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Highlights:

• K340 is likely to be the main ubiquitination target
within NTCP.

• Mutating K340 to arginine increased NTCP protein levels
and bile salt uptake.

• Mutating K340 to arginine reduced NTCP endocytosis and
HBV infection.

• Inhibition of protein ubiquitination with TAK-243 inhibited
HBV infection.

• K340 is crucial for HBV entry as a result of ubiquitin-
mediated NTCP endocytosis.

Impact and implications:

This study contributes to elucidating the process of how HBV 
enters hepatocytes, which is largely elusive. NTCP was found 
not only to be required for the binding of HBV to hepatocytes, 
but also to have a crucial role in hepatic internalization of HBV. 
In addition, a K at position 340 was identified as the main 
ubiquitination target of NTCP; ubiquitination-mediated endo-
cytosis of NTCP at this position is likely to be the mechanism 
regulating HBV internalization. Thus, interfering with NTCP 
ubiquitination could provide a novel means to reduce 
HBV infection.
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Background & Aims: The sodium taurocholate cotransporting polypeptide (NTCP), the main hepatic uptake transporter of bile 
salts, is the docking receptor required for the HBV/HDV entry. However, the mechanism of NTCP-dependent internalization of 
HBV/HDV into hepatocytes is unclear. Thus, we investigated the contribution of post-translational modification of NTCP to 
transporter endocytosis and HBV infection.

Methods: NTCP ubiquitination was determined by immunoprecipitation of wild-type NTCP (NTCP WT ). Lysine (K) residues in the 
C terminus were substituted by arginine (R) to identify ubiquitination sites. HepG2 cells overexpressing NTCP mutants were 
analyzed for protein levels, bile salt uptake activity, NTCP endocytosis, and HBV infectivity. The global ubiquitination inhibitor 
TAK-243 was used to study effects on uptake and HBV infection in NTCP WT -HepG2 and HepaRG cells. Sample sizes in the 
experiments were 3–10.

Results: NTCP was found to be ubiquitinated. Compared with NTCP WT , the NTCP K340R mutant showed reduced ubiquitination, 
indicating K340 as the main ubiquitination target. Furthermore, NTCP K340R had increased membrane abundance, which coin-
cided with enhanced bile salt uptake (28.2 ± 5.3 vs. 74.4 ± 5.8 pmol; p <0.0001). Compared with NTCP WT , NTCP K340R endo-
cytosis was strongly impaired (100 ± 47 vs. 42 ± 19%; p = 0.0079), whereas HBV-derived myr-preS1 peptide binding was 
increased (100 ± 33 vs. 220 ± 98%; p <0.0001). Compared with NTCP WT cells, HBV DNA content was strongly reduced in 
NTCP K340R cells (52.74 ± 26.23 vs. 7.22 ± 3.28%; p = 0.0022). In line with this, TAK-243 reduced cellular ubiquitination levels and 
increased bile salt uptake (48.65 ± 2.27 vs. 105.8 ± 4.12 pmol; p = 0.0286), while reducing HBV DNA content in HepG2 (100 ± 44 
vs. 18 ± 13%; p <0.0001) and HepaRG cells (100 ± 24 vs. 65 ± 6%; p = 0.0483).

Conclusions: K340 is essential for NTCP ubiquitination. Inhibiting ubiquitination impaired NTCP endocytosis and reduced HBV 
infection, confirming that NTCP-mediated endocytosis is critical for HBV hepatic entry.

© 2025 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction
HBV infection is a major public health problem and leading 
cause of liver-related mortality worldwide with a death toll of 
over 1 million each year. 1 Chronic HBV infection leads to liver 
cirrhosis and hepatocellular carcinoma. 1 The most severe 
cases of HBV are caused by co-infection with HDV, a satellite 
virus that requires HBV for replication. 2 There is currently no 
effective medication to eliminate chronic HBV infection, but 
treatment focuses on suppressing viral replication and 
reducing the risk of complications. 1

Recently, bulevirtide, also known as Myrcludex B, a syn-
thetic peptide derived from the viral pre-S1 domain, was 
approved by the EMA for treating individuals co-infected with 
HBV/HDV. 3 Bulevirtide blocks HBV entry into hepatocytes by 
binding to the sodium taurocholate cotransporting polypeptide 
(NTCP), the main hepatic uptake transporter of conjugated bile 
salts in hepatocytes, which also inhibits its transporter activ-
ity. 3,4 As a result, the binding of this particular inhibitor induces

a significant decline in viral RNA and liver inflammation in pa-
tients with HDV infection. 3

