
Article https://doi.org/10.1038/s41467-025-64774-4

A multimodal cross-species comparison of
pancreas development

Kaiyuan Yang 1,2,18, Hannah Spitzer 3,4,18, Michael Sterr1,2, Karin Hrovatin 3,5,
Sean de la O6,7,8, Xinghao Zhang9,10, Eunike Sawitning Ayu Setyono 1,2,
Minhaz Ud-Dean11, Thomas Walzthoeni11, Krzysztof Flisikowski12,
Tatiana Flisikowska 12, Angelika Schnieke 12, Katharina Scheibner1,2,
James M. Wells 9,10,13, Julie B. Sneddon 6,7,8, Barbara Kessler2,14,15,
Eckhard Wolf 2,14,15, Elisabeth Kemter 2,14,15, Fabian J. Theis 3,5,16 &
Heiko Lickert 1,2,17

Human pancreas development remains incompletely characterized due to
restricted sample access. We investigate whether pigs resemble humans in
pancreas development, offering a complementary large-animal model. As pig
pancreas organogenesis is unexplored, we first annotate developmental hall-
marks throughout its 114-day gestation. Building on this, we construct a pig
single-cell multiome pancreas atlas across all trimesters. Cross-species com-
parisons reveal pigs resemble humans more closely than mice in develop-
mental tempo, epigenetic and transcriptional regulation, and gene regulatory
networks. This further extends to progenitor dynamics and endocrine fate
acquisition. Transcription factors regulated by NEUROG3, the endocrine
master regulator, are over 50%conservedbetweenpig andhuman,manybeing
validated in human stem cell models. Notably, we uncover that during
embryonic development, emerging beta-cell heterogeneity coincides with a
species-conserved primed endocrine cell (PEC) population alongside
NEUROG3-expressing cells. Overall, our work lays the foundation for com-
parative investigations and offers unprecedented insights into evolutiona-
rily conserved pancreas organogenesis mechanisms across animal models.

Mice have been the main mammalian model to investigate the evo-
lutionarily conserved basic principles of development and disease.
As human fetal samples are largely inaccessible due to ethical and
practical restrictions, our knowledge of pancreas development is
mainly built on extensive investigations in mice1,2. In brief, from
foregut endoderm, ventral and dorsal pancreatic buds are specified,
evaginated, and fused over the midline to form the organ anlage.
This multipotent progenitor epithelium undergoes apical-basal
polarization, microlumen formation, single-layer stratification, and
branching morphogenesis, which is concomitant with tip-trunk pat-
terning and differentiation to form the acinar, ductal, and endocrine
compartments of the final pancreas (Fig. 1a)1,3–7. With this blueprint,

the signals and factors orchestrating in vivo development are applied
to human pluripotent stem cell differentiation in vitro to generate
endocrine islet cells, such as glucagon-producing alpha cells and
insulin-producing beta cells, enabling stem cell-derived islet repla-
cement therapy to treat diabetes7–10. However, these protocols can-
not produce fully functional islet cells while eliminating
undifferentiated and off-target cell types11,12, partly resulting from the
inherent differences in developmental timescales, neighboring tissue
interactions, and spatiotemporal gene expression and regulation
between mouse and human pancreas differentiation and
morphogenesis13. These differences highlight the need for cross-
species comparisons with additional model systems to uncover
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conserved mechanisms of organogenesis and to bridge the transla-
tional gap between mice and humans.

Pigs have coevolved with humans over the past 10,000 years, a
period when pig domestication coincided with human agricultural
civilization14. Despite diverging from humans earlier than mice (94 vs.
87 million years ago)15, pigs retain genomic feature similarity to
humans compared to the rapidly evolving mouse lineage16. Moreover,
as omnivorous animals, pigs resemble humans in metabolism and
physiology. Pig organs share anatomical and functional features with
humans, making them a favored option for xenotransplantation with
compatible organ size and fewer ethical concerns compared to non-
human primates17. Porcine islets show transcriptional characteristics
similar to human islets18 and represent a potential source for
xenotransplantation19, since pigs and humans have similar glycemic
control and identical insulin amino acid sequence. This allowed insulin
therapy using pig insulin before recombinant human insulin became
available20–22. However, whether these shared traits position pigs as a
relevantmodel for humanpancreas development remains unexplored,
particularly regarding the molecular and (epi)genetic mechanisms
driving embryonic development and organogenesis. Given pigs’ ana-
tomical and physiological similarities to humans and their extended
gestational period (114 days vs. 21 in mice, 280 in humans), we rea-
soned that pigs could serve as a large animalmodel to complement the
existing rodent models, bridging the translational gap in under-
standing pancreas development from mice to humans.

Here, we utilize temporally resolved single-cell multi-omics to
compare pancreas development in mice, pigs, and humans. Our ana-
lysis demonstrates the complementary potential of the pig model for
identifying both species-specific and evolutionarily conserved
mechanisms of pancreas organogenesis, morphogenesis, and
differentiation.

Results
The developing pig pancreas
To compare pancreas development across species (Fig. 1a), we first
defined the unexplored hallmarks of pigpancreas development during
the 114-day gestation by identifying major lineage markers known in
mouse and human (Fig. 1b–g). The pig pancreas primordium emerged
around embryonic day (E)18, when the earliest pancreatic transcrip-
tion factor (TF) PDX1 was detected in both ventral and dorsal foregut,
with the former having a thicker evaginating layer of cells as reported
in human embryos (Supplementary Fig. 1a)23. At E20, pancreas orga-
nogenesis initiated with the apparent dorsal and ventral buds (T1,
Fig. 1a) that comprised an unpolarized multi-layered progenitor epi-
thelium, harboring glucagon+ alpha cells and very few insulin+ beta
cells (Fig. 1b and Supplementary Fig. 1b). The early emergence of
hormone+ cell resembles the first wave of Neurogenin-3 (NEUROG3)-
mediated endocrinogenesis inmice during the primary (1°) transition5,
which is absent at the corresponding stage in human when the endo-
crine transcription factors NEUROG3 and NKX2-2 remain
undetectable23. Upon the fusion of the two pancreatic buds at E30, the
expression of NEUROG3 protein and transcripts diminished from the
pancreas (Fig. 1c and Supplementary Fig. 1c, h). At E40, concurrent
with pancreatic epithelial polarization, stratification and tip-trunk
patterning (T2, Fig. 1a), NEUROG3 reappeared, initiating the second
wave of endocrinogenesis comparable to the secondary (2°) transition
in mice (Fig. 1d and Supplementary Fig. 1d). By E54, CPA1+ tip and
SOX9+ trunk domains were clearly established (Fig. 1e and Supple-
mentary Fig. 1e). SOX9 remained faintly detectable in CPA1+ tip cells
that were predisposed to acinar fate at E63, while endocrine cell
clusters started to appear (Fig. 1f and Supplementary Fig. 1f). From E85
onwards, endocrine (NKX6-1+), ductal (SOX9+) and acinar (GATA4+)
compartments continued to segregate, with these TFs showing almost
exclusive expression patterns (Fig. 1g and Supplementary Fig. 1g, j).
During this time, pig proto-islets appeared (T3, Fig. 1a) and formed an

intermingled islet architecture near birth (Supplementary Fig. 1k),
which resembles the postnatal islet architecture in human, but not the
typical core (beta cells)-mantel (alpha cells) islet structure known from
mice24–26.

Aligning the timing of pancreas developmentmilestones (i.e. time
points labeled in Fig. 1a) in human, pig and mouse allowed us to
compare the developmental tempo across species (Fig. 1h). Overall,
pig pancreas morphogenesis and differentiation speed showed a clo-
ser resemblance to humans when compared to mice, particularly
during the 2° transition. The formation of the pancreatic anlage in the
form of two buds (T1) occupied 10% of the duration of human gesta-
tion, 12% in mouse and 17% in pig. In contrast, pancreatic morpho-
genesis (T2) and islet formation (T3) progressed much faster in mice
(42%), contrary to the longer duration in human (82%) and pig (65%),
when both species underwent extended acinar terminal differentiation
and islet remodeling23.

To capture the dynamic transcriptional changes of lineage allo-
cation during pig pancreas development, we performed 10X single-cell
RNA sequencing (scRNA-seq) on 124,869 cells isolated from pancreata
across all three trimesters (Supplementary Fig. 2a and Supplementary
Data 1). The resulting dataset was subjected to stringent doublet
removal: cells consistently identified as doublets by >3 among the six
methods used were removed, and entire clusters with a doublet fre-
quency >70% were excluded (see Methods for details). From this fil-
tered dataset, we extracted pancreatic epithelial cells that co-expressed
CDH1 and EPCAM (Supplementary Fig. 2b) and identified eight clusters
(Fig. 1i, j, Supplementary Fig. 2c, d and Supplementary Data 2): Ductal
(SOX9/SLC4A4), Acinar (CPA1/CEL), NGN3 (NEUROG3/TUBB2B, endo-
crine progenitors, NGN3 is used as a cluster name to differentiate from
NEUROG3 protein and/or mRNA), FEV (FEV/CHGB, endocrine pre-
cursors with low NEUROG3 expression), Beta (INS/G6PC2), Alpha
(GCG/IRX1), Delta (SST/HHEX), and PP (PPY/ETV1) cell clusters. Among
the top ranked genes, published humanmarkers were also found in the
pig pancreas, such asMDK in the NGN3, DDC in FEV, ASB9 in Beta, TTR
in Alpha, RBP4 in Delta cell clusters27–30. Diabetes risk related genes
were expressed in a cell-type specific manner, e.g. ABLIM1 in Ductal,
TAGLN3 in NGN3, DIRAS3 in Alpha, CFAP61 in all endocrine cell
clusters31–34. We further identified twomolecularly distinct cell clusters:
1) A predicted multipotent progenitor cell (MPC) cluster, which tran-
siently existed during E23-40 and co-expressed key pancreatic pro-
genitor TFs (PDX1, PTF1A, SOX9, NKX6-1, PROX1). This predicted MPC
cluster resolved from E54 onwards, when exocrine and endocrine
lineages clearly separated and committed to differentiation; 2) A
primed endocrine cell (PEC) cluster first emerged at E23 alongside
sparse NEUROG3+ endocrine progenitors. This population, which per-
sisted throughout all subsequent stages, exhibited features of endo-
crine cells and expressed genes coding for cytoskeletal components
(TUBA1B, TUBB, STMN1) and cell cycle regulators (H2AFZ, PCLAF).

