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Highlights:

e KB40 is likely to be the main ubiquitination target
within NTCP.

e Mutating K340 to arginine increased NTCP protein levels
and bile salt uptake.

e Mutating K340 to arginine reduced NTCP endocytosis and
HBV infection.

e Inhibition of protein ubiquitination with TAK-243 inhibited
HBV infection.

e K340 is crucial for HBV entry as a result of ubiquitin-
mediated NTCP endocytosis.

https://doi.org/10.1016/j.jhepr.2025.101534

Impact and implications:

This study contributes to elucidating the process of how HBV
enters hepatocytes, which is largely elusive. NTCP was found
not only to be required for the binding of HBV to hepatocytes,
but also to have a crucial role in hepatic internalization of HBV.
In addition, a K at position 340 was identified as the main
ubiquitination target of NTCP; ubiquitination-mediated endo-
cytosis of NTCP at this position is likely to be the mechanism
regulating HBV internalization. Thus, interfering with NTCP
ubiquitination could provide a novel means to reduce
HBYV infection.
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Background & Aims: The sodium taurocholate cotransporting polypeptide (NTCP), the main hepatic uptake transporter of bile
salts, is the docking receptor required for the HBV/HDV entry. However, the mechanism of NTCP-dependent internalization of
HBV/HDV into hepatocytes is unclear. Thus, we investigated the contribution of post-translational modification of NTCP to
transporter endocytosis and HBV infection.

Methods: NTCP ubiquitination was determined by immunoprecipitation of wild-type NTCP (NTCP™T). Lysine (K) residues in the
C terminus were substituted by arginine (R) to identify ubiquitination sites. HepG2 cells overexpressing NTCP mutants were
analyzed for protein levels, bile salt uptake activity, NTCP endocytosis, and HBV infectivity. The global ubiquitination inhibitor
TAK-243 was used to study effects on uptake and HBV infection in NTCP"/"-HepG2 and HepaRG cells. Sample sizes in the
experiments were 3-10.

Results: NTCP was found to be ubiquitinated. Compared with NTCPWT, the NTCP*34°R mutant showed reduced ubiquitination,
indicating K340 as the main ubiquitination target. Furthermore, NTCP*34%R had increased membrane abundance, which coin-
cided with enhanced bile salt uptake (28.2 + 5.3 vs. 74.4 = 5.8 pmol; p <0.0001). Compared with NTCP"T, NTCP*®*°R endo-
cytosis was strongly impaired (100 + 47 vs. 42 + 19%; p = 0.0079), whereas HBV-derived myr-preS1 peptide binding was
increased (100 + 33 vs. 220 + 98%; p <0.0001). Compared with NTCP"T cells, HBV DNA content was strongly reduced in
NTCP"®4%R cells (52.74 + 26.23 vs. 7.22 + 3.28%; p = 0.0022). In line with this, TAK-243 reduced cellular ubiquitination levels and
increased bile salt uptake (48.65 + 2.27 vs. 105.8 + 4.12 pmol; p = 0.0286), while reducing HBV DNA content in HepG2 (100 + 44
vs. 18 £ 13%; p <0.0001) and HepaRG cells (100 + 24 vs. 65 + 6%; p = 0.0483).

Conclusions: K340 is essential for NTCP ubiquitination. Inhibiting ubiquitination impaired NTCP endocytosis and reduced HBV
infection, confirming that NTCP-mediated endocytosis is critical for HBV hepatic entry.

© 2025 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an open access article
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction a significant decline in viral RNA and liver inflammation in pa-
tients with HDV infection.”

NTCP is a transmembrane protein exclusively expressed on
the basolateral membrane of hepatocytes and important in the
enterohepatic circulation of bile salts as the main uptake
transporter of conjugated bile salts from the portal blood into
the liver.° A certain genomic mutation, p.Ser267Phe
(rs2296651), which has an allele frequency of 8-12% in
Southern Chinese and 11% in Vietnamese populations, is
associated with decreased susceptibility to HBV/HDV infec-
tion.>® In homozygous individuals, the S267F variation was
reported to be associated with elevated plasma bile salt levels
as a result of reduced NTCP function, which, however, did not
result in any medical consequences in this population.®
Furthermore, NTCP expression levels have been shown to be
positively correlated with HBV DNA levels in individuals with
chronic HBV."° However, expression of NTCP was decreased
in more severe HBV cases developing significant liver fibrosis
and tissue damage.'® Thus, it is clear that NTCP has a crucial

HBV infection is a major public health problem and leading
cause of liver-related mortality worldwide with a death toll of
over 1 million each year." Chronic HBV infection leads to liver
cirrhosis and hepatocellular carcinoma.” The most severe
cases of HBV are caused by co-infection with HDV, a satellite
virus that requires HBV for replication.? There is currently no
effective medication to eliminate chronic HBV infection, but
treatment focuses on suppressing viral replication and
reducing the risk of complications.’

