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Abstract
Fire blight is a bacterial plant disease that affects apple and pear trees. We present a
mathematical model for its spread in an orchard during bloom. This is a PDE-ODE
coupled system, consisting of two semilinear PDEs for the pathogen, coupled to a
system of three ODEs for the stationary hosts. Exploratory numerical simulations
suggest the existence of travelling waves, which we subsequently prove, under some
conditions on parameters, using themethod of upper and lower bounds and Schauder’s
fixed point theorem. Our results are likely not optimal in the sense that our constraints
on parameters, which can be interpreted biologically, are sufficient for the existence
of travelling waves, but probably not necessary. Possible implications for fire blight
biology and management are discussed.
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1 Introduction

Fire blight is a bacterial plant disease. It is caused by Erwinia amylovora and infects
members of the Rosaceae family such as apple and pear trees. One characteristic
symptom of fire blight is that it causes infected tissue to appear as though it had
been scorched by fire, from which the disease’s common name derives. The disease is
persistent, incurable and highly destructive, capable of killing young apple and pear
trees within a single growing season. Recent fire blight epidemics are estimated to
have caused financial losses on the scale of tens of millions of dollars (Van der Zwet
et al. 2012; Vanneste 2000).

1.1 Historical overview

The scientific pursuit of discovering the causal agent of fire blight began well before it
was understood that bacteria could in fact cause diseases. The first known report of fire
blight occurred over 200 years ago, when William Denning described the “disorder"
of apple and pear trees near the Hudson River Valley, New York (Denning 1794).
After finding two worms in an infected host, he was the first to hypothesize the “Insect
Theory" – that the disease was induced by insects. This theory remained as the most
popular explanation for almost one hundred years, however, not everyone accepted it
as satisfactory, as infected trees were observed to secrete some sort of ooze, see Fig.
1, and it was unclear how an insect could cause such a symptom.

In 1878, almost one hundred years after Denning first writes about fire blight,
ProfessorThomasBurrill of theUniversity of Illinois identifies the existenceof bacteria
within fire-blight-diseased tissue. He shows, for the first time, that bacteria could cause
diseases in plants, correctly identifying the causal agent of fire blight to be Erwinia
amylovora, though it was known to him at the time as Micrococcus amylovorus. In
1880, Burrill presents his work on fire blight, referring to it as “The Anthrax of fruit
trees" (Burrill 1880), publishing the first pictures of the bacterium in 1881.

Starting in the second half of the twentieth century, quantitativemodels of fire blight
infection began to be developed. The first was the New York system in 1955, in which
the correlation between temperature above a certain threshold and fire blight infections
was studied by Mills (1955). He found a significant positive correlation between his
temperature-based model, together with precipitation during bloom, and fire blight
infections in Lake Ontario County from 1918 to 1954 (Van der Zwet et al. 2012).
A good number of fire blight prediction models stemmed from this idea throughout
the 1960s, 1970s, 1980s and 1990s. Perhaps most notably were the Billing systems
(Billing 1979), the Cougar blight model (Smith 1992) and theMaryblyt model (Steiner
1989). Although these models have undoubtedly helped growers limit their losses due
to fire blight, epidemics continue to occur, and the effect of the most valuable control
agent against fire blight, the antibiotic streptomycin, continues to decline in the face
of the rise of antimicrobial resistance (Jones et al. 2000).

Today, fire blight epidemics remain as a major threat to apple and pear growing
operations. The disease can now be found across North America, Europe, theMediter-
ranean region and the Pacific Rim. For a full list of countries in which fire blight has

123



A PDE-ODE coupled spatio-temporal mathematical model… Page 3 of 47    67 

Fig. 1 An infected cluster of
blossoms exuding ooze.
Reproduced with permission
from Suzanne Slack and
originally published in Slack and
Sundin (2017)

been reported, see Van der Zwet et al. (2012). The past few decades have seen increas-
ingly more severe incidences of fire blight in the major pome-fruit producing states of
Washington and Michigan, causing losses on the scale of tens of millions of dollars
in the late 1990s (Van der Zwet et al. 2012). Still, there exists no cure for fire blight.
Surprisingly, it is the suggestion by Lowell in 1826, that the most satisfactory control
measure is the removal of limbs thirty centimeters below the visibly infected tissue,
that remains the most effective strategy in the control of fire blight apart from the
application of antibiotics during bloom.

1.2 The causal agent and the disease cycle

Erwinia amylovora, the causal agent of fire blight, is a rod-shaped, gram-negative and
motile species of bacteria. Although fire blight was originally reported to be a disease
of apples and pears, the range of hosts which this bacterium can invade has since
grown, and is summarized thoroughly in Van der Zwet et al. (2012). It is important
to note, for those interested in early reports on the bacterium, that the name of this
pathogen underwent a series of changes between 1880 and 1920, before eventually
falling under theErwinia class named after Erwin F. Smith. In order, these changes are:
Micrococcus amylovorus (1882), Bacillus amylovorus (1889), Bacterium amylovorus
(1897),Bacterium amylovorum (1915) andErwinia amylovora (1920) Figs. 1, 2 and 3.

Populations of E.amylovora possess the ability to overwinter within infected trees
through the formation of cankers (Rosen 1933; Hildebrand 1936), allowing the
pathogen, after an infection has occurred, to continue invading the tree until it is
dead. Infected host tissue, such as these cankers, can release massive pathogen popu-
lations that are encased in an exopolysaccharide matrix (Eden-Green and Knee 1974),
commonly referred to as ooze. This ooze can hold bacterial populations upwards of
one billion cells (Slack and Sundin 2017), range in size and colour (Slack et al. 2017),
and can serve as a source of infection for over a year (Hildebrand 1939).

For previously blighted orchards, many believe that ooze acts as the primary source
of infection in the new growing season, as over-wintered cankers can exude ooze in the
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Fig. 2 A fly coming into contact
with fire blight ooze.
Reproduced with permission
from Suzanne Slack and
originally published in Slack and
Sundin (2017)

spring. However, this may still be controversial, as it is noted that infections sometimes
appear before ooze is detected (Van der Zwet et al. 2012). Once ooze emerges from
a tree it can be disseminated by insects or rain. Flies, for example, appear to be
attracted to ooze and it has been demonstrated that they can acquire and transport this
ooze under various conditions (Boucher et al. 2019). When ooze is delivered to open
blossoms, the large pathogen population can be rapidly dispersed by pollinating bees
and an epidemic can occur. For orchards that are infection-free, the pathogen can be
introduced through a variety of ways, such as rain, insects, wind, birds and people.

There are many stages of fire blight infection, each of which is often referred to by
a unique name. For example, blossom blight would refer to an infection of an open
blossom by the fire blight pathogen. Shoot blight, trunk blight and root blight are
examples of other names that correspond to a fire blight infection of the shoot, trunk
or root, respectively. Such infections can occur through natural openings in the tree, or
through entry points caused by injury. As there is no cure for fire blight, most growers
are concerned with preventing infection during the time of year in which trees are
most susceptible, which is the blooming season. It is for this reason that in this work
we focus solely on the infection of blossoms during bloom and the transmission of
the disease between them.

When the blossoms of apple and pear trees open in the spring, they provide a
natural point of entry for the bacteria to invade the tree (Miller 1929; Rosen 1929).
Free moisture from rain or dew is required for the bacteria to move from places like the
stigma to the hypanthium where infection can occur (Thomson et al. 1986). In Rosen
(1936), the author not only shows that the nectarial surface is the most susceptible
location on the tree to infection, but also that the nectar serves as a good medium for
the reproduction of the pathogen.

The growth of the pathogen on floral surfaces appears to follow something simi-
lar to a sigmoidal curve (Wilson et al. 1989, 1990). The bacterial population seems
to grow exponentially when placed upon a young flower before slowing down and
reaching a maximum population size. This may be due to intraspecific competition in
the E.amylovora population or due to the flower naturally becoming a less habitable
place for the bacteria over time (Slack et al. 2022; Thomson and Gouk 2003).
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Fig. 3 The fire blight disease cycle. Reproduced with permission from Suzanne Slack and originally pub-
lished in Slack and Sundin (2017)

Transmission of the bacteria from blossom to blossom can occur via insects, rain,
wind and human. Waite was the first to notice that bees could transport the bacteria
between flowers during pollination (Waite 1891), and this has been confirmed since
then (Van Laere et al. 1980). It seems safe to assume that these pollinators disseminate
the bacteria faster than any other mode of dispersal. However, general opinion appears
to be that bees are less responsible for fire blight epidemics than previously believed
in the twentieth century, primarily due to their lack of observed contact with ooze.

1.3 Dynamic fire blight diseasemodels

To the best of our knowledge, there exist two dynamic disease models of fire blight.
By a dynamic disease model, we mean a system of differential equations with the
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explicit goal of studying changes in disease severity through the compartmentaliza-
tion of the host population into the usual classifications of susceptible, infected or
removed, as done in the foundational work of Kermack and McKendrick (Kermack
andMcKendrick 1927).We do not review here, and comment on, the quantitativemod-
els that we mentioned earlier, such as Billing (1979); Smith (1992); Steiner (1989);
these models use statistical techniques to look for correlations between environmental
conditions and real life infection data. While these tools are undoubtedly valuable
to growers, the objective of their models are different than the one presented in this
work. Here, we aim to understand how different biological mechanisms and ecological
interactions might alter, induce or prevent a fire blight epidemic.

The earliest dynamic disease model to describe an outbreak of fire blight that we
came across is Iljon et al. (2012). The authors formulated a model of six ordinary
differential equations to study the daily changes in disease severity. The first four
equations represent the host population, trees, classified into the four categories of
susceptible and sprayed (with pesticide), susceptible and not sprayed, infected and
sprayed, and infected and not sprayed. The other two equations divide pollinators into
two classes, pollinators that carry the causal agent and those that do not. The authors
explicitly assume that, since pollinators search for food randomly, susceptible hosts
that neighbour an infected host are just as likely to become infected as susceptible
hosts on the other side of the orchard.

This model of six equations is then split into two simpler models for analysis. In
the first model, the amount of antibiotic spray on each tree is held at a constant value
for all time, allowing the authors to work with a model of four equations. The authors
motivate the use of this constant-spray model by arguing that one could average out
the amount of antibiotic applied over an entire year to a constant amount per day. They
go on to study the partial rank correlation coefficients between their model parameters
and their formulation of the basic reproductive number R0. They find that both the
size of the orchard and the number of bees within the orchard increase R0, while spray
efficacy and the rate at which infected branches are removed reduce R0. With their
partial rank correlation coefficients, they find that “the impact of infection through
nature appears insignificant when compared to infection from pollinators".

The second simplification of the full model is realized through assuming that there
is a constant number of bees carrying the pathogen per tree, therefore, removing the
two equations describing the transition of pollinators between the carrying-bacteria
and not-carrying-bacteria classes. Under this model, they again find through a partial
rank correlation study that orchard (host population) size is positively correlated with
their formulation of R0. They find that the rate at which one prunes infected branches is
more negatively correlated with R0 than spray efficacy, though neither of their partial
rank correlation coefficients are necessarily strongly negatively correlated with R0.

