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SUMMARY

During tissue development and regeneration, cells interpret and exert mechanical forces that are challenging 

to measure in vivo. Stress inference algorithms have thus emerged as powerful tools to estimate tissue 

stresses. Yet, effectively incorporating tissue dynamics into these algorithms remains elusive. Here, we intro

duce ForSys, a Python-based software that infers intercellular stresses and intracellular pressures from time- 

lapse microscopy. After validation, we applied ForSys to the migrating zebrafish lateral-line primordium, 

revealing increased stress during the cell rounding that precedes mitosis and accurately predicting the onset 

of epithelial rosettogenesis. We further used ForSys to study neuromast development and uncovered me

chanical asymmetries linked to cell type-specific adhesion. The software performs both static and dynamic 

stress inference, supports command-line use, scripting, and a user-friendly graphical interface within Fiji, 

and accepts segmentation inputs from EPySeg and Cellpose. This versatility of ForSys enables the analysis 

of spatiotemporal patterns of mechanical forces during tissue morphogenesis in vivo.

INTRODUCTION

Recent advances in experimental techniques have reignited in

terest in exploring the mechanical properties of biological tis

sues, commonly referred to as tissue rheology. These methods 

have facilitated precise and quantitative measurements of tissue 

mechanical parameters. For example, implanted deformable 

magnetic droplets have been used to determine the elastic prop

erties along the zebrafish anteroposterior axis during body elon

gation1,2 and presomitic mesoderm differentiation.3 Similarly, 

the application of optical traps has enabled the controlled defor

mation of cell membranes, thereby facilitating the study of visco

elastic properties during Drosophila development.4 Laser abla

tion experiments have also been employed in various systems 

to probe cortical tension by measuring the recoil of cell junctions 

upon laser cutting.5–7 Despite their importance, these experi

mental methods often come with significant drawbacks. They 

can be costly and necessitate specialized equipment, posing im

plementation challenges for many researchers. Moreover, these 

techniques might not be conducive to long-term imaging, poten

tially disrupting the normal development and, in some cases, 

leading to the destruction of the sample. Hence, there is a press

ing need for alternative approaches to overcome these limita

tions while still delivering accurate and non-invasive measure

ments of tissue rheology.

Computational methods offer a promising alternative solu

tion, enabling the cost-effective and straightforward implemen

tation of tissue mechanical characterization in vivo.8 Inference 

techniques that use readily available microscopy images can 

infer the effective stress of a system based on the geometry 

of the cellular junctions. A key aspect of this approach centers 

on tricellular junctions (TJ), where three cells converge.9 The 

underlying framework relies on one major assumption: me

chanical equilibrium is maintained at each TJ. The strength of 

these models lies in their simplicity, reducing the estimation 

of intercellular stresses to the solution of an overdetermined 

system of linear equations.10,11 One of the first implementations 

of the force-inference approach has been CellFIT,10 which en

ables the estimation of stresses from microscopy images. 

While CellFIT provides accurate estimates in static tissues, its 
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applicability to dynamic tissues is limited. Also, although recent 

techniques using time series data offer improvements,12 a 

computational tool capable of dynamic stress inference has 

been lacking.

To address this gap, here we introduce ForSys, an open- 

source Python-based inference algorithm specifically developed 

to tackle the complexities of dynamical stress inference from 

time series experiments. By inputting microscopy images 

segmented with tools such as EPySeg13 or Cellpose,14 ForSys 

performs stress inference in either static or dynamic mode via 

Python scripting, a Command Line Interface, or a Fiji-based 

Graphical User Interface. ForSys utilizes the geometry and local 

velocity of cell junctions to extract the spatiotemporal stress dis

tribution in vivo, providing accurate estimations of a tissue’s me

chanical state.

RESULTS

ForSys: A python-based open-source software to infer 

mechanical stress in tissues

ForSys enables the inference of intercellular mechanical stress 

and intracellular pressure of tissues. It takes the two-dimensional 

(2D) segmentation of an image, which delineates cell outlines, as 

its input. The input could be a skeletonized representation of the 

tissue (such as one generated with EPySeg13) or a labeled mask 

(for instance, generated with Cellpose14). ForSys then conceptu

alizes the entire tissue as a polygonal structure. In this structure, 

each polygon represents a cell, with edges connecting vertices 

(see ‘‘the conceptual model behind ForSys’’ in the STAR 

Methods section).

ForSys operates in two distinct modes contingent upon 

the input (Figure 1). When supplied with a singular segmentation 

of a static image, the software engages its static mode 

(Figure 1A) (see ‘‘statical stress inference’’ in the STAR 

Methods section). In this mode, a stress inference is applied to 

a single image. Conversely, if the input comprises the segmenta

tion of a time series dataset, ForSys presents the option to func

tion in its dynamic mode (see ‘‘the dynamic inference case’’ in 

the STAR Methods section) (Figure 1B). This mode involves the 

extraction of temporal trajectories for vertices from the micro

scopy time series, thereby incorporating corresponding vertex 

velocities to refine stress inference.

To improve the usability of our method, we implemented three 

different ways to use the software after installing the package. 

First, users can access the software through Python scripting 

by importing the ForSys package (Figure S1). Second, a Com

mand Line Interface is available for those comfortable working 

in a shell environment such as Bash or PowerShell (for Linux or 

Windows users, respectively), eliminating the need to write Py

thon code (Figure S2A). Finally, we developed a Graphical 

User Interface that integrates with Fiji (Figure S2B), providing 

an accessible option for users who prefer not to work with 

code or command-line environments. Detailed installation and 

usage instructions are provided in the STAR Methods section, 

‘‘interacting with the ForSys software’’, as well as in the software 

documentation.

ForSys infers in silico stresses accurately in static 

equilibrium

To assess ForSys’s performance against existing tools, we uti

lized as a ground truth simulations generated by a vertex model 

implemented in Surface Evolver via seapipy (see ‘‘seAPIpy: 

generation of in silico tissues to validate ForSys’’ in the STAR 

Methods section and Figure S3), analyzed it using our software, 

Figure 1. Force inference modalities of ForSys 

(A) The static inference is performed on a microscopy image by creating a segmented representation of the tissue. Then, ForSys reads it and builds the system of 

equations according to the geometrical properties of the tissue, assuming that each vertex in the tissue is in mechanical equilibrium. Lastly, the system is solved, 

and the intracellular pressures and intercellular stresses are inferred. 

(B) Similarly, the dynamical inference uses a time series of images to add dynamical information to the system of equations used in the static case, by assuming an 

overdamped regime. A time mesh is generated from the succession of microscopy images, and pivot vertices are tracked through time. These are the vertices at 

which three or more edges meet. Then, the velocity of these vertices from frame to frame is used to modify the system of equations, allowing non-static tissues to 

be analyzed by stress inference. Also see Figures S1–S4.
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and compared the results with outputs from previously pub

lished methods, focusing specifically on CellFIT10 and DLITE.12

Given that both tools yield similar results (Figures S5A and 

S5B), we opted for DLITE implementation due to its open-source 

nature, enabling a direct comparison with tissue stresses ex

tracted from Surface Evolver outputs.