Recently, bulevirtide, also known as Myrcludex B, a syn-
thetic peptide derived from the viral pre-S1 domain, was
approved by the EMA for treating individuals co-infected with
HBV/HDV.? Bulevirtide blocks HBV entry into hepatocytes by
binding to the sodium taurocholate cotransporting polypeptide
(NTCP), the main hepatic uptake transporter of conjugated bile
salts in hepatocytes, which also inhibits its transporter activ-
ity.>* As a result, the binding of this particular inhibitor induces

* Corresponding author. Address: Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Meibergdreef 69-71, 1105 BK Amsterdam, The
Netherlands. Tel.: +31-(0)20-5663828

E-mail address: k.f.vandegraaf@amsterdamumc.nl (S.F.J. van de Graaf).

T These authors contributed equally.

https://doi.org/10.1016/j.jhepr.2025.101534

EASL

The Home of Hepatology

K3

FI%FVIFR JHEP Reports, mmm 2025. vol. 7 | 101534


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:k.f.vandegraaf@amsterdamumc.nl
https://doi.org/10.1016/j.jhepr.2025.101534
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhepr.2025.101534&domain=pdf

role in HBV/HDV cellular entry and infection. However, the
underlying mechanisms and pathways that regulate the entry
of HBV into hepatocytes remain largely elusive.

Ubiquitination is the covalent attachment of a small (76-
amino acid) protein to an acceptor lysine (K) residue in target
proteins, and regulates various cellular processes, including
protein trafficking, endocytosis, and degradation.””'® Both
inhibition of the proteasome by MG-132 or lactacystin'® and
inhibition of lysosomes using bafilomycin A1'* increased
intracellular NTCP levels, indicating the involvement of
ubiquitin-mediated degradation of NTCP. Poly-ubiquitination
of NTCP in aggresomes was also detected, suggesting
endoplasmic reticulum (ER)-associated degradation of NTCP
upon overexpression and in patients with cholestasis. Whether
ubiquitination has a role at more physiological levels of NTCP
expression and makes a possible contribution to NTCP
endocytosis and/or cellular HBV entry remains unknown. Here,
we investigated the post-translational modification of NTCP by
ubiquitination as a potential signal for NTCP endocytosis and
as a mechanism of NTCP-mediated HBV internalization.

Materials and methods

Cell lines and culture

Human hepatocellular carcinoma cells (HepG2), human osteo-
sarcoma cells (U20S), human embryonic kidney cells (HEK293T)
(all from ATCC, Manassas, VA, USA) were grown in DMEM
(Sigma-Aldrich, Grand Island, NY, USA), supplemented with
10% fetal calf serum (FCS; Gibco, Carlsbad, CA, USA), 1% L-
glutamine (Lonza, Basel, Switzerland), and 1% penicillin/strep-
tomycin (Lonza) (Supplementary CTAT Table). Cell lines were
passaged twice a week at a confluence of 80% and incubated in
a humidified atmosphere of 37 °C and 5% CO,. HepaRG cells
were cultured with William’s E media (Gibco, Grand Island, NY,
USA) supplemented with 10% FCS FetalClone Il (HyClone, Little
Chalfont, UK), 20 mM L-glutamine (Gibco), 50 U/ml penicillin/
streptomycin (Gibco), 80 pug/ml gentamicin (Ratiopharm, Ulm,
Germany), 0.023IE/ml human insulin (Sanofi-Aventis, Paris,
France), and 4.7 |lg/ml hydrocortisone (Pfizer, Carlisle, PA, USA)
as described previously.'® HepaRG differentiation was also
performed as described previously.'>'®

Generation of NTCP mutant constructs

Mutations in the NTCP construct were generated using the
QuikChange® Site-Directed Mutagenesis Kit (Agilent Tech-
nologies, Santa Clara, CA, USA). NTCP open reading frames
were cloned into the vector pLenti-PGK-Hygro-DEST (Addg-
ene, Watertown, MA, USA ) or the Plenti-CMV-PURO-DEST
using the Gateway LR clonase Il enzyme mix (Invitrogen,
Waltham, MA, USA) after initial cloning into pENTR-D-TOPO
according to the manufacturer’s instructions (Life Technolo-
gies, Waltham, MA, USA). All constructs were sequence veri-
fied. Primers used to generate the constructs can be found in
Table S1 and in the Supplementary CTAT Table. These con-
structs were used for both transient transfections and the
generation of stable cell lines.