NTCP is a transmembrane protein exclusively expressed on 
the basolateral membrane of hepatocytes and important in the 
enterohepatic circulation of bile salts as the main uptake 
transporter of conjugated bile salts from the portal blood into 
the liver. 5 A certain genomic mutation, p.Ser267Phe 
(rs2296651), which has an allele frequency of 8–12% in 
Southern Chinese and 11% in Vietnamese populations, is 
associated with decreased susceptibility to HBV/HDV infec-
tion. 6–9 In homozygous individuals, the S267F variation was 
reported to be associated with elevated plasma bile salt levels 
as a result of reduced NTCP function, which, however, did not 
result in any medical consequences in this population. 6 

Furthermore, NTCP expression levels have been shown to be 
positively correlated with HBV DNA levels in individuals with 
chronic HBV. 10 However, expression of NTCP was decreased 
in more severe HBV cases developing significant liver fibrosis 
and tissue damage. 10 Thus, it is clear that NTCP has a crucial
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role in HBV/HDV cellular entry and infection. However, the 
underlying mechanisms and pathways that regulate the entry 
of HBV into hepatocytes remain largely elusive.

Ubiquitination is the covalent attachment of a small (76-
amino acid) protein to an acceptor lysine (K) residue in target 
proteins, and regulates various cellular processes, including 
protein trafficking, endocytosis, and degradation. 11,12 Both 
inhibition of the proteasome by MG-132 or lactacystin 13 and 
inhibition of lysosomes using bafilomycin A1 14 increased 
intracellular NTCP levels, indicating the involvement of 
ubiquitin-mediated degradation of NTCP. Poly-ubiquitination 
of NTCP in aggresomes was also detected, suggesting 
endoplasmic reticulum (ER)-associated degradation of NTCP 
upon overexpression and in patients with cholestasis. Whether 
ubiquitination has a role at more physiological levels of NTCP 
expression and makes a possible contribution to NTCP 
endocytosis and/or cellular HBV entry remains unknown. Here, 
we investigated the post-translational modification of NTCP by 
ubiquitination as a potential signal for NTCP endocytosis and 
as a mechanism of NTCP-mediated HBV internalization.

Materials and methods

Cell lines and culture

Human hepatocellular carcinoma cells (HepG2), human osteo-
sarcoma cells (U2OS), human embryonic kidney cells (HEK293T) 
(all from ATCC, Manassas, VA, USA) were grown in DMEM 
(Sigma-Aldrich, Grand Island, NY, USA), supplemented with 
10% fetal calf serum (FCS; Gibco, Carlsbad, CA, USA), 1% L-
glutamine (Lonza, Basel, Switzerland), and 1% penicillin/strep-
tomycin (Lonza) (Supplementary CTAT Table). Cell lines were 
passaged twice a week at a confluence of 80% and incubated in 
a humidified atmosphere of 37 ◦ C and 5% CO 2 . HepaRG cells 
were cultured with William’s E media (Gibco, Grand Island, NY, 
USA) supplemented with 10% FCS FetalClone II (HyClone, Little 
Chalfont, UK), 20 mM L-glutamine (Gibco), 50 U/ml penicillin/ 
streptomycin (Gibco), 80 μg/ml gentamicin (Ratiopharm, Ulm, 
Germany), 0.023 IE/ml human insulin (Sanofi-Aventis, Paris, 
France), and 4.7 μg/ml hydrocortisone (Pfizer, Carlisle, PA, USA) 
as described previously. 15 HepaRG differentiation was also 
performed as described previously. 15,16

Generation of NTCP mutant constructs

Mutations in the NTCP construct were generated using the 
QuikChange ® Site-Directed Mutagenesis Kit (Agilent Tech-
nologies, Santa Clara, CA, USA). NTCP open reading frames 
were cloned into the vector pLenti-PGK-Hygro-DEST (Addg-
ene, Watertown, MA, USA ) or the Plenti-CMV-PURO-DEST 
using the Gateway LR clonase II enzyme mix (Invitrogen, 
Waltham, MA, USA) after initial cloning into pENTR-D-TOPO 
according to the manufacturer’s instructions (Life Technolo-
gies, Waltham, MA, USA). All constructs were sequence veri-
fied. Primers used to generate the constructs can be found in 
Table S1 and in the Supplementary CTAT Table. These con-
structs were used for both transient transfections and the 
generation of stable cell lines.

