

1 **Supplementary Data**

2

3 **Title:** The *Paulinella* chromatophore transit peptide part2 adopts a structural fold similar to the
4 γ -glutamyl-cyclotransferase fold

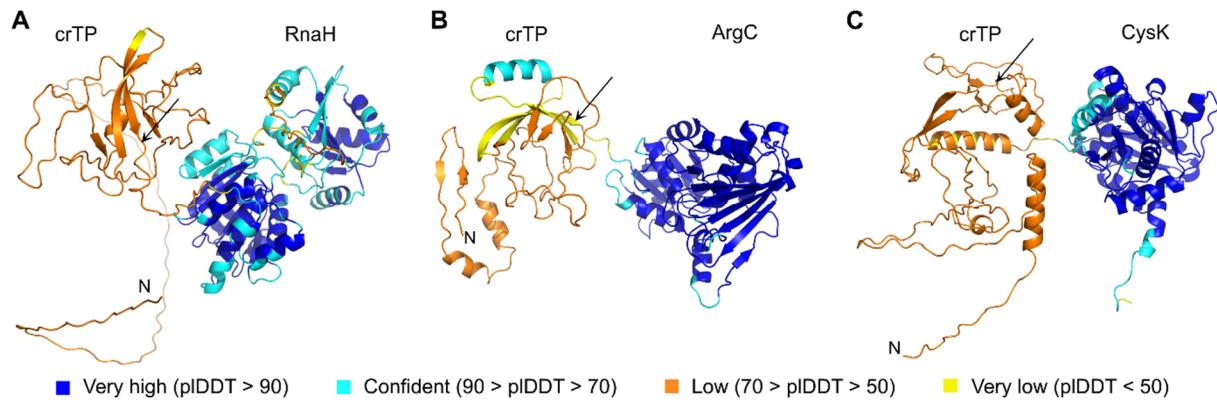
5

6 **Authors:** Victoria Klimenko¹, Jens Reiners², Violetta Applegate², Katharina Reimann¹,
7 Grzegorz Popowicz³, Astrid Hoeppner², Athanasios Papadopoulos², Sander H.J. Smits^{2,4}, Eva
8 C.M. Nowack¹

9 Affiliations:

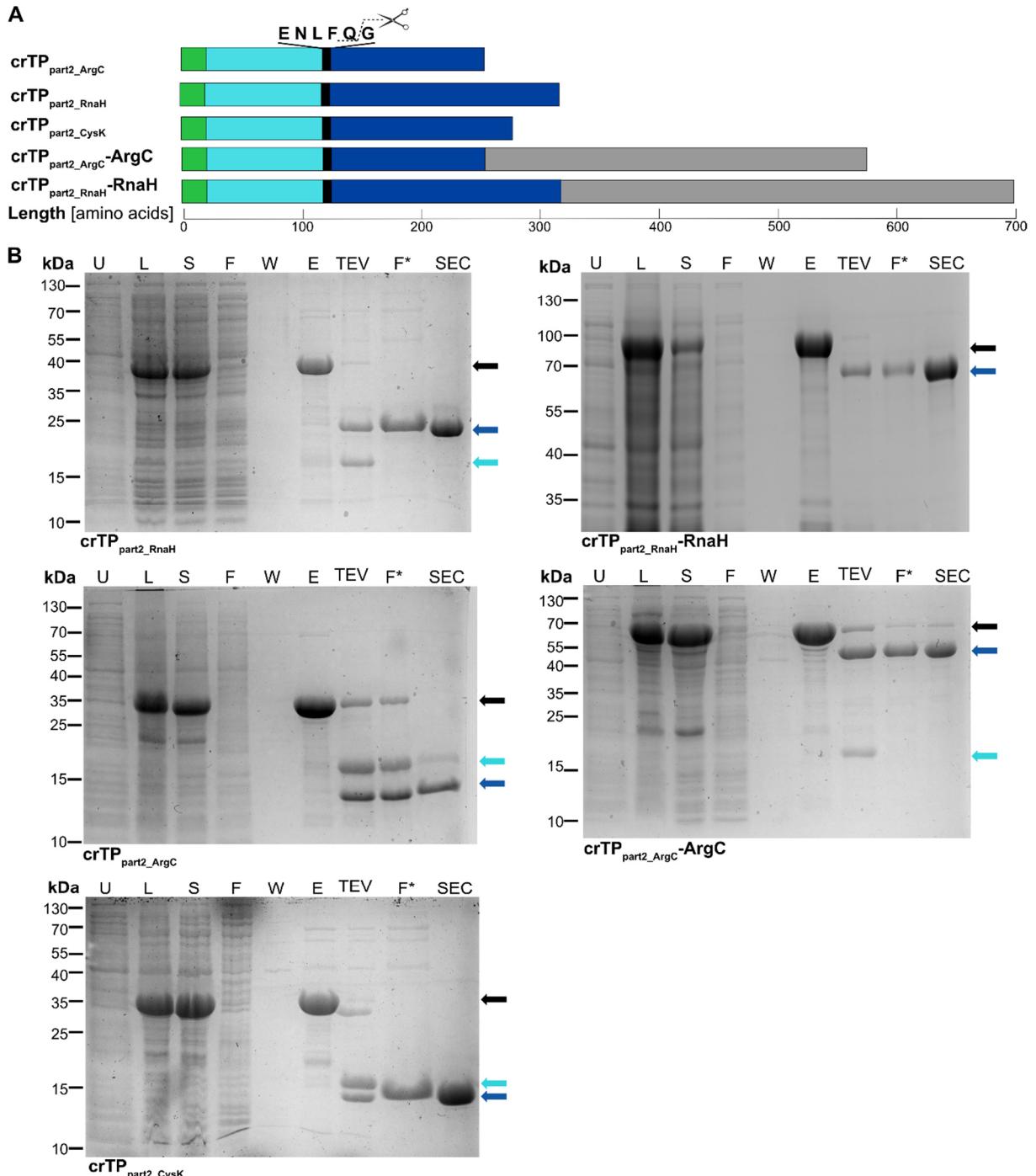
10 ¹Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University
11 Düsseldorf, Düsseldorf, Germany