In the second dynamic diseasemodel of fire blight (Chen et al. 2018), the authors put
an emphasis on the economics of pruning infectedbranches and replacing infected trees
with susceptible ones. They formulate a Filippov model in which there are infection
thresholds, such that control actions are only taken when disease levels surpass this
value. This model takes the form of two ordinary differential equations, in which
hosts are classified as susceptible or infected, with discontinuous right hand sides
as the value of some model parameters change once an infection threshold has been
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passed. They make, as in the first model, the assumption that susceptible hosts who
neighbour infected trees are just as likely to become infected as susceptible hosts on
the other end of the orchard.

They find that, between the control measures of pruning infected branches and
replanting suggestible trees, that “cutting off infected branches plays a leading role
in reducing fire-blight infection, while the strategy of replanting susceptible trees
contributes to minimizing economic losses and maximizing fruit production." They
also find that the choices of the infection thresholds are important, and that the initial
conditions of the disease can significantly impact what the appropriate control strategy
is.

1.4 Plant diseasemodels and travelling waves

Differential equation models are a common approach to understanding changes in
disease severity in plant populations (Madden et al. 2007), and to aid in the develop-
ment and assessment of remedial strategies. Typically, they aim to understand how the
interactions between host, pathogen and the environment induce, prevent or alter an
epidemic.

Although plant disease models are more frequently studied in a purely temporal
domain, implicitly assuming that the disease is homogeneous across the orchard or
field, someworks have focused on spatio-temporal epidemics. In some cases (Minogue
and Fry 1983; Van den Bosch et al. 1977), these models predict that the pathogen
invades the host population with a constant speed of spread. There exists some experi-
mental results to confirm these predictions (Minogue and Fry 1983). Mathematically,
these are often described by travelling waves. Models that admit travelling wave solu-
tions arise in ecological, disease and population modelling (Diekmann 1978; Fisher
1937; Okubo and Levin 2001).

Proving that a model admits travelling wave solutions can be a formidable task; for
a more general overview of travelling wave solutions, see Volpert et al. (1994). The
existence of such solutions is often proved through arguments studying the stability of
equilibriumpoints, taking a shooting-method approach or through the use of functional
analysis tools. Although these methods have been applied to a variety of problems
with success, e.g. Dunbar (1983); Logan (2008); Volpert et al. (1994), applying them
to specific systems of several equations is often challenging. A fixed point theorem
basedmethod, originally developed to prove the existence of travellingwaves in delay-
reaction-diffusion equations (Ma 2001), has been successfully applied to a variety of
models in recent years (Berestycki et al. 2005; Shu et al. 2019; Wang andWang 2016;
Wang et al. 2012).

Whenmodelling the invasion of amobile pathogen into a stationary host population
(such as in the case of plant diseases), one obtains a system of ordinary differential
equations, coupled in each point of the domain to a system of partial differential equa-
tions of reaction-diffusion type. These are then parabolic systems that are everywhere
degenerate, which poses additional difficulties for the analytical treatment.

Nevertheless, there is a considerable amount of work on studying travelling waves
of such PDE-ODE coupled systems, in various application areas (Britton 1991; Ducrot
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and Giletti 2014; Dunbar 1983; Hosono and Ilyas 1995; Källén 1984; Logan 2001).
Often this utilises a model specific relationship between the reaction terms. These
approaches fail in the absence of such special structures or in the case of systems of
more than two or three equations, which is the case in the model that we present.
Here the ODE system is essentially an SIR type infectious disease model, in which
infection rates depend on the pathogen population, which is governed by a system
of two semilinear diffusion-reaction equations. In our case the reaction terms of the
disease model do not appear in the population model, and vice versa, the growth terms
of the PDE component do not appear in the disease model. To study the possibility
of travelling waves in this system we aim for a more general approach and adapt the
above mentioned fixed point approach and extend the construction of the integral map
on which it relies to such PDE-ODE coupled systems.

2 Mathematical model

We formulate a mathematical model for the spread of fire blight. We focus here on the
time of bloom, and give up the restriction of previous models that the disease spread
in an orchard is spatially homogeneous.

2.1 Model assumptions

We list here the assumptions on which our model formulation will be based:

(A1) A spatial model is necessary. Our first assumption is that fire blight is best
modelled by a spatio-temporal system of equations. In contrast to the previous
models of fire blight, we do not accept the idea that an infected tree is just as
likely to transmit the disease to a neighbouring host as it is to a tree on the other
end of the orchard. The other models justified this approach by saying that pol-
linators search for food randomly, and so transport the pathogen randomly. We
think, that unless this spatial dispersal of the pathogen across the orchard is very
fast compared to the time scale of infection and disease progression, this is rather
an argument for a random walk/diffusion model than for a completely mixed,
spatially homogeneous model. Indeed, the longest recorded flight lengths of
bumble bees in Heinrich (1979) are orders of magnitudes smaller than a typical
orchard size. If we assume that all orchard pollinators behave this way, and that
the orchard is sufficiently large in comparison to the amount of land covered by
a pollinator per day, then one can argue that a spatial model is necessary.
Spatial consideration is also important from the viewpoint of disease manage-
ment. In Sanchirico andWilen (2005), it is shown that neglecting spatial effects
can lead to sub-optimal control strategies. Current fire blight control strategies
often take the form of a homogeneous application of the pesticide Streptomycin.
Although Streptomycin remains an indispensable tool, getting a uniform cov-
erage of blossoms in an orchard with high foliage can be difficult. Further,
the application of such pesticides can lead to an increase in antibiotic-resistant
strains of the pathogen, as seen in El-Goorani and El-Kasheir (1989); Thomson
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et al. (1992). Integrated pest management (IPM) is an approach to pest control
that aims to minimize economic, health and environmental risk. Some examples
of IPM strategies in the case of fire blight would be the removal of fire blight
infected tissue, the bio-control of certain insects through the introduction of
natural predators or trapping, or the targeted delivery of pathogen control sub-
stances through pollinators. Insight into how to optimize IPM strategies may be
gained by studying how vector, host and pathogen interact in a spatial setting. It
is in part the objective of this work to contribute to the discovery of newmethods
for the control of fire blight, by contributing to a better understanding of how
the disease spreads.
Finally, we note that our (M.P.’s) personal observation (without quantifying it)
from field work is that typically fire blight exists in some particular area of
the orchard, often along a single row of trees or in a corner, and that it is not
randomly occurring throughout the orchard, as one might expect if each tree is
equally likely to come in contact with the pathogen. This too serves as a source
of motivation for considering a spatial model of fire blight spread.

(A2) Compartmentalization. We assume that we can characterize the bacteria in
the orchard into two states. The first is the bacterial population existing on
a susceptible location within the floral cup, and the second is the bacterial
population living within the secreted ooze outside of the floral cup.With regards
to the ooze, we are assuming that as long as it is present, it can be transported
and used to infect hosts. Implicitly, we are thus assuming that the ooze does not
dry up to become inaccessible for insects to spread.
We also assume that the hosts of this disease model, open blossoms, can be
categorized as either susceptible to the disease, infected and infectious through
the production of ooze, or removed (meaning dead).

(A3) Homogeneous host distribution.Wemake the assumption that the host popula-
tion is initially distributed evenly across the spatial domain. One could argue that
the more accurate representation of the host population is one that is patchy in
space, with clusters of the host existing at random points throughout the domain.
However, we assume here that blossoms are dense enough in an orchard such
that we take an average number of blossoms at each point in spacewithout losing
biological relevancy. This might be a reasonable assumption that approximates
the situation in many industrial orchards well.

(A4) Pathogen multiplication on flowers. The growth of the pathogen within the
floral cup is dependent on the current size of the bacterial population and the
amount of resources available for consumption. We assume that the amount of
resources available for consumption is dependent on the health of the flower,
such that as the flower begins to die, the amount of resources available for
consumption decline. We further assume that when all flowers are dead at a
particular location, there can still exist some small, possibly dormant, population
of the pathogen.

(A5) Ooze production. We assume that the production and secretion of ooze is a
function of the number of flowers currently infected.

(A6) Ooze decay. We assume that ooze decays at a constant rate. Originally, this
was to represent that ooze is no longer viable for infection after one or two

123



   67 Page 10 of 47 M. Pupulin et al.

years (Slack and Sundin 2017), however, it can also be interpreted as a rate that
describes how fast the ooze becomes inaccessible for insect dispersal, perhaps
by human removal or through environmental factors. That is, it can be inter-
preted also as a parameter to incorporate disease management practices. In our
simulation experiments, we treat it as originally intended.

(A7) Infection. The rate at which flowers transition from susceptible to infectious
is dependent on the local floral pathogen population. We further assume that
in order for infection to occur, there needs to be some threshold amount of the
pathogen exceeded.

(A8) Death.Weassume that the rate at which flowers die is a function of how strongly
infected the population is, such that a greater number of infected flowers will
weaken the local host population as a whole. This is to reflect the fact that
these flowers are connected via a cluster, shoot or branch, and since the bacteria
systematically invades the tree, the health of eachhost is in some sense dependent
on the health of all the other hosts at the same location. We further assume that
when only a small number of hosts are infected at a location, the average death
rate of the hosts is close to zero, but when the infected population exceeds some
threshold, the average death rate approaches some maximum value.

(A9) Transport. We assume that the pathogen within the floral cup is transported
by pollinators that move randomly throughout the orchard. We make the same
assumption for the transport of ooze, but that this process is facilitated by non-
bee insects such as flies.We subsume other dispersal mechanisms, e.g., by wind,
rain, or human activity, with this pollinator induced dispersal, modeling it by a
standard diffusion process.
In contrast to the pathogen, the host population (flowers) is immobile and
assumed to remain stationary at all times.

(A10) Ooze conversion. The pathogen can be transferred from living within the
secreted ooze to living on the surface of flower. We assume that this liberation
process is dependent on the rate at which ooze-carrying vectors visit flowers,
the amount of ooze at that location, and the density of healthy flowers at that
position. The underlying assumption here is that ooze-carrying vectors prefer to
feed on the secreted ooze of infected flowers over the nectar of healthy flowers,
and are more likely to deposit greater amounts of ooze to flowers (by pollinating
for longer at that location) when there are a greater number of healthy flowers
available.

(A11) Boundary conditions.We assume that the pathogen does not leave the orchard
by the transport of insects and the pathogen cannot be brought into the orchard
by insects. In reality, orchards are surrounded by a variety of ecosystems, which
makes the choice of proper boundary conditions highly context dependent, so to
some extent this is an arbitrary choice that we are forced to make here without
introducing more specific situational detail.
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2.2 Governing equations

2.2.1 Model formulation

Based on the assumptions (A1)-(A11) we propose the following dynamical model
for the spread of fire blight in orchards during bloom. In accordance with (A1) the
model is spatially explicit. For simplicity of notation and mathematical treatment we
consider first the one dimensional setting, but point out that the model itself will be
straightforward to extend to the 2D setting. The model is then formulated in terms of
the independent variables location x (meters) and time t (days). The model domain is
then

� := (x, t) ∈ [0, L] × [0,+∞) .