We selected the final time-point (t = 24) of simulations gener

ated from four different conditions to compare the ground truth 

from the Surface Evolver output (Figure 2A), DLITE’s estimation 

(Figure 2B), and ForSys in its static modality (Figure 2C). In all 

cases, the predicted intercellular stresses and intracellular pres

sures closely matched the ground truth. Moreover, both stress 

Figure 2. In silico validation of ForSys for tissues in static equilibrium 

Four different conditions were generated with seapipy to benchmark ForSys under the static equilibrium condition. Each column shows a representative replicate 

per condition at the final frame (t = 24). The ground truth (A) can be compared to the values for the DLITE predictions (B) and the static ForSys (C). The three rows 

shown correspond to the final frame of the simulation. The color bar above the last two panels shows the order of the colormap for both the stresses and the 

pressures. Pressures in the cells are represented with transparency for improved visualization. The mean absolute percentage error (MAPE) (D) and the saturated 

score function (E) for all simulations (N = 25) are represented in two boxplots, DLITE and static inference with ForSys, paired by condition. (see STAR Methods

‘‘evaluating goodness of fit’’) Dots show the result for individual repetitions. In (D) and (E), each boxplot shows the median value as a horizontal bar and first to third 

interquartile ranges as boxes; the upper whisker is either 1.5 × the interquartile range or the maximum value (whichever is the smallest) and the lower whisker is 

either 1.5 × the interquartile range or the minimum value (whichever is the biggest). The pressure colormaps for the ground truth shown in panel (A), expressed as 

(minimum, maximum), are from left to right (0.0551, 0.3622), (0.0351, 0.3887), (0.0332, 0.0878), and (0.0289, 0.0924). For panel (B), they are (− 1.17, 3.06), (− 1.17, 

3.01), (0.21, 1.78), and (0.38, 1.44). For panel (C) they are (− 0.36, 0.71), (− 0.45, 1), (− 0.20, 0.38), and (− 0.31, 0.31). Also see Figures S5 and S6.
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inference methods exhibited a high degree of accuracy and pre

cision, as reflected by a low mean absolute percentage error 

(MAPE) (<10%) (Figure 2D) and a high saturated score function 

(∼30) (Figures 2E and S5C). Importantly, ForSys showed a signif

icantly lower MAPE (p = 1e-05; p = 1e-8; p = 0.01, for the 

x-furrow, y-furrow, and circular furrow, respectively), higher 

saturated score (p < 0.001; p < 1e-4; p < 0.01 for the x-furrow, 

y-furrow, and circular furrow, respectively), and smaller inter

quartile range than DLITE, for all cases except the random ten

sions (See the ‘‘statistical estimators’’ section in STAR 

Methods for details).

These results indicate that ForSys’s static modality yields 

higher accuracy and precision estimations than DLITE while 

effectively capturing the in silico-generated ground truth spatial 

distributions in static equilibrium. Consequently, only ForSys in 

its static modality will be used hereafter for comparison with a 

static solution.

ForSys stress inference in dynamical tissues 

outperforms static methods in silico

With the aim of inferring stress in dynamic tissue, we assumed 

that the tissue goes through a succession of quasistatic states 

in an overdamped regime,15 consistent with a viscoelastic 

response of the cell junctions to the deformations created by 

the forces acting on them.16,17 Consequently, we incorporated 

a viscous term proportional to the velocity of the corresponding 

vertex in each junction’s equation. Importantly, these velocities 

are not unknown: ForSys estimates them using the spatial coor

dinates of the vertices tracked over time. In ForSys, we call this 

modality of stress inference ‘‘Dynamic’’.

Dynamic inference depends on a dimensionless number, 

which we call the Scale Parameter ρ (see a detailed description 

in the ‘‘the dynamic inference case’’ section of STAR 

Methods). Thus, we fitted ρ and found its optimal value for 

each of the examples. Our results indicate that the best dynamic 

results are obtained with a scale parameter of about 0.1 (see 

Figure S9 and STAR Methods section ‘‘determination of the 

scale parameter in silico’’).

Under our prescribed conditions (Figure 3A), ForSys in its 

static modality (Figure 3B) is outperformed by dynamic inference 

(Figure 3C), accurately reproducing stress and pressure distribu

tions akin to the ground truth. Furthermore, our results indicate 

that dynamic modality improves static modality accuracy and 

precision, as indicated by lower MAPE (p < 1e-09; p < 1e-9; 

p < 1e-7, for the x-furrow, y-furrow, and circular furrow, respec

tively) (Figure S7A) and a higher saturated score function (p < 1e- 

08; p < 1e-9; p < 1e-9; p = 0.03, for the x-furrow, y-furrow, circu

lar furrow, and random, respectively) (Figure 3D) (See the 

‘‘statistical estimators’’ section in STAR Methods for details).

Interestingly, the accuracy and precision of stress inference in 

each ForSys modality are damped by the increases of TJ local 

movements, here reflected in the norm of the velocity vector 

(|v|2) (Figures 3E and S7D). Notably, the dynamic modality out

performs the static one for all TJ velocities, as observed by the 

time evolution of MAPE (Figure S7D). This can be evidenced 

through the logarithmic ratio between dynamic and static scores 

(Figure 3E), where values greater than zero mean that the dy

namic modality outperforms the static one. The outperformance 

of the dynamical modality is clearer for higher TJ velocities 

(Figures 3E, S7D, and S8). Thus, ForSys, in its dynamic modality, 

can retain a better approximation due to its use of the vertices’ 

velocity, i.e., future positions, to estimate the stress.

In this section, we have shown through in silico validation that 

the dynamic modality of ForSys outperforms other methods in 

accurately inferring stresses in remodeling tissues.

ForSys validation in vivo using the mucociliary 

epithelium of Xenopus embryos

To test ForSys in a biological setting, we used published 

data from the mucociliary epithelium in Xenopus embryos 

(Figure 4A).18 We quantified myosin II intensity using a non-mus

cle myosin II A-specific intrabody (SF9-3xGFP, for simplicity 

referred to as myosin II), which has been previously used as a 

proxy for active myosin II.19,20 We segmented the microscopy 

images using EPySeg13 (see STAR Methods ‘‘SF9 myosin II 

sensor intensity measurements’’ for details) and compared 

myosin II measurements with the stress values inferred by 

ForSys.

As before, we qualitatively compared the derived stress distri

bution maps with the ground truths, here given by the normalized 

myosin II sensor intensity (Figure 4B). We observed a good qual

itative agreement between inferred stress and myosin intensity, 

with regions of higher myosin fluorescence corresponding to 

higher inferred stress, most noticeable in Embryo 3 and Embryo 

5 of Figure 4B. In contrast, in Embryo 4 of the same panel, ForSys 

can reproduce a more homogenous distribution along the tissue. 

On a quantitative level, we found that ForSys predictions are 

moderately correlated with the myosin measurements for each 

embryo (R = 0.56 ± 0.11; mean ± std) (Figure 4C). In addition, 

ForSys stress predictions have a MAPE value of (21 ± 5)% 

(mean ± std). To further test the similarities between the myosin 

intensity and ForSys predictions, we pooled together all the 

membranes from the embryos shown in Figures 4B and 4C 

and compared their distributions. We found that myosin intensity 

and stress distributions are not significantly different (Figure 4D; 

p = 0.76, Mann-Whitney U test; p = 0.97, Wilcoxon signed-rank 

test; N = 154).

Altogether, ForSys in its static modality, recapitulates the 

stresses present in the mucociliary epithelium of the Xenopus 

embryo, as measured by the fluorescence of the myosin II 

sensor.

Dynamic stress inference of collective cell behavior in 

zebrafish

We sought to explore ForSys inferences in an in vivo model that 

mixes TJs with low and high motility. To this end, we turned to 

two morphogenetic processes that occur during the develop

ment and homeostasis of the zebrafish lateral line, a mechano

sensory organ formed by a collection of discrete organs called 

neuromasts.

We first applied ForSys to an in vivo model of collective 

cell morphogenetic behavior leading to the formation of 

epithelial rosettes in the lateral line primordium of developing 

zebrafish. The primordium is a collection of just over 100 cells 

that move collectively from head-to-tail of the fish embryo 

(Figure 5A). During migration, groups of approximately 25 

4 iScience 28, 113685, November 21, 2025 

iScience
Article

ll
OPEN ACCESS



trailing cells periodically detach from the primordium, sequen

tially giving rise to individual neuromasts that are then depos

ited at a semi-regular pace.21 Although the lateral line primor

dium has been extensively characterized genetically,22,23 the 

evolution of mechanical forces during migration and rosetto

genesis remains underexplored.

Therefore, we decided to use ForSys in its dynamic modality to 

analyze time lapse data of migrating primordia, whose cells’ 

Figure 3. In silico validation of ForSys for tissues in dynamical equilibrium 

(A–D) We generated four examples with seapipy to test dynamical equilibrium conditions. Each column shows a representative repetition per example. The first 

row (A) shows the ground truth values for the stress and the pressures, the static inference made by ForSys is in the second row (B), and the dynamical ForSys 

inference is in (C). We show each example at one time point after the system’s tensions changed. The color bars below the last two panels show the colormap for 

both the stresses and pressures. The saturated score function values (D) for all simulations are represented in two boxplots, static and dynamical inference, 

paired by condition. Dots show the result for individual repetitions and each boxplot shows the median value as a horizontal bar and first to third interquartile 

ranges as boxes; the upper whisker is either 1.5 × the interquartile range or the maximum value (whichever is the smallest) and the lower whisker is either 1.5 × the 

interquartile range or the minimum value (whichever is the biggest). 