12 ²Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Düsseldorf,
13 Germany

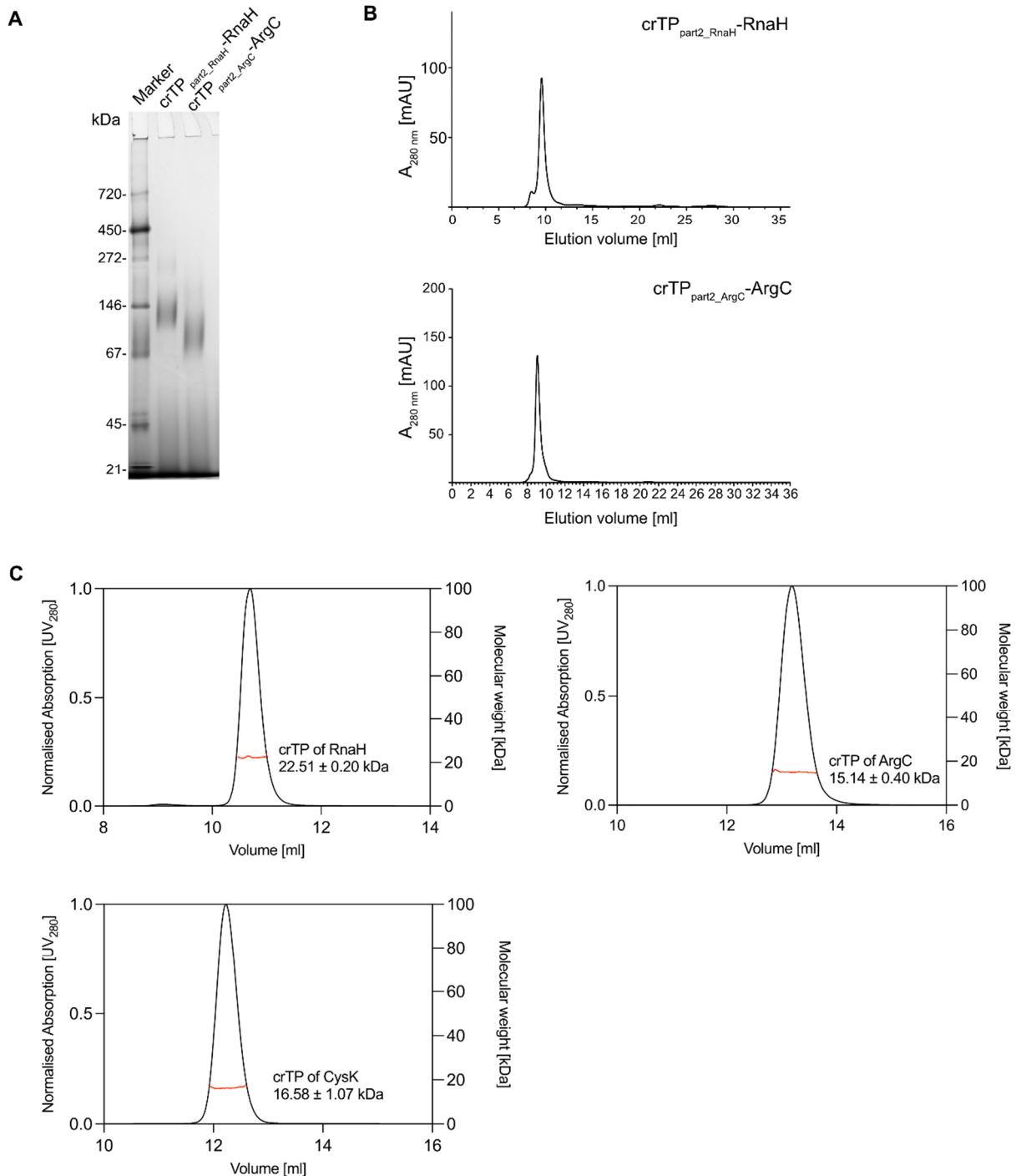

14 ³Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany

15 ⁴Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany

16


17 **Supplementary Figures**

18



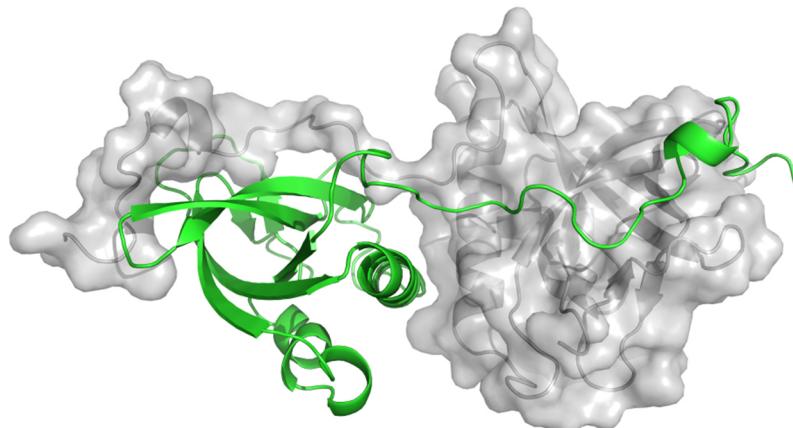
20 **Supplementary Figure S1: AlphaFold3-predicted protein models.** Proteins encoded by transcripts
21 scaffold2581 (**A**), scaffold7023 (**B**), and scaffold7023 (**C**) were analyzed with AlphaFold3. N-termini (N)
22 are indicated and the start of the linker between the crTP and the cargo protein is highlighted by a black
23 arrow. The confidence estimate (pLDDT) is shown as color code in the images of the structures.

24

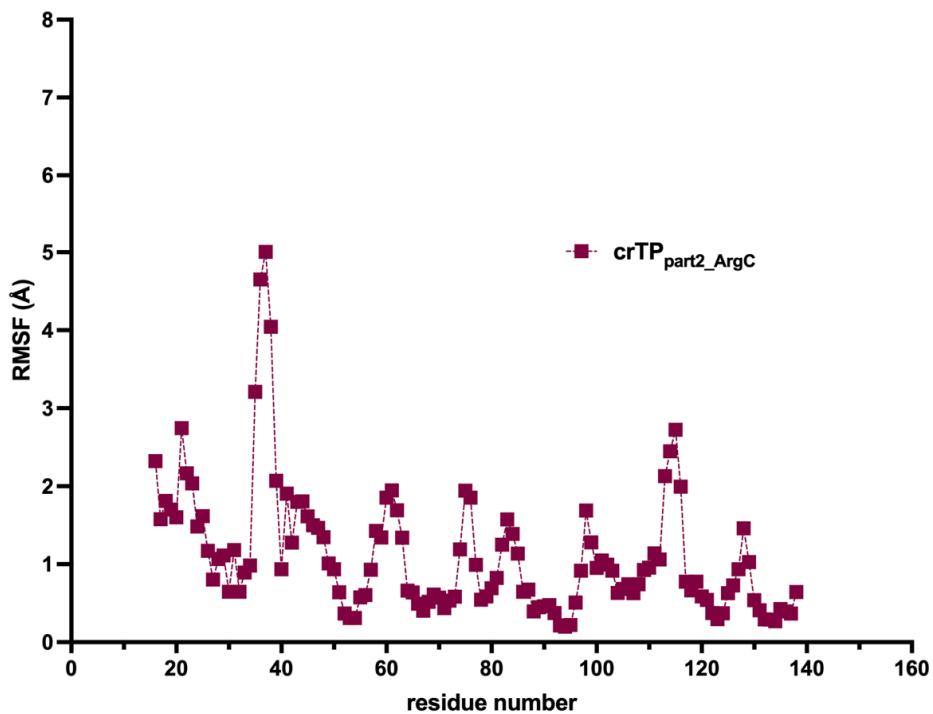
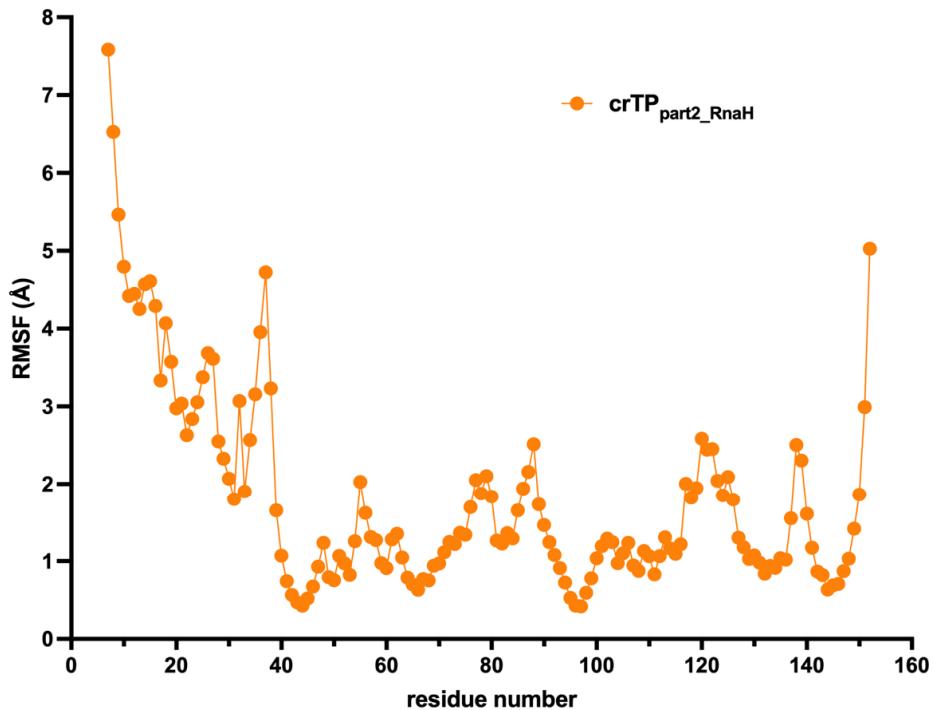
25
26 **Supplementary Figure S2: Purification of crTP_{part2}-containing constructs.** (A) Schematic
27 representation of crTP_{part2} constructs. The His₆-tag (green) and SUMO solubility-tag (cyan) are cleaved
28 off at the TEV protease recognition site (black) to obtain crTP_{part2} (blue) alone or attached to its
29 corresponding cargo protein (grey). (B) All crTP_{part2} constructs were expressed in *E. coli* following
30 induction with IPTG. For un-induced samples (U), 600 μ l of expression culture was withdrawn before
31 induction, spun down, and the pellet resuspended in 60 μ l PBS. Following expression, lysate (L) was
32 generated spun at 120,000 \times g, for 1 h. The supernatant (S) was loaded onto a Ni-NTA column. Column
33 was washed with buffer A. Samples from the flow-through (F) and mid-wash (W) were collected. Proteins
34 of interest were eluted (E). Eluate was diluted 1:2 with buffer A and digested with TEV-protease (TEV).
35 Proteins of interest were isolated by reverse IMAC by collecting the flow-through (F*). Then, proteins of
36 interest were further purified by SEC. Proteins in all samples were solubilized in Laemmli buffer and 5
37 μ l loaded onto a 12.5 % polyacrylamid gel or 10 % for crTP_{part2}_RnaH-RnaH. For F* and after SEC, ~5 μ g
38 total protein was loaded on the gel. The gel was stained with Coomassie brilliant blue. Full-length
39 constructs are indicated by black arrows, proteins of interest by blue arrows, and His-SUMO (14.2 kDa)
40 by cyan arrows.

