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In silico biological discovery with large 
perturbation models
 

Djordje Miladinovic    1,5  , Tobias Höppe    1,2,5, Mathieu Chevalley1, 
Andreas Georgiou1, Lachlan Stuart    1, Arash Mehrjou1, Marcus Bantscheff    1, 
Bernhard Schölkopf    3,4 & Patrick Schwab    1 

Data generated in perturbation experiments link perturbations to the changes 
they elicit and therefore contain information relevant to numerous biological 
discovery tasks—from understanding the relationships between biological 
entities to developing therapeutics. However, these data encompass diverse 
perturbations and readouts, and the complex dependence of experimental 
outcomes on their biological context makes it challenging to integrate 
insights across experiments. Here we present the large perturbation model 
(LPM), a deep-learning model that integrates multiple, heterogeneous 
perturbation experiments by representing perturbation, readout and context 
as disentangled dimensions. LPM outperforms existing methods across 
multiple biological discovery tasks, including in predicting post-perturbation 
transcriptomes of unseen experiments, identifying shared molecular 
mechanisms of action between chemical and genetic perturbations, and 
facilitating the inference of gene–gene interaction networks. LPM learns 
meaningful joint representations of perturbations, readouts and contexts, 
enables the study of biological relationships in silico and could considerably 
accelerate the derivation of insights from pooled perturbation experiments.

Perturbation experiments play a central role in elucidating the under-
lying causal mechanisms that govern the behaviors of biological 
systems1–3. Controlled perturbation experiments measure changes 
in experimental readouts, such as the number of specific transcripts 
observed, resulting from introducing perturbations to biological sys-
tems, such as in vitro cell lines, compared with unperturbed references. 
Researchers use controlled perturbations in relevant biological model 
systems to establish causal relationships between molecular mecha-
nisms, genes, chemical compounds and disease phenotypes. This causal 
understanding of foundational biological relationships has the potential 
to positively impact numerous important societal goals4, including the 
production of climate-friendly foods and materials and the development 
of novel therapeutics that address unmet health needs.

The path to understanding complex biological systems and devel-
oping targeted therapeutics hinges on unraveling how cells respond 

to perturbations. High-throughput experiments have generated an 
unprecedented volume of perturbation data spanning thousands 
of perturbations across diverse readout modalities and biological 
contexts, from single-cell to in vivo settings5–9. However, these experi-
ments, while rich in indispensable information, vary dramatically 
in their protocols, readouts and model systems, often with minimal 
overlap. The vast scale and heterogeneity of this data, compounded 
by context-specific effects, make it extremely challenging to derive 
generalizable biological insights that drive scientific discovery. A core 
challenge in integrating evidence collected across heterogenous exper-
iments is that it is difficult to disentangle effects stemming from dif-
ferences in experimental context from those of the perturbation itself.

This fundamental challenge of extracting meaningful biologi-
cal insights from perturbation data has spurred the development of 
diverse computational approaches10–13. Most existing approaches focus 

Received: 14 July 2024

Accepted: 13 August 2025

Published online: xx xx xxxx

 Check for updates

1GSK plc, Zug, Switzerland. 2Helmholtz Munich, Tübingen, Germany. 3Max Planck Institute for Intelligent Systems, Tübingen, Germany.  
4ELLIS Institute, Tübingen, Germany. 5These authors contributed equally: Djordje Miladinovic, Tobias Höppe.  e-mail: djordjemethz@gmail.com; 
patrick.schwab@icloud.com

http://www.nature.com/natcomputsci
https://doi.org/10.1038/s43588-025-00870-1
http://orcid.org/0000-0002-4773-3573
http://orcid.org/0000-0001-9691-5034
http://orcid.org/0000-0002-8383-1103
http://orcid.org/0000-0002-8343-8977
http://orcid.org/0000-0002-8177-0925
http://orcid.org/0000-0002-2868-7794
http://crossmark.crossref.org/dialog/?doi=10.1038/s43588-025-00870-1&domain=pdf
mailto:djordjemethz@gmail.com
mailto:patrick.schwab@icloud.com


Nature Computational Science

Article https://doi.org/10.1038/s43588-025-00870-1

trast, LPM learns perturbation-response rules disentangled from 
the specifics of the context in which the readouts were observed.  
A limitation of this approach is the inability to predict perturbation 
effects for out-of-vocabulary contexts.

•	 Enhanced predictive accuracy across experimental settings. By 
leveraging its PRC-disentangled architecture and decoder-only 
design, LPM consistently achieves state-of-the-art predictive 
accuracy across experimental conditions.

When trained on a pool of experiments, we demonstrate 
experimentally that LPM achieves state-of-the-art performance in 
post-perturbation outcome prediction. In addition, LPM provides 
meaningful insights into the molecular mechanisms underlying pertur-
bations, readouts and contexts. LPM enables the study of drug–target 
interactions for chemical and genetic perturbations in a unified latent 
space, accurately associates genetic perturbations with functional 
mechanisms and facilitates the inference of causal gene-to-gene inter-
action networks. To demonstrate the potential of LPM for therapeutic 
discovery, we used a trained LPM to identify potential therapeutics for 
autosomal dominant polycystic kidney disease (ADPKD). Finally, we 
show that the superior performance of LPM compared with existing 
methods is driven by its ability to leverage perturbation data at scale, 
achieving significantly improved performance as more data become 
available for training.