The emergence of the identified cell clusters in the scRNA-seq
atlas was consistent with our immunofluorescence analysis of the pig
pancreas, thereby verifying the cell type annotations. For instance, the
NGN3 cluster contained only two cells in the scRNA-seq atlas at E33,
when the NEUROG3 protein and transcript were almost undetectable
in the pancreas (Fig. 1c, i and Supplementary Fig. 1c, h); whereas the
CPA1+ Acinar, SST+ Delta and PPY+ PP clusters appeared after E40, when
these proteins could be detected in the pancreas (Fig. 1i and Supple-
mentary Fig. 1d, e, i).

Cross-species multiome atlas comparison
To compare the transcriptional features of all epithelial pancreatic cell
types across species, we generated atlases of human and mouse pan-
creas development by integrating published 10X scRNA-seq
datasets30,35–42. The human atlas had 188,488 cells from 7-20 week-
post-conception (wpc), while the mouse atlas had 135,575 cells cover-
ing E8.5-18.5. Cells were clustered, annotated, and the pancreatic
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epithelial lineage selected as for the pig dataset (Supplementary
Fig. 3a–f). All pig pancreatic cell clusters were identified in human and
mouse datasets except the PEC cluster, which was absent potentially
due to its low abundance in the analyzed samples (Fig. 2a, Supple-
mentary Fig. 3g, h and Supplementary Data 2). PP (PPY/ETV1) cells did
not separate from the Alpha cluster in mouse (Supplementary Fig. 4a).
FEV+ cells in human were annotated together with the NGN3 cluster as
EP (endocrine progenitor) cluster due to high NEUROG3 expression
(Supplementary Fig. 4b). The Epsilon (GRHL) cluster was identified in
human and mouse datasets, but surprisingly not in the pig pancreas.
The Epsilon marker genes from human and mouse did not show sig-
nificant enrichment in any cell clusters in the pig (Supplemen-
tary Fig. 4c).

To assess the comparability of pancreatic cell types across spe-
cies, we performed a correlation analysis using the average expression
of species-conserved highly variable genes in each cluster, which
reflected the global transcriptional programs of each species. Pig and
human clusters had an overall stronger correlation (r = 0.6-0.7),

whereas MPC, Beta, and EP clusters in mouse showed the lowest cor-
relation to human clusters (r = 0.45-0.54; Fig. 2b and Supplementary
Fig. 4d). We further examined the significantly upregulated differen-
tially expressed genes (DEGs) of each cluster across species, which can
capture the subtle species-specific differences in gene expression.
Although the pig genome annotation is not as complete as that of
human and mouse, the MPC, Beta, and Ductal clusters of pig and
human had more overlapping total DEGs and TFs. In contrast, in the
Acinar and Alpha clusters, mouse and human shared more total DEGs,
but not TFs (Supplementary Fig. 4e). Each species displayed distinct
cell-type-specific expression patterns of DEGs (Fig. 2c, Supplementary
Fig. 4f, and Supplementary Data 3). For example, the top TFs SOX6 and
SOX9 of humanMPC cluster showed enriched expression in the Ductal
cluster of pig and mouse. The expression patterns of the top TFs in
endocrine progenitors were relatively conserved among the three
species. Among the top TFs of the human Beta cluster, the maturation
TF MAFA was detected in pig but absent in mouse beta cells; PLAGL1,
related to transient neonatal diabetes43,44, appeared in pig beta cells,
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Fig. 1 | A detailed roadmap of pig pancreas organogenesis. a Schematic com-
parison of pancreas organogenesis in mouse, pig and human1,6,7. Pancreas orga-
nogenesis initiates when the pancreatic buds (dorsal bud shown) emerge from the
foregut endoderm while predicted multipotent pancreatic progenitor cells (MPC)
expand into a multi-layer epithelium (T1). In mouse and pig but not human, neu-
rogenin 3-induced endocrinogenesis marks the primary (1°) transition, generating
alpha cells and few beta cells. Pancreatic morphogenesis (T2) occurs after the
fusion of the pancreatic buds. The epithelium undergoes polarization, microlumen
formation and coalescence into the near single-layer epithelial tree, which is sub-
sequently patterned into trunk and tip domains during branching morphogenesis.
This coincides with progenitor differentiation forming exocrine and endocrine
compartments, referred to as secondary (2°) transition when the bulk of beta cells
emerge. During T3, the pancreatic ductal and acinar cells proliferate and terminally
differentiate, while delaminating endocrine cells form proto-islets of various sizes.

b–g Bright-field images of wild-type pig embryos or embryonic pancreas (scale bar
2mm) and immunofluorescence identification of lineage markers highlighting
differentiation events in tissue sections (scale bar 50 µm) at different time points.
Images are representative of 3 samples per time point. h Schematic comparison of
mouse and pig development speeds relative to human, showing the timing of each
pancreas developmental milestone (labeled in a) as a percentage of gestation
duration marked with dashed lines. i Uniform Manifold Approximation Projection
(UMAP) plots showing integrated pig pancreas atlas and cluster changes from E22-
85. Cells at each developmental stage (see b-g) are highlighted and colored by cell
type, with a pie chart of relative cell type composition at the upper right corner.
j Dot plot showing mean gene expression of marker genes for each cluster of the
integrated pig pancreas atlas. i and j: scRNA-seq of pancreatic cells from wild-type
and INS-eGFP pigs. Detailed sample information is provided in Supplemen-
tary Data 1.
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while mainly being expressed in mouse acinar cells. The TF ETV1
showed enrichment in human delta cells, though in pig and mouse, it
was highly expressed in alpha cells.

Conserved cell-type gene expression patterns indicated simila-
rities in higher-order chromatin regulationmediated via cis-regulatory
elements (CREs, e.g., enhancers and silencers) to control gene
expression45. To compare pig and human CREs and upstream

transcriptional regulators of pancreatic cell fate decisions, we addi-
tionally performed single-cell 10X multiome sequencing to assess
transcriptional changes and chromatin accessibility simultaneously.
Samples were collected during the 2° transition of pig development at
E45-85, resulting in 29,072 nuclei (SupplementaryData 1). Cluster label
transfer from the pig scRNA-seq atlas identified all cell types, except
that the MPC cluster had already diminished, while the Epsilon cells
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Fig. 2 | Cross-speciesmultiome atlas comparison reveals conservationbetween
species. a UMAPs of integrated human, pig, and mouse atlases of pancreas
development. Cells were colored by cell type, with the same colors indicating the
same cell types across species (Hs, Homo sapiens; Ss, Sus scrofa; Mm,Mus muscu-
lus). b Spearman correlation of mean normalized gene counts per cluster com-
paring pig-human andmouse-human pairs (based on humanorthologs). Analysis is
limited to the 851 genes shared in the intersection of all species’ 4000 highly
variable genes. c Dot plot showing mean expression of cell-type-specific differen-
tially expressed TFs in human (one-vs-rest analysis using edgeR; FDR-corrected p-
value < 0.05; Supplementary Data 3). Top genes with the highest logfold change
that are expressed in > 20% of cells of the cluster are shown across all clusters
(square color = cell type color in a) for all three species. Genes are mapped to
human orthologs. Dot size represents the fraction of expressing cells per cluster
(logarithmic scale). d Coverage plots showing pig-human conserved NEUROG3

genomic regions. Link positions were converted from pig to human genome
assembly with UCSC liftOver tool (http://genome.ucsc.edu)119. Pseudo-bulk acces-
sibility tracks were used to visualize DNA accessibility in a region by averaging
signals from all cells within a cluster. e Heatmap of top differentially active motifs
across cell types computedwith chromVAR121 usinghuman 12wpc scATAC-seq (top)
and pig multiome (bottom) datasets. f UMAP visualizations of the inferred TF
network from human scGLUE48-integrated scRNA/ATAC-seq (left) and pig multi-
ome (right) data. Nodes represent TFs, colored by their highly expressed clusters
and sized by network centrality. Edges show TF-target interaction strengths
(orange: activating; gray: inhibiting). a–c: scRNA-seq of pancreatic cells from wild-
type and INS-eGFP pigs. d–f: Multiome analysis of pancreatic cells from PTF1A-
codon-improved-Cre/ROSA-mTmG pigs. Detailed sample information is provided
in Supplementary Data 1.
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remained undetectable (Supplementary Fig. 5a, b). We further ana-
lyzed single-cell transposase-accessible chromatin with sequencing
(scATAC-seq) data from human 12 wpc pancreas30, which had 5592
nuclei. Cell clusters were annotated via label transfer from the human
scRNA-seq atlas, and pancreatic epithelial cells were used for further
analysis (Supplementary Fig. 5c).

Highly conserved CREs were identified when comparing the
sequences between pig and human key lineage regulators, such as the
master regulator of endocrinogenesis, NEUROG3 (Fig. 2d). Further
computing cell-type specific motif activities revealed pig-human con-
served active TFs towards endocrine and exocrine lineages (Fig. 2e and
Supplementary Fig. 5d). Both Acinar and Ductal clusters had active
motifs of TFs determining acinar fate differentiation (NR5A2, PTF1A and
RBPJ), reflecting the gradual resolution of chromatin and transcription
factor profiles in acinar and ductal lineages during terminal differ-
entiation in human and pig. In addition, two MODY genes (HNF4A and
HNF4G) that regulate the growth and function of beta cells, were found
active in acinar cells. TheDuctal cluster conserved TFs containedHippo
effector genes (TEAD1 and TEAD4) and TFs known to be expressed in
the embryonic ductal tree, such as HNF1A, TCF7L2, SOX9, GLIS3, and
GATA6. The human-pig conserved TFs in the EP cluster included known
regulators of endocrinogenesis (NEUROG3, RFX3, RFX6, and NEUROD1),
members of the Nuclear Factor 1 family (NFIA, NFIB, and NFIX), and the
intestinal stem cell identity TF ASCL246. Endocrine cell clusters also had
a large panel of TFs shared between pig and human (PAX6, PDX1,MNX1,
LMX1B, PAX4, ISL1, NKX6-1, ARX, and NKX2-2).