41

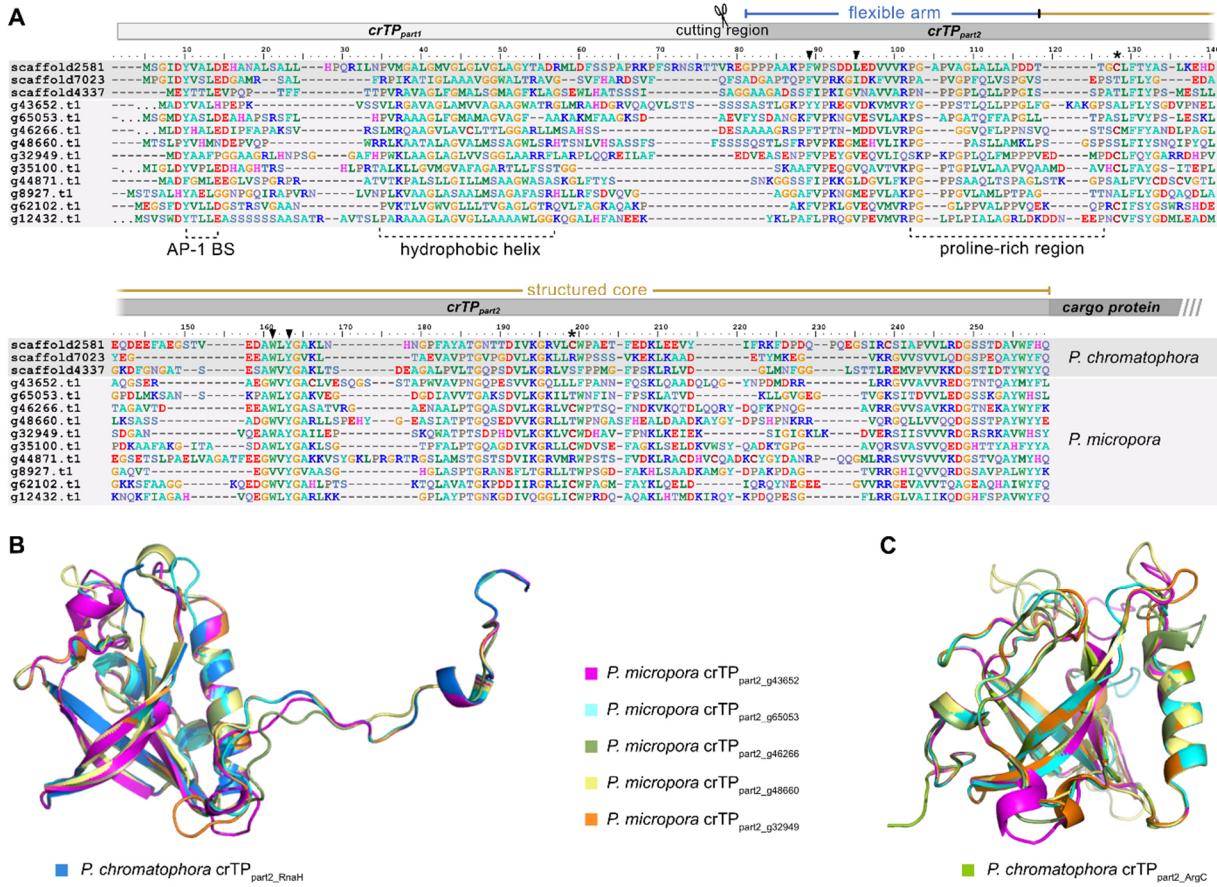
42 **Supplementary Figure S3: Validation of purity and oligomeric states of crTP_{part2}-containing**
43 **constructs. (A)** BN PAGE gel of the purified proteins crTP_{part2_RnaH}-RnaH and crTP_{part2_ArgC}-ArgC.
44 Marker is SERVANativ Marker Liquid Mix for BN/CN (SERVA, Cat. No. 39219). **(B)** SEC profiles for
45 crTP_{part2_RnaH}-RnaH and crTP_{part2_ArgC}-ArgC. **(C)** SEC-MALS profiles for the smaller constructs
46 (crTP_{part2_RnaH}, crTP_{part2_ArgC}, and crTP_{part2_CysK}). Red lines represent molecular mass distribution (in kDa)
47 over the peak as determined by MALS.


48

49



50 **Supplementary Figure S4: Electron density maps of resolved structures.** Structure of crTP_{part2_RnaH}
 51 is shown in (A) and crTP_{part2_ArgC} in (B). For clarity, we selected helix α 2 and strand β 4 to illustrate the
 52 high quality of the electron density of both crTP structures. Both density maps are contoured at 1σ .
 53 Nitrogen atoms, blue; oxygen atoms, red; sulfur atoms, yellow.

54


55

56 **Supplementary Figure S5: Crystallographic dimer of crTP_{part2_RnaH}.** One monomer is shown as
 57 green cartoon model, the other as grey surface structure.

58

59 **Supplementary Figure S6: Flexibility analysis using the CABS Flex 3.0 program**
60 (<https://lcbio.pl/cabsflex3/>). The N-terminus of crTP_{part2_RnaH} shows high flexibility compared to the N-
61 terminus of crTP_{part2_ArgC} or the structured cores of both crTPs. The flexibility reached an RMSF (root
62 mean square fluctuation) of 6-8 Å indicating large movement in the N-terminal arm of crTP_{part2_RnaH}. The
63 N-terminal arm of crTP_{part2_ArgC} appears to be stably bound in the closed conformation. Interestingly, at
64 the end of both arms a peak in flexibility is predicted which is localized in the sequence at the proline-
65 rich motif indicating that this region is important for the final conformation of the N-terminal arm.

66

67 **Supplementary Figure S7: Comparison of structural features of crTPs in *P. chromatophora* and**

68 *P. micropora*. (A) Multiple sequence alignment of the three *P. chromatophora*-derived crTPs

69 investigated in this study with ten *P. micropora*-derived crTP sequences (ClustalX2 (Larkin et al., 2007),

70 manually refined). As in Fig. 1, interacting Cys residues are indicated by asterisks. Conserved

71 hydrophobic aa involved in the interaction between arm and core in the solved crystal structure of

72 crTP_{part2_ArgC} (see Fig. 1F) are marked by arrow heads. *P. micropora* protein sequences were

73 downloaded from http://cyanophora.rutgers.edu/P_micropora/ and protein ids provided as sequence

74 headers. Sequences starting with '...' were N-terminally truncated by up to 20 aa, as their N-termini

75 were likely mis-predicted to the next AUG codon upstream. (B and C) Alignment of the solved crystal

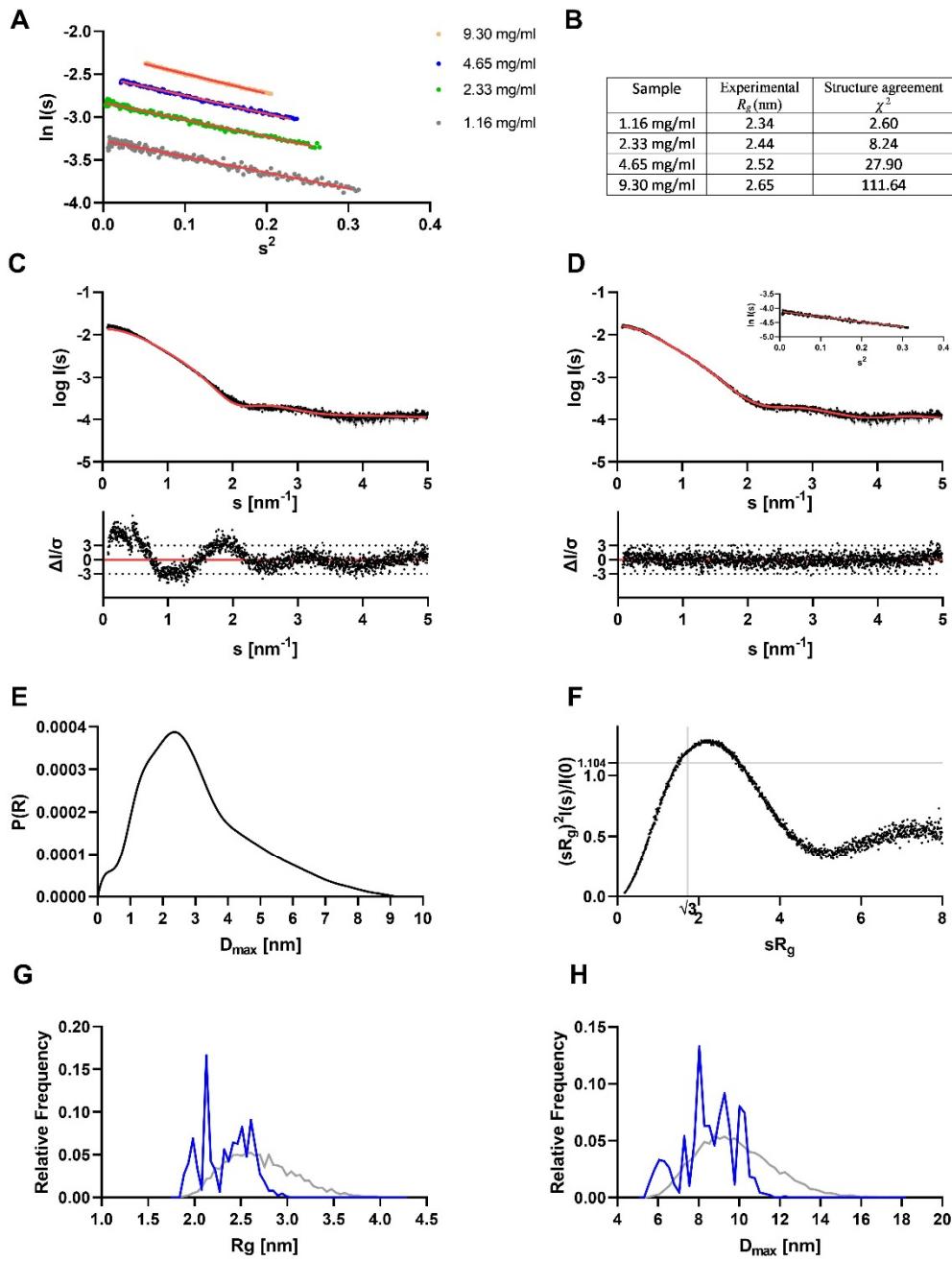
76 structures of crTP_{part2_RnaH} (B) and crTP_{part2_ArgC} (C) with corresponding homology models obtained for

77 the upper five *P. micropora* crTP_{part2} sequences shown in panel A. For all five proteins, homology models

78 were obtained, in which the arrangement of the β -barrel and helix α 2 can be aligned. Conformation of

79 the flexible N-terminal arm and connecting loops is more variable. However, note that the predictive