Generation of cell lines

U20S cells and HepaRG cells stably expressing human NTCP
were generated as previously described.'®'” For the
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generation of stable expressing NTCP cell lines, HEK293T cells
were seeded in 100-mm plates, 24 h before transfection with
third-generation virus plasmids pVSVg, pMDL, and pRSV-Rev
vectors and one of the NTCP constructs. Medium from the
HEK293T cells was harvested and added to HepG2 cells or
U20S cells for 6 h followed by refreshing of the medium. After
48 h, the infected cells were selected using Hygromycin (50 pg/
ml, Merck-Millipore, Burlington, MA, USA) or Puromycin
(2.5 pg/ml, Sigma-Aldrich). Transient transfections with FLAG-
tagged ubiquitin (gift from N. Zelcer'®) and NTCP constructs
were performed using polyethyleneimine (Brunschwig, Basel,
Switzerland) as previously described.'®

NTCP plasma membrane expression and
internalization assay

NTCP plasma membranes were determined by cell surface
biotinylation as previously described.'*2%2" For the internali-
zation assays, cells were incubated with 1 mg/ml Sulfo-NHS-
ss-Biotin for 1 h at 4 °C. After unreacted biotin was quenched,
cells were incubated at 37 °C for 1.5 h to allow internalization
of biotinylated protein. Internalization was ceased by cooling
cells to 4 °C. To measure NTCP internalization, biotin that
remained at the cell surface was removed by incubation with
fresh 100 mM 2-mercaptoethanesulfonic acid sodium salt
(MESNA, Sigma-Aldrich) in 100 mM NaCl, 1 mM EDTA, 50 mM
Tris-HCI, pH 8.6, 0.2% (w/v) bovine serum albumin three times
for 20 min at 4 °C. Subsequently, MESNA was quenched for
10 min with 120 mM sodium iodoacetate (Sigma-Aldrich) in
PBS-CM. Cells were washed with PBS-CM and PBS and lysed
in 150 mM NaCl, 5 mM EDTA, 50 mM Tris-HCI, pH 7.5, 1% (v/
v) Nonidet P-40, supplemented with protein inhibitors (Roche,
Basel, Switzerland) at 4 °C. Lysate was centrifuged, and the
supernatant was added to prewashed neutravidin beads.
Pulldown was performed overnight at 4 °C followed by
washing with lysis buffer. The proteins were eluted in Laemmli
sample buffer containing 0.1 M DTT, incubated at room tem-
perature for 15 min, and then subjected to immunoblotting as
described below.

TAK-243 treatment

NTCPY' HepG2 and HepaRG cells (only HBV infection) were
plated for bile salt uptake or HBV infection assays. After 48 h,
cells were treated with TAK-243 (MedChemExpress, Mon-
mouth Junction, NJ, USA) at selected concentrations for 3 h
(HBV infection) or overnight (bile salt uptake assay).

PNGase treatment

Lysates of NTCPYT HepG2 (60 |ig) were treated with peptide
N-glycosidase F (PNGase F) for 2 h at 37 °C (500 units) ac-
cording to the manufacturer’s instructions (New England Bio-
labs, Ipswich, MA, USA) before immunoblotting, as
described below.

Immunoblot analyses

Proteins were separated on SDS-PAGE gels and transferred to
PVDF membranes using the Bio-Rad system. After transfer,
membranes were blocked in 5% milk/TBS-Tween (TBS-T) for
1 h and then incubated with primary antibodies for either 2 h at
room temperature or overnight at 4 °C. After three washing
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steps with TBS-T, membranes were incubated with horse-
radish peroxidase-conjugated secondary antibodies (either
goat anti-mouse or goat anti-rabbit (1:10,000)). Following
antibody incubations and three additional washing steps,
protein bands were visualized using Lumi-Light PLUS Western
Blotting Substrate (Roche), and proteins were detected by
chemiluminescence. Primary antibodies included anti-HA HRP
(H6533, Sigma-Aldrich), rabbit anti-FLAG (F7425, Sigma-
Aldrich), mouse anti-FLAG (F1804, Sigma-Aldrich), anti-ubig-
uitin-HRP (BML-PW0150, ENZO, Farmingdale, NY, USA),
rabbit anti-ATP1A1 (gift from J. Koenderink®?), and rabbit anti-
GAPDH (CST 2118S, Cell Signaling, Danvers, MA, USA).
ATP1A1 served as the loading control in the immunoblot ex-
periments. For secondary antibodies, anti-mouse-HRP
(P0447, DAKO, Glostrup, Denmark) and anti-rabbit-HRP
(31460, Thermo Fisher Scientific) were used (Supplementary
CTAT Table).