Results
LPM is a deep-learning model that integrates information from pooled 
perturbation experiments (Fig. 1). We train LPM to predict the outcome 
of a perturbation experiment based on the symbolic representation of 
the perturbation, readout and context (the P,R,C tuple). LPM features 
a PRC-conditioned architecture that enables learning from heteroge-
neous perturbation experiments that do not necessarily fully over-
lap in the perturbation, readout or context dimensions. By explicitly 
conditioning on the representation of an experimental context, LPM 
learns perturbation-response rules disentangled from the specifics 
of the context in which the readouts were observed. LPM predicts 
unseen perturbation outcomes, and its information-rich generaliz-
able embeddings are directly applicable to various other biological 
discovery tasks (Fig. 1).

Predicting outcomes of unobserved perturbation experiments
We evaluated the performance of LPM in predicting gene expression for 
unseen perturbations against state-of-the-art baselines, including CPA19 
and GEARS15 (Fig. 2). We also included baseline models that combined 
a Catboost regressor36 with existing gene embeddings derived from 
biological databases (STRING37, Reactome38 and Gene2Vec39), single-cell 
foundation models based on pooled gene expression data not under 
perturbations (Geneformer31 and scGPT32) and natural language 
descriptions of genes processed through ChatGPT (GenePT34). For 
scGPT and Geneformer, we either fine-tuned the models according to 
their respective instructions or used their embeddings with a CatBoost 
model (indicated as ‘emb’). In addition, we included the ‘NoPerturb’ 
baseline15 that assumes that the perturbation does not induce a change 
in expression. Note that no other baseline model supports predicting 
outcomes of chemical perturbations and that GEARS, CPA and scGPT 
(following author instructions) require single-cell-resolved data.

To robustly evaluate the performance of LPM, we conducted a rep-
resentative array of experiments that covers (1) a range of experimental 
contexts, (2) different perturbation types (chemical and genetic) and 
(3) varying preprocessing strategies. Across all studied experimen-
tal settings, LPM consistently and significantly outperformed the 
state-of-the-art baselines, regardless of preprocessing methodology. 
Further data from Horlbeck et al.40, which included viability read-
outs for pairwise CRISPRi perturbations, are presented in the Sup-
plementary Information to demonstrate that LPM is effective even in 

specifically on predicting the effects of unobserved perturbations14–21. 
This addresses a fundamental limitation of experimental methods: 
it is physically impossible to perform all possible configurations of 
perturbation experiments owing to the effectively infinite number 
of potential experimental designs (considering the time of measure-
ment can be arbitrarily long, the number of experiments that may be 
conducted is already unbounded based on this dimension alone). 
For example, the graph-enhanced gene activation and repression 
simulator (GEARS)15 leverages gene representations based on domain 
knowledge22 to predict the effects of unseen genetic perturbations 
while also providing a means of identifying genetic interaction sub-
types. The compositional perturbation autoencoder (CPA)19 predicts 
the effects of unseen perturbation combinations, including drugs as 
perturbagens and their dosages. Beyond perturbation effect predic-
tion, some methods focus on other critical biological discovery tasks, 
such as estimating gene–gene relationships23, learning transferable cell 
representations24,25, modeling relationships among different types of 
readout26–28 or aiding experimental design29,30.

More recently, foundation models31–34 have emerged that are 
pretrained on large collections of transcriptomics data to address 
multiple biological discovery tasks through task-specific fine-tuning 
pipelines. These models, exemplified by Geneformer31 and scGPT32, 
use Transformer-based encoders35 to infer gene and cell representa-
tions from gene expression measurements. While their encoder-based 
approach offers a compelling advantage—the ability to make predic-
tions for previously unseen contexts by extracting contextual informa-
tion from gene expression profiles—it faces two substantial limitations. 
First, the low signal-to-noise ratio in high-throughput screens can 
pose a challenge to the encoder’s ability to extract reliable contextual 
information, which may result in limited prediction performance. 
Second, these models are primarily designed for transcriptomics data 
and are not inherently structured to accommodate diverse perturba-
tion experiments that use other perturbation and readout modalities, 
such as chemical perturbations or low-dimensional screens measuring 
cell viability.

To enable in silico biological discovery from a diverse pool of 
perturbation experiments, we demonstrate that heterogeneous experi-
mental data, regardless of perturbation type or readout modality, can 
be integrated into a large perturbation model (LPM) by represent-
ing perturbation, readout and context as disentangled dimensions. 
Similar to foundation models31,32, LPM is designed to support multiple 
biological discovery tasks, including perturbation effect prediction, 
molecular mechanism identification and gene interaction modeling. 
LPM is trained to predict outcomes of in-vocabulary combinations of 
perturbations, contexts and readouts. LPM introduces two architec-
tural innovations that support its primary goal of handling heteroge-
neity in perturbation data. First, LPM disentangles the dimensions 
of perturbation (P), readout (R) and context (C), representing each 
dimension as a separate conditioning variable. Second, LPM adopts 
a decoder-only architecture, meaning it does not explicitly encode 
observations or covariates. The PRC-disentangled, encoder-free LPM 
architecture introduces key advantages:

•	 Seamless integration of diverse perturbation data. By representing 
perturbation experiments as P–R–C dimensions, LPM effectively 
learns from heterogeneous experiment data across diverse read-
outs (for example, transcriptomics and viability), perturbations 
(CRISPR and chemical) and experimental contexts (single-cell 
and bulk) without loss of generality and regardless of dataset 
shape or format.