(E) Dynamic to static score function ratio ( r = log
(

dynamic

static

)
) as a function of the |v|2 bin. A ratio bigger than zero shows that the dynamic solutions performed better 

(Red zone), and a negative value (Green Zone) favors the static solution. The black dashed line at y = 0 separates both zones. All velocity bins favor the dynamic 

solution. Pressure colormaps have the following values, (minimum, maximum), for each of the panels, from left to right: For panel (A) they are (0.0609, 0.4209), 

(0.0488, 0.3777), (0.0285, 0.0822), and (0.0384, 0.0946); for panel (B) they are (− 0.21, 0.49), (− 0.33, 1), (− 0.20, 0.0.20), and (− 0.24, 0.25); for panel (C) they are 

(− 0.21, 0.49), (− 0.26, 0.8), (− 0.19, 0.31), and (− 0.23, 0.42). Also see Figures S7–S9.
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plasma membranes were fluorescently labeled with EGFP. 

Migrating primordia were followed for 30 min with a temporal 

resolution of 2 min (Video S1) (Figures 5B and 5B′) (see a detailed 

description in the ‘‘zebrafish primordium migration experiments’’ 

section of STAR Methods).

ForSys predicted the mitotic division of primordial cells by 

revealing high stress in the pre-dividing cellular membrane rela

tive to the membrane of the non-dividing surrounding cells 

(Figure 5C). The stresses remain partially conserved after divi

sion, mainly in the cell membrane separating the resulting cell 

siblings (Figure 5C’).

We then applied ForSys to predict stress tissue-wide. Apical 

constrictions of epithelializing cells are mechanistically associ

ated with the formation of the rosettes that preempt neuromast 

morphogenesis.24 The apical constriction is readily detectable 

by morphology when looking at the apical plane of the primor

dium (Figures 5D and 5D′).25 The relationship between apical 

constrictions and forces in more basal planes of the cells and 

how they relate to rosettogenesis remains undefined.

To begin to address this possible relationship, we used time 

series data and aggregated the position of the cells along the an

teroposterior axis of the primordium by kernel density estima

tion. We weighed each cell using the intracellular pressure 

inferred from ForSys, which results in a smoothed curve esti

mating intracellular pressure along the migration axis 

(Figure 5E). This analysis showed that the anteroposterior posi

tions of the rosettes, manually annotated by looking at apical 

constriction (Asterisks in Figures 5D’ and 5E), correlate with 

Figure 4. Comparison of ForSys-derived stress with myosin II measurements in the Xenopus embryo mucociliary epithelium 

(A) Scheme of the Xenopus embryo and position of the mucociliary epithelium. 

(B) Five examples of inference in Xenopus embryos. The 10 μm scale bar present in the Embryo 1 microscopy also applies to the other 4 images. The microscopy 

image is shown alongside the myosin intensity map and the ForSys inference result. The color code in the maps represents the myosin sensor intensity and the 

stress prediction. The scale was saturated at tension values of one, using the ‘‘absolute’’ normalization provided in the ForSys package. The highlighted region in 

the microscopies shows the area that was analyzed. 

(C) Relationship between myosin sensor intensity and stress inferred for the five examples. Each scatter point shows the value for a particular membrane in that 

example. The dashed black line represents the y = x line. Each color coincides with the rounded rectangle around the embryo and its font color in panel (B). The 

average Pearson correlation coefficient is R = 0.56 ± 0.11; (mean ± std). 

(D) Quantification of stresses and myosin sensor intensity for the five examples. The Inferred stresses and myosin intensities are not significantly different from 

each other (p = 0.76, Mann-Whitney U test; p = 0.97, Wilcoxon signed-rank test; N = 154). The boxplots show the median value as a horizontal bar and first to third 

interquartile ranges as boxes; the upper whisker is either 1.5 × the interquartile range or the maximum value (whichever is the smallest), and the lower whisker is 

either 1.5 × the interquartile range or the minimum value (whichever is the biggest).
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the predicted zones of high intracellular pressure in the basal 

plane inferred by ForSys. The closeness between the predicted 

pressure maxima and the manually annotated rosette formation 

indicates a high correlation between these two quantities during 

primordium migration (R = 0.99, p < 1e-51, N = 61; for rosettes 1 

and 2 combined) (Figure 5F).

Encouraged by our previous results, we next analyzed 

mature neuromasts. The center of this organ is occupied by 

mechanosensory hair cells, which are surrounded by non-sen

sory supporting cells (Figure 6A).26 We used a plasma mem

brane marker to define cells, which were segmented using 

ilastik27 and EPySeg13 (Figure 6B) (see a detailed description 

in the ‘‘zebrafish neuromasts videomicroscopy and analysis’’ 

section of STAR Methods). Then, we used the dynamical mo

dality of ForSys to estimate the stress at each membrane 

(Figure 6B’) and found that membranes belonging to hair 

cells have higher stress on average. Homotypic interfaces 

between hair cells have the highest stress (p < 1e-7 vs. 

hair cell-supporting cell interfaces). On the other hand, homo

typic contacts between supporting cells have the lowest 

stress (p < 0.006 vs. hair cell-supporting cell interfaces) 

(Figure 6C).

We then focused on a still-puzzling process called planar cell 

inversion (PCI).28,29 PCI occurs when supporting cells give rise to 

hair-cell progenitors, which divide once to generate a pair of hair 

cells. Approximately half of the resulting nascent hair-cell pairs 

undergo a 180◦ rotation around their geometric center28,29

(Figures 6D and 6E). The mechanical forces occurring during 

Figure 5. ForSys inference of a moving epithelium in the zebrafish lateral line at 2 dpf 

(A) Schematic of the biological model. The neuromasts of the posterior lateral line are formed by detaching from a primordium that migrates from the anterior to 

the posterior of the fish. 

(B) Frames 0, 7, and 15 of the primordium migration in which cell membranes are fluorescently marked with Claudnb:lyn-EGFP. The membrane signal is used for 

segmentation, which ForSys can use to predict cell membrane tension and intracellular pressure (B’). 

(C and C′) Consecutive planes show cell division. The membrane tension in the cell just about to divide is considerably higher than the surrounding membranes. 

After division, the dividing membrane retains a high tension. 

(D and D′ ) Schematic of the primordium orientation and the position of the optical planes. Constriction of the cell membranes in rosettes is evident in the apical 

plane. The asterisks show the anteroposterior location of rosettes. The cell segmentation was done on a Z-plane at a more basal plane (E) Ridgeline plots of Cell 

densities along the anteroposterior axis throughout 16 frames for a representative primordium. Time goes from bottom to top. The direction of primordium 

migration is to the right. The asterisks show the positions of the manually annotated rosettes. 

(F) Anteroposterior position of the manually tracked rosette against the inferred position by taking the local maxima of the density of pressure values from (E). The 

diagonal line marks y = x as a reference for comparing predicted and manually annotated values. Scale bars represent 10 μm. Tension and pressure scales are 

shown at the bottom of the figure. Pressure scale values (minimum value and maximum value) for panel (B′) are (− 0.63, 1.6), (− 0.75, 1.24), (− 0.76, 1.37) for t = 0, 7, 

and 15, respectively. Minimum and maximum values for the pressure scale in panel (C) is (− 0.74, 1.08) and (− 0.85, 1.15) for panel (C′).
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cell-pair inversions are not known, but the physical modeling of 

the cell doublet suggests that differential surface tension plays 

a central role.30,31 Therefore, we focused our analysis on the ho

motypic junctions between the sibling hair cells and compared 

them to those with the surrounding supporting or hair cells. We 

found that the stress in the membranes juxtaposing the rotating 

hair-cell pair is significantly smaller than that between hair cells 

and the surrounding cells (p < 0.0005) (Figure 6F). Because ten

sion and adhesion are generally inversely related, PCI could be 

characterized by a strong adhesion within the rotating cell pair 

and weaker adhesion with the surrounding cells. This result sug

gests a cell-type and cell-state-specific adhesion pattern that in

fluences contact remodeling necessary for coordinated cell-pair 

rotations.

