for the sequence embeddings, reducing redundant computations when 
predicting profiles for multiple cells from the same genomic region. 
Second, we performed cell-state-specific decoding for expression 
only on the embedding slices that overlap with exons (or gene body) 
of interest.

Training procedure
We initialized scooby’s Borzoi backbone with pretrained weights 
from Borzoi’s replicate 0 (test fold 3, validation fold 4), converted 
from the original TensorFlow implementation to PyTorch. These pre-
trained weights correspond to a model trained on the human and 
mouse reference genome (hg38, mm10 assembly). We maintained 
the same train-val-test split as Borzoi for scooby’s training. During 
training, we only updated the parameters of the LoRA modules, the 
cell-state-specific convolutional filter weights and the weights of the 
additional layer with Gaussian error linear unit nonlinearity introduced 
after Borzoi’s penultimate layer. With PyTorch (v2.1.0), we used the 
AdamW optimizer with a learning rate of 4 × 10−4 for the cell-state con-
volutional layer and 2 × 10−4 for the LoRA modules and the additional 
layer to stabilize training. Both learning rates were warmed up over 
the first 1,000 steps and decayed linearly afterward over 40 epochs. To 
stabilize training during the first step, we froze the batch normalization 
layers from the pretrained Borzoi model and disabled dropout within 
Borzoi. We then unfroze the batch normalization layers and enabled 
dropout to prevent overfitting.

We monitored validation performance using the Pearson corre-
lation between the predicted and observed total counts (gene count 
evaluation, log2-transformed pseudobulk counts with an added pseu-
docount of 1) and retained the model with the largest correlation across 
cell types.

All models were trained with a batch size of eight sequences 
across eight A40 GPUs, using mixed precision to accelerate training.  
Per training sequence, the model predicted RNA and ATAC profiles 

for 64 randomly sampled cells in a multi-task learning fashion. We 
randomly augmented training sequences by shifting them by up to 
three base pairs in either direction and reverse-complementing them. 
To ensure consistent strand orientation, we reverse-flipped the tar-
get profiles when training on reverse-complemented sequences. We 
used the same weighting scheme for the Poisson and multinomial 
loss terms as in the original Borzoi implementation. The gradient 
clipping threshold was set to 1.0, and weight decay was set to 10−6 for 
all trainable parameters. Due to computational constraints, extensive 
hyperparameter optimization was not performed.

Ablations and other models
To train the model without normoblasts, we used the same hyper-
parameters and training procedure as described above. However, to 
prevent leakage, we recreated the MultiVI embedding without normo-
blasts and normoblast cells were excluded from the random sampling 
of cells during training. To train the RNA-only ablation, we followed 
the above steps, but instead removed scATAC-seq targets and output 
heads and used an embedding based on RNA-seq only. For the model 
without LoRA, we removed the trainable LoRA weights while maintain-
ing the model architecture elsewhere. We additionally trained models 
with scooby heads on the outputs of Borzoi when using all 7,611 output 
tracks, or when subsetting on the RNA-seq track only (n = 1,543). In 
contrast to all other models, these training runs diverged, which was 
circumvented using a lower learning rate (5 × 10−5).

We downloaded seq2cells from the official GitHub repository 
(https://github.com/GSK-AI/seq2cells)12 and processed files to fit the 
required format. For comparability, we used a cell × gene matrix with 
counts generated by summing over the observed profile. We matched 
gene IDs to gene names, retaining 15,892 genes, and followed the same 
data split as Enformer7, upon which seq2cells is based. We trained the 
model using the training configuration provided in the repository, but 
longer for up to 40 epochs to stay comparable to scooby, and evaluated 
the best checkpoint.

Inference
To obtain model predictions, we performed inference on both the 
input sequence and its reverse complement. The output tracks for 
the reverse complement were reverse-flipped, and both predictions 
were averaged to produce the final profiles. We then reversed the 
squashed-scale transformation to obtain raw expression values, 
and scaled accessibility profiles by 20 to reverse the transforma-
tion applied during training. We used mixed-precision inference to 
accelerate computations.

