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Datagenerated in perturbation experiments link perturbations to the changes

they elicit and therefore contain information relevant to numerous biological
discovery tasks—from understanding the relationships between biological
entities to developing therapeutics. However, these dataencompass diverse
perturbations and readouts, and the complex dependence of experimental
outcomes on their biological context makes it challenging to integrate
insights across experiments. Here we present the large perturbation model
(LPM), adeep-learning model that integrates multiple, heterogeneous
perturbation experiments by representing perturbation, readout and context
as disentangled dimensions. LPM outperforms existing methods across
multiple biological discovery tasks, including in predicting post-perturbation
transcriptomes of unseen experiments, identifying shared molecular
mechanisms of action between chemical and genetic perturbations, and
facilitating the inference of gene-gene interaction networks. LPM learns
meaningful joint representations of perturbations, readouts and contexts,
enables the study of biological relationships in silico and could considerably
accelerate the derivation of insights from pooled perturbation experiments.

Perturbation experiments play a central role in elucidating the under-
lying causal mechanisms that govern the behaviors of biological
systems' . Controlled perturbation experiments measure changes
in experimental readouts, such as the number of specific transcripts
observed, resulting from introducing perturbations to biological sys-
tems, suchasinvitro cell lines, compared with unperturbed references.
Researchers use controlled perturbationsinrelevant biological model
systems to establish causal relationships between molecular mecha-
nisms, genes, chemical compounds and disease phenotypes. This causal
understanding of foundational biological relationships has the potential
to positively impact numerous important societal goals*, including the
production of climate-friendly foods and materials and the development
of novel therapeutics that address unmet health needs.

The path tounderstanding complex biological systems and devel-
oping targeted therapeutics hinges on unraveling how cells respond

to perturbations. High-throughput experiments have generated an
unprecedented volume of perturbation data spanning thousands
of perturbations across diverse readout modalities and biological
contexts, fromsingle-cell to in vivo settings®°. However, these experi-
ments, while rich in indispensable information, vary dramatically
in their protocols, readouts and model systems, often with minimal
overlap. The vast scale and heterogeneity of this data, compounded
by context-specific effects, make it extremely challenging to derive
generalizable biological insights that drive scientific discovery. A core
challengeinintegrating evidence collected across heterogenous exper-
iments is that it is difficult to disentangle effects stemming from dif-
ferencesin experimental context from those of the perturbationitself.

This fundamental challenge of extracting meaningful biologi-
cal insights from perturbation data has spurred the development of
diverse computational approaches'® ™. Most existing approachesfocus
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specifically on predicting the effects of unobserved perturbations™ ',

This addresses a fundamental limitation of experimental methods:
itis physically impossible to perform all possible configurations of
perturbation experiments owing to the effectively infinite number
of potential experimental designs (considering the time of measure-
ment can be arbitrarily long, the number of experiments that may be
conducted is already unbounded based on this dimension alone).
For example, the graph-enhanced gene activation and repression
simulator (GEARS)" leverages gene representations based on domain
knowledge® to predict the effects of unseen genetic perturbations
while also providing a means of identifying genetic interaction sub-
types. The compositional perturbation autoencoder (CPA)" predicts
the effects of unseen perturbation combinations, including drugs as
perturbagens and their dosages. Beyond perturbation effect predic-
tion, some methods focus on other critical biological discovery tasks,
such as estimating gene-gene relationships®, learning transferable cell
representations**?, modeling relationships among different types of
readout®* or aiding experimental design®>*°,

More recently, foundation models*** have emerged that are
pretrained on large collections of transcriptomics data to address
multiple biological discovery tasks through task-specific fine-tuning
pipelines. These models, exemplified by Geneformer® and scGPT*,
use Transformer-based encoders® to infer gene and cell representa-
tions from gene expression measurements. While their encoder-based
approach offers a compelling advantage—the ability to make predic-
tions for previously unseen contexts by extracting contextual informa-
tion from gene expression profiles—it faces two substantial limitations.
First, the low signal-to-noise ratio in high-throughput screens can
pose achallenge to the encoder’s ability to extract reliable contextual
information, which may result in limited prediction performance.
Second, these models are primarily designed for transcriptomics data
and are not inherently structured to accommodate diverse perturba-
tionexperiments that use other perturbation and readout modalities,
such as chemical perturbations or low-dimensional screens measuring
cell viability.

To enable in silico biological discovery from a diverse pool of
perturbation experiments, we demonstrate that heterogeneous experi-
mental data, regardless of perturbation type or readout modality, can
be integrated into a large perturbation model (LPM) by represent-
ing perturbation, readout and context as disentangled dimensions.
Similar to foundation models®*?, LPM s designed to support multiple
biological discovery tasks, including perturbation effect prediction,
molecular mechanismidentification and gene interaction modeling.
LPMis trained to predict outcomes of in-vocabulary combinations of
perturbations, contexts and readouts. LPM introduces two architec-
tural innovations that support its primary goal of handling heteroge-
neity in perturbation data. First, LPM disentangles the dimensions
of perturbation (P), readout (R) and context (C), representing each
dimension as a separate conditioning variable. Second, LPM adopts
adecoder-only architecture, meaning it does not explicitly encode
observations or covariates. The PRC-disentangled, encoder-free LPM
architecture introduces key advantages:

 Seamlessintegration of diverse perturbation data. By representing
perturbation experiments as P-R-C dimensions, LPM effectively
learns from heterogeneous experiment dataacross diverse read-
outs (for example, transcriptomics and viability), perturbations
(CRISPR and chemical) and experimental contexts (single-cell
and bulk) without loss of generality and regardless of dataset
shape or format.