Taken together, these results show that ForSys’s dynamical 

implementation predicts high stresses before cell division in a 

migrating tissue. They also revealed that rosette formation could 

be prefigured by mechanical rosettogenesis changes in the cells, 

which allows the inference of apical constrictions during rosetto

genesis using information from basal planes.

Scale parameter selection in vivo

The results presented in the previous section were obtained by 

setting the scale parameter to 0.1, the optimal value identified 

through in silico validation. To assess the validity of this default 

value experimentally, we performed in vivo laser ablation of cell 

membranes in zebrafish neuromasts and measured the time 

evolution of the distance between the pivot vertices delimiting 

the ablated membranes (Figures 7A–7C).

We modeled the system using a minimal physical description. 

For simplicity, we aligned the two pivot vertices along the x axis, 

with their positions defined as x1(t) and x2(t) (Figure 7C, inset). 

Prior to ablation, the membrane is assumed to be in mechanical 

equilibrium, consistent with the central assumption of ForSys. 

Thus, the magnitude of the net external force at each pivot vertex 

is balanced by the membrane stress that ould be inferred by 

Figure 6. In vivo ForSys inference in an epithelium with rotating cells 

(A) Schematic of cell composition in a zebrafish lateral line neuromast. Sensory hair cells are located in the center and are surrounded by support cells. 

(B) Image of a neuromast whose cells can be tracked by membrane-tethered EGFP. (B′) ForSys tension and pressure inference after membrane segmentation. 

(C) The tension inferred for membranes is classified by the type of cell-cell contact. The homotypic contacts between hair cells show the highest predicted 

tension, while the homotypic contacts between support cells show the lowest on average. Each data point is the mean of the predicted tension values for each 

membrane type in one frame. The frames come from N = 7 time-lapse experiments. 

(D) Schematic of the planar cell inversions occurring in 50% of the nascent hair cell pairs: sibling hair cells perform a 180◦ rotation to exchange positions along the 

anterior-posterior axis. The coloring of membranes corresponds to the colors of the respective boxplot in panel (F). 

(E) Time-lapse frames show the in vivo rotation process: around 100 min after mitosis, the nascent hair cells exchange anteroposterior positions by rotating in the 

epithelial plane. The sibling cells remain attached during the rotation, while the surrounding cells do not actively participate in the movement. The TgBAC(cxcr4b: 

H2B-RFP) transgenic was used to label nuclei. 

(F) Homotypic tensions between the young rotating hair cells are significantly lower than their contacts with the surrounding cells. In (C) and (F), boxplots show 

the median value as a horizontal bar and first to third interquartile ranges as boxes; the upper whisker is either 1.5 × the interquartile range or the maximum 

value (whichever is the smallest) and the lower whisker is either 1.5 × the interquartile range or the minimum value (whichever is the biggest). Scale bars represent 

10 um.
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ForSys (‖Fext‖ = λ; see Equation 2 in STAR Methods section 

‘‘statical stress inference’’). Immediately after ablation, each ver

tex recoils with velocity v, and a viscous damping force opposes 

this motion, balancing the membrane stress (λ = ηv; see Equation 

6 in the STAR Methods section ‘‘statical stress inference’’). As a 

result, the distance between the two vertices evolves over 

time as:

L(t) = L0 + 2(λ = η)t (Equation 1) 

where L(t) = x2(t) – x1(t) is the separation length between the 

vertices at time t, and L0 is their initial separation length.

By fitting this expression to the recoil dynamics measured in ze

brafish neuromasts at short times, we extracted the ratio λ/η 
(Figure 7C). Using the characteristic velocity of neuromast vertices 

(v, as defined in Equation 7 in the STAR Methods section ‘‘statical 

stress inference’’ and determined from the inferences shown in 

Figure 6) and applying Equation 8 in the STAR Methods section 

‘‘statical stress inference’’, we estimated the corresponding value 

of the scale parameter. The experimentally determined value of 

the scale parameter was 0.17 ± 0.13 (mean ± std), which is 

consistent with the value used in our inferences (Figure 7D).

DISCUSSION

Here, we introduce ForSys, a software that statically and dynam

ically infers stresses without disrupting biological tissues. Tradi

tional inference methods rely on geometrical information to 

calculate the relationship among the stresses acting on cell 

membranes in a static image. However, these methods generally 

lack the dynamical component present in time-series micro

scopy. ForSys extends the applicability of inference techniques 

by enabling dynamic stress inference in cell membranes when 

tissues are in motion.

We validated our software in its static and dynamic modalities 

with different in silico spatial patterns of tissue stresses using a 

Figure 7. Scale parameter determination through laser ablation 

The scale parameter was determined through laser ablation experiments, as described in the STAR Methods section ‘‘zebrafish laser ablation experiments.’’ 

Microscopy images are taken every second, including just before (A) and just after (B) ablation. The red arrow indicates the membrane where the ablation takes 

place, and the dashed red line is a guide to the eye. The inset in the lower right corner of both (A) and (B) panels zooms in on the ablation zone. Scale bars represent 

10 μm. 

(C) Example trajectory of the membrane after ablation. The y axis shows the elongation relative to the length in the frame just before ablation occurs. Blue scatter 

dots are used for the fitting, gray points are not. The inset in the lower right corner shows a sketch of the ablated membrane. 

(D) Using the linear fits from thirty-seven ablation experiments, we determine the scale parameter by multiplying each experimental slope with the characteristic 

velocity (v) of each of the seven neuromasts that comprise Figure 6. In panel (D), the scale parameter resulting from the fits is represented as a histogram. The 

vertical dashed line represents the value used in our inferences (ρ = 0.1).
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cell-based computational model implemented in Surface 

Evolver,32 which we integrated into a Python package called 

seapipy.33 Our results show that ForSys can recover the ground 

truth in its static and dynamic modalities. Significantly, the dy

namic modality improves the accuracy of the static modality in 

the tested conditions. Unlike static inference, which involves a 

single intrinsic scale embedded in the inferred stresses, dynamic 

inference introduces a viscous term proportional to the velocities 

of the nodes, thereby introducing a second physical scale. The 

interplay between these two scales is captured by the scale 

parameter, which modulates the relative contributions of viscous 

forces and other mechanical stresses in the inference process. In 

this sense, the scale parameter plays a role analogous to the 

Weissenberg number or the Capillary number.34–36 The optimal 

value found for this number indicates that elastic forces are an 

order of magnitude larger than viscous forces. Strikingly, dy

namic inference outperforms static inference in silico even 

when elastic forces dominate over the viscous forces, pointing 

to a wide applicability of the dynamic modality.

We then tested ForSys in the Xenopus embryonic mucociliary 

epithelium. We found a positive correlation between the inferred 

stress and cortical stress that was indirectly measured using var

iations in the intensity of myosin II. As the development of the 

embryonic mucociliary epithelium progresses over several 

hours, continuous, direct probing of the mechanical forces is 

extremely laborious, interferes with tissue development, and is 

hardly compatible with single-cell resolution measurements. 

Therefore, using ForSys for the non-invasive mapping of me

chanical forces at the scale of an entire tissue across time could 

pave the way for a more comprehensive understanding of the 

mechanical forces that drive tissue development.

We further demonstrated the power of ForSys by studying two 

aspects of organ development and homeostasis using the neu

romasts of the lateral line in zebrafish embryos. Specifically, 

we addressed two processes that involve a complex collective 

cell behavior. First, we applied dynamical ForSys to the 

migrating lateral-line primordium. Although this process has 

been extensively dissected genetically, it is still unknown what 

forces play a role during migration and neuromast deposi

tion.37,38 Therefore, this process of collective cell migration will 

benefit from an accessible and non-invasive method to estimate 

forces in a dynamical tissue. Two characteristics of this migra

tory primordium make it well-suited for applying ForSys: the tis

sue as a whole is migrating through the lateral line, and its mem

branes have a curved shape. We showed that ForSys can detect 

cell division and rosette formation. ForSys will be useful for 

testing various hypotheses about tissue mechanics in other dy

namic cell systems, for instance, during tissue repair and organ 

regeneration.