The dependent variables for our model are density of the bacterial populations that are
dispersed in the domain, and the host population that is stationary. In accordance with
assumption (A2) above, both will be subdivided. The former consists of the bacteria
existing within the floral cup, B(x, t) (CFUs per meter), and the concentration of the
pathogen in the form of ooze by O(x, t) (CFUs per meter). The hosts are the blossom
flowers, which we subdivide into susceptible to the disease, S(x, t), infected by the
disease, I (x, t), or removed, R(x, t), i.e dead flowers. These all are represented by
their density (number of flowers per meter). The spatio-temporal model then reads

∂t B = D1∂
2
x B

︸ ︷︷ ︸

A9

+ r B

(

1 − B

K (S + I ) + ε

)

︸ ︷︷ ︸

A4

+μOS
︸ ︷︷ ︸

A10

(1)

∂t O = D2∂
2
x O

︸ ︷︷ ︸

A9

+ α I
︸︷︷︸

A5

−μOS
︸ ︷︷ ︸

A10

− γ O
︸︷︷︸

A6

(2)

∂t S = − f (B)S
︸ ︷︷ ︸

A7

(3)

∂t I = f (B)S
︸ ︷︷ ︸

A7

− g(I )I
︸ ︷︷ ︸

A8

(4)

∂t R = g(I )I
︸ ︷︷ ︸

A8

. (5)

This PDE-ODE coupled system of equations is to be augmented with initial condi-
tions for all dependent variables, and with boundary conditions for B and O . At time
t = 0 we have

S(x, 0) = S0(x), I (x, 0) = I0(x), R(x, 0) = R0(x) ,

123



   67 Page 12 of 47 M. Pupulin et al.

all of which are non-negative. As per assumption (A3), the host population is initially
evenly-distributed, i.e

S0(x) + I0(x) + R0(x) = N (Flowers per meter) for all x ∈ [0, L] ,

where N is the flower density. We remark that this is not a strict requirement for the
analyis, nor for the simulations, for which it suffices that each initial data is bounded.
The initial conditions for the pathogen populations, B(x, 0) = B0(x) and O(x, 0) =
O0(x), are assumed to be non-negative bounded and uniformly continuous.

Per (A11) we assume that insects do not carry the pathogen into or out of the
orchard. This was motivated by the idea that the amount of bacteria that an insect can
transport across the boundaries of our domain is negligible in comparison to the total
amount of bacteria in an orchard infected with fire blight. Many different assumptions
regarding the behaviour of the pathogen at the boundary could have been made, each
of which would result in different boundary conditions for our differential equations.
Dirichlet conditions, for example, could be used to describe a source of the pathogen
existing at the end of a row, or perhaps a hostile environment in which the pathogen
cannot survive. Alternatively, choosing Robin type conditions could allow us to model
both a pathogen source existing outside of the orchard as well as the in-flow and out-
flow of the bacteria due to natural pollinators. Of course, we know that for a wholly
susceptible orchard to become infected there must be an in-flow of the pathogen from
somewhere, but since the nature of primary infection can vary drastically, this becomes
a difficult process tomodel. In this work, the assumptionwemade is that homogeneous
Neumann conditions hold, i.e.

∂x B(0, t) = ∂x B(L, t) = 0, ∂x O(0, t) = ∂x O(L, t) = 0. (6)

By doing this, we are essentially modelling an orchard that exists in a place of
isolation, such that the in-flow and out-flow of the pathogen is minimal enough to be
neglected. This is clearly not an ideal nor accurate representation of an agricultural
system, but it does allow for less guesswork in the modelling process and a simpler
mathematical analysis.

The first terms on the right hand sides of (1) and (2) model the dispersion of the
pathogens by insects, per assumption (A9). Going forward we will use that

D1 ≥ D2 , (7)

because B is transported mainly by managed pollinators, primarily honeybees. In a
commercial setting, we will assume that those are present in sufficient numbers that
they visit flowers reliably and fast, and are more efficient at visiting flowers across the
orchard than other insects are.

In (A4), wemade the assumption that the growth of the population of B is limited by
the resources provided by the flowers, which eventually will diminish, in accordance
with the experiments in Wilson et al. (1989, 1990); Slack et al. (2022). We express
this assumption in the form of the logistic growth term in (1) with a carrying capacity
that depends on the density of viable flowers S and I . Here, r (1/day) is the maximum
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bacterial growth rate, the carrying capacity term K · (S + I ) describes how many
bacteria can be sustained in the presence of viable hosts, where parameter K has
the units CFU/flowers. The parameter ε (CFU/meters) is the small density of surface
associated pathogens that can be sustained on the trees in the absence of flowers. Thus,
the carrying capacity increases in the presence of flowers but becomes smaller as the
flowers die off.

Per assumption (A10) bacteria in the ooze are converted into the flower associated
form at the same location, i.e. a transfer between pathogen fractions O and B. We
model this process to be proportional to both, the ooze density and the density of
uninfected flowers. This is the last term in (1), where it is a source term, and the third
term in (2), where it is a sink term. The parameter μ (meters/(flowers*day)) is the rate
at which ooze is deposited onto healthy flowers per one increase in susceptible host
density.

Per (A5), ooze production in (2) is related to current infection level, which is
represented in our model by density of infected flowers. It is important to note that
not all infected blossoms necessarily ooze, and so we are also assuming that the
environmental conditions are highly conducive to the production and secretion of
ooze, such that every infected flower does so. We assume this to be subsumed in
the parameters of the ooze production function h(I ). We know that there can be
no secretion of ooze if there are no flowers actively infected with the pathogen, so
we require h(0) = 0. It would also seem natural to assume that this function is a
monotonically increasing function of I . In the absence of more specific information
and with the goal of limiting model complexity, we assume that ooze production is
proportional to the infected host population, h(I ) = α I . The parameter α (CFUs per
flower per day) can be interpreted as the average amount of ooze produced by an
infected flower each day. We assume that α is a biological property of the tree and of
the pathogen and that this parameter does not change over time. Per (A6) we assumed
that ooze looses viability at a constant rate γ (per day), which introduces the linear
sink term in (2).

Infection in ourmodel follows a two-step process, as is common formany infectious
disease models. Per (A7) the infection rate depends on the density of host associated
pathogen, which we denote by f (B) in (3), (4). This infection incurs if the pathogen
density exceeds a certain threshold. Assuming that the expression of virulence fac-
tors, as it is often the case for bacterial diseases, is controlled by a quorum sensing
mechanism. To allow for cell and environment specific variability in the expression of
virulence factors, we propose to model the dependence of the infection on bacterial
density by a smooth Hill (rather than Heaviside) function,

f (B) = M1
Bn1

An1
1 + Bn1

, (8)

where parameterM1 (per day) is themaximum infection rate, and A1 (CFUs permeter)
is the average critical population density, that controls expression of virulence factors.
The Hill exponent n1 > 1 controls how swift the switch from an almost negligible to
a proportional infection rate is. Similarly, per (A8), we assume that the dying off of
flowers due to the disease depends on the infection level of the host, i.e. on I . Thus we
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have this expressed by a function g(I ) in (4) and (5). Assuming that at low infection
levels this is negligible, but becomes proportional to the density of infected hosts if
the number of infected hosts is large, we again introduce a smooth threshold function
for this process, namely

g(I ) = M2
I n2

An2
2 + I n2

. (9)

Here the constant parameter M2 (per day) is the maximum host death rate, and A2
(flowers per meter) is the threshold parameter that describes the switch from an almost
negligible to a proportional death rate. The Hill exponent n2 > 1 controls how swift
this switch is. Going forward, in our simulations and analysis, we will use

n1 = n2 = 2

for convenience. We do not think that fixing these parameters has a major influence
on model behavior.

As pointed out above, the model we propose is for the period of bloom, which
typically lasts only a few weeks. Therefore,| the time scale that we consider is of
the order of days. This suggests that the usual analytical methods that are commonly
employed to study long term behaviour of such dynamical models as t → ∞ might
be limited in what they can predict. A full list of the model parameters and their units
are presented in Table 1.

2.2.2 Well-posedness of the initial boundary value problem

Lemma 2.1 Solutions to system (1)-(6) with (8), (9) remain non-negative for all time
t ∈ [0,+∞) and are bounded from above by positive constants.

Proof First we show that theODE system remains non-negative and bounded above by
positive constants. This follows with standard arguments for ODEs. More specifically,
we find that if N := max

0≤x≤L
{S0(x) + I0(x) + R0(x)}, then

0 ≤ S0(x)e
−M1t ≤ S(x, t) ≤ N ,

0 ≤ I0(x)e
−M2t ≤ I (x, t) ≤ N ,

0 ≤ R0(x) ≤ R(x, t) ≤ N .

Using the non-negativity and upper bounds of S, I , the parabolic comparison theo-
rem and spatially uniform solutions to the associated ordinary differential inequalities
we find in the usual manner for 0 ≤ x ≤ L, 0 ≤ t that

min
0≤x≤L

O0(x)e
−(μ+γ )·N ·t ≤ O(x, t) ≤ max

{

max
0≤x≤L

O0(x),
αN

γ

}

for all (x, t) ∈ � ,
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and similarly, the bounds on O(x, t), S(x, t), I (x, t) guarantee that

0 ≤ B(x, t) ≤ max

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

max
0≤x≤L

B0(x),
K · N + ε

2

⎛

⎜

⎜

⎜

⎝

1 +

√

√

√

√

√

1 +
4μmax

{

max
0≤x≤L

O0(x),
αN
γ

}

r(K · N + ε)

⎞

⎟

⎟

⎟

⎠

⎫

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎭

,

which again is derived by comparison against spatially uniform solutions. ��
With this in hand we can state the following existence and uniqueness result for

our model on the bounded domain. Let BC ∩ L∞ denote the class of functions that
are bounded and uniformly continuous on R and L∞-integrable.

Theorem 2.2 For a set of non-negative initial conditions where

S0(x) + I0(x) + R0(x) = N for all x ∈ [0, L],

and

B0(x), O0(x), S0(x), I0(x), R0(x) ∈ BC ∩ L∞ ,

system (1)-(6) with (8), (9) admits a unique solution on any time interval t ∈ [0, T ]
such that

{B(x, t), O(x, t), S(x, t), I (x, t), R(x, t) ∈ C([0, T ], BC ∩ L∞)}.

Proof (outline) The ideas of this proof come directly from Chapter 14 of (Smoller
2012). It follows from our Lemma 2.1 that the solutions of system arising from the
constraints on our initial conditions remain non-negative and bounded above by the
constants on the right hand side of each inequality for all time. Using Definition
14.1 and Theorems 14.2-14.4 in Smoller’s book (Smoller 2012), one can define a
contraction mapping in a Banach space, from which one can apply Banach’s fixed
point theorem to show that a unique fixed point to the mapping exists. This fixed point
gives a unique solution for the system up to some time t0. The time t0 depends only on
the non-linearity of the system and the a-priori upper bound on the initial conditions,
and since the solutions remain bounded for all time by these constants, we can iterate
this mapping by taking the values of the solution at t0 as initial conditions to extend
this solution over any time interval [0, T ], giving a unique solution B, O, S, I , R ∈
C([0, T ), BC ∩ L∞). ��

2.2.3 Disease invasion in the fire blight model: Exploratory simulations

To explore the behaviour of solutions of our model (1)-(6) with (8), (9), we conducted
first numerical simulations, using the R language (R Core Team 2021), more specif-
ically the function “ode.1d" of the package deSolve (Soetaert et al. 2010), which
applies finite differencing to discretize in space. We used the implicit Adams scheme
for time integration.
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Fig. 4 An illustrative simulation to show the typical dynamics of the model (1)-(6) with (8), (9) on the
bounded domain with homeogenous Neumann boundary conditions. Shown are B, O, S, I at four equally
spaced time points t = 16, 17, 18, 19; the parameters used for this simulation are summarized in Table 2.
Not shown are the data for R, since R = N − S − I decouples from the system

In Fig. 4, we present one particular simulation that is representative of what we
typically saw for a variety of parameter sets. More specifically, we present snapshots
in time after 16,17,18,19 days, for a domain of length L = 500 meters, mimicking a
medium sized industrial orchard. The parameters for this figure were chosen for the
point of illustration, and are listed in Table 2 below. For initial conditions, we began
with an ooze concentration of 104 CFUs per meter at x = 0 and nowhere else. All
other model components were set to be zero everywhere, except for the susceptible
population, which was set to a constant value N at each point.