« Contextual representation without encoder constraints.
Encoder-based models assume that all relevant contextual infor-
mation canbe extracted from observations and covariates, which
may be limiting due to high variability in measurement scales
across contexts and a potentially low signal-to-noise ratio. By con-

trast, LPMlearns perturbation-response rules disentangled from
the specifics of the context in which the readouts were observed.
Alimitation of this approachis theinability to predict perturbation
effects for out-of-vocabulary contexts.

« Enhanced predictive accuracy across experimental settings. By
leveraging its PRC-disentangled architecture and decoder-only
design, LPM consistently achieves state-of-the-art predictive
accuracy across experimental conditions.

When trained on a pool of experiments, we demonstrate
experimentally that LPM achieves state-of-the-art performance in
post-perturbation outcome prediction. In addition, LPM provides
meaningfulinsights into the molecular mechanisms underlying pertur-
bations, readouts and contexts. LPM enables the study of drug-target
interactions for chemical and genetic perturbationsina unified latent
space, accurately associates genetic perturbations with functional
mechanisms and facilitates the inference of causal gene-to-geneinter-
action networks. Todemonstrate the potential of LPM for therapeutic
discovery, weused atrained LPM to identify potential therapeutics for
autosomal dominant polycystic kidney disease (ADPKD). Finally, we
show that the superior performance of LPM compared with existing
methods is driven by its ability to leverage perturbation data at scale,
achieving significantly improved performance as more databecome
available for training.

Results

LPMis a deep-learning model that integrates information from pooled
perturbation experiments (Fig.1). We train LPM to predict the outcome
ofaperturbation experiment based on the symbolic representation of
the perturbation, readout and context (the P,R,Ctuple). LPM features
aPRC-conditioned architecture that enables learning from heteroge-
neous perturbation experiments that do not necessarily fully over-
lap in the perturbation, readout or context dimensions. By explicitly
conditioning on the representation of an experimental context, LPM
learns perturbation-response rules disentangled from the specifics
of the context in which the readouts were observed. LPM predicts
unseen perturbation outcomes, and its information-rich generaliz-
able embeddings are directly applicable to various other biological
discovery tasks (Fig.1).

Predicting outcomes of unobserved perturbation experiments
We evaluated the performance of LPMin predicting gene expression for
unseen perturbations against state-of-the-art baselines, including CPA”
and GEARS® (Fig.2). We also included baseline models that combined
a Catboost regressor*® with existing gene embeddings derived from
biological databases (STRING”, Reactome® and Gene2Vec*), single-cell
foundation models based on pooled gene expression data not under
perturbations (Geneformer® and scGPT*) and natural language
descriptions of genes processed through ChatGPT (GenePT**). For
scGPT and Geneformer, we either fine-tuned the models according to
their respective instructions or used theirembeddings with a CatBoost
model (indicated as ‘emb’). In addition, we included the ‘NoPerturb’
baseline” that assumes that the perturbation does notinduce a change
inexpression. Note that no other baseline model supports predicting
outcomes of chemical perturbations and that GEARS, CPA and scGPT
(following author instructions) require single-cell-resolved data.
Torobustly evaluate the performance of LPM, we conducted arep-
resentative array of experiments that covers (1) arange of experimental
contexts, (2) different perturbation types (chemical and genetic) and
(3) varying preprocessing strategies. Across all studied experimen-
tal settings, LPM consistently and significantly outperformed the
state-of-the-art baselines, regardless of preprocessing methodology.
Further data from Horlbeck et al.*°, which included viability read-
outs for pairwise CRISPRi perturbations, are presented in the Sup-
plementary Information to demonstrate that LPM is effective evenin
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Fig.1| Addressing biological discovery tasks with LPM. Top left: perturbation
experiments originating from different studies (green, orange and purple
indicate separate experiments) are pooled together. Each experiment is placed in
the space spanned by perturbations (P), readouts (R) and experimental contexts
(C), where multiple experiments generally only partially overlap in the three-
dimensional (P,R,C) space. Central icon: aLPM is trained on pooled perturbation
dataand can be queried with the symbolic representation of perturbation,
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readout and context of experiments of interest to generate embeddings and
predict outcomes even for configurations that were not observed during
training. Top right: trained LPM can be queried to predict experiment outcome
given symbolic representations of P, Rand C (blue). Bottom: LPM embeddings
and predictions carry rich information for arange of biological discovery tasks
using transfer learning.

low-dimensional settings with nontranscriptomicreadouts. For details
onthe datasets and their preprocessing, see the Methods.