We also applied ForSys to address the still mysterious process 

of planar cell inversion, during which sibling cells rotate around 

their centroid after the mitotic division of their progenitor.28 We 

discovered that homotypic contacts between rotating cells 

have the most stress, whereas the contacts between the rotating 

pair have lower stress than the contacts of each hair cell with its 

neighbors. This strongly suggests that adhesion dynamics dur

ing rotation are associated with strong homotypic interactions 

between the sibling cells and weak heterotypic interactions 

with the surrounding cells, enabling contact exchange during 

the inversion.28

The development and improvement of stress inference tools 

presents a promising avenue to capture the spatiotemporal 

complexity of mechanical forces during tissue morphogenesis, 

which circumvents challenges related to sample fixation and 

limited temporal resolution.39 An interesting possibility is to use 

fluorescence-based tension and strain mapping techniques, 

such as those employing molecular tension sensors40,41 or fluo

rescence intensity correlates42,43 that enable the direct visualiza

tion of mechanical forces in tissues in combination with ForSys. 

Future studies combining these complementary methods could 

provide a more comprehensive understanding of tissue me

chanics in vivo.

ForSys provides a versatile and noninvasive tool for studying 

spatiotemporal patterns of mechanical stresses during tissue 

morphogenesis in vivo. This software makes stress predictions 

that can guide researchers in conducting further experiments, 

which can significantly contribute to understanding the mecha

nisms involved in development and regeneration. ForSys was 

built as open-source software in Python, thus allowing the com

munity to participate in its development and maintenance. With 

its usability in mind, aside from the possibility of writing Python 

scripts to interact with ForSys, it has been further equipped 

with a Command Line Interface and a Graphical User Interface 

embedded in Fiji44 to facilitate its adoption. In our eyes, an inter

esting future perspective will be to extend the software to tissues 

in non-equilibrium conditions and adapt the method to operate 

within a 3D geometry to generate 4D mechanical stress 

inference.

Limitations of the study

The applicability of the method described in this article, as well 

as the ForSys software, relies on two groups of assumptions: 

methodological and theoretical.

The methodological assumptions primarily concern limitations 

related to the quality of the input data supplied to the program. 

These include, but are not limited to, poor segmentation leading 

to the inaccurate reconstruction of cellular membranes, or the 

inability to track all agents contributing to the system’s move

ment, such as interactions with structures located outside the re

gion of interest or out of the imaging plane. In general, the higher 

the quality of the input data, the more accurate the predictions 

produced by ForSys.

The theoretical assumptions involve the validity of the underly

ing hypotheses in the tissue under study. For instance, if the ac

celeration of tricellular junctions is sufficiently large, mechanical 

equilibrium may not hold, and the tissue would no longer behave 

as an overdamped system. However, in most biological tissues, 

inertial effects containing acceleration terms are negligible 

compared to viscous damping, supporting the overdamped 

regime assumption.15 Another theoretical limitation of our model 

is the assumption that membrane stresses remain constant 

within the time window of each image frame. If stresses fluctuate 

on timescales faster than the image acquisition frequency, 

ForSys will not capture these rapid changes. In such cases, 

the inferred stresses should be interpreted as averaged or repre

sentative values over the time interval.

10 iScience 28, 113685, November 21, 2025 

iScience
Article

ll
OPEN ACCESS



RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to Osvaldo 

Chara (osvaldo.chara@nottingham.ac.uk).

Materials availability

This study did not generate new materials.

Data and code availability

The seapipy33 codebase is available on GitHub at https://github.com/ 

borgesaugusto/seapipy. ForSys45 is available on GitHub https://github.com/ 

borgesaugusto/forsys. All data reported in this article will be shared by the 

lead contact upon request.

ACKNOWLEDGMENTS

The authors thank Luis Morelli, Fabian Rost, Nicolas Aldecoa, Alice Descoeu

dres, and all the members of the Chara laboratory for valuable comments and 

suggestions. A.B. was funded by the BMBF 01GQ1904 grant. A.S.C. was 

funded by a Doctoral fellowship from CONICET, Argentina, and by a Biotech

nology and Biological Sciences Research Council (BBSRC) grant [grant num

ber BB/X014908/1]. J.S. acknowledges the support of the Novo Nordisk Foun

dation (grant number NNF22OC0076414, NNF19OC0056962) and LEO 

Foundation (grant number LF-OC-19-000219), the European Research Coun

cil Consolidator Grant (ERC CoG 101125803 MechanoFate). The Novo Nor

disk Foundation Center for Stem Cell Medicine (reNEW) is supported by a 

Novo Nordisk Foundation grant number NNF21CC0073729. O.C. was funded 

by CONICET, Fondo para la Investigación Cientı́fica y Tecnológica (PICT- 

2019-03828) and the BBSRC grant BB/X014908/1 to O.C.

AUTHOR CONTRIBUTIONS

A.B. developed the ForSys code, simulated the in silico results, analyzed all the 

inference results, and wrote the article. A.S.C. contributed to the development 

of the ForSys code and analyzed all the inference results. G.V. generated the 

Xenopus images and edited the article. J.M.-R. acquired the zebrafish micro

scopy images and analyzed the corresponding results. J.S. supervised the 

Xenopus project and edited the article. H.L.S. supervised the Zebrafish project 

and edited the article. O.C. conceived the project, contributed to the ForSys 

code, analyzed all the inference results, wrote the article, and supervised A. 

B. and A.S.C.

DECLARATION OF INTERESTS

The authors declare no competing interests.

STAR★METHODS

Detailed methods are provided in the online version of this paper and include 

the following:

• KEY RESOURCES TABLE

• EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

○ SF9 myosin II sensor intensity measurements

○ Zebrafish primordium migration experiments

○ Zebrafish neuromasts videomicroscopy and analysis

○ Zebrafish laser ablation experiments

• METHOD DETAILS

○ Applying ForSys to in vivo zebrafish microscopy

○ The conceptual model behind ForSys

○ seAPIpy: Generation of in silico tissues to validate ForSys

○ Statical stress inference

○ The dynamic inference case

○ Solving the system of equations

○ Determination of the scale parameter in silico

○ Interacting with the ForSys software

• QUANTIFICATION AND STATISTICAL ANALYSIS

○ Evaluating goodness of fit

○ Statistical estimators

○ Comparing ForSys with other computational methods

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci. 

2025.113685.

Received: June 24, 2024

Revised: July 2, 2025

Accepted: September 29, 2025

Published: October 3, 2025

REFERENCES

1. Serwane, F., Mongera, A., Rowghanian, P., Kealhofer, D.A., Lucio, A.A., 
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STAR★METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

SF9 myosin II sensor intensity measurements

Images of stage 16 to stage 20 Xenopus embryos expressing the SF9-3xGFP myosin II sensor were acquired in using a 3i spinning 

disk microscope with a Plan-Apochromat ×63 oil objective (N.A. = 1.4) mounted on an inverted Zeiss Axio Observer Z1 microscope 

(Marianas Imaging Workstation [3i—Intelligent Imaging Innovations]), equipped with a CSU-X1 spinning disk confocal head (Yoko

gawa) and an iXon Ultra 888 EM-CCD camera (Andor Technology). From these images we obtained maximum intensity Z projections, 

which were then used to extract myosin intensity values of the epithelial junctions. After automatic segmentation with EPySeg, cell 

membranes were manually corrected, and the final shape was obtained by using a third-order Savitzky–Golay filter with a window of 5 

pixels. For all vertices constituting a membrane in the segmentation, smoothed intensity values were first obtained by taking the me

dian over first neighbors. The intensity value for each membrane is then defined as the mean of smoothed intensities at each of its 

constituting vertices. Then, to allow comparison with the inferred stresses, these values were normalized to a mean value of one for 

each embryo.

