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Abstract

Proteomic techniques now measure thousands of proteins circu-
lating in blood at population scale, but successful translation into
clinically useful protein biomarkers is hampered by our limited
understanding of their origins. Here, we use machine learning to
systematically identify a median of 20 factors (range: 1-37) out of
>1800 participant and sample charateristics that jointly explained
an average of 19.4% (max. 100.0%) of the variance in plasma
levels of ~3000 protein targets among 43,240 individuals. Proteins
segregated into distinct clusters according to their explanatory
factors, with modifiable characteristics explaining more variance
compared to genetic variation (median: 10.0% vs 3.9%), and fac-
tors being largely consistent across the sexes and ancestral groups.
We establish a knowledge graph that integrates our findings with
genetic studies and drug characteristics to guide identification of
potential drug target engagement markers. We demonstrate the
value of our resource by identifying disease-specific biomarkers,
like matrix metalloproteinase 12 for abdominal aortic aneurysm,
and by developing a widely applicable framework for phenotype
enrichment (R package: https://github.com/comp-med/r-
prodente). All results are explorable via an interactive web portal
(https://omicscience.org/apps/prot_foundation).
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Introduction

High-throughput plasma proteomics is now fuelling a new wave of
biomarker studies at unprecedented scale (Topol, 2024), but is
about to repeat the failures of decades of previous studies with very
few, if any, of thousands of tested candidates ever improving
clinical practice (Ioannidis and Bossuyt, 2017). The ever-expanding

content of proteomic assays, now surpassing half of the protein-
coding genome, further exceeds our ability to understand the
origins and relevance of the many proteins that are detectable but
have no established role in blood (Fig. 1A) (Uhlén et al,
2015, 2019).

Proteome-wide genome-wide association studies (Sun et al,
2023; Dhindsa et al, 2023; Eldjarn et al, 2023; Pietzner et al, 2021;
Sun et al, 2018; Suhre et al, 2021; Emilsson et al, 2018) provided
evidence that changes in plasma protein abundance can reflect
altered production in tissues and identified at least one protein
quantitative trait locus (pQTL) for most protein targets. Some
pQTLs explained jointly as much as 70% of the variance in plasma
levels (Sun et al, 2023; Pietzner et al, 2021) and they have been
widely advocated as instruments for causal inference or even to
impute the plasma proteome based on comparatively cheap
genotyping (Zheng et al, 2020; Zuber et al, 2022; Xu et al, 2023).
However, on average, pQTLs explain relatively little of protein
variation in plasma, partly because static germline genetic variation
does not capture dynamic adaptations that indicate early disease
states or worsening of conditions. Atlas-like efforts are now
emerging that statistically associate changes in plasma protein
levels with hundreds of diseases, ageing clocks, or health
characteristics (Deng et al, 2024; Garcia et al, 2024; Eldjarn et al,
2023; Meyer and Schumacher, 2024), but that do rarely translate
into biological knowledge or understanding of the factors that
underly disease associations or predictive models.

Here, we present a framework for the integration of multimodal
data to systematically identify factors, including characterisitics of
human health and disease but also technical measures, explaining
variation in plasma protein levels building on our previous work
(Carrasco-Zanini et al, 2024b). We demonstrate that a relatively
small number of factors (median: 20; range: 1–37) of all >1800
tested explain a considerable part of protein variation (>25% for
most protein targets) in plasma. Protein targets thereby segregated
into distinct clusters explained by indicators of human health but
also pre-analytical variation, such as accidental activation of
platelets, and identify proteins that are best explained by different
characteristics across the sexes and ancestral strata. We demon-
strate how the collective knowledge generated here integrated with
human genetic studies can guide the identification of disease-
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Figure 1. A coordinate system of plasma protein variation.

(A) Secretome assignment (Uhlén et al, 2019) for 2919 protein targets analysed in the present study. (B) Number and type of UK Biobank participant characteristics
considered in the study. (C) Stacked bar charts displaying the achieved variance explained for each protein target. Proteins are ordered by explained variance across all
factors. Colours indicate domains of explanatory factors. (D) Uniform manifold approximation and projection (UMAP) mapping of the variance explained matrix across
2853 protein targets for which we identified at least one feature explaining the variance in plasma levels. Each protein has been assigned a cluster based on k-means
clustering and is coloured accordingly. (E) Violin plots showing the explained variance across protein targets according to categories of selected characteristics. The centre
of each violin plot is a boxplot giving the median (white dot) and interquartile range. The boxplots were drawn using default options: lower whiskers= 25th percentile− 1.5
x interquartile range; upper whiskers= 75th percentile+ 1.5 x interquartile range; centre= 50th percentile (median); lower box bound= 25th percentile; upper box
bound= 75th percentile; minima and maxima represent the most extreme values and are plotted as outliers if exceeding whiskers. Explained variance distribution for a
total of 2919 protein targets are displayed. Data information: In (E), data were presented as boxplots, indicating median, interquartile range (IQR), and whiskers for >1.5
times IQR. Source data are available online for this figure.
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specific biomarkers and drug response markers from observational
studies. We create a resource that is publicly available to the
community to explore results (https://omicscience.org/apps/
prot_foundation/) and a statistical framework to implement
phenotype enrichment analyses in external studies (https://
github.com/comp-med/r-prodente).

Results

We identified 411 diverse, modifiable and non-modifiable,
participant and technical characteristics (out of a total of 1879;
Fig. 1B; Dataset EV1) to explain variation in plasma levels of one or
more of 2853 protein targets (97.7%; Dataset EV2) among 30,268
UK Biobank participants (54.1% female; 5.2% non-European) using
regularised linear regression models with stability selection
(Meinshausen and Bühlmann, 2009). A median of 20 character-
istics (range: 1–37) was selected across these protein targets and
cumulatively explained on average 19.8% (range: 0.0005–100.0%) of
variation in plasma protein levels in an independent validation set
(n = 12,972; Fig. 1C; Dataset EV3). The highest amount of variance
was explained for proteins actively secreted into blood (median of
25.5%) and those reliably detected using the assay technology
(median of 20.2% for 1990 proteins with ≤5% of values below the
limit of detection). The ability to reliably detect mRNA levels of the
protein-coding gene in one or more tissues was further associated
with a higher amount of explained variance. (Fig. EV1A–H).

We sought replication of our results in our previous work in a
different cohort (Carrasco-Zanini et al, 2024b). Despite differences
in the applied proteomic technology and available participant
characteristics, the total amount of explained variance was
significantly correlated (r = 0.28; p value ≤6.7 × 10−37) across 1968
protein targets measured on both platforms (Dataset EV4). The
correlation coefficient improved to 0.46 (p value ≤2.8 × 10−37)
among 699 protein targets that have been reported to correlate well
across proteomic technologies (Eldjarn et al, 2023), demonstrating
good generalisability of our results. Improvements in explained
variance by the present study were most strongly associated with
the inclusion of disease status (+14.4% per 1%-increase in
explained variance by disease status; p value ≤4.8 × 10−17),
genetically inferred ancestry (+8.5%; 1.3 × 10−31), or considering
parameters of general health (+18.4%; p value ≤9.8 × 10−7). Results
that demonstrated the importance of expanding the phenotypic
space compared to our pioneering work.

