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Iron oxides are important constituents of soils and sediments and microbial iron reduction is considered

to be a significant anaerobic respiration process in the subsurface, however low microbial reduction rates

of macroparticulate Fe oxides in laboratory studies led to an underestimation of the role of Fe oxides in

the global Fe redox cycle. Recent studies show the high potential of nano-sized Fe oxides in the

environment as, for example, electron acceptor for microbial respiration, electron shuttle between

different microorganisms, and scavenger for heavy metals. Biotic and abiotic reactivity of iron

macroparticles differ significantly from nano-sized Fe oxides, which are usually much more reactive.

Factors such as particle size, solubility, ferrous iron, crystal structure, and organic molecules were

identified to influence the reactivity.

This review discusses factors influencing the microbial reactivity of Fe oxides. It highlights the

differences between natural and synthetic Fe oxides especially regarding the presence of organic

molecules such as humic acids and natural organic matter. Attention is given to the transport behavior

of Fe oxides in laboratory systems and in the environment, because of the high affinity of different

contaminants to Fe oxide surfaces and associated co-transport of pollutants. The high reactivity of Fe

oxides and their potential as adsorbents for different pollutants are discussed with respect to

application and development of remediation technologies.
Nano-sized minerals in global biogeochemistry
Iron (Fe) is one of the most abundant elements of the earth’s crust

and therefore ubiquitous in many biogeochemical compartments.

Fe oxides occur in the atmosphere, pedosphere, biosphere, hydro-

sphere, and lithosphere in a great diversity of morphologies,

minerals, and associations [1,2]. They appear as anhydrous forms

like hematite (a-Fe2O3) and maghemite (g-Fe2O3), mixed-valent

oxides like magnetite (Fe3O4) and wuestite (Fe1�xO), and oxyhydr-

oxides with the common formula FeOOH (goethite, lepidocrocite,

akaganeite). More hydrated forms such as ferrihydrite with vari-

able water contents are often described as Fe(OH)3 [3] (referred to

as Fe oxides in this review).
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Like many environmental minerals, Fe oxides also occur as

nanoparticles. Nanoparticles have a size of one to several tens

of nanometers (but smaller than 1 mm) in three dimensions [4].

Stably dispersed in a medium such as water, nanoparticles are

defined as colloids [5]. According to the DLVO theory, aggregation

is inhibited if electrostatic repulsion forces dominate over van der

Waals attraction [6,7]. Owing to brownian movement, colloids do

not sediment. When Fe oxide minerals form by precipitation from

ferrous solutions, their primary nucleation sites are within the

nanometer range. Ferrihydrite, as an exceptional Fe oxide, is a

nanomineral that only exists in nanometer-sized crystallites [4].

Those crystallites form aggregates of 100–300 nm (nanoaggre-

gates) [8] which may have colloidal properties. Ferrihydrite macro-

aggregates larger than 1 mm are formed by agglomeration of

nanoaggregates and do not form stable suspensions but precipitate
 www.elsevier.com/locate/nbt 793
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in aqueous solutions. For other Fe oxides, the nanoparticle stage is

naturally a transitory phase to macroparticle agglomeration [4].

However, the growth process can be interrupted by for example,

depletion of the ferrous source or complexation of ferric or ferrous

Fe with organic matter, leading to a decrease of the mineral

saturation index [9]. Solid, bulk minerals by contrast are exposed

to shearing, straining, weathering, and a multitude of other dis-

solutive reactions [10], also yielding nanoparticles. Therefore, a

fraction of the global pool of environmental Fe minerals is con-

stantly present as nanoparticles [11]. A study with sediment from

the Mediterranean Sea revealed an abundance of nano-sized

goethite of 7–30% of the total Fe in dependence of sampling site

and depth [12].

In soils and aquifers, chemical or physical perturbation of the

ambient groundwater conditions can lead to mobilization of

already existing nano-sized minerals [13]. This raises questions

on the reactivity of this fraction in global biogeochemistry.

The reactivity and the role of Fe oxides in the environment

might have been underestimated until now because at particle

sizes within the nanometer range minerals show variations in their

crystal structure as compared to their macroparticulate counter-

parts. With particle size decreasing to the nanometer-range, phy-

sical, chemical, and magnetic properties can change [1,14,15].