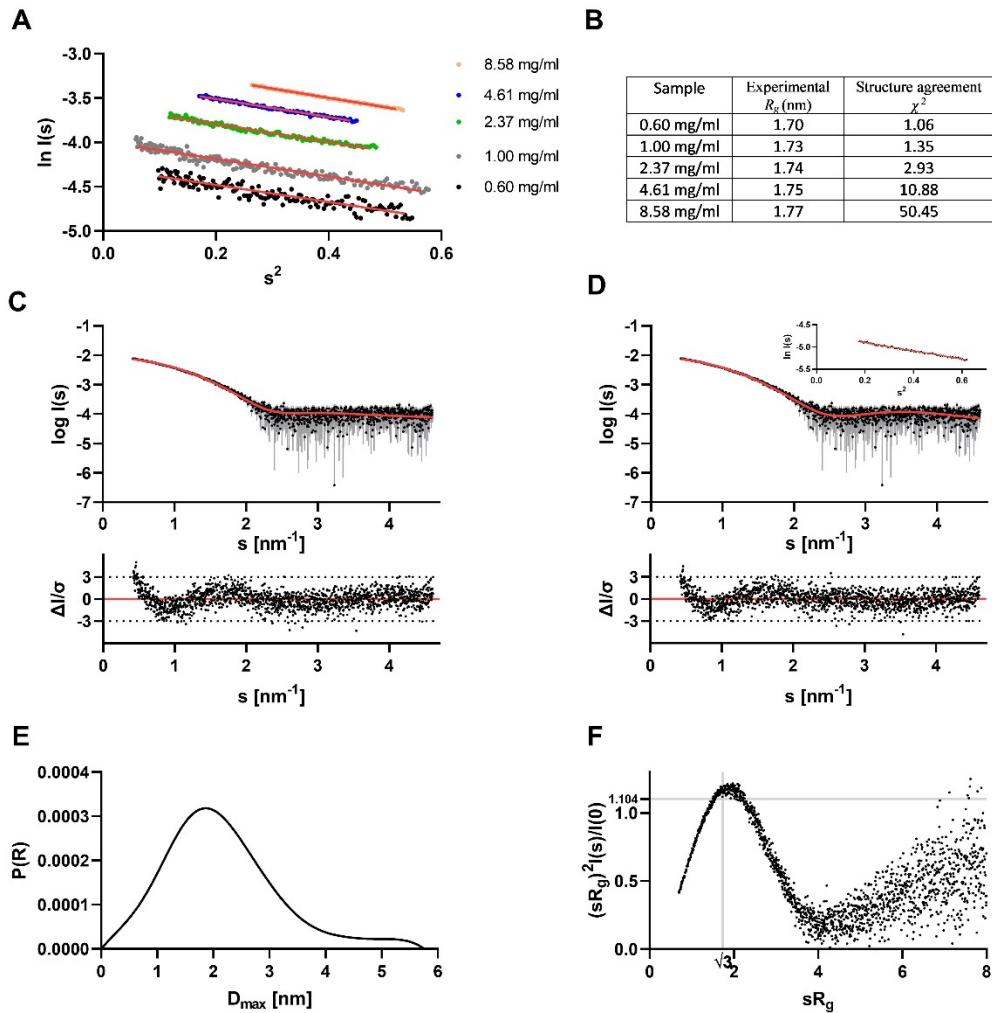
80 value of these models is low as quality estimates provided by QMEANDisCo Global scores for all models


81 obtained range between 0.29 and 0.45. The QMEANDisCo Global score is the average per-residue

82 QMEANDisCo score that ranges between 0 and 1 with higher values indicating higher quality and

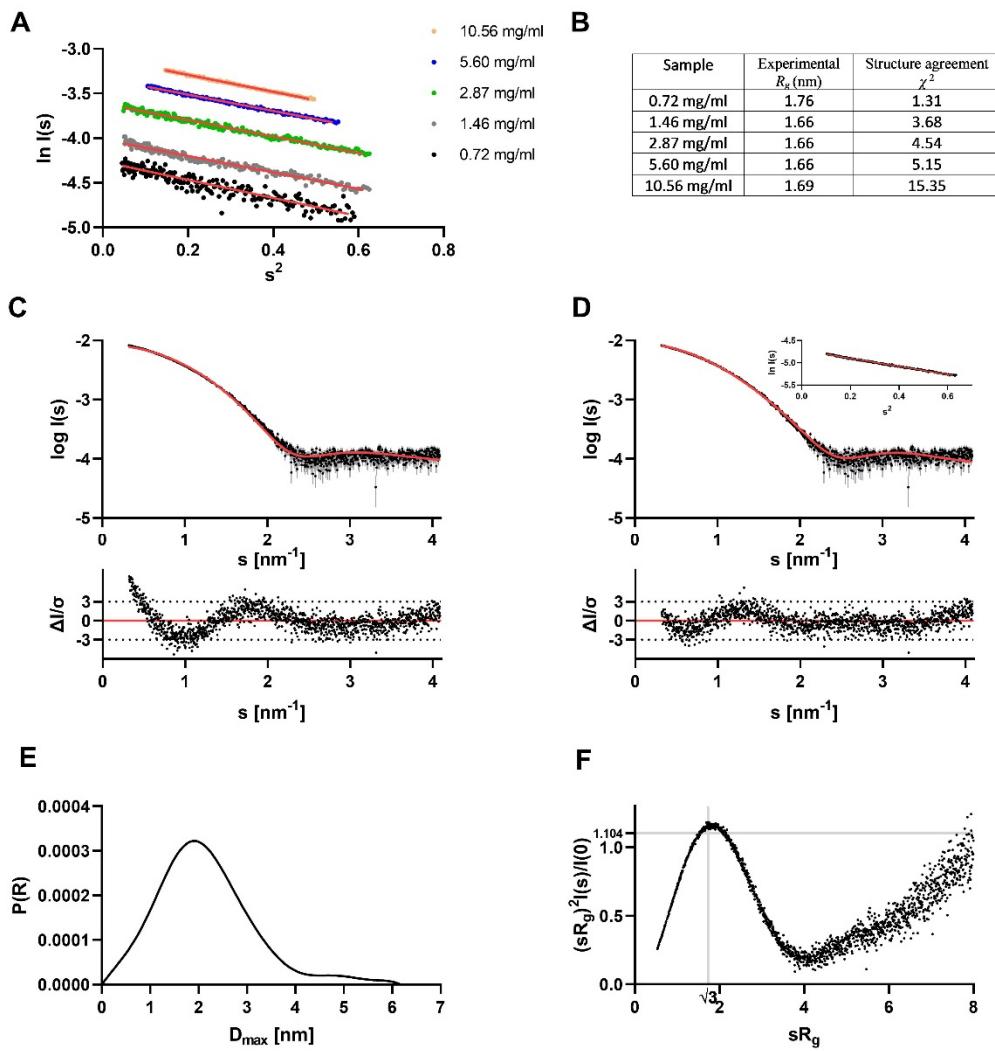
83 residues showing a score <0.6 being expected to be of low quality (Studer et al., 2020) and SWISS-