Profile-level evaluation
To quantitatively assess profile prediction accuracy, we calculated 
the Pearson correlation on a logarithmic scale between the predicted 
profiles and the observed profiles (with and without averaging across 
100 cell neighbors) over all test sequences for a random subset of cells 
of each cell type. Additionally, we compared each single-cell profile 
to the pseudobulk (averaged) profile of the same cell type, and to its 
averaged 100 nearest-neighbor profile in the same fashion. Genomic 
annotations were plotted using trackplot (v0.4.0)62.

Gene count evaluation
To generate cell-type-specific counts, we first centered the input 
sequence on the gene body as annotated with GENCODE release (v32)63. 
We summed the expression profile for each bin overlapping an exon 
using the output track that matched the strand of the gene. This was 
repeated for each cell and summed across all cells of the same cell type 
to obtain pseudobulk counts. Finally, we log2-transformed both the 
predicted and target pseudobulk counts, and added a pseudocount 
of 1 to calculate the Pearson correlation across genes for each cell 
type. To obtain a metric quantifying how well the model captures 
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cell-type-specific expression, we subtracted the mean across genes 
of the cell-type × gene log2-transformed expression matrix, and then 
subtracted the mean across cells for both predictions and observations 
and correlated the results. For the no-normoblast ablation, we pre-
dicted all test gene counts pseudobulked for each cell type as described 
above and correlated their predicted expression with the observation 
of the normoblast cell type. For the comparison with seq2cells, we only 
retained genes overlapping the Enformer test set (used in seq2cells) 
and the Borzoi test set (used in this study). Predicted and observed 
gene counts along the diffusion pseudotime axis were smoothed using 
a rolling window of 200 cells with mean aggregation.

Motif deletion experiments for the NeurIPS hematopoiesis 
dataset
To investigate the impact of TF binding sites on scooby’s predictions, 
we performed in silico motif deletion experiments. We first obtained 
a list of TF PWMs from the HOCOMOCO v12 core database (https://
hocomoco12.autosome.org/final_bundle/hocomoco12/H12CORE/
formatted_motifs/H12CORE_meme_format.meme)24. To focus on TFs 
with potential regulatory roles in the relevant cell types, we filtered 
the list for TFs overlapping the set of differentially expressed genes 
per lineage. Differential gene expression analysis was conducted for 
each lineage against the others using the Wilcoxon rank-sum test, with 
a significance threshold of P ≤ 0.05 after correcting for multiple testing 
with the Benjamini–Hochberg procedure using the Scanpy function 
sc.tl.rank_gene_groups with groupby = ‘l1_cell_type’. We selected the 
motif with the most evidence and lowest motif subtype for each TF, 
drawing randomly if multiple candidates exist.

We used tangermeme FIMO (v0.2.3)64 to scan input sequences 
centered on differentially expressed genes, identifying putative TF 
binding sites based on their PWMs using default significance cutoffs of 
0.0001 after converting pwm-matching log-odds scores into P values. 
We generated alternative sequences by substituting each predicted 
binding site with a random nucleotide sequence of the same length, 
repeating this procedure ten times per sequence to mitigate spurious 
motif introduction.

We used scooby to predict gene expression and accessibility pro-
files for both the original and motif-deleted sequences in each cell. For 
gene expression, we summed the predicted RNA-seq coverage over 
all exons within a gene. For accessibility, we summed the predicted 
scores across the entire 6,144 × 32-bp output bins. We averaged over 
the ten distinct random replacements. The prediction for each cell was 
divided by the size factor of its corresponding reference prediction 
and scaled by its median reference size factor. For each cell, we calcu-
lated the mean log2-fold change between the reference and alternative 
sequence predictions across differentially expressed genes, yielding 
a single TF score per cell.

For the chromVAR25 comparison, we used pychromVAR (v0.0.4) 
with default configuration, except that we used the PWMs of the HOCO-
MOVO v12 core database for consistency. For scBasset9, we followed 
the scVI tutorial (https://docs.scvi-tools.org/en/stable/tutorials/note-
books/atac/scbasset.html) to obtain TF activity scores.

To compare TF scores and target TF expression, we then computed 
the Pearson correlation of each TF score (from scooby, chromVAR and 
scBasset) with log-normalized TF expression.