Several studies indicate that these effects have an impact on the

reactivity of nanominerals in microbial redox reactions. Anaerobic

microbial oxidation of pyrite (FeS2) by Thiobacillus denitrificans was

observed with pyrite nanoparticles but not with larger crystals

[16], indicating that minerals which do not react as macroparticles

may become reactive in nanoparticulate forms. Another example

showed that the oxidation of Mn2+ on hematite surfaces was up to

1.5 orders of magnitude faster for 7.3-nm hematite relative to 37-

nm hematite, resulting in a faster formation of Mn oxides [17]. In

the environment, the fast mineralization of Mn induced by Fe

oxide nanoparticles probably leads to a much faster increase of

available adsorption surface sites for heavy metal uptake than

previously assumed. Furthermore, the thermodynamic stabilities

of Fe oxides relative to the formation of other Fe oxides were

shown to be a function of surface area and therefore particle

size [3].

High reactivity of iron oxide nanoparticles in
geomicrobiological reactions: the role of solubility,
surface area, and ferrous iron
Factors controlling microbial Fe oxide reduction were intensively

studied during the past decades and several key factors for Fe oxide

reactivity were identified. Maximum microbial reduction rates by

Shewanella putrefaciens were positively correlated with the solubility

of Fe oxides in the order amorphous Fe(III) oxide (2-line ferrihydrite)

� 6-line ferrihydrite � nanohematite = lepidocrocite � goethite >

macroparticulate hematite [18–20]. According to the modified

Kelvin equation, the solubility of minerals increases exponentially

with decreasing particle size to the nanometer-scale [15,21]:

S

S0
¼ e2gV=RTr (1)

where S is the solubility (mol kg�1) of fine grains with the radius r

(m), S0 is the solubility of the bulk material. g is the surface free

energy (mJ m�2), V is the molecular volume (m3 mol�1), R is the
794 www.elsevier.com/locate/nbt
universal gas constant (mJ mol�1 K�1), and T is the temperature

(K). This indicates in conclusion that decreasing particle size

enhances solubility, which in turn increases microbial reduction

rates.

However, it is not known how generally applicable this is for all

minerals. Some minerals such as hydroxyapatite became less

soluble with particle sizes decreasing to a crucial value [22]. The

crucial value depended on the size of pits on the crystallite surface

which induced the dissolution of hydroxyapatite. When the crys-

tallite sizes were in the same order as the formed pits, dissolution

became self-inhibiting.

In general, one should distinguish between large crystal sizes

and aggregates of smaller particles. The solubility, mostly tested

under acidic conditions and thereby leading to disaggregation (e.g.

[20,23]), is dependent on the crystal size and largely independent

on the aggregate size of precipitated nanoparticles [20,24].

A study by Roden [23] showed that the rate-limiting steps of

abiotic reductive dissolution by ascorbate for a wide set of amor-

phous, nanoparticulate and highly crystalline, macroparticulate

Fe oxides were different from microbial reduction by S. putrefa-

ciens. Comparison of the specific surface areas of different Fe oxides

with their reduction rates showed an approximately linear rela-

tionship for microbial reduction whereas the relationship for

abiotic reduction was logarithmic (Fig. 1). This logarithmic beha-

vior was attributed to differences in the thermodynamic properties

(e.g. crystal order) which are correlated with the specific surface

area and the Fe(II) detachment from Fe oxide surfaces during

reduction. The linear relationship between microbial reduction

rates and the specific surface area indicated that the rate-limiting

step in microbial Fe oxide reduction was the rate of electron

transfer from the cell to the Fe oxide surface. By contrast to abiotic

reduction, microbial reduction led to an Fe(II) coating on the Fe

oxide surfaces. Outliers showing a low reactivity compared to

specific surface area (Fig. 1) were most probably caused by strong

aggregation [23]. Recent studies investigated the abiotic dissolu-

tion behavior of hematite nanoparticles in the size-range between

7 and 40 nm [21,24]. Initial reduction rates of 7 and 8 nm-hema-

tites were triggered by dispersed and rapidly dissolved particles and

exceeded initial reduction rates of 30 and 40 nm particles by 2- to

10-fold. Here, reduction was mainly initiated by internal defects

and nanoscale surface steps. This indicates that not only the

specific surface area and the Fe(II) detachment from the surface,

but also structural defects and surface roughness control the initial

reduction rates. Especially the reduction rates of environmental

nanoparticles are most probably underestimated. They precipitate

in the presence of ions and organic molecules and are therefore

characterized by defect structures [25] (Fig. 2).