A coordinate system for plasma protein variation

Projecting the entire matrix of proteins times explaining factors
into a lower-dimensional space established a coordinate system
along which proteins segregated into eight distinct clusters that we
labelled according to shared major influences but also tissue and
cell-type origin (Fig. 1D). The largest cluster showed evidence for
enrichment by multiple explanatory factors, whereas remaining
clusters distinguished by at most a few or even single characteristics
explaining most of the variance in plasma levels of proteins within
the cluster (Dataset EV5; Fig. EV2). For example, one cluster
contained 617 protein targets that were strongly enriched for
participant and sample characteristics, indicating effects of
technical variation and contamination by blood cell activation.

For example, recruitment centre (beta: 0.18; p value <4.9 × 10−08;
mean explained variance (MEV): 1.82%) or plateletcrit (PCT) (beta:
1.73; p value <2.8 × 10−264; MEV: 7.2%) were most commonly
selected for those proteins (Fig. EV2K,L). Our findings are in line
with previous studies (Geyer et al, 2019; Yunga et al, 2022; Korff
et al, 2025) and are likely a result of platelet activation, and the
subsequent release of contained proteins into plasma (Yunga et al,
2022). Collectively, these results provide evidence, that protein
signatures in blood can be partly deconvoluted into distinct origins.
Modifiable participant characteristics thereby outweighted non-
modifiable ones, such as age, genetic sex, ancestry, or common
protein quantitative trait loci, on average (p < 7.5 × 10−47; two-sided
Wilcoxon rank-sum test; Fig. 1E).

Organ and cell-type contributions

Proteins circulating in blood have diverse origins, and we therefore
integrated gene expression data (Uhlén et al, 2015; Karlsson et al,
2021) to understand whether the selection of participant char-
acteristics can be explained by effects in certain tissues or cell types.
More than 80% (n = 2420) of all detected protein targets showed
evidence that the corresponding mRNA is preferentially expressed
in one or at most a few tissues or cell types, enabling enrichment
analysis in up to 13 tissues and 28 cell types (Dataset EV2). This
identified 94 characteristics significantly more frequently selected
for proteins with tissue or cell type-specific mRNA expression
(Figs. 2 and EV3; Dataset EV6, 7). Many of these enrichments were
likely driven by tissue or cell damage. For example, proteins with
enhanced mRNA expression in the liver, specifically hepatocytes,
were explained by medications with adverse hepatic effects such as
oral contraceptives (Kalman, 1969) (e.g. conjugated oestrogens;
odds ratio: 5.62; p value <3.3 × 10−18) or carbamazepine (odds ratio:
8.98; p value <1.3 × 10−13). Other medication associations more
likely represented effects on target organs/cells, such as proton
pump inhibitors and stomach (e.g. esomeprazole; odds ratio:
237.10; p value <3.9 × 10−15) or immune suppressants and immune
cells (e.g. azathioprine; odds ratio: 13.01; p value <2.3 × 10−16).

On a cell population level, we observed yet unreported links
between participant characteristics and proteins with enhanced
mRNA expression in fibroblasts that synthesise the extra cellular
matrix (ECM; Fig. 2). This included drug usage like beclometha-
sone dipropionate (odds ratio: 14.24; p value <4.0 × 10−9), diseases
like atrial fibrillation (odds ratio: 6.13; p value <2.7 × 10−9), but also
participant’s age (odds ratio: 2.88; p value <6.7 × 10−10), body mass
index (BMI; odds ratio: 3.49; p value <7.7 × 10−13) and genetically
inferred ancestry (odds ratio: 2.71; p value <7.2 × 10−9). These
results provide evidence that changes in plasma protein levels can,
to some extent, be explained because of adverse, but also
intentional, effects of drugs and diseases on specific tissues or cell
types.

Sex- and ancestral differential effects on the
plasma proteome

Genetically inferred ancestry (n = 1139) and genetically inferred sex
(n = 1199) were among the most frequently selected non-modifiable
participant characteristics. To better understand potentially differ-
ential or specific effects across ancestries (41,369 White Europeans,
849 British Africans and 823 British Central South Asians) and the
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sexes (23,601 females and 20,055 males), we repeated the feature
selection procedure separately within each of the groups.

We identified significantly lower levels of explained variance in
participants of British African (median: −5.07%; IQR: −12.64 to
−0.03%; p < 1.5 × 10−91) and to a much lesser extent British Central
South Asian ancestry (median: −0.03%; IQR: −4.36%–3.90%;

p < 1.3 × 10−2) compared to White Europeans. Results, that were, at
least among participants of British African ancestry, not entirely
explained by the lower sample size. We still observed a difference of
≥1.4% in explained variance in plasma levels for more than half of
the protein targets following matching for the number of selected
features across the White-European and British African cohorts
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Figure 2. Plasma proteins link cell types to indicators of health and disease.

Chord diagram of phenotype-associated protein signature enrichment among protein-coding genes with enhanced cell type expression (‘marker genes’). Each line
represents a significant enrichment (Fisher’s test; p < 2.9 × 10−6) of proteins associated with a participant characteristic among protein-coding genes with enhanced
expression in a cell type. Enhanced expression estimates were derived from single-cell RNA sequencing data in the Human Protein Atlas. Corresponding statistics can be
found in Dataset EV7. Associations with marker genes of fibroblasts have been highlighted by darker colours. Source data are available online for this figure.
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(IQR: −6.58–3.15%, p value <1.0 × 10−66; Fig. 3A,B) or when
rerunning feature selection in age- and sex-matched subsets of
Europeans with the same sample size (median: −2.62%; IQR:
−9.34–0.00%; p value <6.1 × 10−29).

The single strongest contributor of differential estimates of
explained variance in plasma protein levels across ancestries was
the contribution of cis- and trans-pQTL scores (Dataset EV8).
Possible explanations include that pQTLs are present at different
minor allele frequencies (MAF; Fig. 3C,D) across ancestries or may
have differential effects on protein levels. We identified 34 protein
targets for which frequency-enriched ancestry-specific lead signals
(non-overlapping haplotype blocks; Fig. 3E) accounted for strong
differences in explained variance. For example, the missense variant
rs2071421 (p.Asn352Ser) conferring arylsulfatase A (ARSA) pseudo
deficiency was most common in participants of British African
ancestry (MAFAFR = 38.1%) but less frequent in participants of

other ancestries (MAFEUR = 11.0%; MAFCSA = 14.8%) and accord-
ingly explained considerably more variance (65.8 vs 5.9%)
compared to the trans-ancestral-lead signal rs873697 (MAFAFR =
11.5%; MAFEUR = 4.4%; MAFCSA = 0.6%) in participants of British
African ancestry. However, most ancestral differential effects,
including 135 out of 137 cis-pQTLs, were due to the same pQTL
having different effect sizes across ancestries, with no other nearby
variant explaining those. The reason for the different effects of the
same genetic variant across ancestries remains to be established.