•	 Contextual representation without encoder constraints. 
Encoder-based models assume that all relevant contextual infor-
mation can be extracted from observations and covariates, which 
may be limiting due to high variability in measurement scales 
across contexts and a potentially low signal-to-noise ratio. By con-
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low-dimensional settings with nontranscriptomic readouts. For details 
on the datasets and their preprocessing, see the Methods.

Mapping a compound-CRISPR shared perturbation space
To evaluate the ability of LPM to support the generation of insights 
across different types of perturbation, we trained an instance of LPM 
using all available data from Library of Integrated Network-Based Cel-
lular Signatures (LINCS) experiments7 involving both genetic and phar-
macological perturbations across a total of 25 experimental contexts 
with unique combinations of cellular contexts and perturbation types. 
LPM integrates genetic and pharmacological perturbations within the 
same latent space, enabling the study of drug–target interactions. 
When studying t-distributed stochastic neighbor embeddings (t-SNE)41 
of the perturbation embedding space learned by the LPM, we found 
that pharmacological inhibitors of molecular targets are consistently 
clustered in close proximity to genetic CRISPR interventions that target 
the same genes (Fig. 3a). For example, genetic perturbations targeting 
MTOR and compounds inhibiting MTOR and also genetic perturbations 
targeting genes from the same pathway, for example PSMB1 and PSMB2, 
or HDAC2 and HDAC3, were clustered closely together. Qualitatively, we 
found that anomalous compounds that were placed distant from their 
putative target had been reported to have off-target activity (Fig. 3b), 
such as benfluorex (withdrawn due to cardiovascular side effects42) 
and pravastatin (shown to elicit expression changes with low correla-
tion to other statins43). Intriguingly, we found that pravastatin moved 
toward nonsteroidal anti-inflammatory drugs that target gene PTGS1 
in the perturbation space (Fig. 3a), indicating a potential additional 
anti-inflammatory mechanism of pravastatin. We found that this move-
ment independently derived by LPM is indeed substantiated by clinical 
and preclinical observations that ascribe anti-inflammatory effects to 
pravastatin44–46. To further quantitatively validate these findings, we 
systematically compared known inhibitors of a genetic target with the 
genetic perturbation in embedding space as a reference. We evaluated 
the neighborhood of the reference in various embedding spaces and 

found that perturbation embeddings derived from LPM achieve con-
siderably higher recall of known inhibitors of genetic targets compared 
with embeddings derived from post-perturbation L1000 transcriptome 
profiles or dimensionality reduced versions thereof (Fig. 3c).

Learned embeddings reflect known biological relationships
To evaluate the degree to which LPM perturbation embeddings corre-
spond to known biological functions, we extracted perturbation embed-
dings for well-characterized perturbations from an LPM trained on pooled 
single-cell perturbation data9 and compared genetic perturbations with 
gene function annotations as curated by Replogle et al.9 using the com-
prehensive resource of mammalian protein complexes (CORUM)47 and 
search tool for recurring instances of neighbouring genes (STRING)37 
databases. We found that LPM implicitly organizes perturbations accord-
ing to their molecular functions (Fig. 4a) and that these embeddings are 
significantly (P ≤ 0.01) more predictive of gene function annotations 
than existing state-of-the-art gene perturbation embeddings (Fig. 4b), 
including those derived from curated databases such as STRING37 and 
Reactome38, derived from co-expression datasets in Gene2Vec39 and 
derived from the single-cell unperturbed gene expression foundation 
models Geneformer31 and scGPT32 and gene embeddings based on natural 
language descriptions processed through ChatGPT (GenePT34).

To qualitatively assess the information contained within context 
representations of LPM, we used the LPM model trained on combined 
LINCS data from the perturbation embedding experiment above to 
generate context embeddings. We found that—depending on the t-SNE 
random seeds used—either cell types tend to cluster together with 
matching cell types from other experiments (Fig. 4c), or the context 
embeddings tend to cluster based on the perturbation methodology 
(CRISPR versus compound screens; not depicted). The qualitative 
results imply that the information contained within the learned context 
embeddings carries information regarding biological semantics and 
could thus be valuable in downstream analyses, such as for quantifying 
the similarity of contexts.

LPM
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Perturbation
experiments

Model query:

P: STAT1 CRISPRi

R: gene expression of PSMA1

C: LINCS protocol using A549 cells

C

P R

Pooling

What molecular
mechanisms is a
compound acting on?

What molecular
functions is a gene
associated with?  

What would be the
outcome of unperformed
experiments?

What gene–gene
interactions exist for
unseen perturbations?