Generation of cell lines

U2OS cells and HepaRG cells stably expressing human NTCP 
were generated as previously described. 16,17 For the

generation of stable expressing NTCP cell lines, HEK293T cells 
were seeded in 100-mm plates, 24 h before transfection with 
third-generation virus plasmids pVSVg, pMDL, and pRSV-Rev 
vectors and one of the NTCP constructs. Medium from the 
HEK293T cells was harvested and added to HepG2 cells or 
U2OS cells for 6 h followed by refreshing of the medium. After 
48 h, the infected cells were selected using Hygromycin (50 μg/ 
ml, Merck-Millipore, Burlington, MA, USA) or Puromycin 
(2.5 μg/ml, Sigma-Aldrich). Transient transfections with FLAG-
tagged ubiquitin (gift from N. Zelcer 18 ) and NTCP constructs 
were performed using polyethyleneimine (Brunschwig, Basel, 
Switzerland) as previously described. 19

NTCP plasma membrane expression and 
internalization assay

NTCP plasma membranes were determined by cell surface 
biotinylation as previously described. 14,20,21 For the internali-
zation assays, cells were incubated with 1 mg/ml Sulfo–NHS– 
ss-Biotin for 1 h at 4 ◦ C. After unreacted biotin was quenched, 
cells were incubated at 37 ◦ C for 1.5 h to allow internalization 
of biotinylated protein. Internalization was ceased by cooling 
cells to 4 ◦ C. To measure NTCP internalization, biotin that 
remained at the cell surface was removed by incubation with 
fresh 100 mM 2-mercaptoethanesulfonic acid sodium salt 
(MESNA, Sigma-Aldrich) in 100 mM NaCl, 1 mM EDTA, 50 mM 
Tris-HCl, pH 8.6, 0.2% (w/v) bovine serum albumin three times 
for 20 min at 4 ◦ C. Subsequently, MESNA was quenched for 
10 min with 120 mM sodium iodoacetate (Sigma-Aldrich) in 
PBS-CM. Cells were washed with PBS-CM and PBS and lysed 
in 150 mM NaCl, 5 mM EDTA, 50 mM Tris-HCl, pH 7.5, 1% (v/ 
v) Nonidet P-40, supplemented with protein inhibitors (Roche, 
Basel, Switzerland) at 4 ◦ C. Lysate was centrifuged, and the 
supernatant was added to prewashed neutravidin beads. 
Pulldown was performed overnight at 4 ◦ C followed by 
washing with lysis buffer. The proteins were eluted in Laemmli 
sample buffer containing 0.1 M DTT, incubated at room tem-
perature for 15 min, and then subjected to immunoblotting as 
described below.

TAK-243 treatment

NTCP WT HepG2 and HepaRG cells (only HBV infection) were 
plated for bile salt uptake or HBV infection assays. After 48 h, 
cells were treated with TAK-243 (MedChemExpress, Mon-
mouth Junction, NJ, USA) at selected concentrations for 3 h 
(HBV infection) or overnight (bile salt uptake assay).

PNGase treatment

Lysates of NTCP WT HepG2 (60 μg) were treated with peptide 
N-glycosidase F (PNGase F) for 2 h at 37 ◦ C (500 units) ac-
cording to the manufacturer’s instructions (New England Bio-
labs, Ipswich, MA, USA) before immunoblotting, as 
described below.