Mapping a compound-CRISPR shared perturbation space

To evaluate the ability of LPM to support the generation of insights
across different types of perturbation, we trained an instance of LPM
using all available data from Library of Integrated Network-Based Cel-
lular Signatures (LINCS) experiments’ involving both genetic and phar-
macological perturbations across a total of 25 experimental contexts
with unique combinations of cellular contexts and perturbation types.
LPMintegrates genetic and pharmacological perturbations within the
same latent space, enabling the study of drug-target interactions.
When studying t-distributed stochastic neighbor embeddings (t-SNE)*
of the perturbation embedding space learned by the LPM, we found
that pharmacological inhibitors of molecular targets are consistently
clusteredin close proximity to genetic CRISPR interventions that target
the same genes (Fig. 3a). For example, genetic perturbations targeting
MTOR and compounds inhibiting MTOR and also genetic perturbations
targeting genes from the same pathway, for example PSMBI and PSMB2,
or HDAC2 and HDAC3, were clustered closely together. Qualitatively, we
found thatanomalous compounds that were placed distant from their
putative target had been reported to have off-target activity (Fig. 3b),
such as benfluorex (withdrawn due to cardiovascular side effects*’)
and pravastatin (shown to elicit expression changes with low correla-
tion to other statins*). Intriguingly, we found that pravastatin moved
toward nonsteroidal anti-inflammatory drugs that target gene PTGS1
in the perturbation space (Fig. 3a), indicating a potential additional
anti-inflammatory mechanism of pravastatin. We found that this move-
mentindependently derived by LPMisindeed substantiated by clinical
and preclinical observations that ascribe anti-inflammatory effects to
pravastatin** "¢, To further quantitatively validate these findings, we
systematically compared known inhibitors of a genetic target with the
genetic perturbationinembedding space asareference. We evaluated
the neighborhood of the reference in various embedding spaces and

found that perturbation embeddings derived from LPM achieve con-
siderably higher recall of knowninhibitors of genetic targets compared
withembeddings derived from post-perturbation L1000 transcriptome
profiles or dimensionality reduced versions thereof (Fig. 3c).

Learned embeddings reflect known biological relationships

To evaluate the degree to which LPM perturbation embeddings corre-
spondto known biological functions, we extracted perturbationembed-
dingsforwell-characterized perturbations froman LPMtrained on pooled
single-cell perturbation data’ and compared genetic perturbations with
gene function annotations as curated by Replogle et al.” using the com-
prehensive resource of mammalian protein complexes (CORUM)* and
search tool for recurring instances of neighbouring genes (STRING)*”
databases. We found that LPMimplicitly organizes perturbations accord-
ingtotheir molecular functions (Fig. 4a) and that these embeddings are
significantly (P < 0.01) more predictive of gene function annotations
than existing state-of-the-art gene perturbation embeddings (Fig. 4b),
including those derived from curated databases such as STRING” and
Reactome®®, derived from co-expression datasets in Gene2Vec* and
derived from the single-cell unperturbed gene expression foundation
models Geneformer® and scGPT*?and gene embeddings based on natural
language descriptions processed through ChatGPT (GenePT**).

To qualitatively assess the information contained within context
representations of LPM, we used the LPM model trained on combined
LINCS data from the perturbation embedding experiment above to
generate context embeddings. We found that—depending on the t-SNE
random seeds used—either cell types tend to cluster together with
matching cell types from other experiments (Fig. 4c), or the context
embeddings tend to cluster based on the perturbation methodology
(CRISPR versus compound screens; not depicted). The qualitative
resultsimply that theinformation contained within the learned context
embeddings carries information regarding biological semantics and
could thusbe valuablein downstreamanalyses, such as for quantifying
the similarity of contexts.
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Fig. 2| Performance in predicting post-perturbation gene expression. The
performance of LPM was compared against state-of-the-art baselines across a
variety of experimental settings, contexts and for different perturbation types.
a, A comparison of methods for post-perturbation expression prediction using z-
normalized dataincluding all readouts comparing Pearson correlation (y axis) on
held-out test data from eight experimental contexts (x axis) including single-cell
(Replogle etal.’), bulk (LINCS’), genetic (CRISPRi and CRISPR-KO) and chemical
compound interventions. b,c, Inaddition, we performed a comparison methods
for post-perturbation expression prediction that replicates the preprocessing
methodology from Roohani et al.”* and Cui etal.”. In this comparison, we
calculated the Pearson correlation between true and predicted changes in
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Insilico discovery of candidate therapies for ADPKD