84 MODEL documentation, <https://swissmodel.expasy.org>).


85

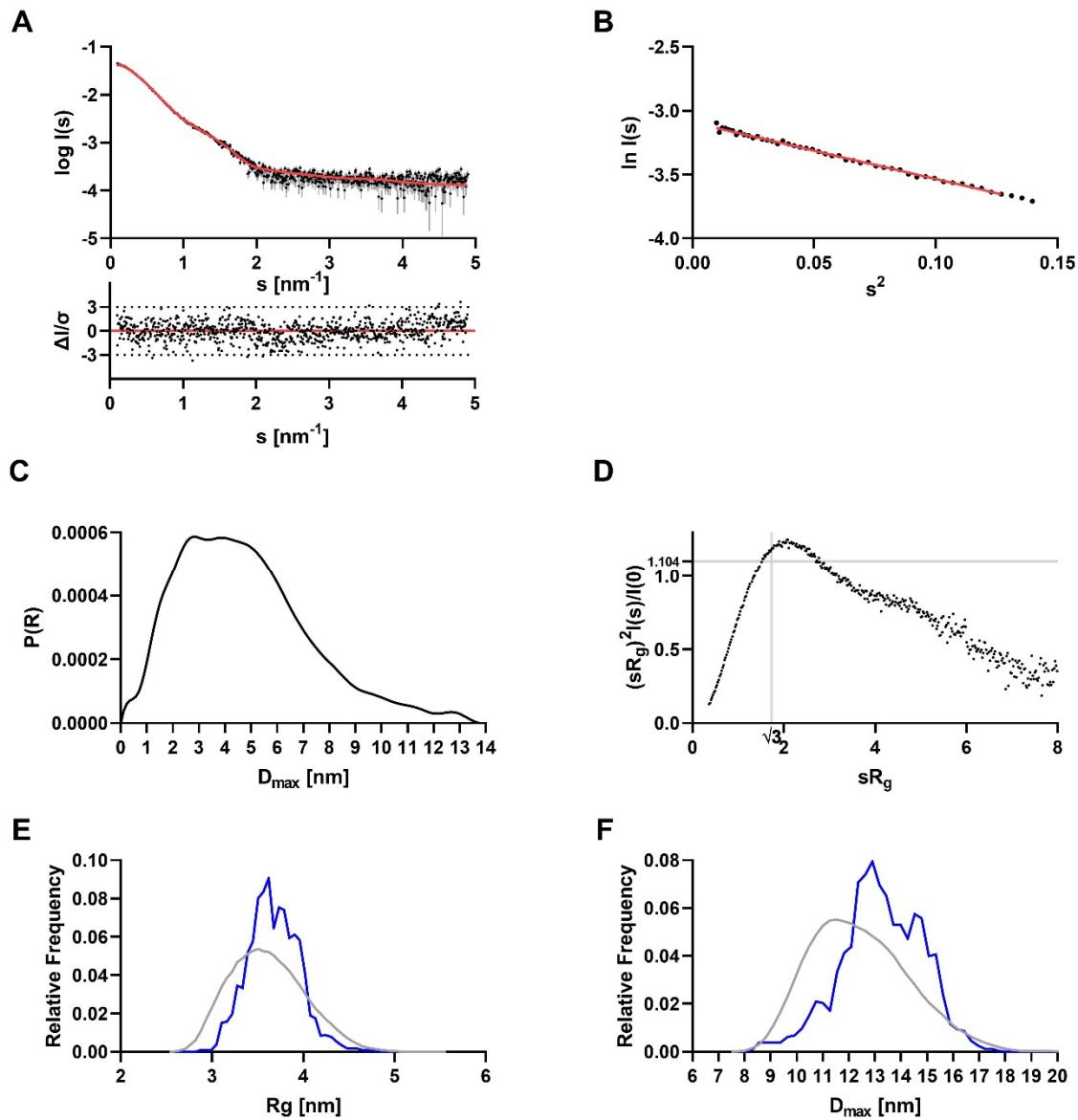
86

87 **Supplementary Figure S8: Small-angle X-ray scattering data from crTP_{part2_RnaH}.** **A:** Guinier plots of
88 the different concentrations used, separated for clarity. **B:** Experimental R_g and χ^2 comparison with the
89 crystal structure at the different concentrations. **C:** Final scattering data of crTP_{part2_RnaH}. Experimental
90 data are shown in black dots, with grey error bars representing standard error of the mean (SEM),
91 calculated from 40 replicate measurements at each s -value. The theoretical model fit (χ^2 value 5.833)
92 of the crystal structure is shown as red line and below is the residual plot of the data. **D:** Scattering data
93 of crTP_{part2_RnaH}. Experimental data are shown in black dots, with grey error bars. The EOM ensemble
94 model fit (χ^2 value 1.062) is shown as red line and below is the residual plot of the data. The Guinier plot
95 of crTP_{part2_RnaH} is added in the right corner and showed a stable Guinier region with a R_g of 2.34 nm. **E:**
96 The $p(r)$ function of crTP_{part2_RnaH} showed an elongated particle with a D_{max} value of 9.17 nm. **F:** The
97 dimensionless Kratky plot of crTP_{part2_RnaH} showed an elongated particle with a degree of flexibility of the
98 termini. **G, H:** R_g and D_{max} distribution of crTP_{part2_RnaH}. Ensemble pool is shown in grey, selected EOM
99 models are shown in blue.


100

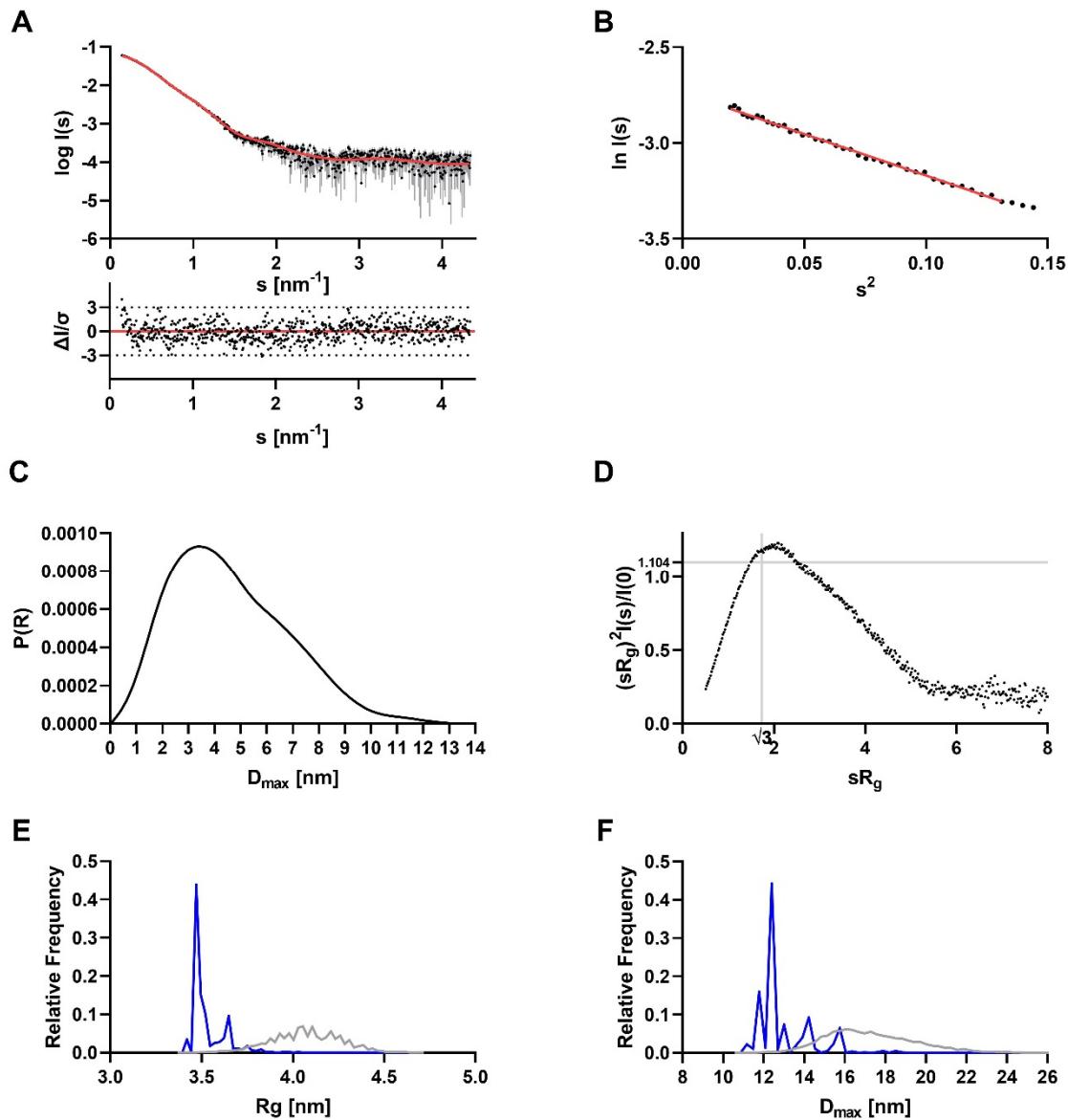
101

102 **Supplementary Figure S9: Small-angle X-ray scattering data from crTP_{part2}_ArgC.** **A:** Guinier plots of
103 the different used concentrations, separated for clarity. **B:** Experimental R_g and χ^2 comparison with the
104 crystal structure at the different concentrations. **C:** Final scattering data of crTP_{part2}_ArgC. Experimental
105 data are shown in black dots, with grey error bars (SEM of 40 replicate measurements). The theoretical
106 model fit (χ^2 value 1.420) of the crystal structure is shown as red line and below is the residual plot of
107 the data. **D:** Scattering data of crTP_{part2}_ArgC. Experimental data are shown in black dots, with grey error
108 bars. The CORAL model fit (χ^2 value 1.293) is shown as red line and below is the residual plot of the
109 data. The Guinier plot of crTP_{part2}_ArgC is added in the right corner and showed a stable Guinier region
110 with a R_g of 1.66 nm. **E:** The $p(r)$ function of crTP_{part2}_ArgC showed a globular molecule with an elongated
111 part and a D_{max} value of 5.76 nm. **F:** The dimensionless Kratky plot of crTP_{part2}_ArgC showed a little
112 elongated, but compact molecule.


113

114

115 **Supplementary Figure S10: Small-angle X-ray scattering data from crTP_{part2_CysK}.** **A:** Guinier plots
116 of the different used concentrations, separated for clarity. **B:** Experimental R_g and χ^2 comparison with
117 the homology model at the different concentrations. **C:** Scattering data of crTP_{part2_CysK}. Experimental
118 data are shown in black dots, with grey error bars (SEM of 40 replicate measurements). The theoretical
119 model fit (χ^2 value 3.432) of the created homology model is shown as red line and below is the residual
120 plot of the data. **D:** Final scattering data of crTP_{part2_CysK}. Experimental data are shown in black dots,
121 with grey error bars. The CORAL model fit (χ^2 value 1.768) is shown as red line and below is the residual
122 plot of the data. The Guinier plot of crTP_{part2_CysK} is added in the right corner and showed a stable Guinier
123 region with a R_g of 1.65 nm. **E:** The $p(r)$ function of crTP_{part2_CysK} showed a globular molecule with an
124 elongated part and a D_{max} value of 6.17 nm. **F:** The dimensionless Kratky plot of crTP_{part2_CysK} showed a
125 little elongated, but compact molecule.


126

127

128 **Supplementary Figure S11: Small-angle X-ray scattering data from crTP_{part2}-RnaH-RnaH.** **A:**
129 Scattering data of crTP_{part2}-RnaH-RnaH. Experimental data are shown in black dots, with grey error bars
130 (SEM of 18 replicate measurements). The EOM ensemble model fit (χ^2 value 1.335) is shown as red
131 line and below is the residual plot of the data. **B:** The Guinier plot of crTP_{part2}-RnaH showed a stable
132 Guinier region with a R_g of 3.65 nm. **C:** The $p(r)$ function of crTP_{part2}-RnaH-RnaH showed an elongated
133 multidomain particle with a D_{\max} value of 13.73 nm. **D:** The dimensionless Kratky plot of crTP_{part2}-RnaH-
134 RnaH showed an elongated multidomain particle. **E and F:** R_g and D_{\max} distribution of crTP_{part2}-RnaH-
135 RnaH. Ensemble pool is shown in grey, selected EOM models are shown in blue.