?(P,R,C) Y = ? MTOR 
CRISPRi
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P embedding

Nucleotide
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Perturbation (P) embedding

Readout (R) embedding

Context (C) embedding
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Fig. 1 | Addressing biological discovery tasks with LPM. Top left: perturbation 
experiments originating from different studies (green, orange and purple 
indicate separate experiments) are pooled together. Each experiment is placed in 
the space spanned by perturbations (P), readouts (R) and experimental contexts 
(C), where multiple experiments generally only partially overlap in the three-
dimensional (P,R,C) space. Central icon: a LPM is trained on pooled perturbation 
data and can be queried with the symbolic representation of perturbation, 

readout and context of experiments of interest to generate embeddings and 
predict outcomes even for configurations that were not observed during 
training. Top right: trained LPM can be queried to predict experiment outcome 
given symbolic representations of P, R and C (blue). Bottom: LPM embeddings 
and predictions carry rich information for a range of biological discovery tasks 
using transfer learning.
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In silico discovery of candidate therapies for ADPKD
We hypothesized that the ability of LPM to conduct perturbation experi-
ments in silico with high accuracy while reflecting underlying biological 
function could be used to discover potential candidate therapeutics 
for diseases with known genetic causes, such as ADPKD. ADPKD is a 
genetic disease suspected to be caused by mutations in PKD148 that are 
reported to lead to a lack of functional PKD1—eventually manifesting in 
dose-dependent cystogenesis49–52. ADPKD affects more than 12 million 
people worldwide53 and may lead to severe long-term complications, 
such as end-stage renal disease (ESRD) and the dependence on dialysis 
or a kidney transplant. There are no curative treatments available for 
ADPKD. A potential hypothesis for a therapeutic could be to upregulate 
expression of the functional allele of PKD1 in heterozygous carriers of 
PKD1 mutations to make up for the nonfunctional allele and thereby 
reach a sufficient level of functional PKD1 that may inhibit further 
progression of ADPKD. To identify potential therapeutics that could 
increase PKD1 expression in individuals with ADPKD, we conducted 
an in silico perturbation experiment using an LPM trained on pooled 
LINCS compound and genetic perturbation data to predict which 
clinical-stage drugs may lead to upregulation in PKD1 levels in HA1E 
embryonic kidney cells cultured under the LINCS L1000 protocol54. 
We found that triptolide, simvastatin and other statins were among the 
top clinical-stage drugs predicted to cause increased PKD1 expression 
in vitro (Fig. 5a). Our findings align well with previous literature, where 

effects of commercially available statins were shown to increase the 
expression of PKD1 in pancreatic cancer cell line MiaPaCa-255. We note 
that Huang et al.56 found no significant change in PKD1 expression 
in mice exposed to atorvastatin. As simvastatin is a Food and Drug 
Administration (FDA)-approved medicine that is prescribed preventa-
tively for cardiovascular indications, we conducted a retrospective, 
matched cohort study57,58 using a non-linear propensity score esti-
mator59 to validate the in silico hypothesis that simvastatin may lead 
to reduction in ESRD progression in real-world clinical data from the 
Optum deidentified Electronic Health Record database. Notably, we 
found that—among individuals diagnosed with ADPKD60—exposure 
to simvastatin over 1 year or longer was associated with a significant 
decrease (5-year relative risk 0.86, P = 0.0405, and 10-year relative 
risk 0.74, P = 0.0003) in progression to ESRD61 compared with those 
not exposed to any statins predicted by LPM to increase expression of 
PKD1 (Fig. 5b). Several of the therapeutics predicted to increase PKD1 
are substantiated by literature; for example, pravastatin was shown 
to be associated with improved kidney markers in a clinical study in 
young individuals62, and triptolide led to a reduction of cystogenesis in 
murine models63,64. PKD1 was neither measured nor perturbed in LINCS, 
the 5,310 chemical perturbations were not all tested in HA1E cells, and 
the in silico LPM experiments were therefore essential to enable this 
study. We note that these findings should not be considered definitive 
and that further research is required to validate and support them.
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Fig. 2 | Performance in predicting post-perturbation gene expression. The 
performance of LPM was compared against state-of-the-art baselines across a 
variety of experimental settings, contexts and for different perturbation types. 
a, A comparison of methods for post-perturbation expression prediction using z-
normalized data including all readouts comparing Pearson correlation (y axis) on 
held-out test data from eight experimental contexts (x axis) including single-cell 
(Replogle et al.9), bulk (LINCS7), genetic (CRISPRi and CRISPR-KO) and chemical 
compound interventions. b,c, In addition, we performed a comparison methods 
for post-perturbation expression prediction that replicates the preprocessing 
methodology from Roohani et al.15 and Cui et al.32. In this comparison, we 
calculated the Pearson correlation between true and predicted changes in 

log-normalized expression (control versus perturbed) measured on held-out 
test data for all genes (b) and on the subset of the top 20 differentially expressed 
transcripts (c) (y axis). Norman et al.76 include both single and multiperturbation 
data. Embedding (‘emb’ in parentheses) next to a baseline indicates that we used 
embeddings that were fine-tuned using Catboost. For baselines without this 
indication, we used author instructions for generating the post-perturbation 
expression predictions. Not all methods are suitable for all settings that LPM 
operates on and are therefore not included in all comparisons. Asterisks indicate 
statistical significance (one-sided Mann–Whitney, *P ≤ 0.05). Dots on top of bars 
represent random seeds.