Immunoblot analyses

Proteins were separated on SDS-PAGE gels and transferred to 
PVDF membranes using the Bio-Rad system. After transfer, 
membranes were blocked in 5% milk/TBS-Tween (TBS-T) for 
1 h and then incubated with primary antibodies for either 2 h at 
room temperature or overnight at 4 ◦ C. After three washing
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steps with TBS-T, membranes were incubated with horse-
radish peroxidase-conjugated secondary antibodies (either 
goat anti-mouse or goat anti-rabbit (1:10,000)). Following 
antibody incubations and three additional washing steps, 
protein bands were visualized using Lumi-Light PLUS Western 
Blotting Substrate (Roche), and proteins were detected by 
chemiluminescence. Primary antibodies included anti-HA HRP 
(H6533, Sigma-Aldrich), rabbit anti-FLAG (F7425, Sigma-
Aldrich), mouse anti-FLAG (F1804, Sigma-Aldrich), anti-ubiq-
uitin-HRP (BML-PW0150, ENZO, Farmingdale, NY, USA), 
rabbit anti-ATP1A1 (gift from J. Koenderink 22 ), and rabbit anti-
GAPDH (CST 2118S, Cell Signaling, Danvers, MA, USA). 
ATP1A1 served as the loading control in the immunoblot ex-
periments. For secondary antibodies, anti-mouse-HRP 
(P0447, DAKO, Glostrup, Denmark) and anti-rabbit-HRP 
(31460, Thermo Fisher Scientific) were used (Supplementary 
CTAT Table).

Immunoprecipitations

Cells were grown in a 100-mm culture dish until 80% conflu-
ence. After washing with PBS, cells were lysed in RIPA buffer 
(150 mM NaCl, 50 mM Tris pH 7.4, 0.1% SDS, 1% Nonidet 
P40, 1 mM EDTA) supplemented with protein inhibitors 
(Roche). Equal protein amounts were incubated and FLAG-
NTCP or HA-NTCP precipitation was performed. For HA-
NTCP, precipitation was performed by incubating the lysates 
with monoclonal anti-HA antibody immobilized on agarose 
beads (9568, Sigma-Aldrich) for 16 h at 4 ◦ C. For FLAG-NTCP, 
lysates were incubated with anti-FLAG antibodies (F1804, 
Sigma-Aldrich) overnight at 4 ◦ C and, subsequently, protein 
agarose beads were added for another 2 h at 4 ◦ C. After three 
washing steps with RIPA buffer, samples were analyzed by 
immunoblotting, as described above.

RNA isolation, cDNA synthesis, and qPCR

RNA was isolated from cells as described previously. 20,23 The 
primers (Sigma-Aldrich) used are listed in Table S2 and the 
Supplementary CTAT Table. Relative expression was deter-
mined by qPCR, and expression levels were normalized to two 
reference genes, 36B4 and HRPT.

Bile salt uptake assay

Bile salt uptake activity was measured in cells as described 
previously using [ 3 H] taurocholate (TCA; Perkin Elmer). 14 

Briefly, cells were grown in 24-well plates until 80% conflu-
ence. Cells were washed twice with warm uptake buffer (5 mM 
KCl, 1.1 mM KH 2 PO 4 , 1 mM MgCl 2 , 1.8 mM CaCl 2 , 10 mM D-
glucose, 10 mM Hepes, and 136 mM NaCl). Uptake activity 
was examined by incubation with 20 μM TCA supplemented 
with 0.25 μC [ 3 H] TCA in uptake buffer at 37 ◦ C for 2 min. 
Finally, cells were washed four times in ice-cold PBS and lysed 
in 0.05% SDS. Accumulation of radiolabeled substrates was 
determined by scintillation counting.

HBV binding to NTCP

HBV binding to NTCP was determined by Myrcludex-FITC 
labeling as previously described. 14,20

Determination of HBV/HDV infection

HepG2 cells expressing NTCP constructs were cultured in 
DMEM/F-12 medium containing 10% FCS, 1 mM sodium py-
ruvate, 1% nonessential amino acids, 1% L-glutamate, and
2 mM HEPES. HepaRG cells were cultured and differentiated 
as described above. Cells were seeded in a 24-well plate at 
90% confluency with 2% DMSO in the medium. After 48 h, 
they were infected with HBV at a multiplicity of infection (MOI) 
of 200 or 500 DNA-containing, enveloped viral particles (vp)/ 
cell in a medium containing 2% DMSO and 4% polyethylene 
glycol (PEG) 6000. Negative control cells were pretreated with 
200 nM Myrcludex B for 1 h before infection.