In accordance with both findings, the microbial reduction rates

of differently sized hematite nanoparticles by Geobacter sulfurre-

ducens decreased in the order 30 nm > 10 nm � 50 nm due to

stronger aggregation of the 10 and 50 nm particles compared to

the 30 nm particles [26] (Fig. 2). Aggregation diminished the

specific surface area and therefore the number of available Fe(III)

centers at the Fe oxide surfaces available for the electron issuing

sites of the cell membranes [23]. Direct Fe(III) reduction by micro-

organisms requires attachment of the cells to the nanoparticles

[18,19,27], but reduction kinetics of larger aggregates might sub-

sequently be controlled by crystal properties [21,28]. The latter
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FIGURE 1

Relationship between oxide surface area and initial microbial (a) and abiotic reduction rates (b). Different experimental procedures in respective studies (e.g.

different microorganisms or reducing agents) cause different slopes. Approximately linear and logarithmic correlations are discernible for biotic and abiotic

reduction, respectively.
Data taken from Roden [23] and Table 1.

FIGURE 2

Possible interactions of nanoparticles in the environment or laboratory
systems. NOM, natural organic matter; HA, humic acids; FA, fulvic acids.

Modified from Delay and Frimmel [123].
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studies observed no influence of the aggregation behavior of

hematite nanoparticles on microbial reduction rates. Initial reduc-

tion rates of 30 and 43 nm particles were similar to rates of 500 nm

aggregates, even though the large aggregates presented less surface

area for cell contact. Thus, not only particle size but also particle

morphology, shape, and the degree of aggregation seem to deter-

mine both the contact between Fe oxides and cells and the

reduction mechanism (e.g. direct or indirect electron transfer)

used by Shewanella oneidensis.

However, higher microbial reduction rates of colloidal Fe oxides

compared to their macroparticulate counterparts have been

observed [29,30]. The microbial reduction of different Fe oxide

colloids by G. sulfurreducens was up to two orders of magnitude

faster compared to the macroparticulate oxides of the same

mineral (Table 1 and Fig. 3). Surprisingly, all colloidal Fe oxides

were almost totally reduced, to extents of 78–100% [30]. The high

biotic reactivity of different Fe oxide nanoparticles was also proven

with soil microbial communities grown in electrochemical cells

[31]. Amendment of Fe oxide nanoparticles to the electrochemical
www.elsevier.com/locate/nbt 795
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TABLE 1

Comparison of initial biotic and abiotic reduction rates of different Fe oxides from literature

Fe oxide Particle/aggregate
size [nm]

Specific surface
area [m2 g�1]

Reducing
agent

Abiotic
reduction
rate [mol m�2

min�1]

Microorganism Cell density
[cells mL�1]

Biotic reduction
rate [mol m�2

min�1]

Source

2-Line ferrihydrite 1 3.29 230 Ascorbic acid 2.46E�06 – – – Larsen and Postma [20]

2-Line ferrihydrite 2 3.03 250 Ascorbic acid 1.98E�06 – – – Larsen and Postma [20]

6-Line ferrihydrite 3.70 205 Ascorbic acid 2.70E�07 – – – Larsen and Postma [20]

High surface area goethite 10.67 153 Ascorbic acid 2.40E�08 – – – Larsen and Postma [20]

Goethite (1006 � 55)a � (43 � 7)b 39 � 2 HNO3 2.61E�09 – – – Rubasinghege et al. [124]

Goethite (75 � 20)a � (10 � 3)b 119 � 3 HNO3 7.70E�09 – – – Rubasinghege et al. [124]