Immunoprecipitations

Cells were grown in a 100-mm culture dish until 80% conflu-
ence. After washing with PBS, cells were lysed in RIPA buffer
(150 mM NaCl, 50 mM Tris pH 7.4, 0.1% SDS, 1% Nonidet
P40, 1 mM EDTA) supplemented with protein inhibitors
(Roche). Equal protein amounts were incubated and FLAG-
NTCP or HA-NTCP precipitation was performed. For HA-
NTCP, precipitation was performed by incubating the lysates
with monoclonal anti-HA antibody immobilized on agarose
beads (9568, Sigma-Aldrich) for 16 h at 4 °C. For FLAG-NTCP,
lysates were incubated with anti-FLAG antibodies (F1804,
Sigma-Aldrich) overnight at 4 °C and, subsequently, protein
agarose beads were added for another 2 h at 4 °C. After three
washing steps with RIPA buffer, samples were analyzed by
immunoblotting, as described above.

RNA isolation, cDNA synthesis, and qPCR

RNA was isolated from cells as described previously.?%?® The
primers (Sigma-Aldrich) used are listed in Table S2 and the
Supplementary CTAT Table. Relative expression was deter-
mined by qPCR, and expression levels were normalized to two
reference genes, 36B4 and HRPT.

Bile salt uptake assay

Bile salt uptake activity was measured in cells as described
previously using [*H] taurocholate (TCA; Perkin Elmer)."
Briefly, cells were grown in 24-well plates until 80% conflu-
ence. Cells were washed twice with warm uptake buffer (5 mM
KCl, 1.1 mM KH,PO4, 1 mM MgCl,, 1.8 mM CaCl,, 10 mM D-
glucose, 10 mM Hepes, and 136 mM NaCl). Uptake activity
was examined by incubation with 20 pM TCA supplemented
with 0.25 uC [*H] TCA in uptake buffer at 37 °C for 2 min.
Finally, cells were washed four times in ice-cold PBS and lysed
in 0.05% SDS. Accumulation of radiolabeled substrates was
determined by scintillation counting.

HBV binding to NTCP

HBV binding to NTCP was determined by Myrcludex-FITC
labeling as previously described.*2°

Research article

Determination of HBV/HDV infection

HepG2 cells expressing NTCP constructs were cultured in
DMEM/F-12 medium containing 10% FCS, 1 mM sodium py-
ruvate, 1% nonessential amino acids, 1% L-glutamate, and
2 mM HEPES. HepaRG cells were cultured and differentiated
as described above. Cells were seeded in a 24-well plate at
90% confluency with 2% DMSO in the medium. After 48 h,
they were infected with HBV at a multiplicity of infection (MOI)
of 200 or 500 DNA-containing, enveloped viral particles (vp)/
cell in a medium containing 2% DMSO and 4% polyethylene
glycol (PEG) 6000. Negative control cells were pretreated with
200 nM Myrcludex B for 1 h before infection.

To assess the effects of global inhibition of ubiquitination,
cells were treated with TAK-243 at 0.25, 0.5, or 10 uM for 3 h
before HBV infection and washed three times with PBS. These
cells were then infected with 200 MOI vp/cell of a recombinant
HBV encoding Gaussia luciferase under the control of a
transthyretin promoter generated as previously described.?*
Then, 24 h post infection, cells were washed and supple-
mented with fresh medium without PEG6000 and the cells and
cellular supernatant were then harvested. Total DNA was
extracted from the supernatant and cells using the Nucleo-
Spin® Tissue DNA Isolation kit (Qiagen, Hilden, Germany).
Total HBV DNA was quantified using qPCR as previously
described.?®> HBV covalently closed circular (ccc) DNA was
determined by gPCR following T5 exonuclease pretreatment,
and the expression levels were normalized to the major prion
protein (PrP) level. HBeAg was quantified in the supernatant by
ELISA using the HBeAg Detection Reagent kit (Shanghai
Kehua Bio-Engineering, Shanghai, China). Gaussia luciferase
activity was measured by adding 50 pl of supernatant to a
white 96-well plate and adding 100 pl of PBS-T (0.1% Tween
20) with 1 uM coelenterazine H before measuring lumines-
cence with a Tecan Infinite 200 plate reader.?*