To identify putative target genes of GATA1, TAL1 and KLF1 in the 
erythrocyte lineage (MK/E progenitor, proerythroblast, erythro-
blast), we examined TF motif effects on a per-gene basis, rather than 
gene-averaged effects. Target genes were defined as those exhibiting 
an absolute predicted effect size exceeding 0.1. These target genes were 
then clustered based on their effect sizes using seaborn’s clustermap 
function, using the ‘seuclidean’ metric and ‘ward’ linkage method. 
Clusters were determined via hierarchical clustering with the SciPy 
(v1.13.1) fcluster function, using the criterion = ‘maxclust’ parameter. 
Gene-set enrichment analysis was subsequently performed using 

Enrichr65 through the GSEApy Python package66 (v1.1.3), utilizing the 
GO Biological Process 2021 gene set.

Motif analysis for the epicardioid dataset
The motif analysis was performed as described above except that dif-
ferential expression was calculated between cell types and not lineages. 
Differentially expressed genes were defined using a log-fold-change 
threshold of 2 and an adjusted P-value threshold of 0.01. Moreover, for 
computational reasons, we restricted the analysis to the 58 differen-
tially expressed TFs in cardiomyocytes and epicardial clusters whose 
maximum absolute fold change was larger than 5. The inferred TF motif 
effect scores were then correlated within the JCF population with the 
CellRank transition probabilities from the original study.

eQTL effect benchmark
We evaluated the ability of scooby to pinpoint likely causal nucleotide 
variants driving gene expression changes within fine-mapped eQTLs from 
GTEx43 and OneK1K. We used the publicly available summary statistics and 
uniformly generated fine-mapping results from the eQTL Catalog (https://
www.ebi.ac.uk/eqtl/)45. Following Linder et al.8, we used single-nucleotide 
variants with a posterior inclusion probability (PIP) ≥ 0.9 and filtered out 
all non-single-nucleotide variants such as indels and deletions.

For each variant, we centered the input sequence on the eSNP and 
recorded the effect on gene expression (sum over exons) and accessibil-
ity (sum over the whole region) for the reference and the alternative 
nucleotide of the true eSNP. We then computed cell-type-level variant 
effects by summing the predicted gene expression levels on the natural 
scale over all cells of that cell type and computing the log2-fold change 
of alternative versus reference predictions, adding a pseudocount of 1.  
For a general variant effect, we averaged the effect over all cell types.

To be able to compare Borzoi to scooby, we used the ‘GTEX: RNA 
blood’ track for comparisons on the GTEX whole-blood tissue, and 
matched the Borzoi RNA tracks to OneK1K cell types where possible, 
manually selecting the closest group of cell types if no matching track 
was found (Supplementary Table 1). For comparison to seq2cells, we 
trained a seq2cells model on a subset of the OneK1K dataset consisting 
of 100,000 randomly sampled cells of the full dataset, as a model on 
the full dataset used too much memory to be trainable.

eQTL deconvolution benchmark
Because the GTEx whole-blood sample size is larger than the OneK1K 
cohort, we extended our OneK1K eQTL set (cell-type-level PIP ≥ 0.9) by 
variants that were fine-mapped with PIP ≥ 0.9 in GTEx blood but were 
below the 0.9 PIP threshold for a specific cell type in OneK1K. For each 
variant, we recorded the cell types the variant was fine-mapped in as 
our ground-truth positives, regarding all other cell types as negatives.

We then filtered for variants where scooby predicted a non- 
negligible effect (predicted effect size greater than 3.5%) and validated 
whether scooby ranks cell types belonging to cell types from the above 
set most highly. We used the cell-type matched Borzoi tracks to simi-
larly rank cell types for each variant.

For the target gene expression baseline, we ranked cell types by the 
pseudobulked gene expression of the eGene after size-factor normal-
izing the single-cell counts.