To assess the effects of global inhibition of ubiquitination, 
cells were treated with TAK-243 at 0.25, 0.5, or 10 μM for 3 h 
before HBV infection and washed three times with PBS. These 
cells were then infected with 200 MOI vp/cell of a recombinant 
HBV encoding Gaussia luciferase under the control of a 
transthyretin promoter generated as previously described. 24 

Then, 24 h post infection, cells were washed and supple-
mented with fresh medium without PEG6000 and the cells and 
cellular supernatant were then harvested. Total DNA was 
extracted from the supernatant and cells using the Nucleo-
Spin ® Tissue DNA Isolation kit (Qiagen, Hilden, Germany). 
Total HBV DNA was quantified using qPCR as previously 
described. 25 HBV covalently closed circular (ccc) DNA was 
determined by qPCR following T5 exonuclease pretreatment, 
and the expression levels were normalized to the major prion 
protein (PrP) level. HBeAg was quantified in the supernatant by 
ELISA using the HBeAg Detection Reagent kit (Shanghai 
Kehua Bio-Engineering, Shanghai, China). Gaussia luciferase 
activity was measured by adding 50 μl of supernatant to a 
white 96-well plate and adding 100 μl of PBS-T (0.1% Tween 
20) with 1 μM coelenterazine H before measuring lumines-
cence with a Tecan Infinite 200 plate reader. 24

Statistical analyses

Data are provided as the mean ± SD. Differences between two 
groups were analyzed using the Mann-Whitney U test. One-
way ANOVA with Dunnet or Bonferroni post hoc analysis was 
used for multiple group comparisons. Statistical significance 
was considered at p <0.05. Calculations and graphs were 
generated using GraphPad Prism 10.2.0 (GraphPad Software 
Inc., La Jolla, CA, USA).

Results

NTCP can be ubiquitinated

Given that ubiquitin attachment to membrane proteins on the 
plasma membrane targets them for internalization, we inves-
tigated whether NTCP can be ubiquitinated. To investigate 
this, U2OS cells with stable expression of HA-tagged human 
NTCP were generated and transfected with FLAG-tagged 
ubiquitin. Precipitation of HA-NTCP resulted in co-
precipitation of FLAG-ubiquitin (Fig. 1A). The omission of 
NTCP prevented the precipitation of ubiquitin, demonstrating 
the specificity of the co-immunoprecipitation.

To exclude that the transiently overexpressed ubiquitin 
affected these results, the experiment was repeated without 
overexpression of ubiquitin. Precipitation of HA-NTCP resulted 
in co-precipitation of endogenous ubiquitin, which implies that
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NTCP can be ubiquitinated (Fig. 1B). Furthermore, ubiquitin 
precipitated with NTCP was detected as multiple bands be-
tween 50 and 250 kDa, which suggests that NTCP can be both 
mono- and poly-ubiquitinated (Fig. 1A,B).

K340R mutation results in increased NTCP levels and bile 
salt uptake but is less ubiquitinated

Identifying the main target site for ubiquitination within NTCP 
can provide a means to modify and inhibit NTCP ubiquitination 
to understand its role in endocytosis and viral entry. The target 
sites for ubiquitination are K residues located in the cyto-
plasmic region of a transmembrane protein, given that ubiq-
uitination occurs intracellularly. In 2022, the crystal structure of 
NTCP was resolved, demonstrating that it contains nine 
transmembrane domains and an intracellularly localized C 
terminus (Fig. 2A). 26 To assess whether ubiquitination of hu-
man NTCP is important for its internalization and, hence, HBV 
entry, we focused on the six K residues in the C terminus. Four 
K residues, at positions 309, 311, 314, and 318 are conserved 
in both HBV-susceptible (human, chimpanzee, and bonobo) 
and non-susceptible (mouse and rat) species, 27–29 whereas K 
residues at positions 316 and 340 are not conserved (Fig. 2B). 
To investigate whether K residues are relevant for NTCP ac-
tivity and internalization, we substituted all residues with an 
arginine (R) residue by site-directed mutagenesis, and

expressed these mutants in HepG2 cells: wild-type NTCP 
(NTCP WT ), NTCP K1-5R in which five K residues were mutated 
(K309R, K311R, K314R, K316R, and K318R), NTCP K1-6R in 
which six K residues were mutated (K309R, K311R, K314R, 
K316R, K318R, and K340R), and NTCP K340R in which only K 
residue K340 was mutated. Despite comparable NTCP mRNA 
expression for all mutant constructs (Fig. 2C), NTCP protein 
levels in whole-cell lysates were strongly elevated only for the 
NTCP K1-6R and NTCP K340R -expressing lines (Fig. 2D, lysate). 
Interestingly, the plasma membrane abundance of these two 
mutants was strongly enhanced, as determined by cell surface 
biotinylation (Fig. 2D, eluate). The increased plasma membrane 
abundance coincided with approximately threefold elevated 
TCA uptake by these two NTCP mutant cell lines compared 
with NTCP WT and NTCP K1-5R (Fig. 2E). Altogether, these data 
indicate that mutation of K340 has the strongest phenotype in 
relation to NTCP plasma membrane abundance and trans-
port activity.