Zebrafish primordium migration experiments

Zebrafish carrying the Tg[-8.0cldnb:Lyn-EGFP]46 were kept under standard conditions at 28.5◦C. All zebrafish experiments were per

formed in accordance with protocols approved by the Ethical Committee of Animal Experimentation of the Helmholtz Zentrum Mün

chen, the German Animal Welfare act Tierschutzgesetz §11, Abs. 1, Nr. 1, Haltungserlaubnis according to the European Union animal 

welfare, and under protocol number Gz.:55.2-1-54-2532-202-2014 and Gz.:55.2-2532.Vet_02-17-187 from the ‘‘Regierung von 

Oberbayern’’ (Germany).

At 40-48 hours post-fertilization, larvae were anesthetized with 1.5% MS222 in Danieau Buffer and mounted in 0.8% low-melting 

point agarose on a glass-bottom petri dish. Larvae were imaged in a custom-built Zeiss inverted spinning disk confocal microscope. 

16 slices Z stacks of the migrating primordium II were acquired every two minutes with a 63X objective. Subsequently, one z-slice 

was manually selected from each frame, and the membrane image was segmented using Tissue Analyzer.47 The image segmenta

tions were used for ForSys predictions, and the cells’ centroids’ X and Y coordinates, the time point (frame number), and the cell 

pressures were exported. The probability density function of the cell position along the anteroposterior axis was estimated via a 

Gaussian kernel in the R statistical software. The value of cell pressure was used as a weight in the density estimation. From this 

density curve, local maxima were determined by an ad-hoc algorithm implemented in R, which compares the sign of the first and 

second derivatives.

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Zebrafish Tg[myo6b:actb1-EGFP] Kindt lab https://doi.org/10.1016/j.devcel. 

2012.05.022

Zebrafish Tg[-8.0cldnb:Lyn-EGFP] Gilmour lab https://doi.org/10.1016/j.devcel.2006. 

02.019

Zebrafish TgBAC(cxcr4b:H2B-RFP) Lecaudey Lab https://doi.org/10.1038/s41467-018- 

06094-4

Xenopus laevis Sedzinski Lab N/A

Recombinant DNA

SF9-3xGFP myosin II sensor Sedzinski lab https://doi.org/10.1038/s41467-022- 

34165-0

Software and algorithms

seapipy v0.2.1 Repository https://doi.org/10.5281/zenodo.10853567

ForSys v1.1.2 This paper https://doi.org/10.5281/zenodo.15789474

Epyseg v0.1.52 Prud’Homme Lab https://doi.org/10.1242/dev.194589

Tissue Analyzer Eaton lab https://doi.org/10.1007/978-1-4939-6371- 

3_13

Ilastik v1.3.3 Kreshuk lab https://doi.org/10.1038/s41592-019- 

0582-9
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Zebrafish neuromasts videomicroscopy and analysis

The videomicroscopy data previously published by Kozak and colleagues was acquired as described and re-analyzed.28 Zebrafish 

larvae (Danio rerio) carrying the transgenics myo6b:β-actin-GFP48 and Tg[− 8.0cldnb:Lyn-EGFP]46 were anesthetized in MS222 and 

mounted in 1% low-melting point agarose. Larvae were imaged simultaneously using a Zeiss custom-built inverted spinning-disc 

confocal microscope with a 63× water-immersion objective. Stacks of 16-20 z-slices 1 μm apart were acquired every 200 s. Hair 

cells can be identified by the myo6b:β-actin-GFP staining in the apical side, while Tg[− 8.0cldnb:Lyn-EGFP] marks all neuromast 

membranes and allows cell segmentation. In total, 14 hair cell divisions were included in the analysis, and partitioned into the ‘‘invert

ing’’ or ‘‘non-inverting’’ group by whether the final position of the sibling hair cells is the opposite with respect to the anteroposterior 

axis.28 All 4D movies were processed using FIJI software.44 Stacks were centered by laying point regions of interest at time frames of 

significant drift and then running the Manual Drift Correction plugin and then further registering for z-slice drifts using the plugin Cor

rect 3D drift.49

After registration, one z-slice per time point was selected to segment membranes, using the Autocontext workflow from ilastik 

v1.3.3.50 The resulting probabilities were loaded in the multicut segmentation workflow to get a skeletonized segmentation of cells. 

These automated segmentations were loaded into TissueAnalyzer47 and manually corrected and semi automatically tracked. From 

the software Tissue analyzer, we exported two types of data: (1) cell tracking data containing x and y centroid position, cell area, 

perimeter (in pixels) and an ID identifying individual cells through time; (2) bond tracking data, indicating the identity of cells sharing 

a membrane segment, and the length of the membrane segment (in pixels).

The same segmentation images were then loaded into ForSys for stress inference and merged with the Tissue Analyzer data 

thereby getting an integrated dataset where it is known the identity of each cell, its pressure inference, and the membrane tension 

estimation for each membrane segment.

For Figure 6E, fish additionally carrying the transgenic TgBAC(cxcr4b:H2B-RFP) were used to label nuclei.

Zebrafish laser ablation experiments

Zebrafish larvae Tg[− 8.0cldnb:Lyn-EGFP] 5 days post fertilization were prepared identically and imaged in the same microscope as 

described in STAR Methods section ‘‘zebrafish neuromasts videomicroscopy and analysis’’. The laser ablation was performed with a 

iLasPulse laser system (Roper Scientific SAS, Evry, France) mounted on a Zeiss Axio Observer inverted microscope equipped with a 

63× water objective lens., as described in previous works.51,52 Thirty-seven neuromasts were ablated with only one ablation per fish. 

For each ablation, the microscope was centered in a L2 or L3 neuromast. Time Lapse movies were taken with a frequency of one 

image per second. Three laser pulses (355 nm, 400ps) were automatically triggered between the 3rd and 4th frame to acquire mi

croscopy images before and after the ablation of the membrane in a small circular ROI in the mid part of the cellular membrane 

(Figures 7A and 7B). We manually tracked the position of the tricellular junctions belonging to the ablated membrane as a function 

of time. We used the membrane’s recoil as a function of time in an interval just after the ablation to calculate the scale parameter 

(Figures S7C and S7D). Details of this calculation are in the ‘‘scale parameter selection in vivo’’ of the main text.

METHOD DETAILS

Applying ForSys to in vivo zebrafish microscopy

A basal z-slice was selected for each frame of a time-lapse video microscopy. Each frame was segmented with EPySeg13 and then 

manually curated by loading the complete z-volume into tissue analyzer.47 The resulting images are skeletonized segmentations of 

cell membranes, where pixels can only take the value of 1, for membranes, and 0 otherwise. The skeletons are 8-connected and each 

white pixel has exactly two neighbouring white pixels except for tricellular junction pixels, which have three. The skeleton images can 

be directly used as input to ForSys Skeleton() function. A preliminary run of ForSys on the segmented images was used to diagnose 

the accuracy of the tracking for tricell junctions from one frame to the next. Then a JSON file was created to correct any mistracking 

by labelling the connections between timepoints. As described in the STAR Methods section ‘‘determination of the scale parameter in 

silico’’, we used the estimated value of ρ = 0:1 for the scale parameter in the dynamic modality. Finally, ForSys outputs for each time- 

lapse experiment the stress and identity of the membranes, as well as the pressure and identity of the cells in the system.

The conceptual model behind ForSys

ForSys uses microscopy images as input to estimate the mechanical state of the tissue. The software extracts vertices, edges, and 

cells from the segmentation. ForSys accepts skeletonized segmentation, such as those generated with EPySeg13 as well as labeled 

masks, generated for example with Cellpose.14 After ForSys reads the input data, the algorithm works identically regardless of the 

microscopies’ input format (Figure S4). Although most vertices separate two edges, a number of them connect three or more edges 

and are central for stress inference. We call these pivot vertices or junctions. ForSys calculates the mechanical stresses operating on 

each edge while assuming mechanical equilibrium in each vertex. Conveniently, this creates a system of equations representing the 

geometrical state of the tissue.10,12 One equation per coordinate is built from every pivot vertex using force balance at the junction.