We hypothesized that the ability of LPM to conduct perturbation experi-
mentsinsilico with highaccuracy while reflecting underlying biological
function could be used to discover potential candidate therapeutics
for diseases with known genetic causes, such as ADPKD. ADPKD is a
genetic disease suspected to be caused by mutations in PKDI*® that are
reportedtoleadtoalackof functional PKDI—eventually manifestingin
dose-dependent cystogenesis**~>. ADPKD affects more than12 million
people worldwide®® and may lead to severe long-term complications,
such as end-stage renal disease (ESRD) and the dependence on dialysis
or akidney transplant. There are no curative treatments available for
ADPKD. A potential hypothesis for atherapeutic could be to upregulate
expression of the functional allele of PKD1 in heterozygous carriers of
PKDI mutations to make up for the nonfunctional allele and thereby
reach a sufficient level of functional PKD1 that may inhibit further
progression of ADPKD. To identify potential therapeutics that could
increase PKDI expression in individuals with ADPKD, we conducted
aninsilico perturbation experiment using an LPM trained on pooled
LINCS compound and genetic perturbation data to predict which
clinical-stage drugs may lead to upregulation in PKDI levels in HAIE
embryonic kidney cells cultured under the LINCS L1000 protocol*.
We found that triptolide, simvastatin and other statins were among the
top clinical-stage drugs predicted to cause increased PKDI expression
invitro (Fig. 5a). Our findings align well with previous literature, where

effects of commercially available statins were shown to increase the
expression of PKDI in pancreatic cancer cellline MiaPaCa-2%. We note
that Huang et al.> found no significant change in PKDI expression
in mice exposed to atorvastatin. As simvastatin is a Food and Drug
Administration (FDA)-approved medicine thatis prescribed preventa-
tively for cardiovascular indications, we conducted a retrospective,
matched cohort study*”*® using a non-linear propensity score esti-
mator*’ to validate the in silico hypothesis that simvastatin may lead
to reduction in ESRD progression in real-world clinical data from the
Optum deidentified Electronic Health Record database. Notably, we
found that—among individuals diagnosed with ADPKD®°—exposure
to simvastatin over 1 year or longer was associated with a significant
decrease (5-year relative risk 0.86, P= 0.0405, and 10-year relative
risk 0.74, P=0.0003) in progression to ESRD® compared with those
notexposed to any statins predicted by LPM to increase expression of
PKDI (Fig. 5b). Several of the therapeutics predicted to increase PKD1
are substantiated by literature; for example, pravastatin was shown
to be associated with improved kidney markers in a clinical study in
youngindividuals®? and triptolideled to a reduction of cystogenesis in
murine models®***, PKDIwas neither measured nor perturbed in LINCS,
the 5,310 chemical perturbations were not all tested in HA1E cells, and
the in silico LPM experiments were therefore essential to enable this
study. We note that these findings should not be considered definitive
and that further researchis required to validate and support them.
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Fig. 3 | Learning compound-CRISPR perturbation representations. a, The
latent space of compound and CRISPR knockouts (reduced to two-dimensions
via t-SNE) reflects known groupings of compound and genetic perturbations
that target the same molecular mechanisms in bulk LINCS L1000 data from
ref. 7. Genes targeted by corresponding CRISPR and compound inhibitors are
color-coded in matching colors. b, Root mean squared error (RMSE) distances
of known HMGCR inhibitors (statins) to the corresponding CRISPR-HMGCR
perturbation in the embedding space of the LPM. Two bottom outliers are

Number of nearest neighbors considered

additionally annotated in a: benfluorex (withdrawn for cardiovascular side
effects*?) and pravastatin (shown to have low correlation to other statins”*and
additional anti-inflammatory effects**~*°). ¢, The RMSE-based distance between
perturbation embeddings for CRISPR perturbations was used to measure the
recall of known inhibitors of the respective genetic target, for different numbers
of nearest neighbors. We compared LPM embeddings with those derived

from post-perturbation L1000 transcriptome profiles. Bars represent the 95%
confidence intervals across genetic targets (N = 89).

Facilitating inference of causal gene-gene relationships

Toassesstowhatdegree theaccuracy of the predictions of LPM translate
to capturing mechanisticinteractions betweengenes, we used LPMin
the context of causal inference of gene interaction networks. Normally,
these networks are inferred from perturbation experiments in which
only a subset of all genes were perturbed. By contrast, we measured
the enhancementin performance when those networks were inferred
fromthe same experimental dataenriched with missing, unmeasured
CRISPRi perturbations predicted in silico using LPM. In particular, to
perform network inference, we applied corresponding methods that
demonstrated best-in-class performance on the recent CausalBench
challenge®* and were designed specifically for inferring gene-gene
networks from perturbational single-cell RNA sequencing data. We
found that augmenting the original data with in silico perturbation
outcomes, before applying network inference using above-mentioned
methods, leads to asignificantimprovementin terms of false omission
rate (FOR) in comparison with existing state-of-the-art methods for

gene-gene network inference that do not have access to perturba-
tionimputation (Fig. 6). These results underscore the utility of LPMin
supporting the inference of more comprehensive and accurate causal
interactions tailored to agiven experimental context and the ability of
LPMtolearngeneralizable, causal interactions between perturbations.