We lastly identified a few protein targets (n = 22) that were
much better explained (>4 s.d.) in one but not the other genetically
inferred sex (Fig. EV4A–C). We, however, noted that selected
participant characteristics differed for almost a third (n = 895) of
the protein targets (median Jaccard index = 0.56; Fig. EV4C),
indicating the need to consider sex-specific contributions to plasma
protein levels (Dataset EV9). Obvious examples included
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Figure 3. Summary of ancestral-stratified analysis.

(A) Comparison of the achieved explained variance in plasma proteins levels within White Europeans compared to British African participants. Proteins are coloured based
on cluster membership, and those with extreme differences are annotated. *The number of selected features has been matched with the smaller ancestry to account for
differences in the power of discovery. (B) Same as (A), but now comparing to participants of British Central South Asian ancestry. (C, D) Contrasting differences in allele
frequencies for cis-pQTL scores with changes in explained variance between White Europeans and British African (C, AFR) or British Central South Asian (D, CSA). (E)
Variance explained estimates for 34 cis-pQTLs with evidence for distinct ancestral-lead signals. Darker colours indicate the effect of the trans-ancestral signal, whereas
shades indicate the explained variance by the ancestry-specific lead signal. We note that the effect of ancestry-specific lead signals might be overestimated, since they
have not been selected from an independent cohort. Data information: In (A, B), point estimates were derived as variance explained (r2) from a multivariable linear
regression model; In (E), partial variance explained was computed for each genetic variant based on a multivariable linear regression model. Source data are available
online for this figure.
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medications (n = 1062 pairs, most frequently anticontraceptives)
and diseases (n = 30 pairs) given/occurring only in one sex, whereas
abundant sex-differential effects were explained by associations
with age, biomarkers, or body mass index (Fig. EV4D; Dataset EV9).
Notably, there were only a few examples of sex-differential genetic
effects, e.g. the cis-pQTL score for plasma oxytocin (OXT; female:
18.7%; male: 30.5%; p valueinter <2.8 × 10−48; Fig. EV4E).

Protein biomarker discovery and pruning for
incident diseases

We next systematically explored how our results can guide the
identification of plasma protein biomarkers in biobank-scale
studies. Among the 67,033 significant protein–disease associations
(p < 4.1 × 10−8) observed here and reported in other studies (Eldjarn
et al, 2023; Deng et al, 2024), we observed a more than 32-fold drop
after regressing out characteristics explaining variation in plasma
protein levels for 424 incident diseases (Fig. 4A; Dataset EV10).
Associations of more than two-thirds (1333 out of 2080) of protein
targets were almost completely attenuated. Even among the 1975
protein–disease associations with directionally concordant effects
and persisting significance, >80% (n = 1691) showed considerable
attenuation of effect sizes in Cox models (≥20%). This suggests that
more precise measurements of associated participant characteristics
are likely to lead to further statistical attenuation and indicate that
most protein–disease associations can be explained by common
participant characteristics (Fig. 4B). Notably, a >5-fold decrease in
the number of significant protein–disease associations was achieved
with as few as five selected characteristics (67,033 to 13,307),
demonstrating the importance of understanding and considering
protein determinants rather than solely statistical significance for
distinguishing biologically relevant from false positive findings and
type 1 errors.

Robust protein–disease associations included established clinical
screening markers such as prostate-specific antigen (referred to by
Olink as KLK3) for prostate cancer (HR 3.11; p value 5.3 × 10−254), and
markers of early tissue damage, such as the lung-specific surfactant
protein D (SFTPD) for post-inflammatory pulmonary fibrosis (Ikeda
et al, 2017), or the eye-specific protein crystallin beta B2 (CRYBB2) for
cataract (HR 1.41, p value 3.8 × 10−97). Less-established links with
strong effect sizes even after accounting for all selected phenotypic
characteristics included a 2.3-fold increased risk (p value 1.1 × 10−38)
for abdominal aortic aneurysm (AAA) per 1 s.d. increase in plasma
levels of matrix metalloproteinase 12 (MMP12) (Figs. 4B and EV5). A
putative role of MMP12 in the progressive degradation of the ECM at
the aortic wall, a hallmark of AAA, was thereby supported by multiple
lines of evidence. Firstly, we obtained evidence that the same genetic
variant (rs17368814) that increases plasma MMP12 levels by acting on
its protein-coding gene also increased the risk for AAA (Posterior
probability shared genetic signal: 97.5%; Mendelian randomisation
estimate: hazard ratio = 1.15; p value = 3.3 × 10−16; Fig. EV6), providing
support that changes in plasmaMMP12 precede AAA onset. Secondly,
MMP12 was elevated among patients diagnosed with AAA even after
adjustment for all factors explaining MMP12 levels (beta = 1.09 s.d.
units, p value <2.1 × 10−21), potentially indicating ongoing degradation
of the ECM. Thirdly, our observational findings are in line with
experimental evidence linking matrix metalloproteinases to the onset
and progression of AAA (Hellenthal et al, 2009), with MMP12 being

highly expressed at disease sites and suggested to contribute to the
degradation of elastic fibres and hence weakening and dilation of the
aortic wall (Curci et al, 1998). These findings seem to be context-
specific, since pharmacological inhibition of MMP12 protected Apoe−/
− deficient mice from AAA (Di Gregoli et al, 2024), while,
paradoxically, Mmp12−/−/Apoe−/− mice were more susceptible to
AAA and subsequent rupture (Salarian et al, 2023).

Identification of putative protein biomarkers has previously
been proposed using genetic imputation (Xu et al, 2023), suggesting
that measuring common genomic variation can proxy measure-
ment of plasma protein levels and hence guide tailored biomarker
assessment. However, even scaled to the power of the entire UK
Biobank cohort, we observed little overlap between associations
with genetically imputed and measured plasma protein levels,
including those that we robustly linked to disease outcomes
(Fig. 4C,D; Dataset EV10). For example, the five most significant
genetically proxied protein–disease associations were not among
the twenty most strongly associated measured protein–disease
associations for two-thirds of all diseases considered (268 out of
419). This included not only strongly differing effect estimates, and
hence power to identify people at high risk early, but also
discordant results whether considering cis- or trans-pQTLs for
imputing plasma protein levels (Fig. 4C,D).

A protein foundation community resource

Most plasma proteomic studies are done at a small scale, with often
incomplete metadata on participants, adding to the complexity of
the unknown sources of variation of most plasma proteins. We
therefore developed a phenotype enrichment framework that allows
us to test for significant enrichment (correcting for multiple testing
using the Bonferroni procedure) of participant characteristics
otherwise hidden in differentially expressed plasma proteomic
signatures (https://github.com/comp-med/r-prodente).

As a proof of principle, we observed proteins associated with the
UKB characteristic ‘fasting time’ to be more than 90-fold enriched
(odds ratio: 91.0; p value <1.6 × 10−5; Fig. 5A) among proteins
significantly different following one day of complete caloric
restriction in a well-controlled intervention study (Pietzner et al,
2024). However, a similar enrichment of a protein signature linked
to plasma bilirubin was not reported due to missing measurements
but resembles the well-known increased reuptake of bilirubin via
the enterohepatic cycle due to lower gut motility during prolonged
fasting (Gambino, 1972; Barrett, 1971).