For the ATAC baseline, we used a PBMC scATAC-seq dataset of 
9,030 cells from 10x Genomics, which was downloaded from the Azi-
muth web application46 (https://app.azimuth.hubmapconsortium.
org/app/human-pbmc-atac) and contains the same cell types as the 
OneK1K study. We pseudobulked ATAC fragment counts per peak after 
size-factor normalizing each cell. We ranked cell types according to 
the accessibility of the eSNP’s overlapping or nearest ATAC-seq peak.

eQTL deconvolution in the NeurIPS dataset
To identify eQTLs with cell-type-specific effects, we focused on variants 
demonstrating both a strong overall effect and substantial variability 
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across cell types. We first filtered for variants with a substantial average 
effect size (log2(mean effect) > 0.05) across all cell types. We labeled 
eQTLs as cell-type specific if their effect sizes showed high variability 
across cell types, specifically within the top 15% of variance. We clus-
tered the variants on their effect size using seaborn clustermap with 
metric = ‘seuclidean’ and method = ‘ward’. We downloaded v1.0 of the 
GWAS Catalog from https://www.ebi.ac.uk/gwas/docs/file-downloads 
and matched GTEx variants using rs_id_dbSNP151_GRCh38p7, manu-
ally adding matches where possible using dbSNP (https://www.ncbi.
nlm.nih.gov/snp/)67. We report up to three randomly selected terms 
matching variant and target gene combination.

To link eSNPs to TF motifs, we generated gradient-weighted PWMs 
encompassing a 10-bp window centered on each variant. Specifically, 
we derived the PWM of the 10-bp window by performing exponentia-
tion of 2 with the gradient of each nucleotide per position, and subse-
quently sum-normalized each position. We then used Tomtom (v5.5.2) 
to scan these PWMs against the HOCOMOCO v12 core database using 
the default MEME parameters68. To account for potential redundancy 
among TFs with similar motifs, we filtered the results to include only 
TFs expressed in at least 1% of all cells. Since TF nomenclature can vary 
between databases, we used a Python interface to UniProt (Unipressed 
v1.3.0) to map protein names from HOCOMOCO to their correspond-
ing gene symbols.

Writing
A large language model was used to assist with refining the phrasing 
and clarity of the manuscript. All suggestions generated by the large 
language model were carefully reviewed and edited by the authors.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The scRNA-seq, scATAC-seq and preprocessed count matrices 
for the multiome hematopoiesis dataset are available from the 
NeurIPS 2021 challenge, SRA (accession SRP356158), AWS (s3://
openproblems-bio/public/post_competition/multiome/) and GEO 
(accession GSE194122). The epicardioids dataset raw data (scATAC-seq, 
scRNA-seq) are available from SRA (accessions SRP359250 and 
SRP359249). The OneK1K dataset raw data (scRNA-seq) are available 
from SRA (accession SRP359840). Preprocessed OneK1K data are 
available from CZ CELLxGENE (https://cellxgene.cziscience.com/
collections/dde06e0f-ab3b-46be-96a2-a8082383c4a1/). We used the 
Cell Ranger references refdata-cellranger-arc-GRCh38-2020-A-2.0.0 
and refdata-gex-GRCh38-2020-A. We used the GENCODE release 
v32 GTF file and the GO Biological Process 2021 gene set. TF posi-
tion weight matrices were obtained from HOCOMOCO v12 (https://
hocomoco12.autosome.org/final_bundle/hocomoco12/H12CORE/
formatted_motifs/H12CORE_meme_format.meme). GTEx eQTL and 
OneK1K summary statistics and fine-mapping results are available 
at https://www.ebi.ac.uk/eqtl/. The scATAC-seq PBMC dataset was 
downloaded from https://app.azimuth.hubmapconsortium.org/app/
human-pbmc-atac/. The GWAS Catalog (v1.0) was downloaded from 
https://www.ebi.ac.uk/gwas/docs/file-downloads. We matched SNP 
IDs using dbSNP (rs_id_dbSNP151_GRCh38p7, https://www.ncbi.nlm. 
nih.gov/snp/).

Code availability
The scooby model including training scripts and data loaders are avail-
able at https://github.com/gagneurlab/scooby/. Jupyter notebooks and 
scripts to reproduce our analysis and figures are available at https://
github.com/gagneurlab/scooby_reproducibility/. The adapted ver-
sion of SnapATAC2 is available at https://github.com/lauradmartens/
SnapATAC2/. The code along with data to reproduce the findings have 

additionally been archived and are available via Zenodo at https://doi.
org/10.5281/zenodo.15517764 (ref. 69) and https://doi.org/10.5281/
zenodo.15517072 (ref. 70).