LPM performance improves with more training data

In contrast to data-rich domains such as natural language processing,
where scaling of model performance with additional data has been
studied experimentally®®®, it is not yet clear to what degree in silico
biological discovery can benefit from the availability of additional
dataacross both contexts and perturbations for pooling. Establishing
data scaling patterns in biology has historically been more difficult
than in predominantly digital domains such as natural language pro-
cessing and computer vision because biological perturbation data
canoftennot be naively aggregated owing to theintricate connection
between experimental context, data processing methodologies and
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Fig. 4 |Biological relationships captured in LPM embeddings. a, LPM
perturbation (P) embeddings (t-SNE embedded in two-dimensional (2D) space).
Each point represents a CRISPRi perturbation color-coded by the molecular
function of its respective genetic target fromref. 9. b, Performance of LPM
perturbation (P) embeddings compared with existing state-of-the-art gene
embeddings derived from large-scale genetic screens and public pathway and
interaction databases in predicting gene function annotations fromref. 9 (Pvalue

calculated via one-sided Mann-Whitney test). Dots on the top of bars represent
replicates across N = 5random seeds. ¢, LPM context (C) embeddings (2D t-SNE
representation) quantify similarity between experimental contexts. Intriguingly,
we found that contexts are grouped with respect to the model system under
study (shown in the figure) or by type of perturbation (not shown), depending on
the t-SNE random seed used.

batch effects®®®. To elucidate the potential performance benefits of
additional datafor LPM, we computationally evaluated the prediction
performancein terms of Pearson correlation coefficient p for predict-
ingunseen perturbations when varying the number of datasets cover-
ing multiple contexts and perturbations in a single context available
for model training (Extended Data Fig. 1). The performance of LPM
significantly (P < 0.05) improves both when more datasets covering
multiple contexts and when more perturbations in a single context
are available for training.

Discussion

LPM demonstrates that integrative learning across heterogeneous
perturbation screens can deliver accurate, in silico estimates of
perturbation-, readout- and context-specific experimental outcomes.
We found that the use of LPM—eitherindependently orin combination
with a causal network inference algorithm—significantly outperforms
existing state-of-the-art methods, providing an experimental proof of
concept for the potential to accelerate biological discovery with com-
putationally generated evidence. The ability to generate unobserved
experimental data for critical biological questions, such as what the
estimated effects of unseen perturbations would be, could accelerate
the generation of insights and complement experimentally gener-
ated data—particularly in settings that are difficult, time-intensive or
resource-intensive to study inreal-world laboratory experiments. Nota-
bly, we found that LPM implicitly learns rich latent space embeddings

for perturbations, readouts and experimental contexts as is required
toachieve their explicit training objective to predict yet unseen experi-
mental outcomes. Therich latent space embeddings of LPM enables a
range of downstream biological discovery tasks (only a subset of the
potential use cases areinvestigated in this study), whichdemonstrates
the versatility and multitask capability of LPM that captures underlying
mechanistic relationships in data.

LPMstill facesimportant limitations. First, the training data used
inour study are publicly available and sufficiently standardized; how-
ever, non-immortalized cell lines, rare cell types, primary tissues and
patient-derived samples remain underrepresented. Second, the model
can interpolate and handle symbols within its training vocabulary
but cannot yet extrapolate to unseen symbols—for instance, novel
cell types or perturbations—unless suitable pretrained embeddings
are explicitly supplied. Nevertheless, recent trends indicate that in
the near future, as perturbational experimental data becomes more
abundant, the experimental space will be sufficiently covered, render-
ingin-vocabulary approaches sufficient for most tasks. Third, hidden
batch effects, inconsistent preprocessing and incomplete metadata
canstill erode performance, asin other large-scale biological models.
Fourth, the ADPKD case study is retrospective and therefore vulner-
able to unobserved confounders; mechanistic conclusions will remain
provisional until prospective validation. As afurther limitation, we con-
sidered only asingle genetically validated marker in our ADPKD study
but therapeutic candidates must be optimized with regard to multiple
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Fig. 5|Insilico discovery of potential therapeutics for ADPKD. a, Using LPM,
we conducted aninsilico perturbation study in which we identified clinical-
stage drugs that are predicted to upregulate PKD1in embryonic kidney cells.

Alack of functional copies of PKD1 is hypothesized to be causally involved in
ADPKD pathogenesis and progression*’~*'. We found that triptolide, simvastatin
(bold) and other statins, are the top predicted upregulators of PKDI among
clinical-stage drugs. For reference, we also include the predicted CRISPRi on
vasopressin receptor 2 (AVPR2) to simulate the effect of the FDA-approved
AVPR2 antagonist tolvaptan’®®° that is mechanistically distinct®-**. Bars
represent model predictions in the form of zscores. b, Because simvastatin is

2 4 6 8 10 12 14
Time (years since exposure)
1,337 1,035 657 300 108 27 4
50 219 515 831 1,003 1,074 1,096
207 340 422 463 483 493 494
1,161 840 526 310 134 38 4
222 404 623 789 932 1,014 1,045
2n 350 445 495 528 542 545

commonly prescribed for cardiovascular indications, we were able to conduct
aretrospective cohort study in large-scale electronic health records to further
substantiate the potential efficacy of simvastatin in reducing ADPKD progression
in the clinic. Most notably, we found that—among individuals diagnosed with
ADPKD—1year or longer exposure to simvastatin (blue) is associated with a
significant (P < 0.05, 5-year relative risk (RR) of 0.86 and 10-year RR of 0.74)
reductionin progression to ESRD compared with those not exposed to statins
(red). The 95% confidence intervals were estimated using the Nelson-Aalen
estimator®®,
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Fig. 6 | Improved gene-gene network inference with LPM. a, We used LPM to
predict post-perturbation transcriptomes for unseen perturbations, completing
apartially observed experimental space where only half (orange area) of

the possible CRISPRi perturbations across the genome were experimentally
observed. We hypothesized that access to the computationally completed
dataset (blue plus orange area) may enable the state-of-the-art Guanlab® gene
network inference method to more accurately infer the gene-gene interactions