136

137

138 **Supplementary Figure S12: Small-angle X-ray scattering data from crTP_{part2}-ArgC-ArgC.** **A:**
 139 Scattering data of crTP_{part2}-ArgC-ArgC. Experimental data are shown in black dots, with grey error bars
 140 (SEM of 18 replicate measurements). The EOM ensemble model fit (χ^2 value 1.179) is shown as red
 141 line and below is the residual plot of the data. **B:** The Guinier plot of crTP_{part2}-ArgC-ArgC showed a stable
 142 Guinier region with a R_g of 3.60 nm. **C:** The $p(r)$ function of crTP_{part2}-ArgC-ArgC showed an elongated
 143 multidomain particle with a D_{max} value of 13.11 nm. **D:** The dimensionless Kratky plot of crTP_{part2}-ArgC-
 144 ArgC showed an elongated multidomain particle. **E & F:** R_g and D_{max} distribution of crTP_{part2}-ArgC-ArgC.
 145 Ensemble pool is shown in grey, selected EOM models are shown in blue.

146

Conserv.:	6	995	5	5	5	5
ArgC	93	-PSTLFLIGEEDAY	-EGEEAWEY-GVKLTA-	-EVAVPTG-	-VPGDVL	131
RNA1	111	-TGCLFLY SLKE	-HDBQEDEF--ABG-STVEDAWLY-GAKLNHNG-	-PFAYATG-	-NTTDIV	163
6k95	1	-MWVGGYSLIW-	-KVD-FFY-QDKLVGQYIT-NYSRWFQGG--	-STDHRGVPGK G RVVTLLVEDF	-AGCV	60
5hwi	1	-NSGILWLVLYGSILY-	-KPP-SHY-THRIPAIHH-GFARFRWQMM--	-STDHRGTPANRGRVATL I PEVDEIIIRQTAFLKNVNMYSESAPIQDPDLDLV	-88	
2zqv	6	-PQSHNVFVYGSILE-	-PAVAAVIL--DRT-ADTVPAVLH-GYHRYKLK-	-GLPYCIVSSD-	-SGKV	62
2g0q	6	-LQLHNVFVYGSFQD-	-PDVINVMI--DRT-PEIVSATL-P-GFQFRFLK	-GRIPYCIVPSE-	-KGEV	62
2p7n	1	-EESFLYFVGSNLL-	-TERIHLRN-PSA-AFFCVARLQD-FDKLFDGNSQGKTSQTHW--	-GGIATIFQSF-	-GDEV	66
1xhs	1	-MRIFVYG--SLRH--	-KQG-NSHWM-TNA-QLGDFSID-NYQLYSL-	-GHYPGAVF-	-NGTV	51
2zik	111	QMISKSQN PIYYFGYSCMD --	-NARFOQAKGVDHYFQDPVGRALKV-GYTRFLK-	-REDGSRADMLED-	-GGTT	178
1lvkb	1	-HHMAH IFVY GTLLRKGPQNH MLV DHSH-GLA-AFRGRGTC V ESPLVIAAG-	-EHNIP WLLY LEPGK-	-GCHV	65	
3jub	1	-MALVVF YGTLLRKGPQNH VRRLDRGAH-GSA-AFRARGR T LEPYPLVIAAG-	-EHNIP WLLH PGS-	-CRLV	63	
1v30	1	-SVRIAVY GTLLRKGPQNH WLYLRA-	-KFLGDWIE-GYQLYFE-	-YLPYAVKG-	-KGKL	51
Cons. aa:		B.IIfYGo.n	.n.t.i.s@.	.nsnai	.s.i	
Cons. ss:		eeeeee	hhhhhh	eeeeeeee	eeeeee	ee

147

Supplementary Figure S13: The typical GGCT binding pocket is conserved but the active site is not in crTP_{part2} structures. Structure-based alignment of GGCT-like proteins generated with Promals3D (Pei et al., 2008) using default parameters. Secondary structure predictions according to PSIPRED (Jones, 1999): red, α -helix; blue, β -strand. Consensus sequence is provided if the weighted frequency of a certain class of residues in a position is above 0.8. Here, conserved aas are in bold uppercase letters; aliphatic (I, V, L): I; aromatic (Y, H, W, F): @; hydrophobic (W, F, Y, M, L, I, V, A, C, T, H): h; alcohol (S, T): o; polar residues (D, E, H, K, N, Q, R, S, T): p; tiny (A, G, C, S): t; small (A, G, C, S, V, N, D, T, P): s; bulky residues (E, F, I, K, L, M, Q, R, W, Y): b; positively charged (K, R, H): +; negatively charged (D, E): -; charged (D, E, K, R, H): c. Note that in the human ChaC2 (pdb id: 6k95) the catalytic site (Glu74) moved to a long flexible loop. By dimerization of two ChaC2 monomers, the flexible loop of one monomer moves into the catalytic cavity of the other monomer resulting in Glu74 to come close in position to the catalytic centers of other GGCT-like proteins (Nguyen et al., 2020). In the *E. coli* homolog of BtrG (named YftP, of unknown function; pdb id 1xhs) Glu82 of 3jub is replaced by an Arg which suggests that the protein does not have cyclotransferase activity.

162

163

Supplementary Figure S14: The GPN142 expression vector is a pET22b(+) derivative, carrying the depicted insert. Into the backbone pET22b(+) backbone (lowercase letters) an insert containing the coding sequences for His₆ (blue), a thrombin cleavage site (brown), a SUMO-tag (green), a TEV cleavage site (cyan), and the crTP_{part2_RnaH} domain (violet) was inserted at the indicated position.

170 **Supplementary Tables**

171 **Supplementary Table S1:** X-ray crystallography data collection and refinement statistics for
 172 crTP_{part2_RnaH} and crTP_{part2_ArgC}. Statistics for the highest resolution shell are shown in
 173 parentheses.

	crTP _{part2_RnaH} (PDB ID: 9I09)	crTP _{part2_ArgC} (PDB ID: 9I08)
Wavelength	1.000	0.9763
Resolution range	35.15 - 2.4 (2.49 - 2.4)	43.75 - 2.2 (2.28-2.2)
Space group	P 31 2 1	P 1 21 1
Unit cell	81.164 81.164 63.678 90 90 120	36.069 67.227 43.774 90 92.03 90
Total reflections	19658 (1874)	20934 (1855)
Unique reflections	9829 (937)	10544 (944)
Multiplicity	2.0 (2.0)	2.0 (2.0)
Completeness (%)	100 (99.9)	98.5 (87.6)
Mean I/sigma(I)	34.0 (11.4)	15.6 (6.9)
Wilson B-factor	46.61	22.48
R-merge	0.009 (0.043)	0.03 (0.162)
R-meas	0.013 (0.06)	0.042 (0.162)
R-pim	0.009 (0.043)	0.03 (0.115)
CC1/2	1.00 (0.997)	0.998 (0.97)
Reflections used in refinement	18682 (820)	19417 (1710)
Reflections used for R-free	976 (117)	977 (145)
R-work	0.1860 (0.2017)	0.2034 (0.2685)
R-free	0.2203 (0.2676)	0.2260 (0.3033)
Number of non-hydrogen atoms	1223	2235
macromolecules	1157	1910
ligands	4	16
solvent	62	309
Protein residues	146	247
RMS(bonds)	0.007	0.009
RMS(angles)	0.95	0.81
Ramachandran favored (%)	96.53	96.71
Ramachandran allowed (%)	3.47	2.47
Ramachandran outliers (%)	0.00	0.82
Rotamer outliers (%)	0.81	0.98
Clashscore	4.44	7.25
Average B-factor	52.96	26.28
macromolecules	53.00	25.44
ligands	41.42	38.48
solvent	52.80	30.85

174

175

176

Supplementary Table S2: Overall SAXS Data.