Another important application of phenotype enrichment is the
discovery of unknown confounders or imperfect matching in
biomarker studies. For example, we observed a more than twofold
enrichment of proteins associated with smoking among those
differentially expressed between patients with ovarian carcinoma
and selected controls (Qian et al, 2024) (Fig. 5A). Accordingly,
smoking status was among the top three variables explaining
plasma variation in the most differentially expressed proteins in
patients with cancer, Kunitz-type protease inhibitor 1 (SPINT1)
(3.0%; Fig. 5B). We observed similar residual phenotypic enrich-
ments, including smoking or socioeconomic factors, in a plasma
proteomic model to predict future coronary artery disease
(Helgason et al, 2023) (Fig. 5B), or among recently proposed
proteomic organ clocks (Oh et al, 2023). Those proxying pancreatic

Molecular Systems Biology Maik Pietzner et al

6 Molecular Systems Biology © The Author(s)

D
ow

nloaded from
 https://w

w
w

.em
bopress.org on O

ctober 23, 2025 from
 IP 146.107.213.240.

https://www.ncbi.nlm.nih.gov/snp/?term=rs17368814
https://github.com/comp-med/r-prodente


or intestinal age being enriched for established markers of muscle
mass (odds ratio: 28.3; p value:3.6 × 10−10) or fasting time (odds
ratio: 28.2; p value <1.6 × 10−9), respectively (Fig. 5C).

Most notably, all studies showed strong depletion of proteins
associated with technical characteristics, such as study centre,
suggesting that protein biomarkers emerging from well-controlled

settings are less likely to be driven by analytical artefacts. However,
in study designs with separate blood sampling of patients and
controls, such as in the blood disease atlas from the Human Protein
Atlas project (Uhlén et al, 2015), we observed strong enrichment of
such characteristics, dominating biologically plausible findings
(Fig. EV7).
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Figure 4. Protein–incident disease associations.

(A) Summary of associations between plasma protein levels (x-axis indicated by the position of the protein-coding gene) and one or more of 424 diseases in UK Biobank
using Cox-regression models passing multiple testing corrected statistical significance (Cox-proportional hazard model; p < 4.1 × 10−8). Each dot represents an association
passing multiple testing, and black dots indicate those persisting after regressing out factors that explained plasma protein variation. The top panel illustrates the fraction
of disease associations per protein that were still significant after accounting for associated protein characteristics, similar to the right panel for diseases. Proteins or
diseases with minimal effect attenuation were annotated. (B) Scatterplot comparing hazard ratios per 1 s.d. increase in protein levels from Cox-regression models adjusting
for age and sex, or additionally accounting for factors explaining variation in plasma protein levels. Only protein–disease associations passing multiple testing corrected
statistical significance in at least the minimal model are shown and coloured according to significance and effect attenuation in the extended model. (C, D) Scatter plots
opposing effect estimates for significant (see legend for p value threshold) protein–disease associations comparing those using measured plasma protein levels (x-axis;
n= 43,647) to those based on genetically imputed plasma protein levels in the entire unrelated White-European UKB cohort (y-axis; n= 342,240). Data information: In
(A–D), each dot reflects a significant association between plasma protein levels and disease onset based on Cox-proportional hazard models. Exact p values and
association statistics can be found in Dataset EV10. Source data are available online for this figure.
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A knowledge graph to triangulate evidence
for clinical impact

We finally integrated results from the multivariable variance
estimation with drug target annotations, pQTLs and potential
effector genes, along with genetic disease associations within a
shallow knowledge graph to visually and dynamically illustrate

examples of potential clinical impact (Fig. 6A; Datasets EV11, 12).
This included 34 examples in which plasma protein levels might act
as readouts of successful drug target engagement (Fig. 6B). We
identified those as subnetworks that link high-confidence drug–
protein associations from the present study with genetic variants
that mimick drug target modulation by changing the expression or
function of the drug target and are associated with the same
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Figure 5. Phenotype enrichment of plasma proteomic signatures.

(A) Phenotype enrichment for plasma proteomic signatures that (1) differed after one day of complete caloric restriction, (2) differentiated healthy women from women
with ovarian cancer (Qian et al, 2024) and (3) a proteome score to predict the onset of coronary artery disease CAD (Helgason et al, 2023). Enrichment was computed
using Fisher’s exact test, and only factors passing corrected statistical significance are shown (Bonferroni correction). (B) Factors explaining variance in plasma levels of
serine peptidase inhibitor, Kunitz-type 1 (SPINT1), one of the most differential plasma proteins described for ovarian cancer. Values were derived from 23,067 female UKB
participants. Error bars represent the 2.5th and 97.5th percentiles from 200 bootstrapping iterations to compute the explained variance. (C) Phenotype enrichment among
plasma proteomic signatures proposed to track organ age (Oh et al, 2023). Data information: In (A, C), enrichment statistics were derived based on Fisher’s exact test; In
(B), partial variance estimates were derived from a multivariable linear regression model. Source data are available online for this figure.
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protein(s) (Fig. 6B). For example, plasma levels of desmoglein 2
were explained by pioglitazone intake (0.2%, beta = 1.02 s.d. units, p
value = 3.7 × 10−39) and the corresponding pQTL, rs1801282
(beta = 0.06; p value <1.4 × 10−12), maps to PPARG encoding the
pioglitazone target peroxisome proliferator-activated receptor
gamma. Other such examples included plasma oxytocin as a
readout for oral contraceptives or adiponectin as a readout for
atenolol treatment. The latter had previously been suggested from
small-scale trials in a specific target population (Pöyhönen-Alho
et al, 2008), whereas a role of desmoglein 2 in the regulation of
beta-cell activity has been proposed only recently (Myo Min et al,
2022).

In general, enrichment of proteins differentially expressed in
disease states for associations with germeline genetic variants, i.e.

pQTLs, can point to causal relationships. We observed 595 protein
- disease/medication examples with significant support from
enrichment analysis (Datasets EV13, 14). For example, cystatin
E/M (CST6), endonuclease, poly(U) specific (ENDOU), and
galanin (GAL) were associated with acne in our study (e.g.
galanin: beta = 0.27 s.d. units, p value <1.2 × 10−13) and six
independent pQTLs, which themselves have been reported to
increase the risk for acne (Fig. 6C; Dataset EV13). The robust link
between acne and the neuropeptide galanin aligns with its
expression in non-neural tissues such as skin (Kofler et al,
2004), where it can modulate inflammation in a context-specific
manner (Lang et al, 2015). Although no link to acne has been
made so far. Similar triangulation with medication intake provided
further strong support for the role of platelet modulation on the

Diseases
Drugs
Protein
SNP
Gene

Drug target engagementBA SNP - Gene - Protein - Drug - Disease Knowledge Graph

Interactive version https://omicscience.org/apps/prot_foundation/

c Selected drug/disease profiles

Figure 6. Integrated knowledge graph of gene, protein, drug and disease relationships.