NoPerturb + Guanlab
Mean difference (top 1k)

Mean difference (top 5k)

for genes not experimentally perturbed. b, We found that the combination

of LPMimputation and the Guanlab method (LPM+Guanlab) significantly
outperformed existing methods for gene-gene network inference using the
partially observed dataset alone in terms of FOR in agene network inference
benchmark? using single-cell data from Replogle et al.’. Dots on top of bars
represent replicates across N =11 random seeds (P values calculated using one-
sided Mann-Whitney-Wilcoxon).

criteria, including safety, pharmacokinetics and pharmacodynamics.
Itisimportant to note that further clinical validation is needed to con-
clusively establish causality for the predictions of LPM in the context
of ADPKD. Finally, we would like to emphasize that gene network infer-
enceisadistinct and complex field of research’, and future studies will
need to explore additional datasets and benchmarksto further validate

findingsinthis area. Our study, however, is focused on demonstrating
the potency of high-quality perturbation-effect predictors, such as
LPM, to complement existing network inference methods.

Several experimental directions could address these gaps, includ-
ing prospective perturbation screens in primary and patient-derived
cells to test whether LPM maintains accuracy outside immortalized
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linesand under different dosages”. Applying LPM to data derived from
clinical settings could present valuable opportunities to identify novel
therapies or patient cohorts that are likely to respond to specific treat-
ments, thusadvancingthefield of personalized medicine. By leveraging
these datasets, LPM could help to pinpoint biomarkers of response
(for example, clinical covariates) and further optimize therapeutic
strategies for patients based on their unique molecular profiles. In gen-
eral, if curated and standardized perturbation data continue to grow,
parameter-scaling results suggests that larger LPM variants could yield
proportional gainsin predictive accuracy and mechanistic resolution.
Systematic efforts to reduce batch effects and harmonize metadata
will be asimportantas algorithmic advancesin realizing that potential.

Methods

Problem formulation

We consider every experimental system subject to a perturbation (rep-
resented symbolically) for which we observe areadout. For example, an
experiment could be conductedinasingle-cellinvitro systeminwhich
transcript counts are measured after CRISPRi targeting a specific gene.
Abiological model systemis considered to be ablack box, and no prior
knowledge is assumed about the internal mechanism that givesrise to
observedreadouts.

Thetotality of the experimental context, including model system
under study and the experimental protocol used, is represented by the
variable C e ¢ and is referred to as the context of the experiment. The
context Cis a symbolic description of the system itself and implicitly
represents all the covariates that constitute the experimental condi-
tions, for example, biological context details such as cell type, genetic
background and incubation protocols. We consider a perturbation to
be any input to the system that is not already included in the context,
including a chemical compound, agene knockout or adisease that has
perturbed the system are examples of perturbations. Let P € > be the
vector that describes a perturbation. Similar to the context C, Pis a
symbolic representation of the perturbation. For instance, CRISPRi_
STAT1would symbolically represent CRISPRinterference of gene STAT1.
In addition, multiperturbations that are symbolically represented as,
for example, CRISPRi_STAT1+CRISPRa_FOXF1 (CRISPR interference of
gene STATI coupled with CRISPR-mediated transcriptional activation
of FOXFI),are modeled as afunction of corresponding embeddings. In
the experiments in this Article, we used the embedding average. The
symbolic description of the measurements observed inthe systemthat
is under perturbation is represented by areadout R € ®, where Risa
set of symbols that correspond to all possible discrete values that rep-
resentobserved readouts. Forexample, R canrepresent the gene expres-
sion of the gene PSMA1, denoted as Transcript_ PSMAL. The concrete
measurement taken in context C after perturbation P using readout R
isrepresentedby Y € ¥ C R.Itis notable that the experimental observa-
tion Yisdistinct fromthereadout Rin that R symbolically describesthe
type of measurement taken, whereas Y'is a concrete instance of that
measurement in the experimental context Cunder perturbation P.