Data collection parameters					
SAXS Device	P12, PETRA III, DESY Hamburg (Blanchet et al., 2015)			Xenocs Xeuss 2.0 with Q-Xoom	
Detector	PILATUS 6 M (423.6 x 434.6 mm ²)			PILATUS 3 R 300K windowless	
Detector distance (m)	3.0			0.550	
Beam size	120 μm x 200 μm			0.8 mm x 0.8 mm	
Wavelength (nm)	0.124			0.154	
Sample environment	Quartz glass capillary, 1 mm ø			Low Noise Flow Cell, 1 mm ø	
Absolute scaling method	Comparison with scattering from pure H ₂ O				
Normalization	To transmitted intensity by beam-stop counter			To transmitted intensity by direct beam	
Scattering intensity scale	Absolute scale scale, cm ⁻¹				
s range (nm ⁻¹) [‡]	0.03 – 7.0			0.05 – 6.0	
Sample	crTP _{part2_RnaH}	crTP _{part2_ArgC}	crTP _{part2_CysK}	crTP _{part2_ArgC} -ArgC	crTP _{part2_RnaH} -RnaH
Organism	<i>Paulinella chromatophora</i>				
GenBank:	GEZN01002575.1	GEZN01007010.1	GEZN01004327.1	GEZN01007010.1	GEZN01002575.1
Mode of measurement	Batch mode				
Temperature (°C)	10				
Exposure time (# frames)	0.095 s (40)			600 s (18)	
Protein buffer	20 mM HEPES, 300 mM NaCl, pH 8.0				
Protein concentration (mg/ml)	Merged from concentrations 1.16 and 9.30 mg/ml	8.6 mg/ml – 0.6 mg/ml (extrapolated to zero concentration)	10.6 mg/ml – 0.7 mg/ml (extrapolated to zero concentration)	10.00	9.00
Structural parameters					
Guinier Analysis (PRIMUS)					
I(0) ± σ (cm ⁻¹)	0.016 ± 0.00005	0.0089 ± 0.00003	0.0089 ± 0.00001	0.065 ± 0.0002	0.045 ± 0.0001
R _g ± σ (nm)	2.34 ± 0.011	1.66 ± 0.009	1.65 ± 0.004	3.60 ± 0.017	3.65 ± 0.016
s-range (nm ⁻¹)	0.086 – 0.551	0.419 – 0.779	0.321 – 0.788	0.140 – 0.362	0.099 – 0.356
min < sR _g < max limit	0.201 – 1.291	0.697 – 1.296	0.530 – 1.300	0.505 – 1.300	0.362 – 1.300
Data point range	4 - 171	1 - 130	1 - 168	1 - 39	1 - 45
Linear fit assessment (R ²)	0.9747	0.9861	0.9963	0.9961	0.9947
PDDF/P(r) Analysis (GNOM)					
I(0) ± σ (cm ⁻¹)	0.017 ± 0.00005	0.0089 ± 0.00003	0.0089 ± 0.00001	0.064 ± 0.0002	0.046 ± 0.0002
R _g ± σ (nm)	2.48 ± 0.009	1.68 ± 0.007	1.67 ± 0.005	3.61 ± 0.017	3.81 ± 0.019
D _{max} (nm)	9.17	5.76	6.17	13.11	13.73
Porod volume (nm ³)	45.61	27.20	28.34	130.92	105.55
s-range (nm ⁻¹)	0.086 – 6.755	0.419 – 4.606	0.321 – 4.09	0.140 – 4.340	0.099 – 5.642
χ ² / CorMap P-value	0.970 / 0.253	0.978 / 0.519	1.106 / 0.280	1.088 / 0.160	1.098 / 0.978
Molecular mass (kDa)					
From I(0)	21.63	12.32	12.32	90.01	62.32
From Qp (Porod, 1951)	20.26	9.85	9.05	96.33	71.12
From MoW2 (Fischer et al., 2010)	22.40	13.62	12.63	95.25	60.22
From Vc (Rambo and Tainer, 2013)	21.84	13.57	13.69	87.06	66.01
Bayesian Inference (Hajizadeh et al., 2018)	21.18	13.45	12.03	91.18	63.88
From sequence	21.29 (monomer)	13.99 (monomer)	15.82 (monomer)	96.62 (dimer)	63.49 (monomer)
Atomistic modeling					
CRYSTOL (with default parameters)					
Constant subtraction allowed					
Structure template	Crystal structure	Crystal structure	Homology model	-	-
s-range for fit (nm ⁻¹)	0.077 – 4.988	0.419 – 4.603	0.321 – 4.09-	-	-

χ^2 , CorMap <i>P</i> -value	5.833 / 2.78e-68	1.420 / 2.01e-14	3.432 / 1.54e-29	-	-
Predicted R_g (nm)	2.00	1.41	1.32	-	-
Predicted <i>Diameter</i> (nm)	8.10	5.10	4.47	-	-
CORAL					
Symmetry	-	P1	P1	-	-
s-range for fit (nm ⁻¹)	-	0.419 – 4.603	0.321 – 4.09	-	-
χ^2 , CorMap <i>P</i> -value	-	1.293 / 0.00000002	1.768 / 0.0000000000000004	-	-
EOM					
Symmetry	P1	-	-	P1	P1
s-range for fit (nm ⁻¹)	0.077 – 4.988	-	-	0.140 – 4.340	0.099 – 4.895
χ^2 , CorMap <i>P</i> -value	1.062 / 0.000013	-	-	1.179 / 0.160	1.335 / 0.0122
SASBDB accession codes (Kikhney et al., 2020)	SASDWV3	SASDWT3	SASDWW3	SASDWS3	SASDWU3
Software					
ATSAS Software Version (Manalastas-Cantos et al., 2021)	3.0.5				
Primary data reduction	PRIMUS (Konarev et al., 2003)				
Data processing	GNOM (Svergun, 1992)				
Structure evaluation	CRY SOL (Svergun et al., 1995)				
<i>Rigid body</i> modelling	CORAL (Petoukhov et al., 2012)				
Flexibility ensemble modelling	EOM (Bernadó et al., 2007; Tria et al., 2015)				
Model visualization	PyMOL (PyMOL, 2022)				

178 $\pm s = 4\pi\sin(\theta)/\lambda$, 2θ – scattering angle, n.d. not determined

179

180 **Supplementary Table S3:** Comparison of the structural dimensions from the solved crystal
181 structures with the experimental SAXS data.

Template	Predicted R_g (nm) from crystal structure	Experimental R_g (nm) from SAXS	Predicted <i>Diameter</i> (nm) from crystal structure	Experimental D_{max} (nm) from SAXS	Structure agreement with experimental data from SAXS χ^2 , CorMap <i>P</i> -value
crTP _{part2_RnaH} Crystal structure	2.00	2.34	8.10	9.17	5.833 / 2.78e-68
crTP _{part2_ArgC} Crystal structure	1.41	1.66	5.10	5.76	1.420 / 2.01e-14

182

183

184 **Supplementary Table S4:** Best matches from DALI searches against PDB25. Z value cutoff
 185 is ≥ 7 .

crTP _{part2, RnAH}							
No	Chain	Z	rmsd	lali	nres	%id	PDB Description
1	5hwi-A	10.3	2.0	101	229	13	GLUTATHIONE-SPECIFIC GAMMA-GLUTAMYL CYCLOTRANSFERASE
2	2qik-A	9.2	2.2	94	269	18	UPF0131 PROTEIN
3	2i5t-A	9.1	2.6	100	169	15	PROTEIN C7ORF24
4	2jqv-A	8.4	2.4	97	165	11	AIG2 PROTEIN-LIKE
5	3juc-A	8.1	2.5	97	150	14	AIG2-LIKE DOMAIN-CONTAINING PROTEIN 1
6	1v30-A	7.8	2.3	89	118	15	HYPOTHETICAL UPF0131
7	6ky1-C	7.2	1.9	77	152	12	GLUTATHIONE-SPECIFIC GAMMA-GLUTAMYL CYCLOTRANSFERASE
crTP _{part2, Argc}							
No	Chain	Z	rmsd	lali	nres	%id	PDB Description
1	5hwi-A	9.3	1.7	86	229	17	GLUTATHIONE-SPECIFIC GAMMA-GLUTAMYL CYCLOTRANSFERASE
2	2i5t-A	8.6	1.6	83	169	23	PROTEIN C7ORF24
3	2qik-A	8.0	1.8	79	269	23	UPF0131 PROTEIN YKQA
4	3juc-A	7.4	2.0	81	150	17	AIG2-LIKE DOMAIN-CONTAINING PROTEIN 1
5	2jqv-A	7.4	1.7	80	165	21	AIG2 PROTEIN-LIKE

186

187 **Supplementary Table S5:** Protein structures available for the γ -glutamyl cyclotransferase-
 188 like superfamily.

Protein	UniProt	PDB code of the structure of the natural protein	PDB code of additional structures	References
<i>Arabidopsis thaliana</i> At5g39720.1	Q9FIX2	2g0q		(Lytle et al., 2006)
<i>Arabidopsis thaliana</i> At3g28950.1	Q9MBH1	2jqv		(de la Cruz et al., 2008)
<i>Homo sapiens</i> γ -glutamylamine cyclotransferase (GGACT)	Q9BVM4	3jub	3juc (Complex w/ 5-oxoproline) 3jud (E82Q mutant)	(Oakley et al., 2010)
<i>Mus musculus</i> aig2-like protein (a2ld1, ggact, mgc7867)	Q923B0	1vkb (crystal) 2kl2 (NMR)		(Klock et al., 2005) (Serrano et al., 2010)
<i>Pyrococcus horikoshii</i> PH0828	O58558	1v30		(Tajika et al., 2004)
<i>Escherichia coli</i> YtfP	P0AE48	1xhs (NMR)		(Aramini et al., 2007)
<i>Bacillus subtilis</i> YkqA	P39759	2qik		-
<i>Homo sapiens</i> γ -glutamyl cyclotransferase (GGCT)	O75223	2pn7 2i5t	2rbh (E98A mutant) 3cry (E98Q mutant)	(Oakley et al., 2008) (Bae et al., 2008)
<i>Saccharomyces cerevisiae</i> ChaC2	P32656	5hwi (seleno-methionine mutant)	5hwk (benzoic acid complex)	(Kaur et al., 2017)
<i>Homo sapiens</i> Glutathione-specific γ -glutamylcyclotransferase 2 (ChaC2)	Q8WUX2	6k95	6ky0 (E74Q mutant) 6ky1 (E83Q mutant)	(Nguyen et al., 2020)

189

190

191 **Supplementary Table S6:** Nucleotide sequences of primers used in this study. The table
 192 provides sequence, internal primer number and indicates forward (fw) or reverse (rv)
 193 orientation for each primer.