Statistical analyses

Data are provided as the mean + SD. Differences between two
groups were analyzed using the Mann-Whitney U test. One-
way ANOVA with Dunnet or Bonferroni post hoc analysis was
used for multiple group comparisons. Statistical significance
was considered at p <0.05. Calculations and graphs were
generated using GraphPad Prism 10.2.0 (GraphPad Software
Inc., La Jolla, CA, USA).

Results

NTCP can be ubiquitinated

Given that ubiquitin attachment to membrane proteins on the
plasma membrane targets them for internalization, we inves-
tigated whether NTCP can be ubiquitinated. To investigate
this, U20S cells with stable expression of HA-tagged human
NTCP were generated and transfected with FLAG-tagged
ubiquitin. Precipitation of HA-NTCP resulted in co-
precipitation of FLAG-ubiquitin (Fig. 1A). The omission of
NTCP prevented the precipitation of ubiquitin, demonstrating
the specificity of the co-immunoprecipitation.

To exclude that the transiently overexpressed ubiquitin
affected these results, the experiment was repeated without
overexpression of ubiquitin. Precipitation of HA-NTCP resulted
in co-precipitation of endogenous ubiquitin, which implies that
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Fig. 1. NTCP physically interacts with ubiquitin. (A) FLAG-ubiquitin coprecipitates with HA-NTCP in U20S cells stably expressing HA-tagged NTCP and transiently
overexpressing FLAG-tagged ubiquitin. (B) Endogenous ubiquitin coprecipitates with HA-NTCP in U20S cells. (A,B) NTCP was immunoprecipitated with anti-HA

antibodies and immunoblotted with anti-HA-HRP and anti-ubiquitin-HRP. Shown

is a representative experiment of n = 2-3 independent experiments. Full blots

are shown in Fig. S1. HRP, horseradish peroxidase; NTCP, sodium taurocholate cotransporting polypeptide.

NTCP can be ubiquitinated (Fig. 1B). Furthermore, ubiquitin
precipitated with NTCP was detected as multiple bands be-
tween 50 and 250 kDa, which suggests that NTCP can be both
mono- and poly-ubiquitinated (Fig. 1A,B).

K340R mutation results in increased NTCP levels and bile
salt uptake but is less ubiquitinated

Identifying the main target site for ubiquitination within NTCP
can provide a means to modify and inhibit NTCP ubiquitination
to understand its role in endocytosis and viral entry. The target
sites for ubiquitination are K residues located in the cyto-
plasmic region of a transmembrane protein, given that ubig-
uitination occurs intracellularly. In 2022, the crystal structure of
NTCP was resolved, demonstrating that it contains nine
transmembrane domains and an intracellularly localized C
terminus (Fig. 2A).%° To assess whether ubiquitination of hu-
man NTCP is important for its internalization and, hence, HBV
entry, we focused on the six K residues in the C terminus. Four
K residues, at positions 309, 311, 314, and 318 are conserved
in both HBV-susceptible (human, chimpanzee, and bonobo)
and non-susceptible (mouse and rat) species,?’2° whereas K
residues at positions 316 and 340 are not conserved (Fig. 2B).
To investigate whether K residues are relevant for NTCP ac-
tivity and internalization, we substituted all residues with an
arginine (R) residue by site-directed mutagenesis, and
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expressed these mutants in HepG2 cells: wild-type NTCP
(NTCPWT), NTCPX'-*® in which five K residues were mutated
(K309R, K311R, K314R, K316R, and K318R), NTCPK'-®® in
which six K residues were mutated (K309R, K311R, K314R,
K316R, K318R, and K340R), and NTCPX34%R in which only K
residue K340 was mutated. Despite comparable NTCP mRNA
expression for all mutant constructs (Fig. 2C), NTCP protein
levels in whole-cell lysates were strongly elevated only for the
NTCPK'-®® and NTCPX®4°R_expressing lines (Fig. 2D, lysate).
Interestingly, the plasma membrane abundance of these two
mutants was strongly enhanced, as determined by cell surface
biotinylation (Fig. 2D, eluate). The increased plasma membrane
abundance coincided with approximately threefold elevated
TCA uptake by these two NTCP mutant cell lines compared
with NTCPWT and NTCPX'-®R (Fig. 2E). Altogether, these data
indicate that mutation of K340 has the strongest phenotype in
relation to NTCP plasma membrane abundance and trans-
port activity.