References
53.	 Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell 

gene expression data analysis. Genome Biol. 19, 15 (2018).
54.	 Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational 

identification of cell doublets in single-cell transcriptomic data. 
Cell Syst. 8, 281–291 (2019).

55.	 Cao, Z.-J. & Gao, G. Multi-omics single-cell data integration 
and regulatory inference with graph-linked embedding. Nat. 
Biotechnol. 40, 1458–1466 (2022).

56.	 C. Z. I. Cell Science Program et al. CZ CELLxGENE Discover: a 
single-cell data platform for scalable exploration, analysis and 
modeling of aggregated data. Nucleic Acids Res. 53, D886–D900 
(2025).

57.	 Stovner, E. B. & Sætrom, P. PyRanges: efficient comparison of 
genomic intervals in Python. Bioinformatics 36, 918–919 (2020).

58.	 Gayoso, A. et al. A Python library for probabilistic analysis of 
single-cell omics data. Nat. Biotechnol. 40, 163–166 (2022).

59.	 De Donno, C. et al. Population-level integration of single-cell 
datasets enables multi-scale analysis across samples. Nat. 
Methods 20, 1683–1692 (2023).

60.	 Lotfollahi, M. et al. Mapping single-cell data to reference atlases 
by transfer learning. Nat. Biotechnol. 40, 121–130 (2022).

61.	 Mangrulkar, S. et al. PEFT: state-of-the-art parameter-efficient 
fine-tuning methods. GitHub https://github.com/huggingface/
peft (2022).

62.	 Zhang, Y., Zhou, R., Liu, L., Chen, L. & Wang, Y. Trackplot: a flexible 
toolkit for combinatorial analysis of genomic data. PLOS Comput. 
Biol. 19, e1011477 (2023).

63.	 Frankish, A. et al. GENCODE: reference annotation for the human 
and mouse genomes in 2023. Nucleic Acids Res. 51, D942–D949 
(2023).

64.	 Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for 
occurrences of a given motif. Bioinformatics 27, 1017–1018 (2011).

65.	 Xie, Z. et al. Gene set knowledge discovery with Enrichr. Curr. 
Protoc. 1, e90 (2021).

66.	 Fang, Z., Liu, X. & Peltz, G. GSEApy: a comprehensive package 
for performing gene set enrichment analysis in Python. 
Bioinformatics 39, btac757 (2023).

67.	 Sherry, S. T. dbSNP: the NCBI database of genetic variation. 
Nucleic Acids Res. 29, 308–311 (2001).

68.	 Bailey, T. L. et al. MEME Suite: tools for motif discovery and 
searching. Nucleic Acids Res. 37, W202–W208 (2009).

69.	 Hingerl, J. & Martens, L. D. scooby: modeling multi-modal 
genomic profiles from DNA sequence at single-cell resolution—
supplementary data and code. Zenodo https://doi.org/10.5281/
zenodo.15517764 (2025).

70.	 Hingerl, J. & Martens, L. D. scooby: modeling multi-modal 
genomic profiles from DNA sequence at single-cell resolution—
training data. Zenodo https://doi.org/10.5281/zenodo.15517072 
(2025).

Acknowledgements
We thank J. Engelmann for insightful discussions regarding variant 
effect prediction, M. Ozols for providing processed OneK1K data,  
A. Moretti and M. Gander for insights on the epicardioids data,  
R. Zhang for computational advice as well as T. Mauermeier for his 
talented cluster support. We thank P. Tomaz da Silva and N. Wagner 
for comments on the manuscript. L.D.M. acknowledges support by 
the Helmholtz Association under the joint research school Munich 
School for Data Science. The work was supported by funding from 
the Deutsche Forschungsgemeinschaft (DFG; 403584255, TRR267 