(A) Full knowledge graph connecting single-nucleotide polymorphisms (SNPs – pQTLs) to proteins and diseases from previous publications (Sun et al, 2023) and the
GWAS catalogue (Buniello et al, 2019). Each SNP association represents a genome-wide significant finding. Drugs were mapped to target genes based on Open Targets
(Ochoa et al, 2023). Protein–disease and protein–drug associations were derived from the present study. The graph was visualised using Cytoscape v.3.10.3. (B, C) Specific
subnetworks derived from the knowledge graph illustrating evidence for drug target engagement markers (B) by linking pQTLs to drug target genes, and non-random pQTL
—drug protein profiles (C). An interactive version of (A) can be found at https://omicscience.org/apps/prot_foundation/. Source data are available online for this figure.
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plasma proteome, with 41 genetic loci being significantly enriched
for proteins associated with the intake of the antiplatelet
medication clopidogrel, almost all of which have been previously
linked to platelet characteristics (Dataset EV14). We observed
similar convergence of protein profiles for genetic predisposition
to and effects of drugs prescribed for osteoporosis (e.g. bispho-
sphonates like alendronic acid linked to five independent pQTLs)
or gastric ulcers (e.g. proton pump inhibitors like rabeprazole
linked to three independent pQTLs) (Fig. 6C), providing new
avenues to understand drug effects. An interactive version of the
knowledge graph can be explored in a customised fashion to
identify other such examples (https://omicscience.org/apps/
prot_foundation/).

Discussion

Deep phenotyping of biobank-sized cohorts now provides unpre-
cedented opportunities to identify novel protein biomarkers for
common and rare diseases (Carrasco-Zanini et al, 2024a) and to
inform drug target discovery (Sun et al, 2023). However, emerging
production-type protein biomarker association analyses are already
repeating failures of decades of biomarker research, as they rarely
translate into actionable knowledge. We created a data-driven
model of plasma protein variation that revealed cell type-specific,
but also systemic effects and provides a foundation to understand
how variation in blood protein levels is linked to human health. We
demonstrated its importance in several ways, including biomarker
identification for the onset of severe diseases, drug target
engagement markers, and as a community resource to complement
pathway enrichment analysis, providing otherwise unattainable
insights. We created a community resource to enable interactive
exploration (https://omicscience.org/apps/prot_foundation/) and
incorporation in plasma proteomic workflows (https://
github.com/comp-med/r-prodente).

Although not directly comparable, we prioritised ten times less
protein–phenotype combinations (~50,000 vs >500,000) compared
to similar efforts within UKB (Eldjarn et al, 2023; Deng et al, 2024)
emphasising the need to consider and quantify the effect of
different factors simultaneously rather than in isolation to
overcome confounding. Only such an increase in the specificity
of phenotype–protein associations enabled tangible phenotype
enrichment analysis, and subsequently the identification of
disease-specific biomarkers that are not only statistically significant,
but relevant. The same applies to the considerable amount of
sharedness of protein–disease associations proposed previously
(Deng et al, 2024), which we demonstrated to be largely driven by
known phenotypic characteristics. Notably, phenotype enrichment
analysis of sparse predictive biomarker signatures previously
derived by our group (Carrasco-Zanini et al, 2024a) showed no
evidence for widespread enrichment of phenotypic characteristics.
It rather pointed to tissue damage markers or refinement of
imprecise phenotypic risk factors such as smoking or socio-
economic status (Dataset EV15). At the same time, we provided
evidence that purely genetically-anchored strategies (Xu et al, 2023)
are unlikely to discover powerful protein biomarkers as they lack
the dynamic component.

Including >1800 participants and technical characteristics
explained on average about a quarter of the variance in plasma
protein levels across the population. Based on our findings, we
hypothesise that factors we had not considered or were not assessed
in the UK Biobank will likely substantially increase the explained
variance for at most few targets. Significant improvements in the
explained variance across all protein targets are more likely to be
achieved by improving assay performance and sample handling,
but also by measuring exposures more precisely. For example,
quantifying the individual exposure to environmental pollutants
instead of regional measures or quantifying drug exposure using
dosages instead of self-report.

While we were underpowered to quantify ancestral-differential
effects at scale, the proteins we identified were either explained by
varying effect allele frequencies or differential effect sizes of the
same genetic variant across ancestries. The former explains
ancestral-enriched or even specific phenotypic consequences, such
as for beta-thalassaemia, whereas the latter likely indicates the
presence of yet to be identified gene–environment interactions.
Larger studies are needed to establish the transferability of our
results to different population subgroups to ensure equitable
biomarker research.

Pathway enrichment has been transformative in genome-wide
differential gene expression studies to enable interpretation of
otherwise massive gene lists and has been almost seamlessly
adopted for proteomic studies. While such analyses can guide tissue
or single-cell studies, proteins found in plasma are of diverse origin,
making the interpretation of such findings difficult and possibly
even misleading. We demonstrated across different applications,
how our results can guide the interpretation of plasma protein
biomarker studies, including novel insights but also pitfalls when
differences in sample handling coincide with case–control compar-
ison. Future extensions may incorporate different proteomic
technologies and biofluids to enable widespread application.

The advances of our study have to be considered according to a
number of limitations. Firstly, our results remain restricted to the
selection and precision of measurements of participant and sample
characteristics. Other data modalities, such as imaging of organs or
exposure to different environments or controlled challenge studies,
will likely reveal additional contributions to the plasma proteome.
Secondly, we cannot entirely rule out that selected participant
characteristics may only approximate truly underlying reasons for
variation in plasma protein levels, and that observed associations,
even if pertaining to statistical significance in multivariable linear
regression models, do not necessarily represent causal associations.
Thirdly, we observed evidence that variation in plasma levels of
proteins close to the limit of detection were less well explained,
suggesting that more sensitive techniques for such protein targets
may improve estimations of explained variance. Lastly, while cis-
pQTLs provide reassurance in assay specificity, we cannot
completely rule out that comparatively high amounts of variance
explained by such cis-pQTLs might be the result of measurement
artefacts. This may imply that variance estimates for such targets
therefore relate to a specific isoform of the protein target. However,
our approach to mutually model genetic and non-genetic effects
delivered reliable estimates for the latter, even if the genetic part
might have been inflated.

Molecular Systems Biology Maik Pietzner et al

10 Molecular Systems Biology © The Author(s)

D
ow

nloaded from
 https://w

w
w

.em
bopress.org on O

ctober 23, 2025 from
 IP 146.107.213.240.

https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fomicscience.org%2Fapps%2Fprot_foundation%2F&data=05%7C02%7Cm.pietzner%40qmul.ac.uk%7Cae2ab732d2354a3241b508dd106ab6b4%7C569df091b01340e386eebd9cb9e25814%7C0%7C0%7C638684772756217217%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=PDtjNL0aTANTUTL3A2XUSHqGVwqqdyXt8F1%2BhkD2Vuo%3D&reserved=0
https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fomicscience.org%2Fapps%2Fprot_foundation%2F&data=05%7C02%7Cm.pietzner%40qmul.ac.uk%7Cae2ab732d2354a3241b508dd106ab6b4%7C569df091b01340e386eebd9cb9e25814%7C0%7C0%7C638684772756217217%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=PDtjNL0aTANTUTL3A2XUSHqGVwqqdyXt8F1%2BhkD2Vuo%3D&reserved=0
https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fomicscience.org%2Fapps%2Fprot_foundation%2F&data=05%7C02%7Cm.pietzner%40qmul.ac.uk%7Cae2ab732d2354a3241b508dd106ab6b4%7C569df091b01340e386eebd9cb9e25814%7C0%7C0%7C638684772756217217%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=PDtjNL0aTANTUTL3A2XUSHqGVwqqdyXt8F1%2BhkD2Vuo%3D&reserved=0
https://github.com/comp-med/r-prodente
https://github.com/comp-med/r-prodente