Next, we assessed whether the general inhibition of protein
ubiquitination mirrored the increased uptake activity of
NTCPK34%R  To this end, HepG2-NTCPWT cells were treated
with TAK-243, an inhibitor of the ubiquitin-activating enzyme.
Overnight treatment with TAK-243 at 0.1 uM reduced ubig-
uitination (Fig. S3A) and, as we observed for NTCPK340R
strongly increased TCA uptake (Fig. 2F). To investigate
whether K340 is the target for ubiquitination, we precipitated
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Fig. 2. NTCPX34%R ags0ciates with increased NTCP plasma membrane levels and uptake activity and K340 is the main target for ubiquitination. (A) Schematic
topological model of human NTCP highlighting the K residues in the C terminus (black). (B) Multiple sequence alignment of NTCP C-terminal sequences from different

species in which the human conserved K residues are boxed. (C-E) Experiments

performed in HepG2 cells stably expressing NTCPWT, NTCPK'-°R NTCPK'-6R, or

NTCPK349R (C) NTCP mRNA expression. (D) Representative immunoblot from surface biotinylation experiment showing NTCP protein levels in total lysate (left) and at
the plasma membrane (right) (n = 3). (E) TCA uptake. (F) TCA uptake in HepG2 cells stably expressing NTCPYT treated overnight with 0.1 UM TAK-243. (G)
Immunoprecipitation of HA-hNTCP in U20S cells stably expressing HA-NTCPWT or HA-NTCPX34°R_Fyll blots are shown in Figs. S2 and S4. Data are means = SD,
analyzed with one-way ANOVA followed by Dunnet’s test (C,E) and Mann-Whitney U test (F); ns, not significant, *p <0.05, ***p <0.0001. K, lysine; NTCP, sodium
taurocholate cotransporting peptide; P, parental cells without HA-NTCP expression; TCA, taurocholate; WT, wild type.

HA-NTCP from U20S cells overexpressing either HA-NTCPWT
or HA-NTCP*®°R and compared the ubiquitination of the
precipitated protein. The precipitated ubiquitin level was
strongly reduced in NTCPX®4°R compared with NTCPYT, even
though NTCP*®%R expression levels were higher (Fig. 2G).
These data suggest that K340 is the main target site for
ubiquitination within NTCP.
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Given that we previously showed that the N-glycosylation of
NTCP is essential for the recruitment of NTCP to the plasma
membrane and subsequently HBV entry by NTCP, we exam-
ined glycosylation of NTCP™T and NTCPX34%R * Cells were
treated with PNGase F, which cleaves N-linked glycan chains
from glycoproteins. The K340R mutation did not affect the
glycosylation status of NTCP, indicating that the increased
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plasma membrane abundance of NTCP***°R was not caused

by impaired glycosylation of the protein (Fig. S5A).

Ubiquitination of K340 is required for endocytosis of NTCP

The increased plasma membrane abundance of NTCPK340R

could result from impaired endocytosis caused by reduced
ubiquitination. To test this hypothesis, endocytosis rates of
NTCPWT and NTCP¥®**°R were evaluated in HepG2 cells. We
used a pulse-chase approach (Fig. 3A) in which membrane-
associated proteins, including NTCP, were labeled with biotin
at 4 °C (fraction: total plasma membrane NTCP) and chased at
37 °C to allow internalization (fraction: internalized NTCP). The
endocytosed fraction was determined by dividing the fraction
of internalized NTCP by the fraction of plasma membrane
NTCP, both corrected for background. NTCP expression in all
the aforementioned conditions was normalized to the house-
hold protein ATP1A1. Omission of biotin prevented the pre-
cipitation of NTCP (Fig. S6, lanes 1-4), whereas, in whole-cell
lysate, NTCP was detected (Fig. S6, lanes 5-8). Incubations
performed at 4 °C, which depicted maximal membrane-
associated (biotinylated) NTCP signal (Fig. 3B, lanes 1-6)
confirmed that the NTCPX®4%R had strongly increased protein
levels compared with NTCPWT, Subsequent chase of the cells
for 1 h at 37 °C, followed by MESNA treatment to clear residual
membrane-associated biotinylated NTCP, showed the inter-
nalized fraction of biotinylated NTCP (Fig. 3B, lanes 7-12). The
internalized fraction of NTCP"®**°R was lower than that of
NTCP™T (Fig. 3C). These experiments demonstrate that K340
has a crucial role in NTCP endocytosis, given that its mutation
leads to decreased endocytosis.