http://www.nature.com/naturemethods
https://www.ebi.ac.uk/gwas/docs/file-downloads
https://www.ncbi.nlm.nih.gov/snp/
https://www.ncbi.nlm.nih.gov/snp/
https://www.ncbi.nlm.nih.gov/sra/?term=SRP356158
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE194122
https://www.ncbi.nlm.nih.gov/sra/?term=SRP359250
https://www.ncbi.nlm.nih.gov/sra/?term=SRP359249
https://www.ncbi.nlm.nih.gov/sra/?term=SRP359840
https://cellxgene.cziscience.com/collections/dde06e0f-ab3b-46be-96a2-a8082383c4a1/
https://cellxgene.cziscience.com/collections/dde06e0f-ab3b-46be-96a2-a8082383c4a1/
https://hocomoco12.autosome.org/final_bundle/hocomoco12/H12CORE/formatted_motifs/H12CORE_meme_format.meme
https://hocomoco12.autosome.org/final_bundle/hocomoco12/H12CORE/formatted_motifs/H12CORE_meme_format.meme
https://hocomoco12.autosome.org/final_bundle/hocomoco12/H12CORE/formatted_motifs/H12CORE_meme_format.meme
https://www.ebi.ac.uk/eqtl/
https://app.azimuth.hubmapconsortium.org/app/human-pbmc-atac/
https://app.azimuth.hubmapconsortium.org/app/human-pbmc-atac/
https://www.ebi.ac.uk/gwas/docs/file-downloads
https://www.ncbi.nlm.nih.gov/snp/
https://www.ncbi.nlm.nih.gov/snp/
https://github.com/gagneurlab/scooby/
https://github.com/gagneurlab/scooby_reproducibility/
https://github.com/gagneurlab/scooby_reproducibility/
https://github.com/lauradmartens/SnapATAC2/
https://github.com/lauradmartens/SnapATAC2/
https://doi.org/10.5281/zenodo.15517764
https://doi.org/10.5281/zenodo.15517764
https://doi.org/10.5281/zenodo.15517072
https://doi.org/10.5281/zenodo.15517072
http://github.com/huggingface/peft
http://github.com/huggingface/peft
https://doi.org/10.5281/zenodo.15517764
https://doi.org/10.5281/zenodo.15517764
https://doi.org/10.5281/zenodo.15517072


Nature Methods

Article https://doi.org/10.1038/s41592-025-02854-5

to L.D.M. and J.G.), the European Research Council (101118521, EPIC 
to J.C.H. and J.G. and 101054957 to F.J.T.), the Gene Regulation 
Observatory at the Broad Institute of MIT & Harvard (to J.D.B.), 
the National Institutes of Health (NIH; 5P01HL131477 to J.D.B), the 
NHGRI IGVF consortium (UM1 HG011986 to J.D.B.) and the NIH New 
Innovator Award (DP2 HL151353 to J.D.B.). The views and opinions 
expressed are those of the authors and do not necessarily reflect 
those of the European Union or the European Research Council. 
Neither the European Union nor the granting authority can be held 
responsible for them. This study was supported by the Deutsche 
Forschungsgemeinschaft via the IT Infrastructure for Computational 
Molecular Medicine (461264291, 553375143).

Author contributions
L.D.M. and J.C.H. conceived the project with J.G. J.C.H. designed the 
model. L.D.M. and J.C.H. implemented the framework. L.D.M. and 
T.M. developed the data pipeline. L.D.M. and J.C.H. designed the 
evaluations and analyzed the data with help from A.K. and J.D.B. J.G., 
J.D.B. and F.J.T. supervised the project. J.C.H., L.D.M. and J.G. wrote the 
manuscript with input from all authors.

Funding
Open access funding provided by Technische Universität München.

Competing interests
J.D.B. holds patents related to ATAC-seq and is an SAB member of Camp4 
and seqWell. F.J.T. consults for Immunai, Singularity Bio, CytoReason and 
Omniscope, and has ownership interest in Dermagnostix and Cellarity. 
The other authors declare no competing interests.

Additional information
Extended data is available for this paper at 
 https://doi.org/10.1038/s41592-025-02854-5.

Supplementary information The online version contains supplementary 
material available at https://doi.org/10.1038/s41592-025-02854-5.

Correspondence and requests for materials should be addressed to 
Julien Gagneur.

Peer review information Nature Methods thanks the anonymous 
reviewers for their contribution to the peer review of this work. Peer 
reviewer reports are available. Primary Handling Editor: Lin Tang, in 
collaboration with the Nature Methods team.

Reprints and permissions information is available at  
www.nature.com/reprints.