LetO=(P,R,C,Y)bethestack of aforementioned random variables
and 7 = {1,2,...}betheindexset of all possible potential observed sam-
ples. Therefore, the index i € 7 refers to one potential observation
09=(P? RO, CO, YD) Let Dy = {0W, 0, ..., 0t} be the set of obser-
vations that has n,,, data points and J,,; C J be the set of associated
indices. Itis clear that Yis notindependent from P,Rand C. We want to
learn the causal model g(Y|do(P=p), R, C). Here, g is the probability
distribution of the outcome Yin abiological system within the context
Cwhenthe perturbation pisapplied and the readout Ris observed. We
would like to leverage the structural dependence between these vari-
ables to estimate g from 7, so it can predict the outcome of unob-
served (perturbation, readout and context) combinationsindexed by
J € Tunobs = T\Iops- Mathematically, we want to estimate

q(1P,R, C, Jobs) @

for any combination (P,R,C) € ? x ® x €. This is possible only if the
spaces 2, ® and ¢ have some structure that allows the concept of dis-
tance tobe defined. For example, for a system with context C?, predict-
ing the effect of perturbation P¥ on readout R? is possible if the
outcome of a similar perturbation on a similar readout is already
observed for a system within a similar context. Clearly, discussing
similarities requires the relevant spaces to possess some structure in
which a distance metric can be defined. As (P, R, C) are in essence dis-
crete symbolic values, itis necessary tofirst transform theminto more
tractable spaces that we call embedding spaces. Let Z, € 2, C R%,
Zy € 2z C R%and Z; € 2¢ C R%bethe random variables that represent
the embeddings of P, R and C, respectively. The transformation maps
¢p P> 2p, 1 R— 2pand ¢, : ¢ > Zcthatinduce such structurein
the embedding spaces are learned from 7. Inother words, the infor-
mation of the observed dataislearnedin¢,(-), ¢,(-) and ¢ (-) functions.
This means that, for any unseen (P, R, C) tuples, their corresponding
embeddings Z,, Z, and Z.implicitly contain some information from
Jops- This is indeed the reason that enables knowledge transfer to
unseen perturbations, readouts and contexts. With the learned embed-
ding space, equation (1) can be written as

qemb(HZP)ZR’ZC’ jobs)’ 2)

where the subscript ‘emb’emphasizes that the mapis defined from the
embedding spaces instead of the original spaces. Due to the learned
structure in the embedding spaces, it is expected that g..,(-) be more
accessibletolearnthan g(-).

Model architecture

Building on the problem formulation described in the ‘Problem for-
mulation’ section, we designed the architecture of LPM as shown in
Extended Data Fig. 2a. Because P, R and C are discrete random vari-
ables, it is simple to implement the corresponding embeddings Z,,
Z and Z- using symbol vocabularies and learnable look-up tables
(Extended DataFig.2b). Symbol vocabularies map symbols toindices,
while look-up tables map indices to learnable weights that we treat
as embeddings. This model can nevertheless be trivially generalized
to include more complex perturbations or context descriptions; for
example, multiple perturbations can be implemented as a sum of
individual perturbations™. The prediction network is a neural net-
work that is learned end-to-end together with the embeddings, by
backpropagating the error using the Adam optimizer’. We found the
multilayer perceptron architecture with ReLU activation functions,
implemented on top of concatenated embeddings, to work satisfac-
torily (Extended Data Fig. 1c). We note that an extensive architecture
search was not performed and further architecture tuning could poten-
tially further improve results.

Thekey property of our model that enables scaling training across
heterogeneous high-throughput perturbation screens (Fig. 1) is its
conditioning on the readout R. To clarify why this simple trick is effec-
tive, consider analternative description of the causal model equation
(1) that does not condition onthe R, thatis, g'(Y|P, C, Ips) (ref. 73). In this
case, ¥ € ¥ ¢ R% is a vector (not a scalar) whose dimension d, is the
number of readouts. The challenge is that de facto each perturbation
screen has its own subset of phenotypic readouts. Even when the same
modality—such as the transcriptome—is measured in two datasets,
they often capture different subsets of that modality. The problem
exacerbatesif different modalities are used for training (for instance,
proteome along with transcriptome), or if alarge number of datasets
isincluded in the training process. Related previous works alleviate
this issue by selecting only readouts that appear in all considered
perturbation experiments. However, this approachis clearly subopti-
mal because it discards relevant information. Moreover, it becomes
impractical when scaling to many datasets, because the size of the
overlapping feature set shrinks as the number of datasets increases.
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Moreover, certain experimental measurement technologies, such as
DRUG-seq’*, may contain missing values. LPMis designed to be robust
to missing readouts as well.

Data sources

The datasets used for benchmarkinginclude single-celland bulk data,
genetic (CRISPRi, CRISPR activation (CRISPRa) and CRISPR-knockout
(CRISPR-KO)) and chemical compound perturbations, and single-
and multiperturbation settings. The full overview of all used data is
presented in the Supplementary Information. Single-perturbation
single-cell data contain two experimental contexts fromref. 9 : Replogle
etal. (K562) and Replogle et al. (RPE1). The dataare based on transcrip-
tome measurements generated after DepMap essential genes” have
been perturbed using CRISPRi Perturb-seq technology. The data were
sequenced in chronic myeloid leukemia (K562) and retinal pigment
epithelial (RPE1) celllines, respectively. In the single-cell space, we also
used multiperturbation experiments of type CRISPRa from Norman
etal.”’, which were performed also on K562 cells using Perturb-seq. For
bulk data, we used the expanded Connectivity Map Lincs 2020 screens
(https://clue.io)’, on both pharmacological and CRISPR-KO perturba-
tions. A total of 26 biological contexts from LINCS studies based on bulk
datawere used, encompassing different celland perturbationtypes. We
discarded LINCS contexts that had too few perturbations (<300), for
simplicity, as they did not make a difference in our analysis. To further
simplify the analysis, we used only the most commonly appearing drug
doses (10 uM) and observation times (24 h).