Methods

Reagents and tools table

Reagent/
resource Reference or source

Identifier or
catalogue number

Experimental models

N/A

Recombinant DNA

N/A

Antibodies

N/A

Oligonucleotides and other sequence-based reagents

N/A

Chemicals, enzymes, and other reagents

N/A

Software

R v.4.3.0 https://cran.r-project.org/

Python
v.3.1

https://www.python.org/

Bgenix
v.1.0

https://enkre.net/cgi-bin/code/bgen/
doc/trunk/doc/wiki/bgenix.md

Qctool
v2.0.7

https://www.chg.ox.ac.uk/~gav/qctool_v2/
documentation/changes.html

Cytoscape
v3.10.3

https://cytoscape.org/

Other

N/A

Study participants

UKB is a large-scale, population-based cohort with deep
genetic and phenotypic data, with the full cohort consisting of
~500,000 participants aged 40 to 69 years at the time of
recruitment and has been described in detail elsewhere (Sudlow
et al, 2015). We used the subset of individuals from UKB where
both genotype and proteomic measurements were available after
excluding ancestry outliers or samples which have failed genomic
or proteomics quality control (n = 43,240). This research has been
conducted using the UK Biobank Resource under Application
Number 44448.

Proteomic measurements

We used plasma proteomic measurements provided by UKB as
described in detail elsewhere (Sun et al, 2023). After initial quality
control checks (e.g. principal component analysis), we only
retained individuals with at least 50% valid protein measurements
(n = 43,240). Notably, UKB provided proteomic data with values
flagged as assay warnings by Olink as ‘NA’, which meant that each
protein measurement had differing numbers of valid values, and we
decided not to impute values for the purpose of this study to
minimise skewed estimates of features. We included a total of 2919
unique protein targets in our analysis.

Phenotyping

We collated a large set of phenotypic and sample characteristics
available for at least half of the UKB participants (Dataset EV1).
Those included information on genetically inferred ancestry (see
below), basic demographics (e.g. age and sex, n = 5), blood-based
biomarkers (e.g. low-density lipoprotein cholesterol, n = 28), blood
cell counts (n = 29), body composition (n = 20), indicators of bone
health (n = 7), cardiovascular risk factors (n = 3), diet (n = 23), pre-
existing diseases (n = 1198), self-reported medication intake
(n = 704), generic indicators of health (n = 4), indicators of
pulmonary health (n = 8), information on air pollution (n = 10),
socioeconomic indicators (n = 9), and technical variables (n = 5),
following pruning as described below.

Measurement of blood-based biomarkers had been described in
detail previously (Sinnott-Armstrong et al, 2021), and we further
implemented standard quality control procedures to avoid strong
influences of single values. We removed values more than five times
the median absolute deviation away from the respective sample
median (median of ≤0.05% values removed). Biomarkers with
strong indications of skewed distributions were log-normalised
(similar to protein values). We applied a similar quality control
workflow to blood cell counts. We obtained information on when
the blood sample was taken during the day, the age of the sample
when proteomics measurements were done, and the duration since
the last meal (‘fasting time’) as technical variables.

We compiled additional measures of body composition by
augmenting Dual-X-ray predictions of lean and fat mass using
equations provided by Powell et al (Powell et al, 2020) for each sex
separately. In addition, we computed the waist-to-hip ratio as a
common, readily available measure of body composition.

To identify participants with pre-existing diseases, we collated
information from ICD-coded self-reports, hospital episode statis-
tics, cancer registry, and primary care (for 45% of the population).
We parsed all records to exclude codes with a recorded date before
or within the year of birth of the participant to minimise coding
errors from electronic health records. We mapped different coding
systems to a total of 1198 ‘phecodes’ that represent medical
ontology terms intended to reduce redundancy among ICD-10
coding systems (Bastarache, 2021). We recorded the earliest
occurrence of each ‘phecode’, referred to hereafter as ‘disease’ for
simplicity, and created binary variables indicating whether it had
been recorded before the baseline examination of the volunteer.

We obtained mappings of self-reported brand names to ATC
codes from previous work to generate corresponding medication
variables (Wu et al, 2019). We kept a total of 704 unique ATC
codes mapping to medications taken by ten or more participants.

If not otherwise indicated, information was derived from basic
questionnaires or the data portal (e.g. dietary habits and blood
pressure readings) with minimal cleaning. We obtained regional
lead variants explaining variation in plasma protein levels from
the trans-ancestral meta-analysis performed by Sun et al (Sun
et al, 2023) to compute cis- and trans-pQTL scores, which also
served as genetically imputed protein levels. We used the
regression estimates provided to compute a weighted genetic risk
score for each individual for each protein with at least one
reported pQTL.

After initial data collation, we filtered for variables with a
correlation coefficient <0.85, retaining among highly correlated
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variables the one with the least missing values or manually curated
to maintain interpretability. This left us with a total of 1876
variables. Since feature selection required a complete data matrix,
we imputed missing values in phenotypic data using random forest
models that can cope with a mixture of different data types better
than usual linear regression techniques (Stekhoven and Bühlmann,
2011). We used all selected phenotypic features for imputation,
even if they had no missing values, to ensure the best predictive
models for imputation. We further imputed the entire data set
before splitting into sets for feature selection and variance
estimation to ensure coherent estimates. We implemented these
using the R package miceRanger (v.1.5.0). To ensure reasonable
computation times, we performed imputation only once.

Genotyping and ancestral assignment

We obtained genetic variants from imputed genotype information
as described in detail elsewhere (Bycroft et al, 2018). We used the
ancestry assignments as defined by the pan-UKB (Karczewski et al,
2024), and further assigned unclassified individuals to their
respective ancestries based on a k-nearest neighbour approach
using genetic principal components.

Statistical analysis

To select approximately independent participant and sample
characteristics that may collectively best explain variation in
plasma protein levels, we implemented stability selection (Mein-
shausen and Bühlmann, 2009) and subsequent variance partition
(Friendly, 2007). We first split UKB into a set for feature selection
(70%) and used the R package stabs (v.0.6.4) to implement feature
selection using regularised linear regression with the least absolute
shrinkage and selection operator (LASSO). We controlled the upper
bound per-family error rate at 1, used a cut-off of 0.75, and a
maximum of 500 iterations. We controlled the output from stability
selection by introducing 10 random variables, but observed
consistent behaviour across the study (i.e. random variables were
not selected as important). Based on the features selected, we next
performed variance decomposition on 200 bootstrap samples of the
remaining UKB set not used for feature selection (30%) and
computed the partial explained variance using the etasq() function
of the heplots R package (v.1.7.5) as recommended previously
(Garcia et al, 2024). We finally used the median of variance
estimates across all 200 bootstrap samples as an estimate for the
explained variance in plasma protein levels and provide the 2.5th
and 97.5th percentils as confidence intervals.