Primer sequence (5' to 3')	Primer #	Orientation
atgaaaacctgtatccaggaaATGTTGGACTTCAGTAGTCCTGCCCA	1515	fw
ggatcctcgagcataTTAGAATGACTCGCGATCTGG	1514	rv
acagagaacacgattgggtGAAAACCTGTATTTCAGGGA	1782	fw
ttgttagcagccggatctcaTTAGAATGACTCGCGAT	1783	rv
gagatccggctgctaacaaa	1785	fw
accaccaatctgttctgt	1784	rv
CAAGATCGCCGAGTCATTGAAGACTTCCATCTCCTGGCTCT	2640	fw
cagctcccttcgtcaATTAGGCAGCTTGGCTCG	2641	rv
CACGACCAAGCCGCTAATTGAcgaaagggaaagctgagt	2639	fw
CAAGGAGATGGAAGTCTCGAATGACTCGCGATCTTG	2638	rv
aaacctgtatccaggaaTTCTCTGCCGACGGAGCGC	2297	fw
ttagcagccggatctcaCTGGAAATACCAATAAGCCTGTTCTG	2298	rv
gcttattggatattccagTGAGATCCGGCTGCTAACAAAG	2299	fw
tccgtccggcagagaaTCCCTGAAAATACAGGTTTCAC	2300	rv
CTTATTGGTATTCCAGTCCACAAGAGCAAG	2669	fw
gttagcagccggatctcaCTAGCAGAGACCCGCACGTTCG	2645	rv
GAACCGTGCAGGGTCTGCTAGtgagatccggctgctaacaaag	2643	fw
CTTGCTCTGTGAACTGGAAATACCAATAAGCCTGTTCTG	2670	rv
tgtatccaggaaGCGACCAGCAGCAGCATCAG	2293	fw
gttagcagccggatctcaTTACTGGTAGTACCAAGTAAGTGTGATGGTG	2294	rv
ggtactaccatTAATGAGATCCGGCTGCTAACAAAGCC	2295	fw
ctgctgctggtcgcTCCCTGAAAATACAGGTTTCACCACC	2296	rv

194

195

196 **References**

197 **Aramini JM, Huang YJ, Swapna GVT, Cort JR, Rajan PK, Xiao R, Shastry R, Acton TB, Liu J, Rost B,**
198 **Kennedy MA, Montelione GT** (2007) Solution NMR structure of *Escherichia coli* ytfP expands
199 the structural coverage of the UPF0131 protein domain family. *Proteins-Structure Function*
200 and *Bioinformatics* **68**: 789-795

201 **Bae E, Bingman CA, Aceti DJ, Phillips GN** (2008) Crystal structure of *Homo sapiens* protein LOC79017.
202 *Proteins-Structure Function and Bioinformatics* **70**: 588-591

203 **Bernadó P, Mylonas E, Petoukhov MV, Blackledge M, Svergun DI** (2007) Structural characterization
204 of flexible proteins using small-angle X-ray scattering. *Journal of the American Chemical
205 Society* **129**: 5656-5664

206 **Blanchet CE, Spilotros A, Schwemmer F, Graewert MA, Kikhney A, Jeffries CM, Franke D, Mark D,**
207 **Zengerle R, Cipriani F, Fiedler S, Roessle M, Svergun DI** (2015) Versatile sample
208 environments and automation for biological solution X-ray scattering experiments at the P12
209 beamline (PETRA III, DESY). *Journal of Applied Crystallography* **48**: 431-443

210 **de la Cruz NB, Peterson FC, Volkman BE** (2008) Solution structure of at3g28950 from *Arabidopsis*
211 *thaliana*. *Proteins-Structure Function and Bioinformatics* **71**: 546-551

212 **Fischer H, Neto MD, Napolitano HB, Polikarpov I, Craievich AF** (2010) Determination of the
213 molecular weight of proteins in solution from a single small-angle X-ray scattering
214 measurement on a relative scale. *Journal of Applied Crystallography* **43**: 101-109

215 **Hajizadeh NR, Franke D, Jeffries CM, Svergun DI** (2018) Consensus Bayesian assessment of protein
216 molecular mass from solution X-ray scattering data. *Scientific Reports* **8**: 7204

217 **Jones DT** (1999) Protein secondary structure prediction based on position-specific scoring matrices.
218 *Journal of Molecular Biology* **292**: 195-202

219 **Kaur A, Gautam R, Srivastava R, Chandel A, Kumar A, Karthikeyan S, Bachhawat AK** (2017) ChaC2,
220 an enzyme for slow turnover of cytosolic glutathione. *Journal of Biological Chemistry* **292**:
221 638-651

222 **Kikhney AG, Borges CR, Molodenskiy DS, Jeffries CM, Svergun DI** (2020) SASBDB: Towards an
223 automatically curated and validated repository for biological scattering data. *Protein Science*
224 **29**: 66-75

225 **Klock HE, Schwarzenbacher R, Xu QP, McMullan D, Abdubek P, Ambing E, Axelrod H, Biorac T,**
226 **Canaves JM, Chiu HJ, Deacon AM, DiDonato M, Elsliger MA, Godzik A, Grittini C, Grzechnik
227 SK, Hale J, Hampton E, Han GW, Haugen J, Hornsby M, Jaroszewski L, Koesema E, Kreusch
228 A, Kuhn P, Miller MD, Moy K, Nigoghossian E, Paulsen J, Quijano K, Reyes R, Rife C, Sims E,
229 Spraggon G, Stevens RC, van den Bedem H, Velasquez J, Vincent J, White A, Wolf G,
230 Hodgson KO, Wooley J, Lesley SA, Wilson IA** (2005) Crystal structure of a conserved
231 hypothetical protein (gi : 13879369) from Mouse at 1.90 Å resolution reveals a new fold.
232 *Proteins-Structure Function and Bioinformatics* **61**: 1132-1136

233 **Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI** (2003) PRIMUS: a Windows PC-based
234 system for small-angle scattering data analysis. *Journal of Applied Crystallography* **36**: 1277-
235 1282

236 **Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace
237 IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG** (2007) Clustal W and clustal X
238 version 2.0. *Bioinformatics* **23**: 2947-2948

239 **Lytle BL, Peterson FC, Tyler EM, Newman CL, Vinarov DA, Markley JL, Volkman BF** (2006) Solution
240 structure of *Arabidopsis thaliana* protein At5g39720.1, a member of the AIG2-like protein
241 family. *Acta Crystallographica Section F-Structural Biology Communications* **62**: 490-493

242 **Manalastas-Cantos K, Konarev PV, Hajizadeh NR, Kikhney AG, Petoukhov MV, Molodenskiy DS,
243 Panjkovich A, Mertens HDT, Gruzinov A, Borges C, Jeffries CM, Svergun DI, Franke D** (2021)
244 *ATSAS 3.0: expanded functionality and new tools for small-angle scattering data analysis.*
245 *Journal of Applied Crystallography* **54**: 343-355

246 **Nguyen YTK, Park JS, Jang JY, Kim KR, Vo TTL, Kim KW, Han BW** (2020) Structural and functional
247 analyses of human Chac2 in glutathione metabolism. *Biomolecules* **10**: 31

248 **Oakley AJ, Coggan M, Board PG** (2010) Identification and characterization of gamma-glutamylamine
249 cyclotransferase, an enzyme responsible for gamma-glutamyl-epsilon-lysine catabolism.
250 *Journal of Biological Chemistry* **285**: 9642-9648

251 **Oakley AJ, Yamada T, Liu D, Coggan M, Clark AG, Board PG** (2008) The identification and structural
252 characterization of C7orf24 as gamma-glutamyl cyclotransferase - An essential enzyme in the
253 gamma-glutamyl cycle. *Journal of Biological Chemistry* **283**: 22031-22042

254 **Pei JM, Kim BH, Grishin NV** (2008) PROMALS3D: a tool for multiple protein sequence and structure
255 alignments. *Nucleic Acids Research* **36**: 2295-2300

256 **Petoukhov MV, Franke D, Shkumatov AV, Tria G, Kikhney AG, Gajda M, Gorba C, Mertens HDT,**
257 **Konarev PV, Svergun DI** (2012) New developments in the ATSAS program package for small-
258 angle scattering data analysis. *Journal of Applied Crystallography* **45**: 342-350

259 **Porod G** (1951) Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen .1. Teil.
260 *Kolloid-Zeitschrift und Zeitschrift für Polymere* **124**: 83-114

261 **PyMOL** (2022) The PyMOL Molecular Graphics System, Version 2.5 Schrödinger, LLC.

262 **Rambo RP, Tainer JA** (2013) Accurate assessment of mass, models and resolution by small-angle
263 scattering. *Nature* **496**: 477-481

264 **Serrano P, Pedrini B, Geralt M, Jaudzems K, Mohanty B, Horst R, Herrmann T, Elsliger MA, Wilson
265 IA, Wuthrich K** (2010) Comparison of NMR and crystal structures highlights conformational
266 isomerism in protein active sites. *Acta Crystallographica Section F-Structural Biology
267 Communications* **66**: 1393-1405

268 **Studer G, Rempfer C, Waterhouse AM, Gumienny R, Haas J, Schwede T** (2020) QMEANDisCo—
269 distance constraints applied on model quality estimation. *Bioinformatics* **36**: 1765-1771

270 **Svergun D, Barberato C, Koch MH** (1995) CRYSTOL - A program to evaluate X-ray solution scattering of
271 biological macromolecules from atomic coordinates. *Journal of Applied Crystallography* **28**:
272 768-773

273 **Svergun DI** (1992) Determination of the regularization parameter in indirect-transform methods
274 using perceptual criteria. *Journal of Applied Crystallography* **25**: 495-503

275 **Tajika Y, Sakai N, Tamura T, Yao M, Watanabe N, Tanaka I** (2004) Crystal structure of hypothetical
276 protein PH0828 from *Pyrococcus horikoshii*. *Proteins-Structure Function and Bioinformatics*
277 **57**: 862-865

278 **Tria G, Mertens HDT, Kachala M, Svergun DI** (2015) Advanced ensemble modelling of flexible
279 macromolecules using X-ray solution scattering. *IUCrJ* **2**: 207-217

280