Data preprocessing

We used two preprocessing approaches to test robustness and per-
form afair comparison against competing methods. In our first set of
experiments, for single-cell datafromref. 9, we used the z-normalized
version of the datasets, asrecommended and provided by the authors.
Forsingle-perturbation single-cell data, znormalization was performed
per gemgroup (batch). Single-guide RNAs that target the same gene
were aggregated torepresent a single perturbation. We removed cells
containing multiple knockdowns to simplify the evaluation, focusing
exclusively onpredicting unobserved perturbations rather than combi-
nations of observed perturbations. For bulk data, we used the preproc-
essed data that included quality control as provided by Subramanian
etal.’ (level 5, phase Il data). We kept only 978 experimentally measured
readouts and dropped inferred gene expressions. In our second set of
experiments, we used datafromboth single-perturbation experiments
Replogleetal. (K562) and Replogle et al. (RPE1), as well as multipertur-
bation experiments from Norman et al.” processed as described in ref.
15 (log-transformed and filtered to 5,000 highly variable genes). This
preprocessing strategy is arguably the most established inthe literature
for evaluating perturbation models.

Benchmarking

Asapartofour benchmarking, we compared LPM against six baselines:
(1) CPA”, (2) GEARSY, (3) CatBoost** combined with precomputed
gene embeddings from STRING”, Reactome®® and Gene2Vec®, (4)
Geneformer™, (5) scGPT* and (6) GenePT**. Geneformer and scGPT
were either fine-tuned according to the authors’instructions or used as
frozen embedding generators (suffix ‘emb’). The NoPerturb baseline®
was included as a perturbation-agnostic control. For performance
benchmarks (Fig. 2), we used cross-validation and held out a single
experimental context as the target context for each fold. Within the
target context, test and validation datawererandomly held out (strati-
fied by perturbation) and excluded from training, while the remaining
target context data and all data from nontarget contexts were used to
train LPM (experimental details provided in the Supplementary Infor-
mation). For GEARS and Catboost-based models, only data from the
target context were used because including additional contexts did not
benefit those methods. For CPA, due to architectural constraints, we

could onlyinclude single-cell data from the same experimental studies
(thatis, all Replogle data). For each target context, we trained models
for different random seeds to quantify uncertainty. The remaining
details of our experiments are giveninthe Supplementary Information.
They include hyperparameter selection, learning details, baselines
and metrics used, and details related to specific downstream tasks.

Statistics and reproducibility

No statistical method was used to predetermine sample size. The
experiments were not randomized. Data collection and analysis were
not performed blind to the conditions of the experiments. Source code
is available in the code repository””.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Perturbation data used inthis study are from publicly available sources,
including Norman et al.”® (GSE133344), Replogle et al.’ (Figshare),
Horlbeck etal.*® (GSE116198) and Subramanian et al.’ (https://clue.io/).
The Optum deidentified Electronic Health Record database used to
validate insilico findings in real-world data is available for accredited
researchers from Optum, but third-party restrictions apply to the avail-
ability of these data. The data were used under license for this study
withrestrictions that do not allow the data to be redistributed or made
publicly available. Data access to the Optum deidentified Electronic
Health Record database may require a data sharing agreement and
may incur data access fees. Source data are provided with this paper.

Code availability

Source codeis available via GitHub at https://github.com/perturblib/
perturblib and viaZenodo at https://doi.org/10.5281/zenodo0.15671137
(ref.77).
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Extended Data Fig. 1| Performance of LPM as a function of training data
availability. Performance comparison in terms of Pearson correlation coefficient
pinpredicting the outcomes of unseen experiments of LPM when varying a.

the number of perturbations available for training in a target context and

b. the number of different contexts available for training. Dots correspond to
individual runs with a different random seed, and the blue line corresponds

Perturbations available for training [Count]

totheinferred trend (the average value with SD depicted in shaded blue). The
dashed grey line denotes the performance of the ‘NoPerturb’ baseline, which
does not take perturbation information into account. The performance of LPM
is significantly increased (*=p <0.05, **=p <0.01; one-sided Mann-Whitney test)
when more perturbations and more contexts are available.
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Extended Data Fig. 2| Model architecture. a. Graphical model shows the Ythat represents the value of the readout R. b. Embeddings are implemented as
dependencies between random variables previously described in Section learnable look-up tables. P, R, and Cidentify indices in the corresponding tables.
4.1. Dashed lines indicate implicit bi-directional dependencies that enable c. Concatenated embeddings are forward propagated through a multilayer
transfer learning across datasets. Symbolic perturbation, readout, and context perceptron to predict the output Y

descriptors (P,R,C) are first embedded (Z,, Z, Z.), then used to generate output
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