In the dynamic modality, ForSys assumes that each vertex is in an overdamped regime, where a viscous damping force propor

tional to the velocity balances the mechanical stresses at that vertex. This creates a non-homogeneous system of equations where 

the inhomogeneity is proportional to the vertex velocity. In both static and dynamic modalities, the resulting system of equations is 
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solved through a Least Squares minimization with the constraint that the average tension equals one (see ‘‘solving the system of 

equations’’ in STAR Methods for more details).

Finally, ForSys uses the stress inferred as an input to estimate cellular pressure within the tissue. For this, a Young-Laplace equa

tion is built at each cell-cell membrane, and the corresponding system is solved similarly to the stresses. However, this requires that 

the mean pressure of the system is equal to zero (see section statical stress inference for details). ForSys renders intercellular 

stresses as a color code of the cellular outlines, specifically at the edges. Similarly, intracellular pressures are depicted in a color 

code within the cytoplasmic area of the cells. Moreover, the numerical values of the inference and other observables are easily 

exportable, facilitating further analysis of the mechanical state of the tissue.

seAPIpy: Generation of in silico tissues to validate ForSys

To validate the accuracy of ForSys, we compared the intercellular mechanical stresses inferred by the software with a ground truth 

distribution of stresses within the tissue. To establish the ground truth, we employed a cell-based computational model to simulate 

tissues with known intracellular pressures and intercellular stress patterns. Specifically, we employed the vertex model, which is 

particularly suitable for mechanically evolving epithelial tissues.53,54 For the implementation of the vertex model, we utilized Surface 

Evolver software.32 To facilitate the integration and streamline the simulation process, we developed a Python-based software called 

seapipy.33 This open-source computational tool enables Python scripting to generate the desired initial tissue conditions and simu

late them using a vertex model implemented in Surface Evolver. seAPIpy generates a Voronoi tessellation with a given geometry as a 

starting configuration and assigns initial stresses to the edges (Figure S3). Through seAPIpy functions, the user may add Surface 

Evolver commands to create the desired conditions for evolution and generate the Surface Evolver-compatible file.

By leveraging both ForSys and the capabilities of seAPIpy software, we implemented four conditions as examples that were later 

used to test ForSys stress inference in both its static and dynamic modalities. The first two conditions induce a furrow formation on 

vertical and horizontal strips, respectively. In the third condition, a central zone of elevated stress is introduced, which diminishes 

radially. Lastly, a fourth condition assigns five different random stresses to edges, following a uniform distribution, with a 50 % spread 

in stress values. Each condition underwent twenty-five repetitions. These simulations served as the ground truths for validating 

ForSys in silico, as shown in the following two sections (Figures 2A, 3A, and S3).

We generated four examples to validate our software in silico. In all four cases, tissues evolve until a time zero is defined. The 

stresses are modified according to a prescribed condition, and the tissue evolves for shorter periods while it relaxes.

We generated the initial condition in each example by creating a Voronoi tessellation from N = 64 points in a rectangular grid. Each point 

in the grid is moved with a Gaussian noise centered at zero. Initial cell target areas are randomly assigned as A = 450 ± 5 (mean ± std) 

from a normal distribution. The initial stress of each edge is also taken from a normal distribution centered at 1 with a standard deviation of 

0.1. From this state, the tissue evolved through several rounds of vertex averaging and T1 swaps with varying scales.

We defined time as the number of steps elapsed, multiplied by the scale (t = n Δt), and call it Surface Evolver Time (SET). The first 

time point is generated after 3875 SET, after which the tissue is evolved for an additional 125 SET. At this point, membrane stresses 

are changed according to each condition, and each simulation snapshot is saved every 0.25 SET.

In the conditions corresponding to the horizontal and vertical furrows, the new tensions are generated by summing the value cor

responding to the position of the center of an edge in the probability density function (PDF) of a normal distribution to the initial ran

domized value. The normal distribution has its maximum at the centroid of the tissue and a standard deviation of ∼2 cellular radii. 

Vertical furrows have the PDF on the y-axis, and horizontal furrows on the x-axis. Similarly, the circular furrow uses the distance 

of the edge’s center to the tissue’s centroid to calculate the new stress. Finally, in the condition corresponding to the ‘‘random ex

amples’’, tensions are assigned from normal distributions with a 50% spread around five possible values (1, 1.1, 1.2, 1.3, 1.5) chosen 

uniformly. Cellular pressures are calculated by Surface Evolvers as Lagrange multipliers, by taking into account the area constraints 

of each cell.

Therefore, seapipy facilitates testing multiple in silico examples and has an easy integration into the analysis pipeline. seapipy offers 

advantages over an existing package (python-evolver; https://github.com/elmisback/python-evolver) because it incorporates Surface 

Evolver syntax directly into the Python code, eliminating the need to write Surface Evolver commands manually into the input files. sea

pipy allows for a systematic and straightforward generation of in silico ground truths, enabling a better exploration of strengths and lim

itations in stress inference tools.

Statical stress inference

We assume a 2D tissue with C cells, representing each cell as a polygon. The system consists of V vertices and E edges in total. Each 

edge is composed of two vertices. We define pivot vertices as those that correspond to junctions between three cells or are at the 

border of the tissue. This method can be applied to junctions shared by more than three cells but at the risk of losing stability in the 

underlying model.55 All vertices between two pivots are regarded as virtual, and only pivot vertices are used to compute stresses. We 

then use Newton’s second law and assume mechanical equilibrium to assert that the sum of forces at each pivot vertex equals zero. 

We can calculate the force acting on each vertex as a sum of the contributions of the forces along the edges connected to it. Math

ematically, the force at each pivot vertex will have an equation in the form
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Fi

→
=

∑

< ij >

λij r
→

ij (Equation 2) 

Where i and j indicate the vertices i and j, Fi

→
is the force on vertex i, λij is the edge force modulus in that edge, and r

→
ij is the versor 

along the edge starting at vertex i. The sum is done over all j vertices connected to the vertex i. Note that λij = λji. The direction of the rij 

versor is obtained by fitting a circle to the corresponding membrane, following other authors.10,12

Applying Equation 2 to all the vertices in the tissue will translate into a homogeneous set of linear equations that have to be solved 

simultaneously with the edge tensions (λij) as unknowns. Hence, we write Equation 2 and equate it to zero for each system vertex to 

guarantee that all the forces are balanced. Each of these V equations will be written as

λi1 r
→

i1 + λi2 r
→

i2 + ::: + λE r
→

iV = 0 (Equation 3) 

this equation corresponds to the ith vertex, and the edge tensions λ are the unknowns.

Similarly, it is possible to infer the pressures of each cell in the tissue by assembling a system of equations that connects the stress 

at each membrane with its curvature. The Young-Laplace equation relates these quantities with the pressure difference between two 

neighboring cells. Symbolically,

Pj − Pi = λijρij (Equation 4) 

Where Pi is the pressure of cell i, λij is the stress of the membrane shared by cells i and j, and ρij is the curvature of the shared mem

brane. This leads to a system of E equations, one per edge, and C unknowns.

The dynamic inference case

The static inference algorithm assumes that vertices do not move. To perform stress inference in a dynamic tissue where vertices are 

moving, we modified the static algorithm to include vertex movement. If the system has a low Reynolds number, viscous forces domi

nate the dynamics over inertial components; Equation 2 can be modified, assuming a constant viscosity throughout the tissue, to 

incorporate viscous forces as

F
→

i =
∑

< ij >

λij r
→

ij − η v
→

i (Equation 5) 

where v
→

i is the velocity of vertex i and η is the viscous damping coefficient of the tissue. This would modify the coupled system of 

equations, which could be rearranged to get the ith vertex
∑

< ij >

λij r
→

ij = η v
→

i (Equation 6) 

To determine the scales correctly, we proceeded to make Equation 6 nondimensional. For this, we redefine the stresses by using 

an unknown reference stress λ′j = 
λj

λj

. We take this reference stress as the average stress in the system. We used a reference velocity 

defined as the time average over all the frames of the mean junction velocity

v =
1

Nframes

∑tf

t = ti

∑

i

⃦
⃦
⃦
⃦ v
→

i

t

⃦
⃦
⃦
⃦

Nt
v

(Equation 7) 

Combining these equations gives a nondimensional expression for the force balance at each junction

∑

j

λ′j r
→

ij =
(η v

λ

) v
→

i

v
(Equation 8) 

Importantly, this led to the nondimensional parameter 
η v

λ
. Even though the right-hand side of Equation 5 is not a viscosity but rather 

a damping coefficient, we can interpret it as such in this context. Therefore, as the stress of each membrane represents the elastic 

forces in the system, this parameter can be interpreted as the relation between the elastic and the viscous forces acting on the sys

tem. We call this number the scale parameter, ρ (ρ = 
η v

λ
).