http://www.nature.com/natcomputsci


Nature Computational Science

Article https://doi.org/10.1038/s43588-025-00870-1

Facilitating inference of causal gene–gene relationships
To assess to what degree the accuracy of the predictions of LPM translate 
to capturing mechanistic interactions between genes, we used LPM in 
the context of causal inference of gene interaction networks. Normally, 
these networks are inferred from perturbation experiments in which 
only a subset of all genes were perturbed. By contrast, we measured 
the enhancement in performance when those networks were inferred 
from the same experimental data enriched with missing, unmeasured 
CRISPRi perturbations predicted in silico using LPM. In particular, to 
perform network inference, we applied corresponding methods that 
demonstrated best-in-class performance on the recent CausalBench 
challenge23,65 and were designed specifically for inferring gene–gene 
networks from perturbational single-cell RNA sequencing data. We 
found that augmenting the original data with in silico perturbation 
outcomes, before applying network inference using above-mentioned 
methods, leads to a significant improvement in terms of false omission 
rate (FOR) in comparison with existing state-of-the-art methods for 

gene–gene network inference that do not have access to perturba-
tion imputation (Fig. 6). These results underscore the utility of LPM in 
supporting the inference of more comprehensive and accurate causal 
interactions tailored to a given experimental context and the ability of 
LPM to learn generalizable, causal interactions between perturbations.

LPM performance improves with more training data
In contrast to data-rich domains such as natural language processing, 
where scaling of model performance with additional data has been 
studied experimentally66,67, it is not yet clear to what degree in silico 
biological discovery can benefit from the availability of additional 
data across both contexts and perturbations for pooling. Establishing 
data scaling patterns in biology has historically been more difficult 
than in predominantly digital domains such as natural language pro-
cessing and computer vision because biological perturbation data 
can often not be naively aggregated owing to the intricate connection 
between experimental context, data processing methodologies and 
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additionally annotated in a: benfluorex (withdrawn for cardiovascular side 
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additional anti-inflammatory effects44–46). c, The RMSE-based distance between 
perturbation embeddings for CRISPR perturbations was used to measure the 
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batch effects68,69. To elucidate the potential performance benefits of 
additional data for LPM, we computationally evaluated the prediction 
performance in terms of Pearson correlation coefficient ρ for predict-
ing unseen perturbations when varying the number of datasets cover-
ing multiple contexts and perturbations in a single context available 
for model training (Extended Data Fig. 1). The performance of LPM 
significantly (P ≤ 0.05) improves both when more datasets covering 
multiple contexts and when more perturbations in a single context 
are available for training.

Discussion
LPM demonstrates that integrative learning across heterogeneous 
perturbation screens can deliver accurate, in silico estimates of 
perturbation-, readout- and context-specific experimental outcomes. 
We found that the use of LPM—either independently or in combination 
with a causal network inference algorithm—significantly outperforms 
existing state-of-the-art methods, providing an experimental proof of 
concept for the potential to accelerate biological discovery with com-
putationally generated evidence. The ability to generate unobserved 
experimental data for critical biological questions, such as what the 
estimated effects of unseen perturbations would be, could accelerate 
the generation of insights and complement experimentally gener-
ated data—particularly in settings that are difficult, time-intensive or 
resource-intensive to study in real-world laboratory experiments. Nota-
bly, we found that LPM implicitly learns rich latent space embeddings 

for perturbations, readouts and experimental contexts as is required 
to achieve their explicit training objective to predict yet unseen experi-
mental outcomes. The rich latent space embeddings of LPM enables a 
range of downstream biological discovery tasks (only a subset of the 
potential use cases are investigated in this study), which demonstrates 
the versatility and multitask capability of LPM that captures underlying 
mechanistic relationships in data.

LPM still faces important limitations. First, the training data used 
in our study are publicly available and sufficiently standardized; how-
ever, non-immortalized cell lines, rare cell types, primary tissues and 
patient-derived samples remain underrepresented. Second, the model 
can interpolate and handle symbols within its training vocabulary 
but cannot yet extrapolate to unseen symbols—for instance, novel 
cell types or perturbations—unless suitable pretrained embeddings 
are explicitly supplied. Nevertheless, recent trends indicate that in 
the near future, as perturbational experimental data becomes more 
abundant, the experimental space will be sufficiently covered, render-
ing in-vocabulary approaches sufficient for most tasks. Third, hidden 
batch effects, inconsistent preprocessing and incomplete metadata 
can still erode performance, as in other large-scale biological models. 
Fourth, the ADPKD case study is retrospective and therefore vulner-
able to unobserved confounders; mechanistic conclusions will remain 
provisional until prospective validation. As a further limitation, we con-
sidered only a single genetically validated marker in our ADPKD study 
but therapeutic candidates must be optimized with regard to multiple 
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Fig. 4 | Biological relationships captured in LPM embeddings. a, LPM 
perturbation (P) embeddings (t-SNE embedded in two-dimensional (2D) space). 
Each point represents a CRISPRi perturbation color-coded by the molecular 
function of its respective genetic target from ref. 9. b, Performance of LPM 
perturbation (P) embeddings compared with existing state-of-the-art gene 
embeddings derived from large-scale genetic screens and public pathway and 
interaction databases in predicting gene function annotations from ref. 9 (P value 
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criteria, including safety, pharmacokinetics and pharmacodynamics. 
It is important to note that further clinical validation is needed to con-
clusively establish causality for the predictions of LPM in the context 
of ADPKD. Finally, we would like to emphasize that gene network infer-
ence is a distinct and complex field of research70, and future studies will 
need to explore additional datasets and benchmarks to further validate 