The visualisation of the simulation in Fig. 4 shows that both pathogen populations
B and O invade the initially disease free domain. After some initial transient period,
for given t there is a sharp peak for both B and O at about the same location, and
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behind these peaks both trail off, the floral pathogen population to a value of ε, the
ooze bound pathogen population eventually to a value of 0, but much slower than
B. The infected host population shows similar behaviour, with a steep incline at the
wave front and a slower decay in its wake. The susceptible host population S(x, t)
decreases in time monotonically from N in front of the wave to 0 in its wake with
depletion where the disease originates. The behaviour of R(x, t) (data not shown)
mirrors the behaviour of S(x, t): it is monotonically decreasing in space with no dead
hosts ahead of the pathogen wave and an entirely dead host population behind it.

Upon closer inspection, it appears that each component of this solution takes a shape
that does not change, but moves with a constant speed. This suggests that the invasion
of the domain by the disease might be described by a travelling wave solution of the
model. Noteworthy here is that two of the components are monotonic (susceptible and
removed host populations S and R), two are pulse waves that drop to 0 after the peak
(ooze population O and infected hosts I ), and one is a pulse wave that levels off at
constant value in the wake of the peak (floral pathogen population B). The solution
profile appears to already have been established at the first time instance shown. This
suggests that its formation, i.e. the invasion of an initially disease free orchard, happens
quickly, on a time scale of only a few weeks which coincides with the intended time
frame of bloom for which the model was developed. Motivated by these simulations,
we set out to investigate further whether our model permits travelling wave solutions,
and under which conditions on parameters.

3 Travelling waves analysis

3.1 Critical wave speed for n1 = 2

A travelling wave (B, O, S, I ) of (1)-(4) with (8)-(9) is an entire in time solution
depending only on a moving variable z := x − ct , where the wave speed c is to be
determined. These solutions, as functions of z, satisfy

−cB ′(z) − D1B
′′(z) = r B(z)

(

1 − B(z)

K (S(z) + I (z)) + ε

)

+ μ · O(z) · S(z),

(10)

−cO ′(z) − D2O
′′(z) = α · I (z) − μ · O(z) · S(z) − γ O(z), (11)

−cS′(z) = − f (B(z))S(z), (12)

−cI ′(z) = f (B(z))S(z) − g(I (z))I (z) . (13)

They should be positive and connect the homogeneous steady states

(B, O,S, I )(+∞) = (0, 0, N , 0) (14)

and

(B, O,S, I )(−∞) = (ε, 0, 0, 0) , (15)
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corresponding respectively to the orchard’s state before and after the disease outbreak.
We omit in our analysis the equation for R, as it decouples from the system.

We conjecture that there exists some c∗ > 0 such that a travelling wave exists if
and only if c ≥ c∗. The value of c∗ should be expected to depend on model param-
eters. Below we only address existence for non critical values c > c∗. As usual, the
critical wave speed c∗ is determined by linearization around the invaded steady state
(0, 0, N , 0). The linearized system writes as

⎧

⎪
⎪
⎨

⎪
⎪
⎩

∂t B = D1∂
2
x B + r B + μNO ,

∂t O = D2∂
2
x O + α I − μNO − γ O ,

∂t S = − f ′(0)N B ,

∂t I = f ′(0)N B .

(16)

Due to the model assumption (A7) and the subsequent discussion of (8) we restrict
ourselves to the case n1 > 1, where we have f ′(0) = 0. Going forward, for simplicity
we will pick n1 = 2 in our calculations, as we did previously in the sections 2.2.2
and 2.2.3, however, we conjecture that our argument of this section will also apply to
n1 ≥ 2. Thus we are left with

{

∂t B = D1∂
2
x B + r B + μNO ,

∂t O = D2∂
2
x O − μNO − γ O .

Next, we make an exponential ansatz

(B, O) = (Bλ, Oλ) e
−λ(x−ct) ,

Upon substituting this into (16) we obtain the triangular system:

{

cλBλ = D1λ
2Bλ + r Bλ + μNOλ ,

cλOλ = D2λ
2Oλ − μNOλ − γ Oλ .

This leads us to introduce the matrix

Mλ =
(

D1λ
2 + r μN
0 D2λ

2 − μN − γ

)

,

and to compute
	(λ) := max{D1λ

2 + r , D2λ
2 − μN − γ } ,

the largest (positive) eigenvalue of Mλ, which by the Perron-Frobenius theorem (or
an elementary computation) is associated with a positive eigenvector.

We then define

c∗ := min
λ>0

{

	(λ)

λ

}

,

which according to the above is the minimal speed for such a (positive) exponential
ansatz to solve the linearized problem. By analogywith the standard reaction-diffusion
equation with logistic growth, or Fisher-KPP (Fisher 1937; Kolmogorov 1937), we
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conjecture that this is theminimal travelingwave speed.Due tomodel assumption (A9)
and D1 ≥ D2 as in (7), we have 	(λ) = D1λ

2 + r and after some straightforward
calculations, we find that

c∗ = 2
√

D1r .

This suggests that the travellingwave speed and exponential decay are fully determined
by the parameters in the governing equation for B.

This value c∗ is already known to be the minimum travelling wave speed for the
classical Fisher equation (Fisher 1937; Kolmogorov 1937), that is

∂t u = D1∂
2
x u + ru

(

1 − u

ε

)

.

One can check that such a solution u is also a sub-solution for the B-equation (1) in our
fire blight model. Due to well-known spreading properties to the minimal travelling
wave for the Fisher equation (Aronson and Weinberger 1975), it follows that our fire
blight model cannot admit a travelling wave with speed strictly less than c∗.

Therefore, going forward wewill only be concerned with the existence of travelling
waves for any speed (strictly) larger than c∗ = 2

√
D1r .

3.2 Existence of travelling waves

Our main result below will be the proof of the existence of travelling wave solutions
to (1)-(4) with nonlinearities (8)-(9). For this we use a fixed point argument, similar
to those used for a variety of applications, including the spread of infectious diseases,
e.g. in Ma (2001); Berestycki et al. (2005); Huang and Zou (2006); Ducrot and
Magal (2009); Ducrot et al. (2010); Wang and Wu (2010); Shang et al. (2016); Shu
et al. (2019); Zhou et al. (2019). This method involves the construction of suitable
upper and lower solutions, the construction of a continuous and compact mapping on
a set defined by these upper and lower solutions, and the application of Schauder’s
fixed point theorem. Here we adapt this argument to the PDE-ODE coupled system
(1)-(4), which is an everywhere degenerate semilinear system of reaction-diffusion
equations. We begin with establishing in Section 3.2.1 upper and lower solutions that
are specific to the model at hand, and then define an integral map in Section 3.2.2 on
the set bounded by the upper and lower solutions, the fixed points of which satisfy the
travelling wave equations. The main result will then be in Section 3.2.5 an existence
theorem for travelling wave solutions.

Throughout this analysis, we will consider

c > c∗ = 2
√

D1r .

3.2.1 Upper and lower Solutions

We need to find two quadruplets

0 ≤ (B, O, S, I ) ≤ (B, O, S, I ) ,
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where the inequalities are to be understood componentwise, satisfying (possibly in a
generalized sense)

LB := D1B
′′ + cB ′ + r B

(

1 − B

K (S + I ) + ε

)

+ μOS ≥ 0 (17)

UB := D1B
′′ + cB

′ + r B

(

1 − B

K (S + I ) + ε

)

+ μOS ≤ 0 (18)

LO := D2O
′′ + cO ′ + α I − μOS − γ O ≥ 0 (19)

UO := D2O
′′ + cO

′ + α I − μOS − γ O ≤ 0 (20)

LS := cS′ − f (B)S ≥ 0 (21)

US := cS
′ − f (B)S ≤ 0 (22)

LI := cI ′ + f (B)S − g(I )I ≥ 0 (23)

UI := cI
′ + f (B)S − g(I )I ≤ 0 . (24)

By a generalized sense, we mean that some of our lower and upper solutions below
will satisfy those inequalities except at a finite number of points where they will lack
the necessary regularity. However, provided that their left and right derivatives at
those points are correctly ordered, the comparison principle underlying the fixed point
approach remains available (see the later subsections and Lemma 2.1 in Shu et al.
(2019)).

Recall that c > c∗ = 2
√
D1r . Then there exists λ the smallest positive solution of

	(λ) = D1λ
2 + r = cλ .

We first define the following candidate functions for the upper solutions.

S = N ,

B = B0 min
{

1, e−λz} ,

O = min

{

α I0
γ

, ηe−2λz
}

,

and

I = min

{

I0,
∫ ∞

z

N f (B)

c
dy

}

,

where I0 is such that g(I0)I0 = M1N , and B0 is the unique positive solution to

r B0

(

1 − B0

K (N + I0) + ε

)

+ μ
α I0
γ

N = 0 .

The constant η will be chosen later in order to ensure that the required inequality (20)
will indeed be satisfied.
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For later use, we also compute that

I ≤
∫ ∞

z

M1N B
2

A2
1c

dy ≤ M1N B2
0

2A2
1λc

e−2λz , (25)

owing to the properties of the function f in (8).
As candidate functions for lower solutions, we define

S = Ne− ∫ ∞
z

f (B)
c ,

B = B0 max{0, e−λz − νe−(λ+δ)z} ,

O = 0 ,

and
I = 0 .

Here the new parameters δ and ν in the expression for B are chosen to satisfy

δ ∈ (0, λ), D1(λ + δ)2 − c(λ + δ) + r < 0 , (26)

and

ν > max

{

1,
B0

ε
× r

c(λ + δ) − r − D1(λ + δ)2

}

> 0 . (27)

Notice that S ≤ S, O ≤ O , I ≤ I , and also B ≤ B.
Next we verify that these functions indeed satisfy the inequalities (17)-(24) for a

suitable choice of η and under some additional condition on μ and α which will be
specified below.
Computation of US . This is trivial due to S = N and then

US = −N f (B) ≤ 0 .

Computation of UI . When I < I0, then we have cI
′ + N f (B) = 0 by definition,

hence
UI = cI

′ + f (B)S − g(I )I ≤ 0 .

On the other hand, I0 satisfies

f (B)S − g(I0)I0 = N ( f (B) − M1) ≤ 0 .