Solving the system of equations

In static and dynamic cases, it is necessary to solve a system of linear equations with homogeneous and inhomogeneous conditions, 

respectively. In both cases, we will turn the system into its matrix form, add a constraint to the unknowns through a Lagrange multi

plier, and convert it into a least squares problem. Finally, we will attempt to invert the resulting matrix, and if that is not possible, we will 

use a numerical algorithm to find the best solution.
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Given a two-dimensional tissue with V vertices and E edges, the system would have 2V equations, as each vertex has one equation 

per dimension and E unknowns, one for each edge. Following the method proposed by Brodland et al.,10 the set of equations in 

Equation 2 is then translated into matrix form as

MλX = B (Equation 9) 

Where Mλ is a 2V x E matrix with versor coefficients, X is the unknowns column matrix of E x 1, and B is a 2V x 1 column matrix with 

either all zeros under static conditions or the velocity components for each vertex in the dynamical case. To avoid the null solution in 

the static case, one further condition is added: The mean value for the unknowns, i.e., λs, is set equal to one, using the equation

∑E

k = 1

λk = E (Equation 10) 

where E is the number of edges and λk is the tension corresponding to the kth edge. In the matrix representation, this entails adding a 

Lagrange multiplier to the unknowns, a row and column of ones for the tension constraint, and a new row in the B matrix. Hence, the 

equations to be solved have 2V + 1 equations and E + 1 unknowns. Therefore, the typical equation for the one of the components of 

vertex i will be of the form

λij r
x
ij + λikr

x
ik + λil r

x
il + L =

(ηv

λ

) v i

v
(Equation 11) 

where j, k and l are vertices that connect to vertex i, and L is the Lagrange multiplier added by the constraint on the average value of 

stresses.

As this system might not always guarantee a solution, we transformed it using least squares. To this end, we apply the transpose 

matrix Mtr
λ to the equation, giving a new system

Mtr
λ MλX = Mtr

λ B (Equation 12) 

Symbolically,

M′
λ X′ = B′ (Equation 13) 

On the other hand, the B matrix in Equations 6 and 7 for the dynamic case has the corresponding nondimensional velocity compo

nent multiplied by the scale parameter (ρ) described in Equation 8 in each row. Its final element has the number of edges E to enforce 

the constraint. To quantify the movement present in the tissue, we calculate the 2-norm of the B matrix, removing the last row, this 

vector is referred to as |v|2. Each vertex is tracked through time to obtain the vertex velocity, and the forward velocity is calculated in 

all but the last step, where the backward expression is used. If a vertex cannot be followed in a frame, i.e., due to significant changes 

in the tissue shape, it is assigned a null velocity for the frames where it cannot be tracked.

Hence, to elucidate the acting forces within the tissue, the software attempts to solve it by inverting the Mλ
′ matrix, thus having a 

solution

X = M′ − 1
B′ (Equation 14) 

If the system is not invertible, i.e., M’ is singular, or if any of the edge tensions found are negative, a Least Squares algorithm can be 

used to find the stress values, such as a Non-Negative Least Squares, SciPy’s package or lmfit.56–58

After solving the system, the calculated stresses can be used to infer the pressures of the cells. As seen from the Young-Laplace 

equation (Equation 4), pressures are expressed through an inhomogeneous system of linear equations. The left-hand side is a matrix 

with one column per cell and one row per membrane. Each row has two entries different from zero, one +1 and one -1, representing 

the difference in pressure at that membrane. The right-hand side consists of a column matrix with the product of each membrane’s 

stresses and curvatures (λijρij). Then, the equations are solved analogously to the stress case using the Least Squares with the 

constraint that the average pressure must be zero.

Determination of the scale parameter in silico

We performed a parameter sweep to determine the optimal value of the Scale Parameter (ρ) from in silico simulations, testing values 

ranging from 0 to 0.5. For each of the four simulation scenarios, and across five repetitions per scenario, we calculated a performance 

score at each time point (Figures S9A–S9D). The optimal value of ρ was selected as the median score across repetitions, which in 

each case also coincided with the mode (Figures S9E and S9F). The resulting values were: ρ = 0.08 for the x-axis furrow, ρ = 0.07 

for the y-axis furrow, ρ = 0.13 for the circular furrow, and ρ = 0.18 for the random tension configuration. Based on these results, 

we set the default scale parameter to 0.1 in the dynamic inference mode of our software.

Interacting with the ForSys software

Forsys requires a Python (>3.8) environment to run. After installation, there are three ways to use the ForSys software. First, writing a 

Python script is the most comprehensive method, giving full access to all the information that ForSys processes. Example scripts can 
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be found in the documentation, and the packages repository, and in Figure S1. Additionally, to improve the usability of the ForSys 

tool, we created a Command Line Interface (CLI), and a Graphical User Interface (GUI). The CLI allows the analysis of tissues, using 

dynamical or statical inference directly from the command line, without needing to write any Python Scripts (Figures S2A and S2C). 

Possible commands to use are detailed in the package’s documentation. Finally, a GUI was created by integrating ForSys to Fiji to 

allow a high level interaction with the software (Figures S2B and S2C).

QUANTIFICATION AND STATISTICAL ANALYSIS

Evaluating goodness of fit

We evaluated the goodness of fit of the inferred data to the ground truth using a tailored saturated score function. This score com

bines the Pearson correlation coefficient (p), the Mean Absolute Percentage Error (M), and the coefficient of determination (r) as

s(M;p; r) =
α
M

+
β
2

1+p

1 − p
+

γ
1 − r

(Equation 15) 

where ⍺, β and ɣ are free parameters set to one. As this function is unbounded from above, we saturate the score at s = 299.5 for 

representation purposes in Figures 2, 3, and S9. This value comes from an error of 1 %, i.e. s(0:01;0:99;0:99) = 299:5.

The three components of the score are displayed separately for the in silico static validation of ForSys in Figures 2D, S6A, and S6B, 

and for the dynamic validation in Figures S7A–S7C.

Statistical estimators

To compare distributions, the Mann-Whitney U test was used with different alternative hypotheses, depending on whether we tested 

for stochastic ordering or whether distributions are different. In all in silico cases, the number of samples is twenty-five, which is the 

number of repetitions per condition. The Pearson correlation coefficient (R) was used when we evaluated correlations. The number of 

samples in each case is indicated when reporting the p-value.

Comparing ForSys with other computational methods

We tested the similarity of the static implementation of ForSys with two other established software: CellFIT10 and DLITE.12 To this 

end, we applied the DLITE python package to solve the four in silico examples used throughout this work, taking advantage of its 

CellFIT modality. We found that inferred stress for the last frame of each of the examples are similar (Figure S5A) and that the stress 

distributions emerging from the solution are roughly identical (Figure S5B). Moreover, for the accumulated data of all repetitions for 

each example at the last simulated frame, we found that ForSys static performs better than DLITE, except in the random example 

(Figure S5C).

Moreover, we generated an artificial normal distribution to measure the relative differences with a first moment of 1 and a second 

moment equal to 0.2. We calculated the Wasserstein Distance between the in silico distributions and the normal generated randomly. 

Given two distributions, X and Y, the Wasserstein Distance is zero if and only if the two distributions are equal. The distance between 

two distributions can be arbitrarily large for increasingly different shapes.

The Wasserstein Distance is almost zero in all cases, indicating that the distributions gathered from the three inference methods 

are similar. To compare its similarity, we used an artificially generated normal distribution. Using this metric, we found that the 

methods among themselves are ∼30 times closer in the x-furrow and y-furrow, 10 times closer for the circular case, and ∼5 times 

closer in the random densities example than to the normal distribution.
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