Given the conservation of cell-type-specific activemotifs between
pig and human, we used Pando47 to construct GRNs using human
scGLUE48-integrated scRNA/ATAC-seq and pig multiome (joint scRNA/
ATAC-seq) pancreas datasets. This enabled detailed examination of
relationships between pig-human conserved TFs, their potential target
gene expression, and regulatory-site accessibility across cell types and
species. The generatedGRNs revealed groups of pig-humanconserved
TFs involved in the differentiation and cell state transition of pan-
creatic lineages (Fig. 2f and Supplementary Fig. 5e). Ductal-specific TF
modules (HNF1B, GLIS3, and EHF), as well as acinar-specific modules
(MECOM, XBP1, and STAT3), formed interconnected networks with a
set of TFs that showed enrichment in both acinar and ductal lineages
(HES1, NR5A2, ONECUT1, TCF7L2, MAFF, REST, and MEIS1). Among TF
modules linked to endocrine differentiation, SOX4 (not expressed in
pigs) was enriched in both ductal and endocrine lineages in humans.
Additionally, NR3C1, implicated in regulating islet gene programs and
conferring genetic risk of type 2 diabetes49, was enriched in both the
acinar and endocrine lineages in pig, whereas in human, it was only
found in endocrine TF modules. Nevertheless, a large group of endo-
crine TF modules was conserved between pig and human, including
ST1850, DACH151, PLAGL143,44, and CDCC88A52, genes linked to beta cell
mass and function.

Pig-human conserved endocrinogenesis
To explicate the mechanisms underlying endocrine fate allocation, we
focused on the endocrine progenitor clusters stemming from trunk
(ductal) cells with low NEUROG3 expression, progressing towards the
cells that clearly diverged into either the alpha or beta cell fate
(Fig. 3a–c). To infer developmental trajectories underlying pancreatic
lineage acquisition, we applied CellRank with the Palantir Pseudotime
kernel53 to the integrated scRNA-seq atlases to estimate cell states,
compute cell-cell transition probabilities, and map cell fates. CellRank
correctly predicted the differentiated pancreatic cell clusters as the
terminal states (Fig. 3a–c and Supplementary Fig. 6a), providing a
reliable transition matrix to infer lineage trajectories in all three spe-
cies. This revealed distinct differentiation programs in endocrine
progenitors of pig and human, opposed to mouse (Fig. 3b). Specifi-
cally, at the stage of high NEUROG3 expression, the progenitors in pig
andhumanalready segregated toward either the alphaorbeta cell fate.

The presence of FEV-expressing endocrine precursors was limited to
the beta cell lineage alone. Similarly, the same differentiation pattern
was identified by an independent analysis with a subset of the human
scRNA-seq atlas data30. In contrast, the separation of alpha and beta
cell lineages occurred within the FEV-expressing endocrine precursors
in mice (Fig. 3b and Supplementary Fig. 6b, c).

We next correlated gene expression with CellRank-inferred line-
age probabilities and computed putative driver genes of alpha or beta
cell fate for each species. Among the orthologous genes mapped
across species, pig and human had more overlapping alpha or beta
lineage drivers compared to the set shared between mouse and
human, regardless of correlation strength (Fig. 3d and Supplementary
Data 4). We then identified shared and distinct lineage driver genes
with a correlation score >0.7 across species (Supplementary Fig. 6d).
To compare expression dynamics of orthologous lineage drivers dur-
ing endocrine progenitor fate specification, we performed hierarchical
clustering in humans to define gene clusters and enriched pathways,
then mapped conserved programs in pigs and mice (Fig. 3e, f and
Supplementary Data 4). These clusters captured pseudotemporal
expression profiles progressing from early endocrine progenitors to
fate-committed endocrine cells. For example, in beta cell lineage
specification, clusters 3 and 4 showed a conserved expression cascade
of Notch signaling-related genes, likely present in early endocrine
progenitors. Cluster 2 was enriched with mTOR and RA signaling
genes,which showedhigh expression at both the beginning and endof
endocrine progenitor differentiation. Cluster 1 contained genes highly
expressed late in differentiation, suggesting their roles in beta cell fate
specification. While we observed species-specific differences in extra-
cellularmatrix organization, tight junction formation, and cytoskeletal
regulation, core features of endocrine differentiation - particularly
incretin synthesis and secretion - remained conserved across all spe-
cies in both beta and alpha cell lineages, demonstrating evolutionary
preservation of key differentiation mechanisms.

To evaluate the suitability of pigs as a model of human endocrine
development, we performed a comparative analysis of NEUROG3 TF
regulatory networks derived from native human and pig pancreas
multiome data and experimentally derived targets from human stem
cell models. Using Pando-inferred GRNs from human scGLUE-
integrated scRNA/ATAC-seq data and pig multiome data, we extrac-
ted NEUROG3 networks with significant interactions and module
activities (Fig. 3g, h and Supplementary Data 5). Both human and pig
NEUROG3 networks contained >100 TFs, including canonical NEU-
ROG3 targets, such as NEUROG3, NEUROD1, NKX6-1, NKX2-2, and
MLXIPL. We then benchmarked these against targets identified
through human stem cell models. In our human embryonic stem cell
(hESC) model54,55, we achieved temporal control of NEUROG3 induc-
tion using tetracycline to precisely match physiological levels and
timing required for endocrine differentiation. These hESCs were dif-
ferentiated stepwise via endoderm and then foregut into pancreatic
progenitors, followed by an 8-h NEUROG3 TF induction. Over 90 high-
confidence NEUROG3 downstream TF targets were identified through
integrative analysis of time-series mRNA, ATAC and chromatin
immunoprecipitation (ChIP) sequencing data (Fig. 3i and Supplemen-
tary Data 5). Additionally, we compared these results with NEUROG3
target genes identified using a human induced pluripotent stem cell
(hiPSC) model56, in which an epitope-tagged NEUROG3 was used for
cleavage under targets and release using nuclease (CUT&RUN) to
identify NEUROG3-bound regions in purified hiPSC-derived EPs (Sup-
plementary Data 5). This revealed 59 conserved NEUROG3 TF targets
between native pig and human pancreas GRNs, including 32 targets
not detected in either stem cell model, while the stem cell system
verified 20 targets absent in the pig in vivo dataset (Fig. 3i and Sup-
plementary Data 5). Several NEUROG3 targets, such as EHF, DACH1,
ST18, and MAFF, were conserved in all models. Using temporally con-
trolled NEUROG3 TF expression, our hESC model further captured
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additional conserved early NEUROG3 targets, such as PRDM8, GRHL3
and FOS.

Developmental origin of beta cell heterogeneity
We and others have previously reported beta cell heterogeneity in
terms of proliferation andmaturation regulated by theWnt/planar cell

polarity (PCP) signaling pathway57,58. However, the timing and
mechanisms underlying the origin of beta cell heterogeneity remain
unknown. Intriguingly, two heterogeneous beta cell subpopulations
formed during the extended period of pig pancreas development. The
Beta,0 cluster consisted of cells appearing at all stages, whereas the
Beta,1 cluster emerged mainly during the second wave of
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Fig. 3 | Pig-human conserved endocrine fate allocation. a–c For each species:
circular projectionof CellRank-calculated fate probabilities for each cell toward the
terminal states (outer labels); and UMAPs detailing endocrine progenitors
branching, with the integrated pancreas atlas showing NEUROG3 expression (red)
and endocrine progenitor cluster boundaries (black), and an insert showing
endocrine progenitor subclusters with overlaid CellRank-inferred trajectories
(arrows).d Line plots showing the cumulative number of CellRank-derived beta-cell
(top) and alpha-cell (bottom) lineage drivers in mouse and pig that overlap with
human orthologs, plotted across correlation score thresholds (Supplementary
Data 4). Solid lines show significant driver numbers (Benjamini-Hochberg FDR-
corrected p-value < 0.05). Shaded regions indicate the number of genes obtained
when using the lower and upper bounds of the 95% confidence interval for the
corresponding correlation score. e, f Heatmaps displaying modeled gene expres-
sion patterns for human beta-cell (e) and alpha-cell (f) lineage driver gene clusters
(identified by hierarchical clustering) across pig, human, and mouse along

pseudotemporal trajectories (left to right: 0→ 1). Annotations indicate species-
conserved pathways and representative genes for each cluster. (corr., correlation;
n, number of conserved genes that are expressed in > 20% of endocrine progenitor
subclusters) g–i Comparison of NEUROG3 TF targets identified in human/pig
pancreas and hESC model (conserved targets in blue). g, h Circular GRN graphs
showing first- and second-order NEUROG3 targets from human scGLUE-jointed
scRNA/ATAC-seq data (g) and pig multiomic data (h). Nodes represent TFs. Edge
color indicates regulatory interaction types (orange, activating; gray, inhibiting);
i NEUROG3 TF targets in hESC model with inducible NEUROG3 expression. ChIP-
seq-identified direct targets are shaded. Differentially expressed TFs comparing
cells with/without NEUROG3 expression are indicated by arrows (red, upregulated;
blue, downregulated). a–f scRNA-seq of pancreatic cells from wild-type and INS-
eGFP pigs. h Multiome analysis of pancreatic cells from PTF1A-codon-improved-
Cre/ROSA-mTmG pigs. Detailed sample information is provided in Supplemen-
tary Data 1.
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endocrinogenesis (Fig. 4a). Comparing the two beta subclusters
unveiled unique differentially expressed gene sets (Fig. 4b and Sup-
plementary Data 6). Beta,1 cells were enriched in TFs of the reported
core transcriptional regulatory circuits for beta cells59, such as NEU-
ROG3, FEV, TCF7L2, MEIS1, MEIS2, SOX13, GLIS3, NR3C2, and MAFA.
Further gene set enrichment analysis identified active pathways rela-
ted to epithelial differentiation, extracellular matrix, and cell junction
organization (Supplementary Fig. 5a and Supplementary Data 6). In
contrast, Beta,0 cells had elevated expression of cell cycle regulators
and components ofWnt/planar cell polarity (PCP), TGFβ, and synaptic
transmission pathways, suggesting a distinct beta cell phenotype
compared to Beta,1 cells.

To gain insight into the regulatory networks shaping the gene
expression features of the beta cell subpopulations, we used
CellOracle60 to infer cell-type-specific GRN modules. A custom-
assembled base GRN from our pig multiome dataset was applied to
construct the GRN configurations in the scRNA-seq data. This resulted
in two unique TF networks between Beta,0 and Beta,1 clusters with
clearly distinct top 5 regulons (Fig. 4c and Supplementary Data 7).
Notably, all these regulons were NEUROG3 targets identified in pig,
whereas in Beta,0 cells, only secondary targets wereobserved (Fig. 3e).
PLAGL1 is a zinc-finger TF implicated in cell-cycle control, ECM orga-
nization, and risk of neonatal diabetes43,44,61–63. In pig Beta,0 cells,
PLAGL1 formed a network linking genes related to cell migration,

adhesion, and cell-cycle regulation (TMEM176A,MFAP4,NME2). In both
clusters, MEIS2 positively targeted beta cell identity genes (G6PC2,
PDX1, CHGA), albeit interconnecting with different regulons.