findings in this area. Our study, however, is focused on demonstrating 
the potency of high-quality perturbation-effect predictors, such as 
LPM, to complement existing network inference methods.

Several experimental directions could address these gaps, includ-
ing prospective perturbation screens in primary and patient-derived 
cells to test whether LPM maintains accuracy outside immortalized 
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lines and under different dosages71. Applying LPM to data derived from 
clinical settings could present valuable opportunities to identify novel 
therapies or patient cohorts that are likely to respond to specific treat-
ments, thus advancing the field of personalized medicine. By leveraging 
these datasets, LPM could help to pinpoint biomarkers of response 
(for example, clinical covariates) and further optimize therapeutic 
strategies for patients based on their unique molecular profiles. In gen-
eral, if curated and standardized perturbation data continue to grow, 
parameter-scaling results suggests that larger LPM variants could yield 
proportional gains in predictive accuracy and mechanistic resolution. 
Systematic efforts to reduce batch effects and harmonize metadata 
will be as important as algorithmic advances in realizing that potential.

Methods
Problem formulation
We consider every experimental system subject to a perturbation (rep-
resented symbolically) for which we observe a readout. For example, an 
experiment could be conducted in a single-cell in vitro system in which 
transcript counts are measured after CRISPRi targeting a specific gene. 
A biological model system is considered to be a black box, and no prior 
knowledge is assumed about the internal mechanism that gives rise to 
observed readouts.

The totality of the experimental context, including model system 
under study and the experimental protocol used, is represented by the 
variable C ∈ 𝒞𝒞 and is referred to as the context of the experiment. The 
context C is a symbolic description of the system itself and implicitly 
represents all the covariates that constitute the experimental condi-
tions, for example, biological context details such as cell type, genetic 
background and incubation protocols. We consider a perturbation to 
be any input to the system that is not already included in the context, 
including a chemical compound, a gene knockout or a disease that has 
perturbed the system are examples of perturbations. Let P ∈ 𝒫𝒫 be the 
vector that describes a perturbation. Similar to the context C, P is a 
symbolic representation of the perturbation. For instance, CRISPRi_
STAT1 would symbolically represent CRISPR interference of gene STAT1. 
In addition, multiperturbations that are symbolically represented as, 
for example, CRISPRi_STAT1+CRISPRa_FOXF1 (CRISPR interference of 
gene STAT1 coupled with CRISPR-mediated transcriptional activation 
of FOXF1), are modeled as a function of corresponding embeddings. In 
the experiments in this Article, we used the embedding average. The 
symbolic description of the measurements observed in the system that 
is under perturbation is represented by a readout R ∈ 𝒫, where 𝒫 is a 
set of symbols that correspond to all possible discrete values that rep-
resent observed readouts. For example, R can represent the gene expres-
sion of the gene PSMA1, denoted as Transcript_PSMA1. The concrete 
measurement taken in context C after perturbation P using readout R 
is represented by Y ∈ 𝒴𝒴 ⊆ ℝ. It is notable that the experimental observa-
tion Y is distinct from the readout R in that R symbolically describes the 
type of measurement taken, whereas Y is a concrete instance of that 
measurement in the experimental context C under perturbation P.

Let O = (P, R, C, Y) be the stack of aforementioned random variables 
and ℐ = {1, 2,…} be the index set of all possible potential observed sam-
ples. Therefore, the index i ∈ ℐ  refers to one potential observation 
O(i) = (P(i), R(i), C(i), Y(i)). Let 𝒟𝒟obs = {O(1),O(2),… ,O(nobs)} be the set of obser-
vations that has nobs data points and ℐobs ⊆ ℐ  be the set of associated 
indices. It is clear that Y is not independent from P, R and C. We want to 
learn the causal model q(Y∣do(P = p), R, C). Here, q is the probability 
distribution of the outcome Y in a biological system within the context 
C when the perturbation p is applied and the readout R is observed. We 
would like to leverage the structural dependence between these vari-
ables to estimate q from ℐobs so it can predict the outcome of unob-
served (perturbation, readout and context) combinations indexed by 
j ∈ ℐunobs = ℐ\ℐobs. Mathematically, we want to estimate

q(Y|P,R,C, ℐobs) (1)