We repeated the same procedure using different strata of UKB
(biological sexes and genetically inferred ancestry). To establish
whether differentially selected features indeed corresponded to
differential effects across strata, we additionally implemented
interaction testing by performing linear regression analysis with
the respective protein target as outcome and including the strata,
the differentially selected feature, as well as an interaction effect
between both as explanatory variables. We subsequently report
strata-differential effects if the p value for the interaction term
passed multiple testing correction. This test was only done for
variables not specific to only one of the strata, e.g. no interaction
analysis was done for the selection of oral contraceptives across the

genetically inferred sexes. We further created four different
subsamples of the White-European cohort to match the sample
sizes of British African and British Central South Asian
participants, accounting for age and sex distributions, and repeated
the entire feature selection. We took the median of the explained
variance across all four subsamples as a summary measure.

To understand whether protein characteristics may have
contributed to different levels of explained variance, we collated
information for all protein targets from UniProt via the R package
queryup (v.1.0.5) as well as the Human Protein Atlas (Fig. EV1).
We binarized information of protein characteristics from UniProt
to facilitate numeric analysis. We further computed summary
measures of plasma protein level distributions based on untrans-
formed NPX values. We then used Boruta feature selection (Kursa
and Rudnicki, 2010) to identify protein characteristics significantly
explaining variation in the levels of explained variance across
protein targets based on the entire UKB cohort. We used standard
parameters apart from setting the maximum number of iterations
to 500, to ensure decisions on most characteristics.

We used uniform manifold approximation and projection
(UMAP) to visualise any potential underlying structure in the
plasma proteome according to factors contributing to the explained
variation in plasma protein abundances. UMAP is a dimensionality
reduction technique which enables better preservation of the data’s
global structure compared to similar methods such as t-SNE. We
applied UMAP on the matrix of explained variation by all
participants, environmental and technical characteristics on all
protein targets. We used default values for most parameters used by
the algorithm in the UMAP R package. Custom configuration was
done for the following parameters as follows: random_state (seed
for random number generator) = 10, metric = 'pearson', n_epochs =
1000, init = 'random'.

To establish clusters of protein targets, we implemented a
k-nearest neighbour clustering based on the full variance explained
matrix, but excluding features selected ≤10 times to reduce
dimensional burden. We selected the number of clusters by visual
inspection of the UMAP mapping and corroborating with marker
analysis using hurdle models. The latter was implemented using the
zeroinfl() function of the pscl R package (v.1.5.9), and we modelled
the cluster assignment as exposure and the explained variance by
phenotypic characteristics as count data to account for thresholding
of the explained variance between 0 and 100 and an inflation of
zeros (i.e. characteristics not being selected).

Researchers were not blinded to the outcome variables (protein
levels) to enable downstream analysis.

Ancestral differential variants

For each cis-pQTL with significant evidence for ancestral-
differential effects, we obtained ancestral-specific GWAS results
(Sun et al, 2023) and retained the strongest regional variant for
further testing (±500kb). We declared an effect as ancestry-specific,
if the regional lead variant within the ancestry was not included
among a list of highly correlated genetic variants with the other
ancestral regional lead variants (r2 > 0.1), basically testing for
overlapping haplotypes across ancestries. We subsequently tested
each ancestral regional lead variant for effects in other ancestries
and computed the explained variance. We further tested, whether
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the association between the variant and the corresponding protein
differed by ancestry (significant interaction effects). The latter was
important to establish whether different amounts of explained
variants across ancestries were due to different allele frequencies or
differential effect sizes of similarly frequent alleles.

Generation of a knowledge graph

We generated a shallow knowledge graph to facilitate triangulation
of evidence for potential causal relationships. The graph contained
a total of 30,068 edges and 6591 nodes. Nodes included protein
targets, pQTLs from Sun et al (Sun et al, 2023), genes (either drug
targets or effector genes for pQTLs), drugs (based on ATC codes in
the present study), and diseases. We linked proteins to diseases
(protein–disease) and drugs (protein–drug) based on evidence from
the present study. We included edges linking pQTLs to proteins,
and further linked pQTLs to diseases based on overlap with
variants with genome-wide significance (r2 ≥ 0.8; p < 5 × 10−8)
reported in the GWAS catalogue (download: 22/05/2025). We
retained only entries from the GWAS catalogue that we could
match to diseases defined in the UK Biobank by linking
Experimental Factor Ontology (EFO) terms to ICD-10 codes using
the EMBL-EBI API. We obtained information from Open Targets
(Ochoa et al 2023) to map drugs to targets (genes) and restricted
drugs to the once available in UK Biobank by mapping CHEMBL
identifiers to ATC codes. We finally used effector gene assignments
from Sun et al. (Sun et al, 2023) to link pQTLs to effector genes. We
implemented a user-friendly interactive version of the knowledge
using Python. More specifically, we implemented the knowledge
graph using the NetworkX Python package (Hagberg et al, 2008)
(v.3.3), and we enabled the knowledge graph to be interactively
accessible using the Pyvis Python package (Perrone et al, 2020)
(v.0.3.1). Notably, we customised the JavaScript generated by Pyvis
to enhance the functionality of the interactive knowledge graph,
allowing the users to obtain information about the neighbourhood
of the selected node and the shortest cycle path associated with it,
computed using the breadth-first search algorithm.

Protein–incident disease analyses

We systematically investigated prospective associations of protein
targets with 424 diseases with more than 200 incident cases during
a follow-up time of 10 years. For each protein–disease pair, we
employed separate Cox-proportional hazards models to model the
associations between baseline plasma protein levels and the time-
to-event, adjusting for age and sex of the participant. In case of sex-
specific diseases, we used only the relevant subset of the population.
We computed and compared Cox models with protein levels in two
different forms, i.e. crude protein levels and residuals of proteins
after regressing out identified explanatory factors. For each protein,
we ran a multivariable linear model including all selected
characteristics as explanatory variables and subsequently used the
residuals (the fraction of variation in protein levels not explained)
from this model as updated exposure in Cox models. We computed
similar residual plasma protein levels accounting for the top 3, 5, 10
and 15 selected features. We entered the protein levels as
continuous variables after performing rank inverse normal
transformation for each predictor to ensure comparability of

results. Hence, we report hazard ratios along with standard errors
per increment in one standard deviation for each protein. To
account for potential reverse causality, we excluded cases that
occurred during the first 6 months. We considered associations
significant when p < 4.0 × 10–8 = 0.05/(2919 proteins × 424 diseases).
We computed time-varying effects for each protein–disease
association by computing Schoenfeld residuals, as well as by
restricting follow-up time to 2, 5 and 10 years. We used the R
package survival (version 3.7.0) for these analyses.

Mapping to tissues and cell types

We programmatically downloaded tissue expression data from the
Human Protein Atlas (HPA) for all Olink proteins in JSON format
(on 20.03.2024). We performed a two-sided Fisher’s exact test to
determine whether any participant characteristic was selected ≥5
times across all proteins, whether there was an enrichment of
associated protein targets for those showing specific expression of
corresponding mRNA levels in certain tissues or cell types. We
defined tissue- or cell-type-specific as ‘enhanced’, ‘enriched’ or
‘group enriched’ according to HPA classification. We further
performed a two-sided Fisher’s exact test to determine whether
proteins predicted to be secreted according to the HPA annotation
were significantly enriched among any of the clusters of proteins
explained by the same biological influence.