Next, we assessed whether the general inhibition of protein 
ubiquitination mirrored the increased uptake activity of 
NTCP K340R . To this end, HepG2-NTCP WT cells were treated 
with TAK-243, an inhibitor of the ubiquitin-activating enzyme. 
Overnight treatment with TAK-243 at 0.1 μM reduced ubiq-
uitination (Fig. S3A) and, as we observed for NTCP K340R ,
strongly increased TCA uptake (Fig. 2F). To investigate 
whether K340 is the target for ubiquitination, we precipitated
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HA-NTCP from U2OS cells overexpressing either HA-NTCP WT 

or HA-NTCP K340R and compared the ubiquitination of the 
precipitated protein. The precipitated ubiquitin level was 
strongly reduced in NTCP K340R compared with NTCP WT , even 
though NTCP K340R expression levels were higher (Fig. 2G). 
These data suggest that K340 is the main target site for 
ubiquitination within NTCP.

Given that we previously showed that the N-glycosylation of 
NTCP is essential for the recruitment of NTCP to the plasma 
membrane and subsequently HBV entry by NTCP, we exam-
ined glycosylation of NTCP WT and NTCP K340R . 14 Cells were 
treated with PNGase F, which cleaves N-linked glycan chains 
from glycoproteins. The K340R mutation did not affect the 
glycosylation status of NTCP, indicating that the increased
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Immunoprecipitation of HA-hNTCP in U2OS cells stably expressing HA-NTCP WT or HA-NTCP K340R . Full blots are shown in Figs. S2 and S4. Data are means ± SD, 
analyzed with one-way ANOVA followed by Dunnet’s test (C,E) and Mann-Whitney U test (F); ns, not significant, *p <0.05, ****p <0.0001. K, lysine; NTCP, sodium 

taurocholate cotransporting peptide; P, parental cells without HA-NTCP expression; TCA, taurocholate; WT, wild type.
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plasma membrane abundance of NTCP K340R was not caused 
by impaired glycosylation of the protein (Fig. S5A).

Ubiquitination of K340 is required for endocytosis of NTCP

The increased plasma membrane abundance of NTCP K340R 

could result from impaired endocytosis caused by reduced 
ubiquitination. To test this hypothesis, endocytosis rates of 
NTCP WT and NTCP K340R were evaluated in HepG2 cells. We 
used a pulse-chase approach (Fig. 3A) in which membrane-
associated proteins, including NTCP, were labeled with biotin 
at 4 ◦ C (fraction: total plasma membrane NTCP) and chased at 
37 ◦ C to allow internalization (fraction: internalized NTCP). The 
endocytosed fraction was determined by dividing the fraction 
of internalized NTCP by the fraction of plasma membrane 
NTCP, both corrected for background. NTCP expression in all 
the aforementioned conditions was normalized to the house-
hold protein ATP1A1. Omission of biotin prevented the pre-
cipitation of NTCP (Fig. S6, lanes 1–4), whereas, in whole-cell 
lysate, NTCP was detected (Fig. S6, lanes 5–8). Incubations 
performed at 4 ◦ C, which depicted maximal membrane-
associated (biotinylated) NTCP signal (Fig. 3B, lanes 1–6) 
confirmed that the NTCP K340R had strongly increased protein 
levels compared with NTCP WT . Subsequent chase of the cells 
for 1 h at 37 ◦ C, followed by MESNA treatment to clear residual 
membrane-associated biotinylated NTCP, showed the inter-
nalized fraction of biotinylated NTCP (Fig. 3B, lanes 7–12). The 
internalized fraction of NTCP K340R was lower than that of 
NTCP WT (Fig. 3C). These experiments demonstrate that K340 
has a crucial role in NTCP endocytosis, given that its mutation 
leads to decreased endocytosis.