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-025-02854-5
https://doi.org/10.1038/s41592-025-02854-5
http://www.nature.com/reprints


Nature Methods

Article https://doi.org/10.1038/s41592-025-02854-5

Extended Data Fig. 1 | Scooby architecture overview. Neural network diagram. 
Green boxes denote trainable parameters, blue boxes depict frozen (non-trained) 
model parts. 524 kb of DNA sequence is processed by a LoRA augmented Borzoi 

stem with an additional MLP on the Borzoi embedding (left), whereas the single 
cell embedding is passed through a MLP (right) to predict the filter weights (red 
boxes) used to decode the sequence embedding.
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Extended Data Fig. 2 | Memory-efficient storage of single-cell RNA-seq 
data. Memory-efficient storage of single-cell RNA-seq data using a modified 
snapATAC2.0 format. Each row in the resulting sparse matrix represents a cell, 

and each column represents a genomic position. Reads are stored at their start 
positions with values indicating read length. Split reads are stored as multiple 
entries. Negative values indicate reads mapped to the negative strand.
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Extended Data Fig. 3 | Scooby predicted against observed counts for two representative cell types. Log-transformed predicted versus observed counts of scRNA-
seq reads overlapping exons for the worst (a) and best (b) predicted cell type.
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Extended Data Fig. 4 | Scooby predicts gene expression more accurately than seq2cells. a, Across-gene Pearson correlation for all cell types comparing scooby and 
seq2cells. b, Between-cell-type Pearson correlation after subtracting gene and cell mean gene expression comparing scooby and seq2cells.
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Extended Data Fig. 5 | Scooby model ablation studies. Performance comparison of alternative modeling approaches at predicting gene expression counts and 
binned profiles.
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Extended Data Fig. 6 | TF motif effect score comparison with scBasset. a, Pearson correlation of TF motif effect score with TF expression for scooby against scBasset. 
The gray area marks the zone of improvement. b, Same as a for a scooby trained on scRNA-seq only.
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Extended Data Fig. 7 | TF motif effect scoring allows the investigation of 
TFs and target gene regulation. a, Heatmap of TF motif effect scores for 
differentially expressed TFs for all cell types. Genes and cell types are clustered 
according to their TF motif effect scores. b, Heatmap of genes with high motif 

mutation effects of GATA1, KLF1 and TAL1 in the erythrocyte lineage. Genes are 
clustered according to their motif effect score. The three most significantly 
enriched GO terms for each cluster are shown. Gene names are only shown for 
genes ascribed to these terms.
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Extended Data Fig. 8 | Scooby test set performance for the Epicardioids and 
OneK1K datasets. Distribution of gene-level Pearson correlation between log-
transformed predicted and observed counts of scRNA-seq reads overlapping 

exons across cell types for the Epicardiods dataset (a) and the OneK1K dataset (c). 
Predicted against measured between-cell-type deviations of gene expression for 
the Epicardiods dataset (b) and the OneK1K dataset (d).
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Extended Data Fig. 9 | Variant effect prediction performance on GTEx whole 
blood eQTLs for seq2cells and Borzoi. a, Seq2cells predicted aggregated effects 
(log-fold change) vs. observed whole-blood eQTL effect sizes. Red dotted lines 
mark thresholds below which predicted fold-changes are deemed negligible 
(absolute fold change 3.5%; matching the threshold by Schwessinger et al. for 
comparability). Percentages quantify variants within each quadrant: blue - all 
variants; red - variants passing the 3.5% predicted effect threshold. b, Same as a, 

but for Borzoi. c, Proportion of concordant seq2cells eQTL predictions (same 
direction as observed), as a function of distance to the transcription start site 
when filtering for non-negligible predicted effect (red) or without filtering (blue). 
Dashed blue line indicates the mean proportion of concordant eQTL predictions 
across all distances (0.23). Stars indicate significance over random performance 
(Binomial test). d, Same as in c, but for Borzoi.
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Extended Data Fig. 10 | Example of a cell-type unspecific variant. a, Predicted 
fold change in gene expression (top) and accessibility (bottom) between the 
alternative and reference alleles of variant rs62032983 in CD14+ Monocytes 

and Erythroblasts. Sequence attributions revealed the destruction of an ELF1 
motif to affect model outputs across cell types (Methods). b, UMAP of observed 
normalized ELF1 expression levels.
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