A phenotype enrichment framework

To enable phenotype enrichment, we first collated all results across
all strata (i.e. all participants, the sexes, and the three ancestries)
tested into one results file (Dataset EV3). For each stratum, we then
implemented Fisher’s exact test to test for an enrichment of a
specified list of protein targets among protein signatures associated
with participant and sample characteristics tested in our work. In
other words, for a given list of proteins, we ask the question
whether there are participant characteristics more frequently
selected than by chance to explain variation in their plasma levels.
We restricted enrichment tests to participant and sample
characteristics with at least five associated, e.g. selected, protein
targets. We used dot plots to visualise results. All analyses have
been implemented in the R package prodente (https://github.com/
comp-med/r-prodente) for dissemination. For plasma proteomic
studies not using the Olink Explore 3072 platform, we used a
specific background list of shared protein targets to minimise bias
from differences in proteomic coverage. For the purpose of
enrichment tests, we obtained the lists of differentially expressed
or selected proteins as proposed by the authors of respective
studies.

The synopsis graphic was created with BioRender.com

Data availability

The computer code and results produced in this study are available
in the following databases: Modelling computer scripts: GitHub
(https://github.com/comp-med/protein-foundations-ukb-olink-
50k). Results can be obtained from https://omicscience.org/apps/
prot_foundation/.
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The source data of this paper are collected in the following
database record: biostudies:S-SCDT-10_1038-S44320-025-00158-6.

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44320-025-00158-6.
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Expanded View Figures

Figure EV1. Summary of protein and assay characteristics associated with the variance explained achieved in plasma protein levels.

(A) Variable importance of protein and assay characteristics based on Boruta feature selection, predicting the variance explained achieved for each protein target. Boxplots
indicate the distribution of the variable importance across 500 iterations. Darker colours indicate features passing corrected statistical significance (p < 0.01). Analysis
included a total of 2853 protein targets for which at least one feature that explained variation in plasma levels could be identified. Boxplots were drawn using default
options: lower whiskers= 25th percentile− 1.5 x interquartile range; upper whiskers= 75th percentile+ 1.5 x interquartile range; centre= 50th percentile (median); lower
box bound= 25th percentile; upper box bound= 75th percentile; minima and maxima represent the most extreme values and are plotted as outliers if exceeding whiskers.
(B) Scatterplot opposing the skewness of individual plasma protein distributions with the variance explained. (C–H) Variance explained according to different criteria
deemed important by the Boruta feature selection. Displayed and explained variance values for a total of 2853 protein targets for which at least one feature that explained
variation in plasma levels could be identified. Boxplots were drawn using default options: lower whiskers= 25th percentile – 1.5 x interquartile range; upper
whiskers= 75th percentile+ 1.5 x interquartile range; centre= 50th percentile (median); lower box bound= 25th percentile; upper box bound= 75th percentile; minima
and maxima represent the most extreme values and are plotted as outliers if exceeding whiskers.
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Figure EV2. Major foundations of plasma protein variation.

(A) Uniform manifold approximation and projection (UMAP) mapping of the variance explained matrix across 2853 protein targets for which we identified at least one
feature explaining the variance in plasma levels. Each protein has been assigned a cluster based on k-means clustering and is coloured accordingly. (B) Number of protein
targets included in each cluster. (C–L) Same UMAP plot but coloured according to the variance explained by the factor given on top of each plot. Proteins with strong
contributions (>1%) are highlighted. pQTL protein quantitative trait loci.
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Figure EV3. Chord diagram of phenotype-associated protein signature enrichment among protein-coding genes with enhanced tissue expression.

Each line represents a significant enrichment (p < 6.9 × 10−6) of proteins associated with a given participant characteristic among protein-coding genes with enhanced
expression in a given tissue. Enhanced expression estimates were derived from the Human Protein Atlas. Corresponding statistics can be found in Dataset EV7. Colouring
was done according to phenotype categories as introduced in Fig. 1 in the main text.
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Figure EV4. Summary of sex-differential feature selection and contribution.

(A, B) Scatterplots comparing the variance explained achieved for plasma protein levels among the entire UK Biobank population (x-axis) compared to what was achieved
in females (left) and males (right) alone. Proteins that deviated the most (>4 s.d.) were annotated. (C) Comparison of cumulative variance explained when stratifying the
UK Biobank population by sex (n= 23,601 females, n= 20,055 males). Proteins are coloured by cluster assignments as introduced in Fig. 1. Proteins with strong
differences are annotated with gene names. The inlet depicts the distribution of the Jaccard index of overlapping features for the same protein across the sexes. Boxplot
was drawn using default options: lower whiskers= 25th percentile − 1.5 x interquartile range; upper whiskers= 75th percentile+ 1.5 x interquartile range; centre= 50th
percentile (median); lower box bound= 25th percentile; upper box bound= 75th percentile; minima and maxima represent the most extreme values and are plotted as
outliers if exceeding whiskers. (D) Protein—Feature combinations with significant evidence for sex-differential effects (p < 9.0 × 10−7). Only combinations with a difference
of more than 10% are shown. Sex-differential effects were assessed using an interaction term in a linear regression model. (E) Individual variance explained estimates for
plasma oxytocin levels by sex, ordered by the variance explained among females. Proteins in b and c are coloured according to feature categories as introduced in Fig. 1.
Variance explained was derived from a multivariable linear regression model as the partial R2.
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Figure EV5. Plasma protein biomarkers associated with the onset of abdominal aortic aneurysm.

Volcano plots for protein–abdominal aortic aneurysm associations, with adjustment for age and sex (left panel), or comprehensive adjustment based on results from the
feature selection algorithm for each protein target (right panel). Association statistics were derived from Cox-proportional hazard models.
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Figure EV6. Genetic variation at the MMP12 locus is associated with the onset of abdominal aortic aneurysm.

Regional association plot of the MMP12 locus for MMP12 protein plasma levels (top) and abdominal aortic aneurysm (AAA, bottom). One single-nucleotide polymorphism
(rs17368814) has been prioritised as a shared genetic signal. Summary statistics from logistic regression models for AAA are publicly available from the AAAgen
consortium and summary statistics from linear regression models for MMP12 plasma levels are based on UK Biobank. Colouring indicates linkage disequilibrium to the lead
variant of the same colour code. Probability for a shared genetic signal (PP-H4) is given as PPrs17368814= 97.5%.
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Figure EV7. Phenotype enrichment among differentially expressed plasma proteins between a random set of controls and different patient groups from the blood
protein atlas section of the Human Protein Atlas.

Each row refers to a protein signature significantly differential (corrected p value <0.05 and |log-fold change| >0.5) in the plasma of diseased patients. Each column refers
to phenotype-associated protein signature from the protein atlas that was significantly (p < 4.7 × 10−6) enriched among the respective disease–protein signatures.
Significant findings are highlighted by dots, with colour representing transformed p values and size reflecting odds ratios. Enrichment was done using Fisher’s exact test.
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