The NTCP K340R mutant and inhibition of ubiquitination 
markedly reduce HBV infection

We investigated whether the endocytosis-defective 
NTCP K340R mutant expressed in HepG2 cells affected HBV 
infection. First, we quantified the binding of FITC-labeled 
Myrcludex B to NTCP WT and NTCP K340R in HepG2 cells. 
Myrcludex B is a myristoylated peptide based on the pre-S1 
domain of the HBV-L protein that specifically interacts with 
NTCP at positions 157–165. 14,30–32 Therefore, this peptide in-
dicates the HBV-binding capacity of NTCP. Myrcludex B-FITC 
intensity was strongly increased in HepG2-NTCP K340R cells 
(Fig. 4A), underscoring the higher plasma membrane abun-
dance of the K340R mutant with the preserved PreS1 binding 
of NTCP K340R and indicating the higher HBV binding capacity 
of these cells. Next, HepG2-NTCP WT and NTCP K340R cells 
were incubated with HBV at MOI 500 and 200 vp/cell. At both 
MOIs, the HBV markers HBsAg (Fig. 4B), cccDNA (Fig. 4C), 
and secreted HBV DNA (Fig. 4D) were reduced by �80% in 
HepG2-NTCP K340R cells compared with HepG2-NTCP WT cells. 
Myrcludex B, which blocks NTCP-mediated HBV entry, and 
heparin, which blocks the binding of HBV to highly sulfated 
heparan sulfate proteoglycan, were used as controls. Both 
treatments almost completely inhibited HBV infection, illus-
trating its NTCP dependency and the specificity of HBV 
infection. Altogether, these data demonstrate that the 
NTCP K340R still supports HBV infection, but with much lower 
infectivity compared with NTCP WT , despite increased total 
cellular binding of PreS1.

Finally, we verified whether decreased general cellular 
ubiquitination affects HBV infection. HepG2 cells over-
expressing NTCP WT were treated with TAK-243 at 0.25, 0.5, 
and 10 μM for 3 h. Next, cells were infected with recombinant 
HBV encoding Gaussia luciferase (rHBV-Gaussia) at 200 MOI 
vp/cell. TAK-243 treatment for 3 h reduced ubiquitination in 
NTCP WT HepG2 cells (Fig. S3B). Correspondingly, HBV 
markers, including luciferase expression, secreted HBV DNA, 
and cccDNA, were significantly reduced (Fig. 5A–C). To further 
verify this observation in another HBV infection model, this 
experiment was also performed in differentiated HepaRG cells 
overexpressing NTCP WT . TAK-243 treatment showed a 
concentration-dependent reduction in rHBV-Gaussia activity, 
HBV DNA, and cccDNA (Fig. 5D,E). Altogether, these data 
underscore an essential role of NTCP ubiquitination at the 
K340 residue in HBV infection.

Discussion
In this study, we present evidence that ubiquitination of K340 
in the C terminus of NTCP is crucial for NTCP endocytosis and 
for HBV entry and infection. First, we showed that NTCP is 
ubiquitinated and that the lysine residue at position 340 is the 
main ubiquitination target. Second, we demonstrated that 
mutation of this lysine to arginine (K340R) resulted in increased 
NTCP abundance on the plasma membrane and increased bile 
salt uptake. Third, the NTCP K340R mutant showed impaired 
endocytosis efficiency. In addition, we demonstrated that, 
despite higher Myrcludex/PreS1 binding to the HepG2-
NTCP K340R mutant cells, these cells had a strongly reduced 
HBV infection capacity compared with NTCP WT . Lastly, we 
demonstrated that the ubiquitination inhibitor TAK-243 
reduced HBV infection in both NTCP-expressing HepG2 and 
HepaRG cells. Altogether, our data indicate that K340 in NTCP 
has a crucial role in HBV entry via ubiquitination-mediated 
endocytosis of NTCP.