Computation of UO . When O = α I0
γ
, then

U0 = α I − μ
α I0
γ

S − γ
α I0
γ

≤ α(I − I0) ≤ 0 .
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When O < α I0
γ
, we compute that

UO ≤ ηe−2λz ×
[

4D2λ
2 − 2cλ − γ

]

+ α I

≤ ηe−2λz ×
[

4D2λ
2 − 2cλ − γ

]

+ αM1N B2
0

2A2
1λc

e−2λz . (28)

We recall that we yet have to choose the constant η. In order to achieve the desired
inequality for UO we propose

η = αM1N B2
0

2A2
1λc × (γ + 2cλ − 4D2λ2)

. (29)

It is easy to verify that then η is indeed positive: λ is the smallest positive solution of

D1λ
2 + r = cλ, hence λ = c−

√
c2−4D1r
2D1

∈
(

0,
√

r
D1

)

, and we have

4D2λ
2 − 2cλ − γ = (4D2 − 2D1)λ

2 − 2r − γ .

If 4D2−2D1 ≤ 0, then the right-hand term is negative regardless of λ. If 4D2−2D1 >

0, then we have

4D2λ
2 − 2cλ − γ ≤ (4D2 − 2D1)

r

D1
− 2r − γ < 0 , (30)

where the last inequality holds due to our model assumption (7) that D2 ≤ D1.
Substituting (29) into (28) we obtain indeed UO ≤ 0, as required.

Computation of UB . When z < 0, then B = B0 and the inequality UB ≤ 0 holds by
the definition of B0. On the other hand, when z > 0, the pathogen liberation rate μ

must be suitably bounded in order for us to be able to obtain UB ≤ 0. The key point
here is to derive conditions such that the dynamics of the system is determined by the
dynamics of the Fisher type equation for B. More precisely, for z > 0, we have

μOS ≤ μηNe−2λz

≤ μηN
B
2

B2
0

≤ r B
2

K (N + I0) + ε
, (31)

where the first two inequalities hold by definition of O and B, and the third one holds
provided that

μα <
r

K (N + I0) + ε
× 2A2

1λc(γ + 2cλ − 4D2λ
2)

M1N 2 ,
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due to our choice of η in (29).
That such a positive μ exists follows again from (30). In order for this condition

to not depend on c and λ but on the original model parameters only, we may instead
require

μα <
4A2

1r
2

K (N + I0) + ε
× 2r · min{1, 2(1 − D2

D1
)} + γ

M1N 2 , (32)

where we recall that I0 is the solution of g(I0)I0 = M1N . We point out here that this
condition on the pathogen liberation rate allows an ecological interpretation which
we will discuss below. Although this constraint on μα likely might not be optimal, it
provides a sufficient condition for our analysis going forward.

Under this condition on μ we obtain (31) and then, for z > 0,

UB ≤ D1B
′′ + cB

′ + r B

= B0e
−λz(D1λ

2 − cλ + r)

= 0 .

Computation of LS . Inequality LS ≥ 0 is satisfied by definition.
Computation of LB . The null function trivially satisfiesLB ≥ 0, so we only consider
the case when B > 0. Due to ν > 1 by (27), this implies that z > 0. Then we can
compute

LB = B0e
−λz × (D1λ

2 − cλ + r) − B0νe
−(λ+δ)z × (D1(λ + δ)2 − c(λ + δ) + r)

−r
B2
0 (e

−λz − νe−(λ+δ)z)2

K (S + I ) + ε

≥ −B0νe
−(λ+δ)z × (D1(λ + δ)2 − c(λ + δ) + r) − B2

0re
−2λz

ε

≥ B0νe
−(λ+δ)z ×

(

−D1(λ + δ)2 + c(λ + δ) − r − r B0

νε

)

≥ 0 ,

where we used our choice of δ and ν from (26)-(27) to obtain the last inequality. We
only briefly point out that we may have instead used the positivity of S on a right half
line, to make the same argument work when ε = 0.
Computation of LO and LI . This is trivial for O = I = 0.

With these upper and lower solutions for the travelling wave system in place, we
can proceed to define the required integral map.
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3.2.2 Construction of an integral map whose fixed points are solutions to the
travelling wave system

We now define the componentwise differential operator


 = (
B,
O ,
S,
I ) ,

as


B(B)(z) := − D1B
′′(z) − cB ′(z) + αB B(z),


O(O)(z) := − D2O
′′(z) − cO ′(z) + αOO(z),


S(S)(z) := − cS′(z) + αS S(z),


I (I )(z) := − cI ′(z) + αI I (z) .

The constants αB, αO , αS and αI will need to be taken sufficiently large and will be
determined later. The characteristic roots of 
B and 
O are

λ±
B := −c ± √

c2 + 4D1αB

2D1
,

λ±
O := −c ± √

c2 + 4D2αO

2D2
.

We define the constants

ρB :=D1(λ
+
B − λ−

B ) =
√

c2 + 4D1αB ,

ρO :=D2(λ
+
O − λ−

O) =
√

c2 + 4D2αO .

For any positive choices of αB, αO , αS and αI , there exists a positive value μ0 such
that if

μ+
0 = μ0 , μ−

0 = −μ0 ,

we have the inequalities

max

(

λ−
B , λ−

O ,
−αS

c
,
−αI

c

)

< μ−
0 < 0 ,

0 < μ+
0 < min

(

λ+
B , λ+

O ,
αS

c
,
αI

c

)

.

Then for functions B(z), O(z), S(z) and I (z) in the space

Cμ−
0 ,μ+

0
(R) := {h(z) ∈ C(R) | sup

z≤0
|h(z)e−μ−

0 z | + sup
z≥0

|h(z)e−μ+
0 z | < ∞} ,
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the inverse operators for each component of 
 have the following integral represen-
tation:


−1
B (B)(z) := 1

ρB

(∫ z

−∞
eλ−

B (z−y)B(y)dy +
∫ ∞

z
eλ+

B (z−y)B(y)dy

)

,


−1
O (O)(z) := 1

ρO

(∫ z

−∞
eλ−

O (z−y)O(y)dy +
∫ ∞

z
eλ+

O (z−y)O(y)dy

)

,


−1
S (S)(z) :=1

c

(∫ ∞

z
e

αS
c (z−y)S(y)dy

)

,


−1
I (I )(z) :=1

c

(∫ ∞

z
e

αI
c (z−y) I (y)dy

)

.

To see this for 
−1
S and 
−1

B , first take the derivatives of each operator with respect
to z,

(
−1
S S)′(z) = − S(z)

c
+ αS

c2

∫ ∞

z
e

αS
c (z−y)S(y)dy,

(
−1
B B)′(z) =λ−

B

ρB

(∫ z

−∞
eλ−

B (z−y)B(y)dy

)

+ λ+
B

ρB

(∫ ∞

z
eλ+

B (z−y)B(y)dy

)

,

(
−1
B B)′′(z) = (λ−

B )2

ρB

(∫ z

−∞
eλ−

B (z−y)B(y)dy

)

+ (λ+
B )2

ρB

(∫ ∞

z
eλ+

B (z−y)B(y)dy

)

− B(z)

D1
.

Then it follows that


S(

−1
S S)(z) = −c(
−1

S S)′(z) + αS(

−1
S )S(z)

= c

(

S(z)

c
− αS

c2

∫ ∞

z
e

αS
c (z−y)S(y)dy

)

+ αS

(

1

c

∫ ∞

z
e

αS
c (z−y)S(y)dy

)

= S(z) .

Similarly, one can show for B that


B(
−1
B B)(z) = −D1(


−1
B B)′′(z) − c(
−1

B B)′(z) + αB(
−1
B B)(z)

= −D1(λ
−
B )2 − cλ−

B + αB

ρB

(∫ z

−∞
eλ−

B (z−y)B(y)dy

)

+−D1(λ
+
B )2 − cλ+

B + αB

ρB

(∫ ∞

z
eλ+

B (z−y)B(y)dy

)

+ B(z)

= B(z) .
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Here the last line follows from λ±
B being the characteristic roots of 
B . It is easy to

see these relations hold for 
−1
I and 
−1

O as the calculations are identical to those of

−1

S and 
−1
B .

We now define the Banach space

Bμ0(R,R4) := Cμ−
0 ,μ+

0
(R) × Cμ−

0 ,μ+
0
(R) × Cμ−

0 ,μ+
0
(R) × Cμ−

0 ,μ+
0
(R) ,

with the norm

‖u‖μ0 := max
1≤i≤4

sup
z∈R

{e−μ0|z||ui (z)|} ,

where u := (u1, u2, u3, u4) ∈ Bμ0(R,R4), and on this function space we define the
integral mapping

F(u) :=

⎡

⎢

⎢

⎣

F1(u)

F2(u)

F3(u)

F4(u)

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣


−1
B

(

αBu1 + ru1
(

1 − u1
K (u3+u4)+ε

)

+ μu2u3
)


−1
O (αOu2 + αu4 − μu2u3 − γ u2)


−1
S (αSu3 − f (u1)u3)


−1
I (αI u4 + f (u1)u3 − g(u4)u4)

⎤

⎥

⎥

⎥

⎦

.

We are in a position now to state the main result of this subsection.

Lemma 3.1 Assume the mapping F(u) admits a fixed point, F(u) = u, for u =
(B, O, S, I ) ∈ Bμ0(R,R4). Then (B, O, S, I ) satisfy the travelling wave equations
(10)-(13).

Proof If the mapping F(u) achieves a fixed point u = (B, O, S, I ) such that F(u) =
u, then we have that

F3(u) = 
−1
S (αS S − f (B)S) = S .

By applying 
S , we find


S

−1
S (αS S − f (B)S) = 
S S = −cS′ + αS S ,

and then

−cS′ = − f (B)S .

This is the original differential equation for S as seen in (12), proving that this fixed
point is equivalent to a solution for the S-component. One can directly show that this
also holds for the other components of the map F(u). ��

Finally, we define the set

� := {(B, O, S, I ) ∈ Bμ−
0 ,μ+

0
(R,R4) | B ≤ B ≤ B, O ≤ O ≤ O, S ≤ S ≤ S, I ≤ I ≤ I } .
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3.2.3 F(u) is invariant, continuous, and compact on 0

We choose αB , αO , αS and αI large enough such that for (B, O, S, I ) ∈ �

∂

∂B

(

αB B(z) + r B(z)

(

1 − B(z)

K (S(z) + I (z)) + ε

)

+ μ · O(z) · S(z)
)

> 0 , ∀ z ∈ R ,

∂

∂O

(

αOO(z) + α · I (z) − μ · O(z) · S(z) − γ O(z)
)

> 0 , ∀ z ∈ R ,

∂

∂S

(

αS S(z) − f (B(z))S(z)
)

> 0 , ∀ z ∈ R ,

∂

∂ I

(

αI I (z) + f (B(z))S(z) − g(I (z))I (z)
)

> 0 , ∀ z ∈ R .

We have then the following result.

Lemma 3.2 For any u = (B, O, S, I ) ∈ � ,

B ≤ F1(u) ≤ B,

O ≤ F2(u) ≤ O,

S ≤ F3(u) ≤ S,

I ≤ F4(u) ≤ I .