Nanohematite 6.8 � 0.8 84.7c, 117.5d Ascorbic acid 3.27E�09 – – – Echigo et al. [21]

Nanohematite 30.5 � 3.5 37.1c, 39.1d Ascorbic acid 2.15E�09 – – – Echigo et al. [21]

Hydrous ferric oxide 1.3 600 Ascorbate 6.05E�07 Shewanella
putrefaciens CN32

2.0E+08 3.97E�09 Roden [23]

High surface area goethite 7.7 211 Ascorbate 4.92E�09 Shewanella
putrefaciens CN32

2.0E+08 1.21E�09 Roden [23]

Goethite (90 8C) 43.4 38 Ascorbate 2.59E�10 Shewanella
putrefaciens CN32

2.0E+08 2.52E�09 Roden [23]

Ferrihydrite 336 � 40 275 � 0.6 – – Geobacter
sulfurreducens

2.1E+08 5.49E�08 Bosch et al. [29,30]

Ferrihydrite 70 200 � 30% 169 � 0.3 – – Geobacter
sulfurreducens

2.1E+08 6.17E�10 Bosch et al. [29,30]

Hematite 123 � 4 127 � 1.1 – – Geobacter
sulfurreducens

2.1E+08 6.62E�09 Bosch et al. [29,30]

Hematite 27 600 � 30% 37 � 0.9 – – Geobacter
sulfurreducens

2.1E+08 1.48E�09 Bosch et al. [29,30]

Goethite 64 � 3 136 � 0.5 – – Geobacter
sulfurreducens

2.1E+08 6.95E�09 Bosch et al. [29,30]

Goethite 11 900 � 30% 11 � 0.1 – – Geobacter
sulfurreducens

2.1E+08 1.33E�10 Bosch et al. [29,30]

Soil effluent ferrihydrite 281 � 146 n.d. – – Geobacter
sulfurreducens

4.8E+07 160 mM h�1 Fritzsche et al. [60]

Soil effluent ferrihydrite 100 � 43 n.d. – – Geobacter
sulfurreducens

4.8E+07 93 mM h�1 Fritzsche et al. [60]

a Length.
bWidth.
c Degassed for 4 hours at 1208C under N2 flow before measurement.
d Degassed for 4 hours at 908C under N2 flow before measurement.
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FIGURE 3

Generalized trend of Fe oxide reactivity in dependency of particle size.
Modified from Wigginton et al. [125].
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cells led to an >30-fold increase in current production, probably

caused by constructed electrically conductive networks between

microbial cells, Fe oxide nanoparticles, and electrodes. The

authors assumed that probably nanoparticles alone can take this

role because larger crystals cannot diffuse into the intercellular

spaces of microbial assemblages to form electron conduits.

Furthermore, the ability of electrically conductive nano-magnetite

to facilitate electron transfer between G. sulfurreducens to Thioba-

cillus denitrificans was recently shown [32]. These findings indicate

the important and diverse functions of Fe oxide nanoparticles as

electron acceptor and electron mediator in nature due to their

high bioavailability.

Impact of organic matter on reactivity of synthetic and
environmental iron oxide nanoparticles
The mechanisms of microbial Fe oxide reduction as discussed

above were investigated with synthetic Fe oxides in artificial

laboratory systems. In nature, not only Fe oxides but also many

other minerals are commonly associated with organic molecules

[33–35]. This leads to the question whether this association limits

or accelerates microbial reduction rates of naturally occurring

Fe oxides.

Humic acids, extracts of natural organic matter at strong alka-

line conditions, were reduced by Fe-reducing organisms belonging

to the family of the Geobacteraceae with acetate as sole electron

donor [36–38]. The electron accepting capacity of humic acids and

especially their quinone moieties seemed to enable humic sub-

stances to enhance microbial reduction of Fe oxide macroparticles

via electron shuttling between cells and minerals. This was

observed with dissolved and solid-state humic acids [39].