The NTCPX3%°R mutant and inhibition of ubiquitination
markedly reduce HBYV infection

We investigated whether the endocytosis-defective
NTCPK34°R mutant expressed in HepG2 cells affected HBV
infection. First, we quantified the binding of FITC-labeled
Myrcludex B to NTCPYT and NTCP*®%°R in HepG2 cells.
Myrcludex B is a myristoylated peptide based on the pre-S1
domain of the HBV-L protein that specifically interacts with
NTCP at positions 157-165."%°%"32 Therefore, this peptide in-
dicates the HBV-binding capacity of NTCP. Myrcludex B-FITC
intensity was strongly increased in HepG2-NTCP*®40R cells
(Fig. 4A), underscoring the higher plasma membrane abun-
dance of the K340R mutant with the preserved PreS1 binding
of NTCP"®4%R and indicating the higher HBV binding capacity
of these cells. Next, HepG2-NTCPWT and NTCP"®°R cells
were incubated with HBV at MOI 500 and 200 vp/cell. At both
MOQls, the HBV markers HBsAg (Fig. 4B), cccDNA (Fig. 4C),
and secreted HBV DNA (Fig. 4D) were reduced by ~80% in
HepG2-NTCPK34%R cells compared with HepG2-NTCPWT cells.
Myrcludex B, which blocks NTCP-mediated HBV entry, and
heparin, which blocks the binding of HBV to highly sulfated
heparan sulfate proteoglycan, were used as controls. Both
treatments almost completely inhibited HBV infection, illus-
trating its NTCP dependency and the specificity of HBV
infection. Altogether, these data demonstrate that the
NTCPK34%R still supports HBV infection, but with much lower
infectivity compared with NTCP"', despite increased total
cellular binding of PreS1.

NTCP ubiquitination regulates HBV infection rate

Finally, we verified whether decreased general cellular
ubiquitination affects HBV infection. HepG2 cells over-
expressing NTCPWT were treated with TAK-243 at 0.25, 0.5,
and 10 UM for 3 h. Next, cells were infected with recombinant
HBV encoding Gaussia luciferase (rHBV-Gaussia) at 200 MOI
vp/cell. TAK-243 treatment for 3 h reduced ubiquitination in
NTCPYW" HepG2 cells (Fig. S3B). Correspondingly, HBV
markers, including luciferase expression, secreted HBV DNA,
and cccDNA, were significantly reduced (Fig. 5A-C). To further
verify this observation in another HBV infection model, this
experiment was also performed in differentiated HepaRG cells
overexpressing NTCPWT. TAK-243 treatment showed a
concentration-dependent reduction in rHBV-Gaussia activity,
HBV DNA, and cccDNA (Fig. 5D,E). Altogether, these data
underscore an essential role of NTCP ubiquitination at the
K340 residue in HBV infection.

Discussion

In this study, we present evidence that ubiquitination of K340
in the C terminus of NTCP is crucial for NTCP endocytosis and
for HBV entry and infection. First, we showed that NTCP is
ubiquitinated and that the lysine residue at position 340 is the
main ubiquitination target. Second, we demonstrated that
mutation of this lysine to arginine (K340R) resulted in increased
NTCP abundance on the plasma membrane and increased bile
salt uptake. Third, the NTCP***°R mutant showed impaired
endocytosis efficiency. In addition, we demonstrated that,
despite higher Myrcludex/PreS1 binding to the HepG2-
NTCPK34%R mutant cells, these cells had a strongly reduced
HBV infection capacity compared with NTCPW. Lastly, we
demonstrated that the ubiquitination inhibitor TAK-243
reduced HBYV infection in both NTCP-expressing HepG2 and
HepaRG cells. Altogether, our data indicate that K340 in NTCP
has a crucial role in HBV entry via ubiquitination-mediated
endocytosis of NTCP.