Proof With the above choices of αB,O,S,I , in combination with the inequalities of the
upper and lower solutions of Section 3.2.1, we find


B B(z) = −D1B
′′(z) − cB ′(z) + αB B(z)

≤ r B(z)

(

1 − B(z)

K (S(z) + I (z)) + ε

)

+ μ · O(z) · S(z) + αB B(z)

≤ r B(z)

(

1 − B(z)

K (S(z) + I (z)) + ε

)

+ μ · O(z) · S(z) + αB B(z)

≤ r B(z)

(

1 − B(z)

K (S(z) + I (z)) + ε

)

+ μ · O(z) · S(z) + αB B(z)

≤ r B(z)

(

1 − B(z)

K (S(z) + I (z)) + ε

)

+ μ · O(z) · S(z) + αB B(z)

≤ r B(z)

(

1 − B(z)

K (S(z) + I (z)) + ε

)

+ μ · O(z) · S(z) + αB B(z)

≤ −D1B
′′
(z) − cB

′
(z) + αB B(z)

= 
B B(z) .

Then, by the continuity of the upper and lower solutions, and through the application
of Lemma 2.1 in (Shu et al. 2019), we get, for all z,

B(z) ≤ 
−1
B (
B B)(z)
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≤ 
−1
B

(

r B
(

1 − B

K (S + I ) + ε

)

+ μ · O · S + αB B

)

(z)

= F1(u)(z)

≤ 
−1
B (
B B)(z)

≤ B(z) .

The inequalities for F2(u), F3(u) and F4(u) are proved in precisely the same way. ��
Up to this point, we have constructed a convex Banach space �, an integral map F ,

and have shown that for all u ∈ �, F(u) ∈ �. In order to apply Schauder’s fixed point
theorem, we need to prove that F is continuous and compact on �. These properties
are proved below, and rely heavily on the fact that each function in� is bounded above
by some positive constant.

Lemma 3.3 The mapping F is continuous under the norm ‖ .‖μ0 in �.

Proof We have for each u = (u1, u2, u3, u4) ∈ � , z ∈ R,

0 ≤ B(z) ≤ u1(z) ≤ B(z) ≤ B0 ,

0 = O(z) ≤ u2(z) ≤ O(z) ≤ α I0
γ

,

0 ≤ S(z) ≤ u3(z) ≤ S(z) = N ,

0 = I (z) ≤ u4(z) ≤ I (z) = I0 .

We borrow the continuity proof of Shu et al. (2019) (Lemma 4.1) in order to prove
continuity for the map components F1 and F2. Here, they make the assumption that
the gradient of their reaction terms is uniformly bounded. Since any function in � is
uniformly bounded and our reaction terms are C1, this condition is also satisfied by
our system. This allows us to claim that there exist a constant L and a function g such
that for any u, v ∈ �,

|F1(u)(z) − F1(v)(z)| e−μ0|z| ≤ Lg(z)‖u − v‖μ0 ,

where

g(z) = e−μ0|z|
[∫ z

−∞
eλ−

B (z−y)+μ0|y|dy +
∫ ∞

z
eλ+

B (z−y)+μ0|y|dy
]

.

Since λ−
B < −μ0 < μ0 < λ+

B , one can apply L’Hopital’s rule to show that g is
uniformly bounded on R. Then there exists a positive constant C1 such that, for any
u, v ∈ �,

‖F1(u) − F1(v)‖μ0 ≤ C1 · ‖u − v‖μ0 .

and in particular F1 is continuous in �. The proof is identical for showing continuity
of the component F2(u).
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To see that the ODE components F3(u) and F4(u) are continuous, observe that for
any u := (u1, u2, u3, u4), v := (v1, v2, v3, v4) ∈ �, we have

|F3(u)(z) − F3(v)(z)| = 1

c

∣

∣

∣

∣

∫ ∞

z
e

αS
c (z−y) (αSu3 − f (u1)u3 − αSv3 + f (v1)v3) dy

∣

∣

∣

∣
.

Here we can use the Lipschitz property of the Hill function f ,

| f (B1) − f (B2)| ≤ K f |B1 − B2| ,

and, by adding and subtracting f (v1)u3 to the equation,

|F3(u)(z) − F3(v)(z)| = 1

c

∣

∣

∣

∣

∫ ∞

z
e

αS
c (z−y) (αSu3 − f (u1)u3 + f (v1)u3

− f (v1)u3 − αSv3 + f (v1)v3) dy| .

This allows us to re-arrange some of the terms and find

|F3(u)(z) − F3(v)(z)| ≤ 1

c

∣

∣

∣

∣

∫ ∞

z
e

αS
c (z−y) (αS|u3 − v3| + NK f |u1 − v1|

+M1|u3 − v3|) dy| .

Multiplying both sides by e−μ0|z| gives us

|F3(u)(z) − F3(v)(z)|e−μ0|z| ≤ 1

c

∣

∣

∣

∣

∫ ∞

z
e

αS
c (z−y)(αS|u3 − v3|e−μ0|z|

+ NK f |u1 − v1|e−μ0|z| + M1|u3 − v3|e−μ0|z|)dy
∣

∣

∣

∣
.

One may then see that

|F3(u)(z) − F3(v)(z)|e−μ0|z|

≤ 1

c

∣

∣

∣

∣

∫ ∞

z
e

αS
c (z−y)eμ0(|y|−|z|) (αS‖u − v‖μ0 + NK f ‖u − v‖μ0 + M1‖u − v‖μ0

)

dy

∣

∣

∣

∣

= 1

c
‖u − v‖μ0 (αS + NK f + M1)

∫ ∞

z
e

αS
c (z−y)eμ0(|y|−|z|)dy

= C3 · ‖u − v‖μ0 ,

for some C3 > 0 and for all z ∈ R.
It is straightforward to prove that, for F4, we also reach a result of the form

sup
z∈R

{|F4(u)(z) − F4(v)(z)|e−μ0|z|} ≤ C4 · ‖u − v‖μ0 ,
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where C4 is some positive constant. Then, we have that there exists a constant C such
that

max
1≤i≤4

sup
z∈R

{|Fi (u)(z) − Fi (v)(z)|e−μ0|z|} = ‖F(u) − F(v)‖μ0 ≤ C · ‖u − v‖μ0 ,

for all u, v ∈ �. This completes the proof of Lemma 3.3. ��
Lemma 3.4 The mapping F is compact under the norm ‖ . ‖μ0 in �.

Proof To show compactness, we demonstrate that for any sequence of functions
{un}⊆�, where n ∈ N, the sequence {F(un)} has a convergent sub-sequence in �

with respect to the norm ‖ . ‖μ0 . To do this, we use the Arzela-Ascoli theorem.
By the invariance of �, the sequence {F(un)} is uniformly bounded with respect to

the L∞-norm. Observe also that for any u := (B, O, S, I ) ∈ �,

|F1(u)′(z)|
=

∣

∣

∣

∣

λ−
B

ρB

(∫ z

−∞
eλ−

B (z−y)
(

αB B(y) + r B(y)

(

1 − B(y)

K (S(y) + I (y)) + ε

)

+μO(y)S(y)) dy)

+λ+
B

ρB

(∫ ∞

z
eλ+

B (z−y)
(

αB B(y) + r B(y)

(

1 − B(y)

K (S(y) + I (y)) + ε

)

+μO(y)S(y)) dy)

∣

∣

∣

∣
.

Due again to the boundedness of � with respect to the L∞-norm, one can find a
constant W1 ∈ R

+ such that for all z ∈ R,

|F1(u)′(z)| ≤ W1 .

One may similarly check that F2(u)′, F3(u)′ and F4(u)′ are uniformly bounded.
Now we know the sequence {F(un)} is uniformly bounded and equi-continous. By

the Arzela-Ascoli theorem and a standard diagonal process, there exists a subsequence
which converges locally uniformly. One may check that the convergence also occurs
with respect to the norm ‖ . ‖μ0 . We defer the details of this proof to Lemma 3.5 in
Shu et al. (2019) or the appendix of Wang andWang (2016). This completes the proof
of Lemma 3.4. ��

We now have by Lemma 3.2, Lemma 3.3 and Lemma 3.4 that the mapping F is
invariant, continuous and compact on� with respect to the norm ‖ . ‖μ0 . By Schauder’s
fixed point theorem, F admits at least one fixed point (B, O, S, I ) in�. ByLemma3.1,
this fixed point is a solution to the travelling wave system (10)-(13).

3.2.4 Travelling waves asymptotics

This leads us to our final step, which is to show that our solution satisfies the desired
asymptotic conditions.
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As z −→ +∞, applying the squeeze theorem immediately yields

B(z) −→ 0 as z −→ +∞ ,

O(z) −→ 0 as z −→ +∞ ,

S(z) −→ N as z −→ +∞ ,

I (z) −→ 0 as z −→ +∞ .

Let us now look at z → −∞. There the upper and lower solutions have differing
asymptotics and more work is necessary.

Lemma 3.5 Let (B, O, S, I ) ∈ � be a fixed point of F as constructed in the previous
subsection. Then

lim inf
z→−∞ B(z) > 0.

Proof First, due to O, S, I ≥ 0, we have

−D1B
′′ − cB ′ ≥ r B

(

1 − B

ε

)

.

By construction, we know that B ≥ B with B non-negative and not identically
equal to 0. It follows from the strong maximum principle that B > 0 on the whole
line. Moreover, recall that

B(z) = B0 max
{

0, e−λz − νe−(λ+δ)z
}

,

which, by the same computation as in Section 3.2.1, satisfies

−D1B
′′ − cB ≤ r B

(

1 − B

ε

)

.

The same inequality holds for any spatial shift of B.
Now let us proceed by contradiction and assume that

lim inf
z→−∞ B(z) = 0 .

Then there exists some critical shift

κ∗ := sup {κ ≥ 0 | B(·) ≥ B(· + κ)} ∈ [0,+∞) .

Due to B being decreasing on a right half-line, onemay check that there exists some
z∗ such that B(z∗ + κ∗) = B(z∗). By the strong maximum principle, we conclude
that B(· + κ∗) ≡ B(·), a contradiction. ��

With this lemma in hand, by (12), we get

−cS′(z) = − f (B(z))S(z) ≤ −δ1S(z)
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for all z < 0 and some δ1 > 0. By Gronwall’s lemma, it follows that

S(z) ≤ S(0)e
δ
c z for all z ≤ 0 ,

hence S(−∞) = 0.
Now, for any δ2 > 0, there exists z0 > 0 large enough so that

sup
z≤−z0

S(z) ≤ δ2 ,

and plugging this new information into by (13), we get that

−cI ′(z) ≤ M1δ2 − g(I )I for all z ≤ −z0 .

It follows that
lim sup
z→−∞

I (z) ≤ β ,

where β is the unique positive solution to g(β)β = M1δ2. Up to reducing δ2, this β

can be made arbitrarily small. By non-negativity of I , we deduce that I (−∞) = 0.
Next, up to increasing z0, by (10) we have that

r B

(

1 − B

ε

)

≤ −D1B
′′(z) − cB ′(z) ≤ r B

(

1 − B

2K δ2 + ε

)

+ μ
α I0
γ

δ2 ,

for z ≤ −z0.
Assume first that B is monotonic in a neighborhood of −∞. Then, due to B being

bounded and by standard regularity estimates, we find that B ′, B ′′ → 0 and B → B∞
as z → +∞. Moreover B∞ > 0 by Lemma 3.5. Passing to the limit in the above
inequalities, we get

r B∞
(

1 − B∞
ε

)

≤ 0 ≤ r B∞
(

1 − B∞
2K δ2 + ε

)

+ μ
α I0
γ

δ2 .