The abiotic electron transfer from reduced organic molecules to

Fe oxides is essential for this mechanism. Chen et al. [40] proved

that polyphenylic-rich and carbohydrate-rich fractions of aquatic

natural organic matter from a wetland pond, and soil humic acids

were able to partly reduce dissolved Fe(III) and an amorphous

Fe(III) precipitate abiotically at acidic (pH < 4) but also at neutral
pH values. Electron transfer from microbially reduced humic acids

to ferrihydrite turned out to be at least 7-fold faster than the

electron transfer from G. sulfurreducens to ferrihydrite macroag-

gregates [41] (Fig. 2). Redox potentials of quinones are a control-

ling factor in electron shuttling-mediated Fe oxide reduction, with

redox potentials of most effective quinones in a range of �137 to

�225 mV versus standard hydrogen electrode at pH 7 [42].

In aquatic systems, small fulvic compounds (0.8–3 nm) adsorb

on inorganic colloids and prevent aggregation by electrostatic and

steric repulsion. Thus, Fe oxide nanoparticles can be stabilized in

suspension in the environment [43–45]. By contrast, adsorption of

large rigid biopolymers (consisting of structural and fibrillar poly-

saccharides with total lengths up to 1 mm) destabilized colloids

due to formation of larger aggregates [43,44]. Biopolymers acted as

long distance bridges between single colloids and formed loose

aggregates of large dimensions. Smaller polymers also adsorbed on

colloidal Fe oxide surfaces. However, charge neutralization of the

Fe oxides led to the collapse of colloids rather than polymer

bridging [43]. A stabilizing effect was also observed for goethite

colloids coated with tannic and polygalacturonic acid whereas

colloids coated with dissolved organic matter formed large aggre-

gates [46]. In summary, stabilization of nanoparticles by electro-

static repulsion as well as aggregation by polymer bridging affects

the specific surface areas of the nanoparticles and therefore also

their reactivity.

In natural systems, Fe oxide colloids generally form in the

presence of natural organic matter, leading to distorted crystal

structures [47–49]. For example, complexation of Fe(II) and Fe(III)

inhibited hydrolysis and therefore Fe oxide formation [50–53].

Coprecipitation experiments of Fe(III) nitrate solutions with dif-

ferent hydroxybenzoic acids showed that especially the position

rather than the number of phenol groups of the respective acid

controlled the interaction with Fe(III) and was therefore decisive

for the formed crystallite sizes [52]. Two-line ferrihydrite macro-

aggregates coprecipitated with microbial exopolysaccharides

revealed no changes of Fe(III) coordination, but a slightly reduced

crystallite size and crystallinity [54]. Water extractable natural

organic matter from a forest topsoil interfered strongly with the

crystal growth of synthetic ferrihydrite during coprecipitation

[55]. Even small amounts led to smaller ferrihydrite crystallites,

increased lattice spacings, and more distorted Fe(O,OH)6 octahe-

dra. Furthermore, not only organic ligands such as citrate and

oxalate, but also humic acids and natural organic matter increased

the solubility of Fe oxides [56–58]. In a structural study of natural

ferrihydrite from an acid mine drainage environment, increasing

Al, Si, and organic matter contents caused decreasing crystallite

size, while an increase of structural disorder occurred [25]. Alu-

minum substituted Fe3+ while Si and organic matter coprecipitated

with ferrihydrite inhibited Fe polymerization and particle growth.

This led to additional structural disorder. Coprecipitation of ferri-

hydrite macroaggregates with acid polysaccharides affected the

surface reactivity of ferrihydrite due to the increase of accessible

surface area for additionally dissolving present ligands such as

citrate. Coprecipitation therefore controlled ligand-promoted dis-

solution at neutral pH [59].

All the discussed factors and heterogeneities occurring in

nature have the potential to accelerate microbial Fe oxide reduc-

tion. Natural ferrihydrite colloids, derived from a soil column
www.elsevier.com/locate/nbt 797
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experiment were precipitated in the presence of natural organic

matter and applied to microbial reduction experiments [60].