for any combination (P,R,C) ∈ 𝒫𝒫 𝒫 𝒫 𝒫 𝒞𝒞 . This is possible only if the 
spaces 𝒫𝒫, 𝒫 and 𝒞𝒞 have some structure that allows the concept of dis-
tance to be defined. For example, for a system with context C(j), predict-
ing the effect of perturbation P(j) on readout R(j) is possible if the 
outcome of a similar perturbation on a similar readout is already 
observed for a system within a similar context. Clearly, discussing 
similarities requires the relevant spaces to possess some structure in 
which a distance metric can be defined. As (P, R, C) are in essence dis-
crete symbolic values, it is necessary to first transform them into more 
tractable spaces that we call embedding spaces. Let ZP ∈ 𝒵𝒵P ⊆ ℝdZP , 
ZR ∈ 𝒵𝒵R ⊆ ℝdZR and ZC ∈ 𝒵𝒵C ⊆ ℝdZC be the random variables that represent 
the embeddings of P, R and C, respectively. The transformation maps 
ϕp ∶ 𝒫𝒫 𝒫 𝒵𝒵P  ϕr ∶ 𝒫 𝒫 𝒵𝒵R and ϕc ∶ 𝒞𝒞 𝒫 𝒵𝒵C  that induce such structure in 
the embedding spaces are learned from ℐobs. In other words, the infor-
mation of the observed data is learned in ϕp(⋅), ϕr(⋅) and ϕc(⋅) functions. 
This means that, for any unseen (P, R, C) tuples, their corresponding 
embeddings ZP, ZR and ZC implicitly contain some information from 
ℐobs. This is indeed the reason that enables knowledge transfer to 
unseen perturbations, readouts and contexts. With the learned embed-
ding space, equation (1) can be written as

qemb(Y|ZP,ZR,ZC, ℐobs), (2)

where the subscript ‘emb’ emphasizes that the map is defined from the 
embedding spaces instead of the original spaces. Due to the learned 
structure in the embedding spaces, it is expected that qemb(⋅) be more 
accessible to learn than q(⋅).

Model architecture
Building on the problem formulation described in the ‘Problem for-
mulation’ section, we designed the architecture of LPM as shown in 
Extended Data Fig. 2a. Because P, R and C are discrete random vari-
ables, it is simple to implement the corresponding embeddings ZP, 
ZR and ZC using symbol vocabularies and learnable look-up tables 
(Extended Data Fig. 2b). Symbol vocabularies map symbols to indices, 
while look-up tables map indices to learnable weights that we treat 
as embeddings. This model can nevertheless be trivially generalized 
to include more complex perturbations or context descriptions; for 
example, multiple perturbations can be implemented as a sum of 
individual perturbations15,19. The prediction network is a neural net-
work that is learned end-to-end together with the embeddings, by 
backpropagating the error using the Adam optimizer72. We found the 
multilayer perceptron architecture with ReLU activation functions, 
implemented on top of concatenated embeddings, to work satisfac-
torily (Extended Data Fig. 1c). We note that an extensive architecture 
search was not performed and further architecture tuning could poten-
tially further improve results.

The key property of our model that enables scaling training across 
heterogeneous high-throughput perturbation screens (Fig. 1) is its 
conditioning on the readout R. To clarify why this simple trick is effec-
tive, consider an alternative description of the causal model equation 
(1) that does not condition on the R, that is, q′(Y|P,C, ℐobs) (ref. 73). In this 
case, Y ∈ 𝒴𝒴 ⊆ ℝdy  is a vector (not a scalar) whose dimension dy is the 
number of readouts. The challenge is that de facto each perturbation 
screen has its own subset of phenotypic readouts. Even when the same 
modality—such as the transcriptome—is measured in two datasets, 
they often capture different subsets of that modality. The problem 
exacerbates if different modalities are used for training (for instance, 
proteome along with transcriptome), or if a large number of datasets 
is included in the training process. Related previous works alleviate 
this issue by selecting only readouts that appear in all considered 
perturbation experiments. However, this approach is clearly subopti-
mal because it discards relevant information. Moreover, it becomes 
impractical when scaling to many datasets, because the size of the 
overlapping feature set shrinks as the number of datasets increases. 
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Moreover, certain experimental measurement technologies, such as 
DRUG-seq74, may contain missing values. LPM is designed to be robust 
to missing readouts as well.

Data sources
The datasets used for benchmarking include single-cell and bulk data, 
genetic (CRISPRi, CRISPR activation (CRISPRa) and CRISPR-knockout 
(CRISPR-KO)) and chemical compound perturbations, and single- 
and multiperturbation settings. The full overview of all used data is 
presented in the Supplementary Information. Single-perturbation 
single-cell data contain two experimental contexts from ref. 9 : Replogle 
et al. (K562) and Replogle et al. (RPE1). The data are based on transcrip-
tome measurements generated after DepMap essential genes75 have 
been perturbed using CRISPRi Perturb-seq technology. The data were 
sequenced in chronic myeloid leukemia (K562) and retinal pigment 
epithelial (RPE1) cell lines, respectively. In the single-cell space, we also 
used multiperturbation experiments of type CRISPRa from Norman 
et al.76, which were performed also on K562 cells using Perturb-seq. For 
bulk data, we used the expanded Connectivity Map Lincs 2020 screens 
(https://clue.io)7, on both pharmacological and CRISPR-KO perturba-
tions. A total of 26 biological contexts from LINCS studies based on bulk 
data were used, encompassing different cell and perturbation types. We 
discarded LINCS contexts that had too few perturbations (<300), for 
simplicity, as they did not make a difference in our analysis. To further 
simplify the analysis, we used only the most commonly appearing drug 
doses (10 μM) and observation times (24 h).