MEIS2 encodes a homeobox TF in the three amino acid loop
extension (TALE) family and acts together with PBX and HOX TFs to
form dimeric or trimeric complexes to enhance DNA binding specifi-
city and affinity for target gene regulation64. MEIS2 was detected in
human embryonic29 and adult beta cells65 and shown to regulate PAX6
expression during pancreas development66. To understand the role of
MEIS2 in beta cell differentiation, we performed in silico perturbation
using CellOracle tomimic aMEIS2 knockout (KO, Fig. 4d). In theMEIS2
KO simulation, Beta,1 cell differentiation was blocked, with only
minimal effects on the Beta,0 cluster. This was further validated by
Markov simulation to estimate cell distribution changes, showing that
MEIS2 KO reverted Beta,1 cells to the FEV and NGN3 progenitor states.

Next, we assessed whether MEIS2 could serve as a pig-human
conserved marker to distinguish beta cell subpopulations. In the pig
scRNA-seq atlas, MEIS2+ beta cells mostly appeared in the Beta,1 clus-
ter, while MEIS2- beta cells were primarily found in the Beta,0 cluster,
both subpopulations sharing characteristics matching their respective
beta subclusters (Fig. 5b, c). Remarkably, heterogeneous human beta
subpopulations in the scRNA-seq atlas could also be identified based
on MEIS2 expression. Human MEIS2+ beta cells resembled pig MEIS2+

beta cells and Beta,1 cluster, showing enrichment of genes involved in
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microtubule and cell-matrix organization. Conversely, human MEIS2-

beta cells had active Wnt/PCP and TGFβ signaling that were observed
in pig MEIS2- beta cells and Beta,0 cluster (Fig. 5d, e). Louvain clus-
tering further identified a distinct beta subcluster composed of the
majority of humanMEIS2- cells (Fig. 5f). The presence ofMEIS2-positive
and negative beta cells was confirmed in both pig pancreases (E20-54)
and hiPSC-derived islets (Figs. 4e and 5g).

Embryonic endocrine progenitor heterogeneity
Having observed distinct beta cell subpopulations emerging during
development, we sought to investigate whether these cells may

originate from different endocrine progenitors. We first examined the
CellRank-inferred developmental trajectories that faithfully mapped
cell fate transitions in the pig scRNA-seq atlas. The NGN3 cluster was
predicted to generate major beta cell clusters as expected. Addition-
ally, the PEC cluster was identified as another intermediate state
upstream of a beta cell subpopulation (Fig. 6a). To compare the gene
expression programs along the trajectories fromNGN3or PEC towards
the respective beta cell subtypes, we applied tradeSeq67 to detect
differential gene expression patterns between lineages (Fig. 6b and
Supplementary Data 8). Two distinguishable gene clusters were iden-
tified comparing lineages NGN3-to-Beta,1 and PEC-to-Beta,1. Gene
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Fig. 5 | Comparison of beta subpopulations in human and pig. a Dot plot of
enriched pathways identified by Enrichr using the DEGs of pig Beta,0 and Beta,1
clusters. b (Left) UMAP showing pig Beta clusters separated according to MEIS2
mRNA expression with bar plot showingMEIS2+ andMEIS2- beta cell distribution at
each sampling age. (Right) volcano plot of differentially expressed genes between
pig MEIS2+ and MEIS2- beta cells. c Dot plot of enriched pathways identified by
Enrichr using the DEGs of pigMEIS2+ andMEIS2- beta cells. d (Left) UMAP showing
human Beta clusters separated according toMEIS2mRNA expression with bar plot
showing MEIS2+ and MEIS2- beta cell distribution at the corresponding develop-
mental stage. (Right) volcanoplotofdifferentially expressedgenesbetweenhuman

MEIS2+ andMEIS2- beta cells. e Dot plot of enriched pathways identified by Enrichr
using theDEGsof humanMEIS2+ andMEIS2- beta cells. fUMAP showing humanBeta
clusters separated according to Louvain clustering, with a bar plot showing two
beta subcluster distributions at the corresponding developmental stage.
g Immunofluorescence identification of MEIS2 positive and negative beta cells in
wild-type pig pancreas sections from E22, 32, and 40, scale bar 10 µm. Images are
representative of 3 pig pancreas samples per time point. All p-values from Enrichr
and edgeR analyses are adjusted by Benjamini-Hochberg FDR method (Supple-
mentary Data 6). a–c: scRNA-seq of pancreatic cells from wild-type and INS-eGFP
pigs. Detailed sample information is provided in Supplementary Data 1.
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cluster 1 was enriched with genes regulating endocrine development
(MLXIPL, PAX6) and insulin secretion (CHGA, KCNJ11). It showed overall
restricted expression in lineage NGN3-to-Beta,1 as opposed to the
extended expression in lineage PEC-to-Beta,1. Gene cluster 2 included
genes related with ECM organization, Hippo, and FGF signaling, which

had limited expression in lineage PEC-to-Beta,1. We further compared
the two lineages from PEC cluster to either Beta,0 or Beta,1. The
identified gene groups comprised known factors involved in beta cell
differentiation, such as epithelial cell differentiation, insulin secretion,
NOTCH signaling, and integrin-mediated cell adhesion. Surprisingly,
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Supplementary Data 1.
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these genes showed subtle differences in the gene expression timing
and duration, yet without discrete patterns along the two trajectories.

Despite slight deviations from the NGN3 trajectory, PEC-to-Beta
gene expression programs favored beta cell differentiation. Hypothe-
sizing that the PEC cluster contains endocrine progenitors, we com-
pared the transcriptional features between PEC and NGN3 clusters.
Given the apparent differences in spatial patterning and cell organi-
zation of the pancreas during development, we performed correlation
analysis of the PEC and NGN3 clusters divided by 1° transition (E23-33)
and 2° transition (E40-85), namely following clusters: 1°NGN3, 1°PEC,
2°NGN3 and 2°PEC. Pairwise correlation scores (0.64-1) revealed sub-
stantial transcriptional similarity among all four subgroups (Fig. 6c).
However, differential expression analysis uncovered distinct patterns
in key transcription factors of each cluster (Fig. 6d, Supplementary
Fig. 7a, b and Supplementary Data 9). While 1°PEC and 2°PEC showed
only marginal expression of canonical endocrine regulators (NEU-
ROG3, NKX2-2, NEUROD2), they were enriched for endocrine-related
factors (NFIA68, PBX169 in 1°PEC; PLAGL144 in 2°PEC), suggesting a par-
tially active endocrine program. Notably, we identified NR2F2 as a key
transcription factor highly expressed in the 1°PEC cluster, though it
was also detected in broader early progenitors andmesenchymal cells
(Fig. 6f). NR2F2 (also known as COUP-TFII) encodes a member of the
steroid/thyroid hormone superfamily of nuclear receptors. It has been

detected inPDX1⁺ cells at E11.5 inmice andmayplaya role in regulating
beta cell mass70,71. We further confirmed 1°PEC presence in the pan-
creatic primordium by detecting NR2F2+ cells within the multilayered
epithelium of E23 pancreatic buds (Fig. 6f).

To verify the differentiation trajectories linking PEC cluster to
beta cell subpopulations, we applied our recently developed Multi-
Omics Single-Cell Optimal Transport (MOSCOT)72 framework, which
uses optimal transport theory to reconstruct developmental trajec-
tories across real developmental time points and multiple modalities.
Applying MOSCOT to both pig scRNA-seq and multiome time-series
atlases recovered the differentiation lineages identified by CellRank,
showing that, in addition to NGN3, PEC at both early and late stagewas
coupled to a subset of endocrine cells as its descendants (Fig. 6e, g).

To determine whether PEC-like cells exist during human and
mouse pancreas development, we performed cross-species integra-
tion of pig-human and pig-mouse scRNA-seq datasets using sysVI73.
This machine learning pipeline enables cross-species integration of
scRNA-seq datasets while retaining high biological preservation. The
sysVI-integrated embedding confirmed correct cell type alignment
(Fig. 7a–d), as supported by established pancreas marker gene
expression (Supplementary Fig. 7c, d). In both human and mouse
datasets, we identified cell populations (initially annotated as diverse
endocrine cell types) that co-clustered with pig PEC cells, indicating
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transcriptionally shared cellular states (Fig. 7a, c). Notably,mouse PEC-
like cells showed connectivity to a subset of cells from the mouse
NGN3 cluster, which was not observed in human and pig. We further
identified ASPM and ECT2 as cross-species markers, expressed in pig
PEC cells and their counterparts in both human and mouse (Fig. 7b, d
and SupplementaryData 14). ASPM encodes protein abnormal spindle-
like microcephaly-associated, which was identified as a novel Wnt and
stemness regulator74. ECT2 encodes protein epithelial cell transform-
ing 2, a guanine nucleotide exchange factor for Rho-like GTPases75.
While these markers were also detected in some ductal and acinar
cells, PECs showed a clear endocrine identity as evidenced by their
strong transcriptional similarity to the NGN3 cluster (Fig. 6c). To vali-
date this population, we selected NKX2-2, a pan-endocrine marker, in
combination with ASPM or ECT2 to distinguish PECs from ductal and
acinar cells. Using RNAscope, we identifiedNKX2-2⁺ cells co-expressing
ASPM or ECT2, confirming their presence in ductal and acinar regions
of the pancreas across pig developmental stages (Fig. 7e).

Discussion
Through cross-species comparative multiomics integrating tran-
scriptomic and chromatin accessibility profiling of pancreas develop-
ment in mice, pigs, and humans, our work reveals both species-
divergent and evolutionarily conserved gene regulatory mechanisms
governing pancreatic lineage differentiation. First, the resemblance in
developmental tempo of pig and human gestation provides a tempo-
rally aligned framework to study extended pancreas organogenesis
events that are compressed in the mouse. Second, we observe a pig-
human conservation in epigenetic and transcriptional regulation,
particularly in the endocrine lineage. The high conservation of tran-
scription factors downstreamof NEUROG3 (over 50% between pig and
human) suggests a core program for endocrine fate acquisition in
larger mammals. This aligns with both the recent human study30 and
the observed similarities in postnatal islet characteristics, fasting
C-peptide and glucose levels between pigs and humans18,21. By lever-
aging the temporally resolved single-cell multiomic pig pancreas atlas
covering all three trimesters, we identified a unique primed endocrine
cell (PEC) population, potentially representing a progenitor state that
is distinct from the classic NGN3 endocrine progenitor cluster. Tran-
scriptionally matched PEC-like cells were also identified in human and
mouse, with murine PEC-like cells showing a possible link to the NGN3
cluster. Concurrent with pancreasmorphogenesis, we discovered that
both NGN3 and PEC clusters emerged as heterogeneous populations
and were predicted to hold dynamic lineage potential over time. This
conserved PEC population is intriguing as it may suggest a potential
NEUROG3-independent pathway for endocrinogenesis, which could
offer an explanation for the persistence of endocrine cells in some
human patients carrying homozygous NEUROG3 mutations76,77. How-
ever, definitive validation of this pathway and the differentiation
capacity of PECs remains a crucial goal for future work. We further
identified heterogeneous beta cells, suggesting the acquisition of islet
cell heterogeneity may originate in embryonic development. In sum-
mary, our study presents the pig as a valuable complementary model
to existing systems and enhances the understanding of in vivo pan-
creas development through a comprehensivemultimodal comparison
across species. These resources can be harnessed to refine stem cell
and organoid models, offering unique opportunities to 1) address
open questions in human biology and disease, and 2) bridge transla-
tional gaps from rodents to large animals (pigs) and ultimately to
humans.