The identification of K340 as a residue in NTCP that is 
affecting ubiquitination and endocytosis adds to a compact list 
of amino acid residues that are either pivotal in HBV infection 
or separate the two ‘roles’ of NTCP: bile salt uptake and HBV 
docking. This list now includes S267, a pore-residing residue 
crucial for bile salt and HBV binding, 26 the polymorphism 
G158R, and variants at the Y146 residue that block HBV 
binding and subsequent infection, but not bile salt trans-
port. 29,33,34 In addition, amino acid residues 157–165 and 
84–87 are essential for viral infection. 4,35 Interestingly, these 
are present in distinct regions of NTCP compared with the 
K340 position, which is in the C terminus, pointing at highly 
divergent mechanisms that could be exploited to interfere with 
HBV infection therapeutically. Yan et al. demonstrated that 
HDV delta antigen binding was reduced when the human 
NTCP tail was exchanged for the mouse NTCP tail, 35 although 
the underlying mechanism was not further investigated. The 
K340R mutation is unlikely to affect hNTCP oligomerization, 
which modulates HBV infection, because this process is in-
dependent of the C terminus. 17 The NTCP glycosylation status 
was unaffected in the K340R mutant, excluding another factor 
that modulates NTCP cell surface abundance and HBV infec-
tion. 14 Therefore, we conclude that reduced NTCP endocy-
tosis resulting from a lack of ubiquitination explains the 
increased bile salt uptake and reduced HBV infection.
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The role of ubiquitin as a signal for internalization has been 
described for various membrane proteins, including trans-
porters for dopamine, 36–39 glutamate, 40 and glycine. 41,42 For 
these transporters, it was shown that ubiquitination is essential 
for protein kinase C (PKC)-induced, clathrin-dependent 
endocytosis, which coincided with reduced membrane-
associated transport activity. For example, the transport

activity of the glycine transporter GLYT2 was reduced upon 
PKC activation (and consequent endocytosis). However, for 
cells expressing the GLYT2 K791R in which the ubiquitin target 
lysine residue 791 was replaced by an arginine (K791R), 
transport activity and endocytosis were unaffected upon PKC 
activation. 41 Ubiquitination of the essential lysine residue pre-
cedes PKC-induced clathrin-mediated internalization of these
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membrane proteins. Using flow cytometry and immunofluo-
rescent analyses, Stross et al. 43,44 previously showed that 
endocytosis of NTCP also relies on activation of PKC and 
clathrin. Importantly, several studies also reported that HBV 
entry in hepatocytes relies on clathrin-mediated endocytosis of 
NTCP. Using HepG2-NTCP cells, Herrscher et al. 45 showed 
that HBV entry depends on clathrin-mediated endocytosis 
because HBV internalization was inhibited by knocking down 
clathrin heavy chain, dynamin-2, or clathrin adaptor protein 
AP-2, but not on micropinocytosis and caveolin-mediated 
endocytosis. Similarly, Huang et al. 46 showed that HBV inter-
nalization depends on clathrin-mediated endocytosis in 
immortalized human primary hepatocytes. In addition, Iwa-
moto et al. 47 demonstrated that NTCP-mediated HBV inter-
nalization was dependent on the physical interaction with the 
epidermal growth factor receptor (EGFR) and on the endo-
somal sorting machinery of the EGFR. However, we could not 
confirm this interaction in hNTCP-overexpressing 
HepG2 cells. 20,23

Our study adds another layer of regulation to NTCP-
mediated HBV internalization. We showed that NTCP is ubiq-
uitinated at K340 in the C terminus, and has an essential role in 
the endocytosis of NTCP. Despite strongly elevated

NTCP K340R membrane levels and concomitant elevated 
Mycrcludex B (HBV) binding, the HBV infection efficiency was 
reduced by �80%, indicating that NTCP-mediated HBV 
internalization was strongly impaired when ubiquitination at 
K340 was blocked. HBV is not the only virus that requires 
ubiquitination of the host docking protein for virus endocytosis. 
Dengue virus (DENV) requires ubiquitination of two cytosolic 
lysine residues in the phosphatidylserine receptor TIM-1 to be 
endocytosed into the host cell. 48 Lysine-to-arginine mutation 
of both residues at positions 338 and 346 (KKRR) resulted in 
reduced ubiquitination and a concomitant �75% reduction in 
DENV-infected cells. However, also in this study, the authors 
identified a single lysine residue (i.e. K346) to be essential for 
TIM-1-mediated DENV internalization. This study provides a 
strong link between the requirement of lysine ubiquitination 
and viral endocytosis.

In conclusion, we show that NTCP-mediated internaliza-
tion of HBV is strongly dependent on the ubiquitination of 
K340. Ubiquitination of this specific residue drives NTCP 
endocytosis and is pivotal for efficient HBV infection. Thus, 
pharmacological inhibition of ubiquitin-dependent endocy-
tosis of NTCP provides a novel strategy to block HBV entry 
and infection.
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