Since δ2 can be arbitrarily small, we conclude that B∞ = limz→−∞ B(z) = ε.
On the other hand, if B is not monotonic, then there exist two sequences

zn, z′n → −∞ such that B ′(zn) = B ′(z′n) = 0, B ′′(zn) ≥ 0 ≥ B ′′(z′n) and
limn B(zn) = lim inf z→−∞ B(z), limn B(z′n) = lim supz→−∞ B(z). Evaluating the
above inequality at zn and passing to the limit, we find that

r lim inf
z→−∞ B(z)

(

1 − lim inf z→−∞ B(z)

ε

)

≤ 0 .

By Lemma 3.5, necessarily lim inf z→−∞ B(z) ≥ ε. Evaluating at z′n , one gets an
opposite inequality and eventually reaches again the conclusion that B(z) → ε as
z → −∞.
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The fact that O(z) → 0 as z → −∞ follows a similar argument and we omit the
details. This completes our proof of existence of travelling waves, which we recap in
Theorem 3.6 in the next subsection.

3.2.5 Existence theorem for travelling waves

We are now in a position to state our main theorem on the existence of travelling
waves, which we have just proved in the previous subsections.

Theorem 3.6 Assume that
D1 ≥ D2 , n1 = 2 .

Then:

(i) there exists no travelling wave solution to system (10)-(13) with asymptotic con-
ditions (14)-(15) for any c < 2

√
D1r;

(ii) if furthermore (32) holds, then for any c > 2
√
D1r , there exists a travelling wave

solution to system (10)-(13) with asymptotic conditions (14)-(15);

As we will discuss in the next section, this theorem provides a sufficient condition
for the existence of travelling waves. We conjecture it is not necessary. In particular,
when condition (32) is not satisfied, we expect that the minimal wave speed may be
strictly larger than 2

√
D1r .

We further point out that the upper and lower solutions used in our existence proofs
also provide an invariant region for the full evolution system. Indeed, for initial condi-
tions u0 := (B0, O0, I0, S0) ∈ � the associated solution u(x, t) := (B, O, S, I ) (x, t)
of (1)-(4) also satisfies that

x �→ u(x − ct, t) ∈ � ,

for any t > 0. For the sake of expediency, we omit the proof but it relies on a parabolic
comparison principle closely connected to the invariance of � through the mapping F
(see also Lemma 3.2 above). We refer to Berestycki et al. (2005); Giletti (2010) for
similar arguments. In particular, it follows that for any such initial data, the solution
of the Cauchy problem spreads with the speed c of the corresponding travelling wave.

4 Discussion

4.1 Modelling fire blight

Fire blight is a complex, sporadic and destructive bacterial disease. The severity of
epidemics appears to be increasing (Van der Zwet et al. 2012) and, because of their
overuse, antibiotic-based control methodsmay not always be effective (Thomson et al.
1992). A further understanding of how the fire blight pathogen, insect vectors and hosts
interact to cause new infections is critical if we are to prevent future epidemics.

Despite the long history of fire blight as a plant disease, its routine destruction of
orchards and the large amount of biological literature available to study fire blight, it
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remains a neglected topic in the mathematical modelling community. Modelling the
spread of plant diseases can help uncover how certain ecological and epidemiological
processes interact to induce or accelerate epidemics. They can also be used to predict
the spread of disease given a state of initial conditions.

Previous dynamic disease models of fire blight spread (Chen et al. 2018; Iljon et al.
2012) focused on the time evolution of disease severity. These models took the form
of ordinary differential equations and described the transition of a host or vector from
a susceptible state to a disease-carrying one. Here, we chose to consider the evolution
of the disease over both time and space. We derived a system of ordinary differential
equations, to describe the stationary host population, and coupled them to a system
of partial differential equations, to describe the vectored pathogen population. This
allows us to investigate how the disease spreads across an orchard. Indeed, in Theorem
3.6, we proved that, depending on parameters, our fire blight model may guarantee
the existence of travelling waves, i.e. disease propagation at constant speed.

One aspect of fire blight epidemiology that was explicitly considered in our model
but not in the previous work is the production and dissemination of ooze by infected
hosts. The inclusion of this symptom led to a second partial differential equation in
our model. Ooze is known to be a major source of the pathogen population for new
infections, but since Hildebrand found that bees were not attracted to ooze (Hildebrand
and Phillips 1936), there has not been a lot of research into the production and dissem-
ination of ooze apart from the works of Slack et al. (2017) and Boucher et al. (2019).
Further research into how ooze is produced and spreadmay be key in preventing future
fire blight epidemics. In this context we should re-iterate that a base assumption in our
model simulations and analysis is that the managed pollinators, primarily honeybees,
are more efficient in visiting flowers than other insects that are responsible for the
spread of ooze. Our mathematical travelling wave analysis made use of this ecological
assumption in several places. We remark here that from a mathematical persective this
assumption can be somewhat relaxed but then additional mathematical arguments are
needed in the proof, which we did not present here.

We subsumed here several disease dispersal mechanisms (due to insects, rain, wind,
human activity, etc) into one, modelled by linear diffusion. Considering the uncer-
tainty underlying these dispersal mechanisms, this classical approach of mathematical
ecology seems an acceptable assumption. Pollinators and other insects are likely the
dominant factor of disease dispersal. Recorded measurements of bumble bee flight
patterns (Heinrich 1979) indicate that their movements tend to follow a long-tailed
distribution, which is perhaps closer to the form of a Lévy distribution (Viswanathan
et al. 1999). Such a distribution suggests that bumble bees tend to make shorter flights
in a random direction, but are capable of occasionally flying longer distances. Using
this as the basis for a random walk model for pollinators, the question arises whether
a fractional diffusion model, in the style of Vallaeys et al. (2017) would be a suitable
spatial model, possibly combined with the traditional diffusion model for the other
mentioned highly uncertain transport processes. However, this question is beyond the
scope of this first study..

A question that previous spatially homogeneous modeling studies of fire blight
did not have to consider is that of suitable boundary conditions. We assumed in our
simulations and analysis of the model on a bounded domain (i.e. an orchard of finite
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size) that the in-flux and out-flux of bacteria due to pollinators could be considered
negligible. However, for previously blight-free orchards, the pathogenmust enter from
an outside source for an epidemic to be possible. Robin type boundary conditions may
prove to be the most accurate representation of reality for fire blight, where there is an
initial pathogen population existing at the edge of an orchard that is transported into
the orchard at some rate. More data on the spatial spread of fire blight is needed in
order to determine which boundary conditions are most appropriate.

Our model is focused on blossom blight, i.e. fire blight that is transmitted during
flowering season. This is not to say that this is the only period during which infection
can occur and the only route of transmission.While ourmodel was able to shed light on
some aspects of fire blight propagation dynamics, the disease can also be transmitted
via shoots, trunks and roots during the entire growing season. Moreover, while the
disease can devastate entire orchards in one growing season, the pathogen can also
survive during winter and re-emerge in the following year. This suggests that a multi-
year model accounting for seasonal variations should eventually be formulated and
studied which would lead to a much more involved and complex mathematical model.

4.2 Ecological interpretation of constraint on the ooze conversion rate�

The results of Theorem 3.6 offer some biological interpretations. When the diffusion
of the floral bacteria (due to bees) is greater than the diffusion of the bacteria within
ooze (due to non-bee insects), and provided that the ooze conversion is slow enough,
then pathogen can invade the host population in the form of a travelling wave whose
speed can be explicitely characterized as 2

√
D1r , i.e. a function of the pollinators’

motion and pathogen’s growth on flowers.
Our travelling wave proof hinges on the dynamics of the bacteria population B

being the controlling influence, which is described by a Fisher-like equation, albeit
with some important differences:most importantly the carrying capacity is not constant
but depends on some of the state variables. A direct consequence of this is that the
wave for B is not monotonic but pulse like.

In order to achieve this dominance of the dynamics of B it was important to bound
the rate μ of conversion of ooze O to free bacteria B, which is a source term in the
equation for B. When μ is too large, it remains an open question whether travelling
waves still exist (though numerical simulations suggest that they do), but our The-
orem 3.6 states that any such travelling wave should still be faster than 2

√
D1r . In

that sense, our existence result provides a sufficient condition for the speed of the fire
blight disease to be equal to the smallest value possible, i.e. 2

√
D1r .

More precisely, the requirement thatμ is small enough so that (32) holds, is achieved
if

• the bacterial growth rate r is large enough
• the loss rate of spore viability γ is large enough
• the spore production rate α is small enough
• the infection rate M1 is small
• the infection threshold A1 is large
• the carrying capacity for B, expressed in terms of K and ε is small enough
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Fig. 5 Numerically observedwave speed c for various values of spore liberation rateμ. All other parameters
were kept at their values from Table 2. The value 2

√
D1r = 6.32 of the minimal wave speed is indicated by

the horizontal line. For these parameters Theorem 3.6 guarantees travelling wave solutions for μ < 0.0004

Fig. 6 Numerically observed wave speed c for varying blossom density N (left) and ooze removal rate
γ (right); the minimal wave speed 2

√
D1r = 6.32 is marked by the horizontal line; in these simulations

μ = 0.1, all other parameters are as in Table 2

or any appropriate combination of these factors.
For example, such travelling waves are guaranteed to form if the disease infection

process proceeds slowly, and if the blossom associated bacteria reproduce quickly
while having a low carrying capacity, i.e. if they are r -strategists, rather than K -
strategists.

Accordingly, a remedial strategymay be to focus on removing ooze (for theminimal
wave speed to equal 2

√
D1r ) and keeping the bacterial reproduction rate low (to

decrease the speed 2
√
D1r ).
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4.3 Additional observations from numerical simulations; conjectures and open
questions

Our main result in Theorem 3.6 is not optimal. It only gives sufficient conditions for a
travelling wave to form. Numerical observations suggest that these are not necessary.
This is for example also the case in the illustrative simulations that we showed above in
Fig. 4,which promptedus to carry out theTravellingWave analysis. That the conditions
are only sufficient stems partly from the fact that in the scenario that we studied the
dynamics of the Fisher equation for B, albeit with density dependent carrying capacity,
dominates the dynamics of the entire system. We conjecture, therefore, based on
our numerical simulations, that the travelling wave phenomenon occurs in a wider
parameter range, and at wave speeds that can be substantially larger than 2

√
D1r .

To substantiate this we conduct additional simulations, where we vary, one-at-a-time,
certain key parameters in the model.

As onemight expect, higher spore liberation ratesμ lead to higher flower associated
pathogen densities, which in turn increases the number of infected hosts, as shown in
the results in Fig. 5. Therefore, not only does the travelling wave move faster, but it
has also more pronounced peaks in B and I , if μ increases (data not shown).

From the perspective of pest management, one might expect that the density of
hosts N as well the spore decay rate γ are key parameters. We have investigated this in
simple simulationswhich are reported inFig. 6.Weobserve that increasing host density
accelerates the spread of the disease across the orchard (see Fig. 6.a). This observation
might in some sense confirm the results in (Iljon et al. 2012). Whereas in that paper
a spatially implicit model was studied that cannot predict the spatial spread rate, they
showed that a greater number of hosts can result in an orchard that is more susceptible
to fire blight infections. The notion that a greater host density increases the severity of
disease spread seems consistent with other disease models and has some experimental
evidence in ecology (Cunningham et al. 2021; Lafferty 2004). This finding would
suggest that, as growersmove towards higher-density plantings of susceptible cultivars,
fire blight control strategies will need to be improved considerably. Otherwise, wemay
see more frequent and severe epidemics of the blight.