Methods
Pig pancreas collection
Pigs were housed at the designated pathogen-free pig facilities in LMU
or TUM. All animals received standarddiet andwater ad libitum aswell
as standard vaccination. After hormonal estrus cycle synchronization,

pigs in heat were artificially inseminated or mated and ultrasonic
confirmation of pregnancy was performed 21 days post insemination.
At selected gestation stages, pregnant pigs were euthanized, and
fetuses were collected. Pancreases were extracted and used for further
analysis.

Immunofluorescence analysis
Pig pancreases or hiPSC-derived islets were fixed in pre-chilled 4%
paraformaldehyde overnight (pancreas) or for 30min (islets) then
dehydrated in a progressive sucrose gradient at 4 °C. Samples were
embedded in tissue freezing medium (Leica Biosystems), sectioned at
12 μm, and mounted onto Superfrost® Plus slides (Thermo Fisher
Scientific) and stored at -80 °C.

Immunostaining. Sections were washed with PBS for 30min, per-
meabilized in 0.1% Triton X-100 (Sigma-Aldrich) in 0.1M Glycine
(Sigma-Aldrich) for 30min, blocked in blocking solution (PBS+0.1%
Tween-20 + 10% FCS +0.1% BSA + 3% donkey serum) for 1 h at room
temperature (RT), and incubated with primary antibodies diluted in
blocking solution (Supplementary Data 10) overnight at 4 °C. Sections
were washed in PBS for 15min twice, incubated with secondary anti-
bodies diluted in blocking solution (Supplementary Data 10) for 3 h at
4 °C, counterstainedwithDAPI for 20min at RT, andmountedwith the
ProLong™ Diamond Antifade Mountant (Thermo Fisher Scientific).

Integrated mRNA and protein co-detection assay. Pig pancreas
sections were used for mRNA and protein co-detection assay accord-
ing to the RNAscope® Multiplex Fluorescent v2 Assay combined with
Immunofluorescence - Integrated Co-Detection Workflow (ACD, Bio-
techne). Briefly, sections were washed in PBS, baked at 60 °C, and
dehydrated in a progressive ethanol gradient. Sections were treated
with hydrogen peroxide and 1x Co-Detection Target Retrieval solution
and incubated with primary antibody (Supplementary Data 10) diluted
in Co-Detection Antibody Diluent overnight at 4 °C. Sections were
fixed in 10% neutral buffered formalin for 30min at RT and treated
with RNAscope® Protease III. Sections were then hybridized with
probes against pig NEUROG3 (ACD, Cat#498781), NKX2-2
(Cat#1570601-C1), ASPM (Cat#1734071-C3), and ECT2 (Cat#1734091-
C3) for 2 h at 40 °C and signals developed following the RNAscope®
Multiplex Fluorescent Reagent Kit v2Manual. Sections were incubated
with secondary antibodies for 30min at RT, counterstained with DAPI
for 20min at RT, and mounted with the ProLong™ Diamond Antifade
Mountant (ThermoFisher). All slides were stored at 4 °C until imaging
by confocal microscope (ZEISS LSM 880 with Airyscan). Images were
acquired and processed using Zeiss Zen 2.3 lite (Blue edition, ZEISS).

Improved genome annotation for Sus scrofa
Pig pancreas scRNA-seq data waspreviously aligned using Ensembl Sus
scrofagene annotation (version 94), however showed incomplete gene
annotation missing certain genes of interest (e.g. MAFA, FEV, PTF1A).
Our analysis found reads downstream of the gene bodies which were
not covered by the annotation. Beiki et al.82 generated an improved pig
genome annotation (iso-seq annotation) by integrating poly(A) selec-
ted single-molecule long-read isoform sequencing (Iso-seq) and Illu-
mina (short read) RNA sequencing (RNA-seq). Therefore, we further
improved the annotation by combining iso-seq annotation with the
Ensembl annotation version 101. We annotated the transcripts of iso-
seq annotation using gffcompare (v0.12.1)83 with referencing the
annotation from Ensembl version 101. The Ensembl annotation was
filtered by removing “pseudogene” and “processed_pseudogene” bio-
types genes.We added the associated same strand transcripts from the
iso-seq annotation to the Ensembl annotation and extended the gene
bodies if the added transcripts required it. If a transcript was added to
a gene, the gene IDwas altered by adding the suffix -iso. For each gene,
we then added an additional “extension gene” downstreamof the gene
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body. The length of the extension gene was defined by the maximum
possible regionof 1-10 kb (using 1 kb steps) thatdoes not intersectwith
any other same strand gene. The extension genes were named by the
name of the original genes and adding the suffix -ext’x’kb, whereby ‘x’
corresponds to the integer length of the addition from 1-10. Final gene
counts were obtained by summing the -iso and -ext’x’kb (if available)
versions of each gene. SupplementaryData 11 showsUMI counts for 37
genes of interest before (“ensembl”) and after (“iso”) gene extension as
examples.

Single-cell sequencing
Biological replication. For next-generation sequencing experiments,
a minimum of three biological replicates (individual embryos/fetuses
per pregnancy) at each developmental stage were sampled where
possible. Modified approaches were used for two exceptions: At E40,
only two embryos were available for analysis; At E22/23 and E33,
pancreatic tissueswere extremely small in size. To obtain sufficient cell
numbers for reliable single-cell sequencing, all available pancreases at
each age were combined for processing, as summarized in Supple-
mentary Data 1 and Supplementary Fig. 2a, c.

Single cell suspension preparation. Freshly dissected pancreases
were minced into fine pieces and digested with collagenase V in HBSS
with Ca/Mg (0.5mg/mL for E20-50, 1mg/mL for E60-85, Sigma-
Aldrich) for 5min followed by dissociation with TrypLE™ Express
(Gibco) for 10–15min at 37 °C. Cell suspension was filtered through a
40 µm cell strainer.

Pancreatic epithelial cell enrichment. This procedure was not
applied to E22/23 and E33 samples due to their small size; all cells from
these samples were used for scRNA-seq without enrichment. Pan-
creases from transgenic reporter pigs andwild-type littermates at E40-
85 were used to collect pancreatic epithelial cells. For enrichment, cell
suspension was stained with EpCAM-PE-Cy7 antibody (1:200, Invitro-
gen) in 1% BSA + PBS for 30min at 4 °C. Cells were then washed and
filtered into a tube through a 35 µm filter. 7-AAD (Invitrogen) or Sytox
blue (Invitrogen) was used to distinguish dead cells. The resulting cell
suspension was loaded onto a FACSAria III (BD) for sorting. The
transgenic reporter pigs were used for specific cell-type enrichment: 1)
INS-eGFP pigs78: beta cells were enriched via insulin promoter-driven
GFP expression. 2) PTF1A-codon-improved-Cre79 x ROSA-mTmG80 pigs:
PTF1A-codon-improved-Cre/ROSA-mTmG embryos were identified
with epifluorescent microscope by GFP signal. The pancreases from
these embryos were used to enrich pancreatic epithelial cells, parti-
cularly acinar cell populations, with GFP signal. Supplementary Data 1
provided an overview of all samples obtained through different
enrichment strategies. Supplementary Fig. 2c provided a summary of
pancreas number and cell counts of identified cell types in each sam-
ple. Supplementary Fig. 8 provided representative gating strategies.

scRNA. Single-cell suspensions were processed for scRNA-seq with a
targeted cell recovery of 10,000. 10X Genomics’ Single Cell Gene
Expression protocols were followed according to the manufacturer’s
specifications and guidelines. Libraries were pooled and sequenced by
a HiSeq4000 or NovaSeq 6000 platform following the recommenda-
tions from 10X Genomics. With CellRanger pipeline (v3.1.0), samples
were demultiplexed to produce a pair of FASTQ files for each sample.
Reads containing sequence information were aligned to the improved
pig genome annotation and pre-processed for downstream analyses.

Multiome (scRNA/ATAC). For nuclei isolation and library construc-
tion, a low-input nuclei isolation protocol adapted from 10XGenomics
was performed. In brief, sorted cells were washed once with 1mL
PBS + 1% BSA, counted, centrifuged, and the supernatant was aspi-
rated. Subsequently, the washed cell pellet was resuspended in chilled

lysis buffer with 0.5x detergent concentration (50μL per sample) and
placed on ice for 5min. Then wash buffer (500μL per sample) was
added and nuclei were centrifuged. To gradually change from wash to
diluted nuclei buffer, cells were washed once in a 1:1 mixture of wash
buffer and diluted nuclei buffer and subsequently one with pure
diluted nuclei buffer. The washed isolated nuclei were then resus-
pended in 7-10μL diluted nuclei buffer and were directly added to the
transposition reaction after quality control and counting. In all fol-
lowing steps, 10X Genomics’ Single Cell Multiome ATAC and gene-
expression protocols were followed according to the manufacturer’s
specifications andguidelines. Thefinal librarieswere sequencedon the
Illumina NovaSeq 6000 platform following the recommendations
from 10X Genomics. Raw reads were aligned to the improved pig
genome annotation and pre-processed using the 10X Genomics Cell-
RangerARC pipeline (v 2.0.0) for downstream analyses.