The identification of K340 as a residue in NTCP that is
affecting ubiquitination and endocytosis adds to a compact list
of amino acid residues that are either pivotal in HBV infection
or separate the two ‘roles’ of NTCP: bile salt uptake and HBV
docking. This list now includes S267, a pore-residing residue
crucial for bile salt and HBV binding,?® the polymorphism
G158R, and variants at the Y146 residue that block HBV
binding and subsequent infection, but not bile salt trans-
port.2%3334 |n addition, amino acid residues 157-165 and
84-87 are essential for viral infection.*>° Interestingly, these
are present in distinct regions of NTCP compared with the
K340 position, which is in the C terminus, pointing at highly
divergent mechanisms that could be exploited to interfere with
HBV infection therapeutically. Yan et al. demonstrated that
HDV delta antigen binding was reduced when the human
NTCP tail was exchanged for the mouse NTCP tail,®° although
the underlying mechanism was not further investigated. The
K340R mutation is unlikely to affect hNTCP oligomerization,
which modulates HBV infection, because this process is in-
dependent of the C terminus.'” The NTCP glycosylation status
was unaffected in the K340R mutant, excluding another factor
that modulates NTCP cell surface abundance and HBV infec-
tion." Therefore, we conclude that reduced NTCP endocy-
tosis resulting from a lack of ubiquitination explains the
increased bile salt uptake and reduced HBYV infection.
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The role of ubiquitin as a signal for internalization has been
described for various membrane proteins, including trans-
porters for dopamine,®®° glutamate,*® and glycine.*"* For
these transporters, it was shown that ubiquitination is essential
for protein kinase C (PKC)-induced, clathrin-dependent
endocytosis, which coincided with reduced membrane-
associated transport activity. For example, the transport

activity of the glycine transporter GLYT2 was reduced upon
PKC activation (and consequent endocytosis). However, for
cells expressing the GLYT2X7'R in which the ubiquitin target
lysine residue 791 was replaced by an arginine (K791R),
transport activity and endocytosis were unaffected upon PKC
activation.”" Ubiquitination of the essential lysine residue pre-
cedes PKC-induced clathrin-mediated internalization of these
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membrane proteins. Using flow cytometry and immunofluo-
rescent analyses, Stross et al.**** previously showed that
endocytosis of NTCP also relies on activation of PKC and
clathrin. Importantly, several studies also reported that HBV
entry in hepatocytes relies on clathrin-mediated endocytosis of
NTCP. Using HepG2-NTCP cells, Herrscher et al.*® showed
that HBV entry depends on clathrin-mediated endocytosis
because HBV internalization was inhibited by knocking down
clathrin heavy chain, dynamin-2, or clathrin adaptor protein
AP-2, but not on micropinocytosis and caveolin-mediated
endocytosis. Similarly, Huang et al.“® showed that HBV inter-
nalization depends on clathrin-mediated endocytosis in
immortalized human primary hepatocytes. In addition, Iwa-
moto et al.®” demonstrated that NTCP-mediated HBV inter-
nalization was dependent on the physical interaction with the
epidermal growth factor receptor (EGFR) and on the endo-
somal sorting machinery of the EGFR. However, we could not
confirm  this interaction in  hNTCP-overexpressing
HepG2 cells.?%?®

Our study adds another layer of regulation to NTCP-
mediated HBV internalization. We showed that NTCP is ubig-
uitinated at K340 in the C terminus, and has an essential role in
the endocytosis of NTCP. Despite strongly elevated

NTCPX3*®  membrane levels and concomitant elevated
Mycrcludex B (HBV) binding, the HBV infection efficiency was
reduced by ~80%, indicating that NTCP-mediated HBV
internalization was strongly impaired when ubiquitination at
K340 was blocked. HBV is not the only virus that requires
ubiquitination of the host docking protein for virus endocytosis.
Dengue virus (DENV) requires ubiquitination of two cytosolic
lysine residues in the phosphatidylserine receptor TIM-1 to be
endocytosed into the host cell.*® Lysine-to-arginine mutation
of both residues at positions 338 and 346 (KKRR) resulted in
reduced ubiquitination and a concomitant ~75% reduction in
DENV-infected cells. However, also in this study, the authors
identified a single lysine residue (i.e. K346) to be essential for
TIM-1-mediated DENV internalization. This study provides a
strong link between the requirement of lysine ubiquitination
and viral endocytosis.

In conclusion, we show that NTCP-mediated internaliza-
tion of HBV is strongly dependent on the ubiquitination of
K8340. Ubiquitination of this specific residue drives NTCP
endocytosis and is pivotal for efficient HBV infection. Thus,
pharmacological inhibition of ubiquitin-dependent endocy-
tosis of NTCP provides a novel strategy to block HBV entry
and infection.
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