Data preprocessing
We used two preprocessing approaches to test robustness and per-
form a fair comparison against competing methods. In our first set of 
experiments, for single-cell data from ref. 9, we used the z-normalized 
version of the datasets, as recommended and provided by the authors. 
For single-perturbation single-cell data, z normalization was performed 
per gemgroup (batch). Single-guide RNAs that target the same gene 
were aggregated to represent a single perturbation. We removed cells 
containing multiple knockdowns to simplify the evaluation, focusing 
exclusively on predicting unobserved perturbations rather than combi-
nations of observed perturbations. For bulk data, we used the preproc-
essed data that included quality control as provided by Subramanian 
et al.7 (level 5, phase II data). We kept only 978 experimentally measured 
readouts and dropped inferred gene expressions. In our second set of 
experiments, we used data from both single-perturbation experiments 
Replogle et al. (K562) and Replogle et al. (RPE1), as well as multipertur-
bation experiments from Norman et al.76 processed as described in ref. 
15 (log-transformed and filtered to 5,000 highly variable genes). This 
preprocessing strategy is arguably the most established in the literature 
for evaluating perturbation models.

Benchmarking
As a part of our benchmarking, we compared LPM against six baselines: 
(1) CPA19, (2) GEARS15, (3) CatBoost36 combined with precomputed 
gene embeddings from STRING37, Reactome38 and Gene2Vec39, (4) 
Geneformer31, (5) scGPT32 and (6) GenePT34. Geneformer and scGPT 
were either fine-tuned according to the authors’ instructions or used as 
frozen embedding generators (suffix ‘emb’). The NoPerturb baseline15 
was included as a perturbation-agnostic control. For performance 
benchmarks (Fig. 2), we used cross-validation and held out a single 
experimental context as the target context for each fold. Within the 
target context, test and validation data were randomly held out (strati-
fied by perturbation) and excluded from training, while the remaining 
target context data and all data from nontarget contexts were used to 
train LPM (experimental details provided in the Supplementary Infor-
mation). For GEARS and Catboost-based models, only data from the 
target context were used because including additional contexts did not 
benefit those methods. For CPA, due to architectural constraints, we 

could only include single-cell data from the same experimental studies 
(that is, all Replogle data). For each target context, we trained models 
for different random seeds to quantify uncertainty. The remaining 
details of our experiments are given in the Supplementary Information. 
They include hyperparameter selection, learning details, baselines 
and metrics used, and details related to specific downstream tasks.

Statistics and reproducibility
No statistical method was used to predetermine sample size. The 
experiments were not randomized. Data collection and analysis were 
not performed blind to the conditions of the experiments. Source code 
is available in the code repository77.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Perturbation data used in this study are from publicly available sources, 
including Norman et al.76 (GSE133344), Replogle et al.9 (Figshare), 
Horlbeck et al.40 (GSE116198) and Subramanian et al.7 (https://clue.io/). 
The Optum deidentified Electronic Health Record database used to 
validate in silico findings in real-world data is available for accredited 
researchers from Optum, but third-party restrictions apply to the avail-
ability of these data. The data were used under license for this study 
with restrictions that do not allow the data to be redistributed or made 
publicly available. Data access to the Optum deidentified Electronic 
Health Record database may require a data sharing agreement and 
may incur data access fees. Source data are provided with this paper.

Code availability
Source code is available via GitHub at https://github.com/perturblib/
perturblib and via Zenodo at https://doi.org/10.5281/zenodo.15671137 
(ref. 77).
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Extended Data Fig. 1 | Performance of LPM as a function of training data 
availability. Performance comparison in terms of Pearson correlation coefficient 
ρ in predicting the outcomes of unseen experiments of LPM when varying a.  
the number of perturbations available for training in a target context and  
b. the number of different contexts available for training. Dots correspond to 
individual runs with a different random seed, and the blue line corresponds 

to the inferred trend (the average value with SD depicted in shaded blue). The 
dashed grey line denotes the performance of the ‘NoPerturb’ baseline, which 
does not take perturbation information into account. The performance of LPM 
is significantly increased (* = p ≤0.05, ** = p ≤0.01; one-sided Mann-Whitney test) 
when more perturbations and more contexts are available.

http://www.nature.com/natcomputsci


Nature Computational Science

Article https://doi.org/10.1038/s43588-025-00870-1

Extended Data Fig. 2 | Model architecture. a. Graphical model shows the 
dependencies between random variables previously described in Section 
4.1. Dashed lines indicate implicit bi-directional dependencies that enable 
transfer learning across datasets. Symbolic perturbation, readout, and context 
descriptors (P,R,C) are first embedded (ZP, ZR, ZC), then used to generate output 

Y that represents the value of the readout R. b. Embeddings are implemented as 
learnable look-up tables. P, R, and C identify indices in the corresponding tables. 
c. Concatenated embeddings are forward propagated through a multilayer 
perceptron to predict the output Y
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