Microbial reduction rates of natural colloids exceeded reduction

rates of synthetic ferrihydrite macroaggregates in literature by

about two orders of magnitude and were almost similar to dis-

solved ferric Fe species like ferric citrate. The fast reduction

stemmed from the increased solubility of ferrihydrite induced

by incorporated natural organic matter. Furthermore, complexed

Fe(III) was readily bioavailable for microbial cells and enhanced

initial microbial reduction [61]. Similar results with synthetic

lepidocrocite nanoparticles precipitated in presence and absence

of humic and fulvic acids were obtained by Pédrot et al. [57]. Here,

microbial reduction with S. putrefaciens led to an 8-times faster

reduction of the coprecipitated lepidocrocite compared to the pure

lepidocrocite. Furthermore, natural organic molecules increase the

potential of abiotic photochemical reduction of Fe oxides by the

generation of highly reactive intermediates (e.g. organic radicals)

and reactive oxygen species (e.g. singlet oxygen, hydrogen per-

oxide, hydroxyl radicals) [9,62].

Redox cycling of iron
The production of biogenic dissolved Fe(III) or colloidal Fe oxides

by Fe(II)-oxidizing bacteria and its depletion by Fe(III)-reducing

bacteria occur simultaneously within the same sediment layer

[63,64]. A sustained Fe redox cycling was already proposed for

different redox interfacial habitats such as hot springs and hydro-

thermal vents [65,66], at sediment–water interfaces in aquatic

ecosystems under circumneutral [63,64] and acidic conditions

[67], plant roots [68,69], and groundwater Fe seeps [70]. Synthetic

Fe oxides inoculated with cocultures of Fe(II)-oxidizing and Fe(III)-

reducing microorganisms [63] or enrichment cultures of fresh-

water sediment microorganisms [71,72], showed repeated reduc-

tion of goethite nanoparticles or ferrihydrite aggregates. This was

observed in co-occurrence with Fe(II) oxidation at oxic-anoxic

interfaces. These findings were supported by Bloethe and Roden

[70] who could show the rapid Fe oxide reduction and the sub-

sequent Fe(II) oxidation in freshly collected, anaerobic seep mate-

rial. A conceptual model for the bacterial Fe redox cycling is based

on the close juxtapositioning of Fe(II)-oxidizing bacteria and

Fe(III)-reducing bacteria in cocultures within the Fe(II)-O2 reaction

zone [63,64]. Here, clumping of Fe(II)-oxidizing and Fe(III)-redu-

cing bacteria around Fe oxide aggregates suggested that Fe(III)-

reducers take advantage of anaerobic micro zones within the

aggregates. These microzones are generated by O2-scavenging

during microbial Fe(II) oxidation, leading to ‘ultramicrogradients’

of O2 at the surface of the aggregates. Anoxic conditions at the

aggregate surface allow proceeding Fe(III) reduction within a bulk

aerobic environment.

The higher reactivity of Fe oxide nanoparticles compared to

their macroparticulate counterparts suggests that the efficiency of

Fe redox cycling strongly depends on their availability. Recently a

field site study proved Fe redox cycling within a floating puffball

structure. The authors assumed, based on a former scanning

electron microscopy study from the same site [73] that nan-

ometer-sized amorphous Fe oxide particles are the ferric Fe source

in this process [74]. Therefore, probably the nanoparticulate Fe

oxides are a driving force in the Fe redox cycling process in the

environment due to their high reactivity.
798 www.elsevier.com/locate/nbt
Transport of iron oxide colloids
Organic and inorganic colloids have a significant impact on

pollutant, trace element, heavy metal, and radionuclide mobiliza-

tion in soils and groundwater due to adsorption or incorporation

[13,75–78]. During the past decades many laboratory studies were

conducted to get insights into mechanisms and factors controlling

mobility of colloids [79–83] and the concomitant co-transport of

trace elements and pollutants [84–88]. Experiments with columns

filled with quartz sand and Fe oxide colloids [76] or with natural

soil [75,89] demonstrated the strong association of numerous

elements (e.g. Ti, U, Pb, Ga, rare earth elements, Y, Cd, V, Sn)

to Fe oxide colloids.