Single-cell data analysis
Preprocessing of 10X scRNA-seq raw data. Pig pancreas samples
(Supplementary Data 1) and published datasets of human and
mouse30,35–41 were preprocessed using Scanpy84 (v1.8.2).Filtering of low-
quality cellsEach sample was assessed using Scanpy’s quality control
measures and sample-specific minimum number of genes per cell,
minimum number of counts per cell, and maximum number of counts
per cell were set to filter out low-quality cells (Supplementary Data 12).
In addition, all cells with a mitochondrial fraction > 0.15 were excluded,
as well as all genes that were expressed in less than 20 cells. Read
counts and gene counts across clusters of pig scRNA-seq data were
shown in Supplementary Data 13. The filtered gene matrices from
Goncalves et al.37 were not filtered.NormalizationGene counts were
normalized using Scran85 (v1.22.1) for data from each lab separately. For
this, we first performed a total counts normalization of each cell counts
to 1,000,000, then performed a log transformation using natural log
and pseudocount 1, further calculated a neighborhood graph using the
first 50 principal components and number of neighbors k = 15. Clusters
were obtainedusing louvain clustering86 with resolution r =0.5.We then
used Scran to estimate size factors with the louvain clusters as input
clusters and minimum mean average count of genes to be used for
normalization set to 0.1. The size factors were then used for normal-
ization of raw gene counts (summed -iso and -ext’x’kb gene counts for
pig samples). For downstream integration, log-transformed counts
using natural log and pseudocount 1 were calculated.Ambient gene
calculationAmbient genes were estimated based on expression in
empty droplets using DropletUtils87 (v1.14.2). Genes with an ambient
expression score larger than 0.005 were considered ambiently
expressed genes. Ambient genes were generalized to datasets where
raw data was not available.Highly variable gene calculationHighly vari-
able genes (HVGs) were calculated per batch88 to select HVGs unaf-
fected by batch variance. Per-batch HVGs were obtained with Scanpy,
using the CellRanger89 flavor, and were ranked first by the number of
batches in which the genes were highly variable and second by the
mean dispersion across batches. Finally, the top genes in this ranking
were selected as highly variable genes.IntegrationPig samples were
integrated with Scanorama90 (v1.7.1) using 8,000 HVGs (excluding
ambient genes), resulting in a 100-dimensional latent embedding.
Human and mouse samples were each integrated with scVI91 (v0.16.1)
using 2,000 HVGs, resulting in a 20-dimensional latent embedding.-
Clustering and annotationClustering was performed on the k-nearest
neighbor (KNN) graph (k = 15) calculated from the integrated embed-
ding using louvain clustering86 (leiden92 for human and mouse data)
with resolution 1. The pig integrated embedding was reduced to 50
principal components before calculating the neighborhood graph.
Clusters were annotated using differentially expressed marker genes.
For some analysis several clusters (NGN3, Beta)were subclustered using
a higher clustering resolution.Re-normalization after integrationScran
normalization might be based on batch-specific clusters when a strong
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batch effect is present, leading to non-comparable counts across sam-
ples. We ran a check on all species datasets by visualizing the mean
number of counts per cluster (based on integrated embedding) and
sample before and after normalization. For human and mouse samples
we observed strong sample-specific counts after normalization. To
obtain comparable counts across samples, we re-normalized these
samples using Scran and the clusters obtained from the integrated
embedding.Doublet detectionTo obtain robust doublet estimates, we
used a combination of scrublet93 (v0.2.3), DoubletDetection94 (v4.2),
scds95 (v1.10.0), scDblFinder96 (v1.11.4), DoubletFinder97 (v2.0.3) (default
parameters, expected doublet rate 0.8) to detect doublets. Cells con-
sistently detected by three ormoremethods as doublets were excluded
from further analysis. In addition, clusters with a doublet frequency
larger than 70% were entirely excluded.

Reanalysis of human fetal scATAC-seq dataset. The 12wpc human
fetal scATAC-seq data30 were read into Signac98 for preprocessing.
Peaks from standard chromosomes and additionally called using
MACS2were used. Gene annotation fromEnsDb (EnsDb.Hsapiens.v86)
was added. Quality controlmetrics were computed to filter low quality
cells (Supplementary Data 12). Data was normalized by term
frequency-inverse document frequency (TF-IDF) normalization.
Dimension reduction was done by running singular value decom-
position (SVD) on the TD-IDF matrix, using the peaks selected by the
function FindTopFeatures. Graph-based clustering and non-linear
dimension reduction for visualization was performed on the KNN
graph (k = 30) calculated from the low-dimensional embedding using
SLM86 algorithm. Gene activity matrix was created by the GeneActivity
function. Doublets were called by scDblFinder96 and excluded for
further analysis. For cell cluster label transfer, we first extracted the
12wpc data subset from the integrated human scRNA-seq data. The
scATAC-seq data gene activity was used as an approximation of a gene
expression matrix and was integrated with the 12wpc scRNA-seq data
following the standard scANVI99 (v0.20.3) workflow to enable label
transfer. Cicero was used to compute pairwise co-accessibility scores
for each peak, which were further grouped into cis-co-accessible net-
works. The co-accessible links along with DNA accessibility informa-
tion were visualized by CoveragePlot.

Integration of human fetal scRNA-seq and scATAC-seq data. The
unmatched modalities were integrated using GLUE48 v0.3.2. The RNA
modality input, i.e. the 12wpc data subset was extracted from the
integrated human scRNA-seq data. The ATAC modality input was
processed as described in section “Reanalysis of human fetal scATAC-
seq dataset”. We then constructed a guidance graph that contains
omics features as nodes (i.e., genes for scRNA-seq, and peaks for
scATAC-seq) and prior regulatory interactions as edges. We used the
default implementation that links an ATAC peak to a gene if it overlaps
either the gene body or promoter region. This graph was utilized by
GLUE to orient the multi-omics alignment. To match cells from both
modalities, we performed minimum cost maximum flow bipartite
matching on the joint embedding derived from GLUE47,100. The cost
graph was inferred using get_cost_knn_graph with knn_k = 15, null_-
cost_percentile = 99 and capacity_method = ‘uniform’. Using the
bipartite matches, wematched each ATAC cell to an RNA cell. In cases
where no ATAC match was found for an RNA cell, only RNA informa-
tion was used. The latent vector of the cell was calculated as the
average latent vector of thematched cells. Gene activities were further
denoised with MAGIC101 by smoothing over nearby cells in the joint
embedding as proposed and benchmarked in ArchR102. The Python
implementation of magic (v3.0.0) was used to smooth gene activities
over the k-nearest neighbors graph of the joint embedding with k = 15
neighbors, decay = 1 and k-nearest neighbors autotune parameter ka =
4. The integrated and imputed dataset was used for gene regulatory
network construction.

Preprocessing of pig 10X multiome raw data. Multiome data was
preprocessed similarly to scRNA-seq data as described above using
Scanpy (v1.9.1) and Muon103 (v0.1.2). After summing the -iso and
-ext’x’kb (if available) counts of each gene to generate final counts,
DropletUtils87 (v1.14.2) was used with default parameters to estimate
ambient gene expression probabilities.

Filtering of low-quality cells. Each sample was assessed using stan-
dard quality control measures and sample-specific maximum mito-
chondrial gene fraction,minimumnumber of genes per cell, minimum
number of counts per cell, and maximum number of counts per cell
were set to filter out low quality cells (Supplementary Data 12). To
further filter out cells with low ATAC-seq quality, Muon was used to
calculate ATAC-specific quality metrices. Sample-specific thresholds
were identified for minimum and maximum number of counts, mini-
mum and maximum TSS enrichment score as well as minimum and
maximum nucleosome signal (Supplementary Data 12).

Doublet detection. Similar to scRNA-seq, we used a combination of
scrublet93 (v0.2.3), DoubletDetection94 (v4.2), scds95 (v1.10.0),
scDblFinder96 (v1.11.4), DoubletFinder97 (v2.0.3) (default parameters,
expected doublet rate 0.8) and SOLO104 (as implemented in scvi-tools
v0.19.0) to detect doublets based on the gene expression modality. In
addition, scDblFinder and its implementation of AMULET105 were used
to identify doublets on the ATAC-seq modality. Cells consistently
detected by three or more methods as doublets were excluded from
further analysis.

Generation and quantification of common peak set. To merge the
ATAC-seq data from individual samples, we followed the respective
vignette on the Signac97website. In brief, peaks from all samples were
merged using the “reduce” function of the GenomicRanges (v1.46.1)
package and only peaks on standard chromosomes were kept. Next,
for each sample, fragment counts were determined using Signac and
stored, together with gene expression data in a Seurat object, which
were subsequently merged into a single object.

Normalization of ATAC-seq counts. Signac was used to run TF-IDF
normalization on ATAC-seq counts with default parameters. TF-IDF
normalized count matrix was then imported into Muon.

Normalization of gene expression counts. Prior to normalization,
data from individual samples was merged. SCTransform (v0.3.3) was
used for normalization using settings vst.flavor = ”v2” and cli-
p.range=c(-sqrt(n), sqrt(n)),where n (n = 33898) represented the
number of cells.

Highly variable genes. The top 4000 highly variable genes were
identified using the devianceFeatureSelection function from the scry
package106 (v1.6.0) with default parameters.

Label transfer from scRNA-seq. To ensure consistent cell type labels
between scRNA-seq and Multiome data, we employed a k-nearest
neighbors classifier to transfer cell type annotations from the scRNA-
seq reference. We first trained an scVI model (scvi-tools v 0.20.0), with
parameters n_hidden=1024, n_latent=50, n_layers=2, gene_likeli-
hood = ‘nb’, dispersion = ‘gene-batch’, sample names as batch key, and
the technology (i.e. scRNA-seq and Multiome) as categorial covariate,
to generate a shared latent space for the scRNA-seq reference and the
Multiome gene expression data. Next, we used the k-nearest neighbors
classifier (k = 5), as implemented in scikit learn (v0.24.2), to predict cell
type labels in the shared latent space.

Integration. To integrate the gene expressionmodality of the different
Multiome samples, we used harmonypy107 (v0.0.9) with sample names
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as batch key. To integrate the chromatin accessibility modality, we
used PoissonVI108, with parameters n_hidden=1024, n_latent=50,
n_layers=3, sample names as batch key, transferred labels as labels key
and the developmental stage as categorial covariate.

Clustering and annotation. Clustering was performed on the
k-nearest neighbor (KNN) graph (k = 21, metric = ‘minkowski’) calcu-
lated from the harmonypy integrated embedding using leiden92 clus-
tering with resolution 2. To further separate subtypes of endocrine
progenitors, the respective clusters were subclustered with a resolu-
tion of 1. The resulting clusters were then annotated to match the
transferred cell type labels.