On the other hand, increasing γ leads to slower wave speeds, see Fig. 6.b. The
parameter γ accounts for the natural loss of pathogen viability, but would also account
for other remedial strategies that are based on removing pathogens, for example
removal of limbs, or bacteriocidal antibiotics that target the pathogens encased in
ooze (bacteriocstatic antibiotics could be accounted for in the model by reducing
parameters α and r ).

These observations show that much more research on this model is required, both
concerning its analysis, as well as numerical exploration of possible remedial strate-
gies.

4.4 Travelling waves in plant disease propagation

Travellingwaves are an emergent property and behavior of spatio-temporal mathemat-
ical models. The length and time scales over which they form depend on the specifics
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of the disease and the habitat, and the interplay of pathogen propagation and disease
dynamics. Our simulations suggest that in our model this can emerge quickly and over
a relatively short distance. Of course, this is a consequence of the parameters we chose
for the simulations. There is not much quantitative information available, so there is
quite some uncertainty in the choice of some parameters, which we made as good as
we could, based on our understanding of the ecological processes and approximate
times and length scales (order of magnitude) for medium to large industrial orchards in
the range of several hundreds ofmeters. The fast emergence of the disease spreadwave
that we see in simulations agrees well with observations that fire blight can destroy an
orchard in a single season (Vanneste 2000; Van der Zwet et al. 2012). This is probably
not too surprising considering that the pathogens are transported by pollinators, which
cover the orchard within a timespan of days to a few weeks, and the fast bacterial
growth rates that one can expect in Spring, due to the warmer temperatures and the
humidity conditions as a consequence of morning dew arising from warmer days and
colder nights. In the context of plant agriculture, the fast emergence of such disease
propagation waves is not uncommon. For example, Minogue and Fry (1983) reports
fields data for the development of travelling waves of potato blight with approximately
constant speed within about 7 days in an experimental study conducted on field plots
that are only 36m in length, substantially smaller than the habitats we have in mind
for our model.

Travelling waves strictly speaking are solutions of a spatio-temporal model that
exist on an unbounded domain for all time. Plant agricultural systems (and ecological
and eco-epidemiological systemsmore generally) are always bounded and for the well
posedness of such models boundary conditions must be specified. These will destroy
the travelling wave properties (namely being solutions that propagate with constant
speed without changing shape), once the propagation wave reaches the domain bound-
ary. If such travelling wave solutions form quickly and over a relatively short distance,
as is the case here, their emergence gives important insight into the transient qualita-
tive behavior of the system modeled, which is often notoriously difficult to study, due
to a lack of generally applicable suitable analytical methods. From that persepctive,
the travelling wave analysis contributes to a better understanding of the initiation of a
disease epidemic in the model on the bounded domain, rather than shedding light on
longterm behavior of the disease on an unbounded domain.

In our work the travelling wave analysis, which is the centerpart and main result
of our study, was motivated and prompted by numerical simulations of the model on
a bounded domain. One prediction of our model is that the fire blight pathogen can
invade an orchard in the formof a travellingwave. There aremany reasonswhy itmight
be difficult to observe this phenomenon in nature. One is that mathematical models
that give rise to these emerging dynamic properties are idealised, assuming spatially
homogeneous habitats and that environmental conditons do not change over time. If
fire blight does in fact travel as such a wave, then it may be possible to empirically
determine a constant speed of spread and use this speed to predict where new infections
are likely to occur.
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4.5 Travelling waves in coupled ODE-PDE systems

Although ODE-PDE systems see less attention in the travelling wave literature than
strictly parabolic systems, there are a number of approaches that have been taken to
prove that such systems can admit travelling wave solutions. Although such PDE-
ODE couple systems can arise in many application areas, specifically those concerned
with multi-scale processes, specifically plant disease models are natural field in which
such models arise, because the hosts are stationary and the pathogens travel across the
domain. One such example is concerned with powdery mildew in a vineyard Burie
et al. (2006), in which paper travelling waves were numerically observed (but not
proved) and the minimum wave speed was determined, with a focus on asymptotic
behaviour of solutions.

In Li (2012), the author uses a compact integral operator to prove that travelling
wave solutions exist and they identify a minimum wave speed for the system. The
approach that we have taken here is very similar to theirs, except that their proof
required the system to be cooperative and ours did not. However, their approach led
to both sufficient and necessary conditions for which a travelling wave solution can
exist, whereas our proof led only to sufficient conditions.

Another approach to proving the existence of travellingwaves inODE-PDE systems
is to use phase-plane techniques and linearize the system about its steady states to prove
that one equilibrium is unstable while the other is stable. This is done, for example,
in Logan (2008), where travelling wave solutions are shown to exist in an ODE-PDE
system tomodel the spread of rabies in foxes. This same approach could not be applied
here, as our linearization led to multiple zero eigenvalues giving inconclusive results.
A similar approach in the higher dimensional case is to use shooting-methods as in
Dunbar (1983). This is a difficult approach to take in high dimensional systems like
ours, but it was successfully applied in Ai (2010) to a model with the same dimension
but milder nonlinearities in the reaction terms. In Logan (2001), several examples
are given for calculus based travelling waves analysis in PDE-ODE coupled systems
in the realm of subsurface reactive transport modeling. These methods may involve
first integrals, and require that the reaction terms in the PDE and ODE components
have suitable relationships that can be exploited for simplification; the latter is not the
situation in our case, which renders these methods ineffective. Instead, to prove the
existence of travelling wave solutions in our model, we used Schauder’s fixed point
theorem and the method of upper and lower solutions. The approach taken here is
identical to the ones in Ma (2001); Huang and Zou (2006); Shu et al. (2019); Shang
et al. (2016); Zhou et al. (2019): Define an integral mapping, show that a fixed point of
this mapping is a travelling wave solution, show that the mapping does indeed admit a
fixed point and that this solution has the desired asymptotic behaviour. The challenge
of using this method here was that, unlike the examples listed above, some of our
diffusion coefficients were zero. As a result, we had to define integral and differential
operators for the ODE components of the system that we had not previously seen in
the literature. We then showed that we could proceed with the travelling wave proof,
as in the examples above, in precisely the same way but with these new operators.
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Our travelling wave proof required the construction of upper and lower solutions
so that Schauder’s fixed point theorem could be applied. Unfortunately, our choices of
upper and lower solutions required a series of conditions onboth,model parameters and
thewave speed, to bemet.Our simulation results suggest strongly that these restrictions
are a product of our inability to find more suitable upper and lower solutions. Our
results are not optimal, in the sense that we were only able to find sufficient conditions
for travelling wave formation, but not necessary ones. Indeed in extensive numerical
simulations we showed that such traveling waves can be found for a much larger
range of parameters. It may be possible to find upper and lower solutions that do not
impose these restrictions. Alternatively, one can try and apply the approach used in
Ai (2010) to remove the conditions, or, one can start with lower solutions that do not
impose restrictions, take constant upper solutions and find a new way to prove that the
asymptotic behaviour is satisfied.

5 Conclusion

In this work we formulated a model to describe how the fire blight pathogen,
E.amylovora, moved amongst a host population of blossoms during bloom. After
listing the assumptions we made about the hosts, the pathogen and the vectors that
disperse the pathogen, we formulated a model consisting of two reaction-diffusion
partial differential equations and three ordinary differential equations. The two par-
tial differential equations describe the population dynamics and the dispersal of the
pathogen, whereas the ordinary differential equations describe the disease dynamics
of our stationary host population. The model led to the following predictions and
conclusions:

• In our model, fire blight can move through an orchard in the form of a travel-
ling wave, meaning that the pathogen population will invade the stationary host
population with a constant speed and shape. The speed at which the pathogen
invades the host population may be positively correlated with host density, the rate
at which ooze is transferred onto healthy flowers and the average amount of ooze
produced per infected individual. Where current fire blight control methods focus
on the pathogen population existing on open blossoms, new methods that focus
on controlling the production and dissemination of ooze may result in less fruit
loss to fire blight. Further, the shift towards planting higher density orchards may
result in mroe frequent and severe fire blight epidemics.

• Travelling wave solutions can be shown to exist in high-dimensional non-linear
ODE-PDE coupled systems through the application of Schauder’s fixed point the-
orem. We showed that by altering the differential operators and integral mapping
used in (Ma 2001;Wang andWang 2016) to incorporate ordinary differential equa-
tions, one could use Schauder’s fixed point theorem, together with the method of
upper and lower solutions, to prove that travelling wave solutions exist in reaction-
diffusion systems for which some of the diffusion coefficients are zero. Although
we found this method useful, the method of upper and lower solutions introduced a
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series of restrictions on both model parameters and the wave speed that we believe
to be sufficient and not necessary.

A Additional travelling wave simulations

The simulations of Travelling Wave formation in Fig. 4 were carried out with param-
eters that do not satisfy the sufficient conditions of the existence theorem in Section
3.2.5. This already illustrated that TWs actually can exist for a much larger parameter
range, as we have also further explored in Sections 3.2.5, 4.3. For the sake of com-
pleteness, we show here also a simulation with parameters satisfying the conditions
of Theorem 3.6. Vis-a-vis the default parameter values in Table 2, we reduced here the
flower density N , and increased the pathogen growth rate r and the infection thresh-
old A1 (in all cases within one order of magnitude). The complete parameter set is
given in Table 3, and the simulation results are shown in Fig. 7. In agreement with
the theoretical results, we again observe the initial transient formation of a travelling
wave, with a speed lower than in the previous case.

Table 3 Model parameters used in the illustrative simulations presented in Figures 7; most parameters
are as in Table 2, Figure 4; here we decreased planting density N , increased the threshold parameter for
disease acquisition A1 and the bacterial growth rate r . This parameter set satisfies the sufficient conditions
of Theorem 3.6

Parameter Symbol Value Units

Average number of flowers at each location. N 1 Flowers per meter.

Diffusion coefficient for pathogen dispersal by bees. D1 20 Meters2 per day.

Diffusion coefficient for ooze dispersal by non-bee vectors. D2 10 Meters2 per day.

E.amylovora carrying capacity of a living flower. K 106 CFUs per flower.

Carrying capacity of a completely dead flower population. ε 105 CFUs per meter.

Growth rate of floral pathogen population. r 1 Per day.

Ooze conversion rate. μ 0.5 Meter per flower per day.

Ooze decay rate. γ 1 Per day.

Ooze production rate. α 108 CFUs per flower per day.

Maximum infection rate. M1 1 Per day.

Maximum death rate. M2 1 Per day.

Threshold parameter for invasion of E.amylovora. A1 5 · 106 CFUs per meter.

Threshold parameter for the death of flowers. A2 1 Flowers per meter.

Hill function exponent for invasion function. n1 2 —

Hill function exponent for death-rate function. n2 2 —

123



   67 Page 44 of 47 M. Pupulin et al.

Fig. 7 An additional illustrative simulation to show the typical dynamics of the model (1)-(6) with (8), (9)
on the bounded domain with homeogenous Neumann boundary conditions. Shown are B, O, S, I at four
equally spaced time points t = 16, 17, 18, 19; the parameters used for this simulation are summarized in
Table 3. Not shown are the data for R, since R = N − S − I decouples from the system
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