Differential gene expression analysis using edgeR. We calculated
differentially expressed genes between cell clusters by pseudo-bulking
samples with edgeR109 (v4.0.16). We calculated pseudo-bulk expres-
sion by summing normalized raw counts of cells from one sample and
cell type. Pseudo-bulks with fewer than 30 cells were excluded. To
ensure that ambiently expressed genes were not erroneously pre-
dicted asdifferentially expressed genes, webalanced the pseudo-bulks
on the sample level. For differential testing, we modeled gene
expression using a generalized linear model110 with cell type and
sample as covariates. Significantly differentially expressed genes were
identified using a likelihood-ratio test for the coefficients of interest
(q < 0.05, corrected for multiple testing with the Benjamini-Hochberg
method111 at alpha=0.05). Gene set enrichment analysis was done with
Erichr112 to identify pathway enrichment signatures of the respective
cell cluster.

Cross-species comparison using cluster correlation. We compared
cell-type gene expression profiles across species. For this, we calcu-
lated the mean normalized gene count per cluster. Then, we mapped
pig and mouse genes to human gene symbols using orthologues from
Ensembl BioMart113. If there were multiple genes mapping to one
human gene, we used the summedmean normalized gene counts. For
the correlation, we considered only the intersection of the top 4000
highly variable genes from all three species, resulting in 851 genes. We
used Spearman’s rank correlation114 to compare gene expression
values for each cluster across species.

Trajectory inference of scRNA-seq data with CellRank. We esti-
mated developmental trajectories and cell fates using CellRank53

(v1.5.1). For this, we estimated a pseudo-time for every cell using
Palantir115 (v1.0.1), with a highest PDX1-expressing MPC cell as root cell
from E22 for pig, 49dpc for human and e9.75 for mouse, respectively.
Using the CellRank pseudo-time kernel, we calculated terminal states
for all clusters and endocrine progenitor clusters (NGN3 and FEV
clusters in pig and mouse data, EP in human data).

CellRank lineage driver estimation and cross-species comparisons.
To compare endocrine development across species, we computed
putative lineage drivers by calculating Pearson’s correlation of each
gene with CellRank fate probabilities for each terminal state. We
mapped pig and mouse genes to human gene symbols using ortho-
logues from Ensembl BioMart113. If there were multiple genes map-
ping to one human gene, we used the maximum absolute lineage
correlation score. We then only considered genes that were present
in all three species and had orthologues, resulting in 12,437 genes. To
compare lineage correlation scores, we scaled the scores per species
by the maximum of the 0.01 and 0.99 quantile and clip values to -1
and 1. Finally, we calculated the lineage driver genes (Benjamini-
Hochberg FDR-corrected p > 0.05, scaled correlation>0.7) of this
mapped subset for every species and lineage and compared overlaps
across species.

Genemodule analysis of CellRank lineagedrivers. To compare gene
expression dynamics during alpha/beta cell development in mouse,
pig and human, we first extracted orthologous alpha/beta lineage
drivers expressed in at least 20% human cells and performed hier-
archical clustering with AgglomerativeClustering from scikit-learn116 to
identify gene groups for lineage drivers with positive or negative
correlation, respectively. Gene set enrichment analysis was performed
with GSEApy enrichr module112 to identify pathway enrichment sig-
natures for each identified gene group. The expression patterns of
these gene groups were analyzed in pig and mouse data.

Differential gene expression analysis between lineages by trade-
Seq. We used tradeSeq11667 (v1.14.0) to calculate differentially
expressed genes between lineages, i.e., NGN3-to-Beta,0 versus (vs)
PEC-to-Beta,0; PEC-to-Beta,0 vs PEC-to-Beta,1. CellRank computed
trajectories for these lineages was extracted and used for tradeSeq
downstream analysis. We fitted a negative binomial generalized addi-
tive model (NB-GAM) using tradeSeq for each of the top 2000 highly
variable genes and each lineage. We then identified genes with sig-
nificantly different expression patterns between lineages using the
PatternTest function. To exclude the genes that were already differ-
entially expressed at the initial or terminal states, we inverted the gene
rank from the edgeR differential expression (DE) analyses of NGN3 vs
PEC and Beta,0 vs Beta,1. We further scored each gene by combining
the inverted DE rank and the rank in the PatternTest results (tran-
sientScore). This allowedus to identify geneswith similar expression at
the initial or terminal state but showed significantly different expres-
sion pattern along the lineage (q <0.05, corrected for multiple testing
with the Benjamini-Hochberg method111 at alpha=0.05). Gene set
enrichment analysis was performed with GSEApy enrichr module112 to
identify pathway enrichment signatures for each identified
gene group.

Cross-species integration by sysVI. To integrate scRNA-seq dataset
from different species, we used sysVI73 model that combines machine
learning with conditional variational autoencoders (cVAE) for inte-
grating datasets with substantial batch effects while better preserving
biological variation. We subset the pig and human datasets to the
intersection of top orthologous HVGs (2535 genes) as recommended.
The two datasets were concatenated with “species” defined as
batch_key covariate and “samples” defined as categorical_covar-
iate_keys covariate. The default implementation of sysVI with multi-
modal variational mixture of posteriors prior (VampPrior) combined
with latent cycle-consistency loss was used for the integration.

Gene regulatory network inference using CellOracle. Using
CellOracle60 (v0.12.0), we first constructed a base GRN using the scA-
TAC part of the multiome data. The co-accessible peak information
was extracted to generate the active gene regulatory element data,
which contained the open accessible genomic regions and cis-
regulatory connection data. We then annotated transcription start
sites (TSS) to generate the active promoter/enhancer genomic region
data. These data were integrated and peaks with weak co-accessibility
scores removed, resulting in thefinal pigbaseGRN. Pig scRNA-seq data
was reduced to 25,000 cells with 3028 genes (top 2000 HVGs + all
TFs). An Oracle object was built by combining the gene expression
counts, clustering information, CellRank trajectory with the base GRN.
After KNN imputation, cluster-specific GRN for all clusters was calcu-
lated with the get_links function. To remove the weak edges and
insignificant edges, we filtered the network edges by keeping the top
2000 edges ranked by edge strength with a p-value < 0.001 before
network structure analysis. Network (centrality) scoreswerecalculated
using the links.get_network_score function. The top genes ranked by
betweenness centrality were selected for Beta,0 and Beta,1 cluster to
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plot the GRNswith NetworkX117. To simulateMEIS2KO in silico, we first
used theOracle object and the filtered GRNs of all clusters tomake the
regression models (a regularized linear machine-learning model) for
simulation. MEIS2 expression was set to 0, and the global future gene
expression shift after perturbation was then calculated.

Gene regulatory network inference using Pando
Metacells. To overcome the sparsity of single-cell data, we used
SEACells118 (v0.3.2) with default parameters to identify metacells
(n = 387), representing cell states in the integrated gene expression
latent space.

Peak to gene linking. To identify putative regulatory elements, we
used the Signac (v1.9.0) LinkPeaks functionwith default parameters to
calculate the correlation between chromatin accessibility and gene
expression of nearby highly variable genes.

GRN inference. We then used all peaks with significant links to con-
struct a GRN using Pando47 (v1.0.3) for both pig multiome data and
human integrated scRNA/ATAC-seq data. In brief, we used the motif
collection and find_motifs function from the Pando package to identify
transcription factormotifs within the peaks. We then inferred the GRN
considering only highly variable transcription factors found in the
motif collection and peaks within 1×106bp around their TSS, using the
following parameters: peak_to_gene_method = ‘Signac’, aggregate_-
peaks_col = ‘SEACell’, tf_cor = 0.05, method = ‘xgb’. Next, we con-
structed transcription factor modules within the GRN using the
find_modules function with a p-value threshold of 0.05, a R2 threshold
of0.15 (0.05 for humandata), aminimumnumberof variables of 50 (10
for humandata) and aminimumnumber of genes permoduleof 5. The
GRN was visualized as a UMAP embedding of the TFs based on co-
expression and regulatory relationship as measured by the inferred
coefficients. Nodes were sized by the PageRank centrality of each TF
and colored according to the enrichment of TF expression. Coverage
tracks and peak-to-gene links were visualized using Signac. UCSC lift-
Over tool (http://genome.ucsc.edu)119 was used to lift link coordinated
from pig to human reference genome. ALRA120 was used to impute pig
gene expression and the calculated values were shown as violin plots
next to the coverage plots.

Motif activity analysiswithChromVAR.We computedmotif activities
for human and pig scATAC-seq data using chromVAR121 (v1.24.0). We
first identified motif matches of the human_pwns_v2 motif collection
from the chromVARmotifs package using Signac. Motif class infor-
mation was derived from CIS-BP Database Build 2.00. Next, we used
the RunChromVAR function with default parameters to calculate per-
cell motif activity scores. We then tested for differential activity scores
between cell types using the FindAllMarkers function with mean.fxn =
rowMeans, to compute the average difference in z-scores. Motifs with
an adjusted p-value < 0.01 and an average difference > 1 were con-
sidered differentially active. To further select meaningful motifs for
plotting in the heatmaps in themain figures,we computed the Pearson
correlation between transcription factor gene expression z-scores and
chromVAR motif z-scores in the pig multiome data and kept only
motifs/transcription factors with a correlation coefficient > 0.1. Heat-
maps show the chromVAR z-scores stored in the data slot of the
chromVAR assay.

Trajectory inference of scRNA-seq and Multiome data
withMOSCOT. To confirm trajectory results obtained using CellRank,
we additionally used MOSCOT72 (v0.3.3) to infer endocrine lineages
using real time points.We ranMOSCOTon the porcine scRNA-seq data
using time points E23, 33, and 40 (using geodesic distances, tau_a =
0.999, tau_b =0.99999). We constructed an approximation of the
geodesic distance by using an approximation of the Heat Kernel122 and

constructed a KNN-graph with k = 15 based on a 50-dimensional PCA
embedding. For time points E45, 63, 85 we ran MOSCOT on the mul-
tiomedatawith a joint embedding createdby concatenating the scaled
harmony embedding of the scRNA-seq data and scaled atac_poisson
embedding. The inferred cell transitions are visualized using a Sankey
diagram, excluding transitions that come from <5% of cells of one
cell type.

Human pluripotent stem cell culture and differentiation
hESC culture. The NEUROG3-/- hESC line was previously created using
CRISPR/Cas9 to disrupt endogenous expression with a frame-shift
INDEL55. hESCs weremaintained inmTeSR (StemCell Technologies) on
hESC-qualifiedMatrigel (BD Biosciences) coated plates under standard
culture conditions (37 °C, 5% CO2, and 95% humidity). Cells were rou-
tinely passaged every four days with Dispase (Invitrogen). High-titer
lentivirus with inducible NEUROG3 vectors was added to the media of
newly plated hESCs. After 24 h, the media was replaced with mTeSR
containing selective antibiotic G418 (500mg/mL, Sigma). All trans-
duced cell lines were maintained under selection.

hESC differentiation. hESCs were dispersed with Accutase (StemCell
Technologies), washed, collected, resuspended in mTeSR containing
10mM ROCK inhibitor (Y-27632, Tocris Bioscience), and plated at a
concentration of 1 × 105 cells/cm2 on Matrigel-coated, 24-well plates
(Nunclon, Delta treated). When cells reached 75% confluency, differ-
entiation was initiated. Day 0 medium was RPMI 1640 supplemented
with non-essential amino acids, 100 ng/mL Activin A (Cell Guidance
Systems) and 50ng/mL BMP4 (R&D Systems). Days 1–2 medium con-
tained 0.2% tetracycline-free FBS (Hyclone) but not BMP4. Days 3–4
medium was RPMI 1640 containing 2% FBS, 50 ng/mL FGF7 (R&D
Systems), and 50ng/mLNoggin (R&D Systems). Days 5–8mediumwas
high-glucose-DMEM (Gibco) containing 50 ng/mL Noggin, 2mM all-
trans retinoic acid (Stemgent), and 1% (0.5x) B27 without vitamin A
(Gibco). Days 9–12 medium was high-glucose-DMEM supplemented
with 1% B27 and 25 ng/mL Noggin.

hiPSC culture. hiPSCs were maintained in StemMACS™ iPS-Brew XF
(iPS-Brew) culturemedium (Miltenyi Biotec) onGeltrex (Gibco) coated
dishes under standard culture conditions (37 °C, 5% CO2 and 95%
humidity). Cells were passaged every 4–5 days by single-cell dispersion
using Accutase (Sigma-Aldrich). For aggregate suspension cultures,
hiPSCs were detached with Accutase and seeded at a concentration of
0.8 × 106 cells/mL in iPS-Brew supplemented with Y-27632 to a 30-mL
spinner flask (Reprocell) on a magnetic stirrer (Cultistir, Able) set at
60 rpm in a humidified 5% CO2 37 °C incubator. The aggregates were
split every 3-4 days with Accutase.

hiPSC differentiation. To initiate differentiation, hiPSC aggregates
were dispersed into single-cell suspension and seeded at 0.8×106 cells/
mL in a 30-mL spinner flask. Cells were cultured for 72 h in iPS-Brew
and then differentiated towards pancreatic islets with a 6-stage pro-
tocol (detailed in Supplementary Data 10)123. Samples were collected
on differentiation stage 5 day 7, stage 6 day 7 and stage 6 day 14.

ChIP, RNA and ATAC-seq and data analysis
ChIP-seq. Samples were collected on differentiation day 9 post 8 h
NEUROG3 induction. Cells were cross-linked in 1% formaldehyde in
PBS for 12min at RT and were quenched by 0.125M glycine. Nuclei
were pelleted in lysis buffer (10mMTris-HCl pH 8.0, 10mMNaCl, 0.2%
NP-40). For chromatin fragmentation, cells were resuspended in
Nuclear Lysis Buffer (20mM Tris-HCl pH 8.0, 0.1% SDS, 2mM EDTA)
and sonicated inDiagenodeSonicator for 9 cycles of 20 son, 60 soff at
4 °C. The desired amount of fragmented chromatinwas supplemented
with Nuclear Lysis Dilution Buffer (20mM Tris-HCl pH 8.0, 0.1% SDS,
2mM EDTA, 150mM NaCl, 1% Triton X-100) and precleared with
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blocked Protein G magnetic beads (Thermo Fisher Scientific) with
rotation at 4 °C for 3 h. 1% precleared samples were saved as input and
each 25μg sample was incubatedwith 20μg Protein Gmagnetic beads
preloaded with 5 µg of NEUROG3 antibody (R&D) overnight with
rotation at 4 °C. Beads were then washed sequentially at 4 °C using: (1)
Washing A (150mM NaCl, 20mM Tris-HCl pH 8.0, 2mM EDTA, 0.1%
SDS, 1% Triton X-100, 0.1% sodium deoxycholate), (2) Serial Washing B
(20mM Tris-HCl pH 8.0, 2mM EDTA, 0.1% SDS, 1% Triton X-100, 0.1%
sodium deoxycholate) with 500mM, 1M and 2M NaCl, (3) Washing C
(50mM Tris-HCl pH 8.0, 2mM EDTA, 500Mm LiCl, 1% NP-40, 0.5%
sodium deoxycholate) and final 2 times wash with TE (10mM Tris-HCl
pH 8.0, 10mM EDTA). Protein-DNA complexes were eluted from the
beads in Elution Buffer (50mM Tris-HCl pH 8.0, 10mM EDTA, 1% SDS)
at 65 °C for 30min. Cross-links were reversed at 65 °C overnight, and
DNA was purified with phenol:chloroform (1:1), chloroform and etha-
nol for library construction and sequencing at CCHMC DNA sequen-
cing and Genotyping Core Facility.

ATAC-seq. Samples were collected on differentiation day 9 and day 12
with or without 8 or 24h NEUROG3 induction. Cells were dissociated
with Accutase into a single-cell suspension. About 50,000 cells were
collected for lysis and transposition based on the Omni-ATAC proto-
col. Briefly, cells were lysed with Lysis buffer (10mM Tris-HCl pH 8.0,
10mM NaCl, 3mM MgCl2, 0.1% NP-40, 0.1% Tween-20, 0.01% Digito-
nin), washedwithwashing buffer (10mMTris-HCl pH8.0, 10mMNaCl,
3mMMgCl2, 0.1% Tween-20), and incubatedwith Transposition buffer
(Nextra) at 37 °C for 30min rotated at 1,000 rpm. DNA was purified
(Qiagen MinElute) for library construction and sequencing at the
Kottyan lab, CCHMC.

RNA Isolation and RNA-seq. Samples were collected on differentia-
tion days 9, 10, 11, and 12 with or without 8 h NEUROG3 induction. All
RNA samples were column-purified using a NucleoSpin RNA kit
(Macherey-Nagel)with anon-columnDNasedigestion according to the
manufacturer’s protocol. Frozen RNA samples were sent for library
construction and sequencing at Novogene.

NGS data processing. ChIP-seq was performed at a depth of 30M
reads per sample. ATAC-seq was performed at a depth of 20M reads
per sample. RNA-seq was performed at 150bp paired-end with a depth
of 30M reads per sample. Fastq read files for each sample were
obtained and then aligned using the Computational Suite for Bioin-
formaticians and Biologists version 3.0 (CSBB-v3.0) to remove low
quality bases and potential adapter contamination. Open chromatin
region and transcription factor binding sites (NEUROG3) were then
called, filtered, and annotated to the nearest gene using MACS2124

(v2.1.0) and HOMER125 (v4.11). Motif analysis annotations with genomic
features and peak overlap were performed using HOMER,
ChIPseeker126 (v1.38.0) and ChIPpeakAnno127 (v3.36.1). Raw transcript
counts and normalized transcripts per million (TPM) values were
obtained and analyzed for differential expression with DESeq2128

(v1.42.1). For differential expression, statistical and biological sig-
nificance was set at FDR<0.05, log-fold-change > 1, with aminimumof
1 count from the triplicates of the total 12 samples (Supplementary
Data 1). Directed GRN was constructed with the integration of ChIP,
ATAC and RNA-seq data using mLASSO-STARS129 based algorithm.
Nodes of GRN were filtered with differentially expressed genes and
protein function, whereas edges were pruned with interaction types
and weights. Graph analysis on the constructed GRN was performed
for cliques, coefficients, shortest paths, centrality, and community.
The results were compared across sampling time points. Dynamic
simulation and pseudo-interruption were conducted based on graph
diffusion with the hyperbolic tangent as the activation function and as
the filtration.

Data sources
Publisheddatasets are available publicly or accessible upon reasonable
request from the corresponding authors of the original publications.
Human data were from Yu et al.41 (OMix (https://bigd.big.ac.cn/omix/)
identifier OMIX236), Goncalves et al.37 (European Genome-Phenome
Archive (EGA, https://ega-archive.org/) ID# EGAD00001007506), de la
O et al.30 (database of Genotypes and Phenotypes (dbGaP) accession
phs002693.v1.p1). Mouse data were from Bastidas-Ponce et al.35 (Gene
Expression Omnibus (GEO) accession GSE132188), Byrnes et al.36 (GEO
accession GSE101099), Han et al.38 (GEO accession GSE136689), Krentz
et al.39 (GEO accession GSE120522), Yu et al.42 (GEO accession
GSE115931).

Ethics
The use of pigs in this study was approved by the Committee on Ani-
mal Health and Care of the local government body of the state of
Upper Bavaria in Germany for the wild-type and INS-eGFP78 German
Landrace pigs from the LudwigMaximilianUniversity ofMunich (LMU,
Permission No. 55.2-2532.Vet_02-17-136) and the PTF1A-codon-
improved Cre (iCre)79 and ROSA-mTmG80 pigs from the Technical
University of Munich (TUM, Permission No. 55.2-2532.Vet_02-18-33).
Experiments were conducted in accordance with the German Animal
Welfare Act and Directive 2010/63/EU on the protection of animals
used for scientific purposes.

The parent human embryonic stem cell (hESC) lineWA01 (H1) was
obtained from WiCell. All experiments with hESCs were approved by
the Cincinnati Children’s Hospital ESCRO committee (Protocol#
EIPDB2713).

Thehuman-inducedpluripotent stemcell (hiPSC) lineHMGUi001-
A81 was generated at Helmholtz Munich. All experiments with hiPSCs
were approved by the Ethics Committee of the Technical University
Munich (219/20 S, 290/20 S).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study have been deposited in NCBI’s Gene
Expression Omnibus. The pig pancreas data is accessible through GEO
Series accession number GSE262280. The hESC datasets are accessible
through GSE261950, GSE261951, and GSE261952. Sequencing data
from pig pancreas were aligned using the Sscrofa11.1 assembly of the
pig genome (https://www.ebi.ac.uk/ena/browser/view/GCA_
000003025.6) and the improved annotation based on the Ensembl
annotation version 101 (see Methods; Improved pig gene annotation
file is available at: https://github.com/theislab/pig-embryo-ana).
Sequencing data from hESC were aligned using the GRCh37/hg19
reference genome and Ensembl gene annotation (https://www.ncbi.
nlm.nih.gov/datasets/genome/GCF_000001405.13/). Any other data
supporting the findings of this study are available from the corre-
sponding authors on reasonable request.

Code availability
Jupyter notebooks to reproduce the analysis and figures are available
at: https://github.com/theislab/pig-embryo-ana130.
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