Chemical mobilization of colloidal Fe oxides and other minerals

occurs mainly in response to decreasing ionic strength, increasing

pH and increasing concentrations of dissolved organic carbon or

surfactants. Infiltration of dilute precipitation water, irrigation or

injection of fresh water for secondary oil extraction leads to the

decrease of the ionic strength, an increase of repulsive electrostatic

forces, and therefore to the mobilization of colloids. With pH

values of 6–9, infiltrating water decreases the hydraulic conduc-

tivity of soils through clay dispersion. Introduction of surfactants

to aquifers, for example, for the enhancement of oil recoveries or

remediation of contaminated aquifers but also infiltration of

organic matter-rich groundwater from swampy streams can cause

colloid mobilization [13]. Colloid formation occurs very often

in contaminant plumes. Here, high concentrations of organic

acids, organic macromolecules, and reductants promote the

mobilization of colloids [13]. Physical perturbation is mainly

induced by increased flow velocities, for example, in fractured

media or induced by pumping [13].

The stability of colloids against aggregation is essential for their

transport and fate in porous media [6,7]. The stability of colloidal

systems can be predicted by the DLVO theory based on repulsive

electrostatic forces and attractive van der Waals forces. Strength of

these forces depends mainly on ionic strength, pH, surface charge,

and presence of adsorbed polymers. At high ionic strength

(�100 mM) [90] the electric double layer shrinks and repulsive

electrostatic forces diminish, leading to irreversible aggregation.

Depending on the initial thickness of the electrical double layer,

moderate ionic strength (10–30 mM) leads to an excess of van der

Waals attraction. This results in the formation of a weaker sec-

ondary minimum where colloids can reversibly agglomerate to

unstable aggregates [90]. Simulations have shown that an absolute

value of surface potential, diffuse layer potential, and zeta poten-

tial of at least 25 mV stabilizes metal oxide nanoparticles over a

huge range of ionic strengths [91]. Pure synthetic amorphous Fe

oxide colloids are therefore predicted to be stable only in rainwater

and in extreme pH river water because higher ionic strength causes

immediate aggregation [92]. Coatings of natural organic matter

prevented metal colloids effectively from aggregation because they

induced a strongly negative surface charge [91] (Fig. 2).

Other factors controlling the mobility of colloids are hetero-

domains of attractive surface charge and roughness of the surfaces

[93] as well as particle and pore sizes [94]. During the last decades,

these interactions were mostly investigated in laboratory systems

with glass beads and/or quartz sand as porous media and latex

particles [90,94,95]. Apart from enhanced retention at high ionic

strength, retention was increased at large colloid sizes relative to
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pore sizes [94]. Under unsaturated conditions, repulsive interac-

tions between colloids and the liquid–gas interface (e.g. air bub-

bles) help to overcome repulsive forces between colloids and the

porous medium [96]. Requirements for retention were thin water

films of a thickness comparable to the colloid diameters. Transport

behavior of synthetic ferrihydrite colloids in quartz sand depended

on different ionic strengths and flow velocities. At low ionic

strength (<5 mM) the influence of the flow rate on particle deposi-

tion was negligible, but became more important with increasing

ionic strength [97]. The authors calculated travel lengths in clean

groundwater (ionic strength �2–5 mM) of 10–20 m. Increasing

ionic strength (up to 10 mM) resulted in a calculated travel dis-

tance of a few meters. These findings were in accordance with

results on hematite colloids with and without coatings of natural

organic matter [98]. Natural organic matter increased stabilization

of colloids against aggregation in NaCl-containing solutions. No

stabilizing effect was observed in presence of CaCl2, according to

the Schulze–Hardy rule. Furthermore, Ca2+ is well known to act as

bridging agent between humic acids coated ferrihydrite colloids

and therefore to promote aggregation [99].

Iron oxide-based remediation technologies
Recent and historical industrial and agricultural activities led to

numerous sites with elevated contaminant concentrations in soils,

sediments, surface-, and groundwater. In 2007 the European

Environment Agency (EEA) estimated 250 000 contaminated sites

where remediation was required [100]. Widespread contaminants

are trace elements, metalloids, and aromatic, polyaromatic, and

chlorinated organic compounds. During the last decades, Fe oxi-

des were drawn into focus of the development of new remediation

technologies due to their sorptive and reactive character [101]. In

situ Fe based treatment methods are potentially cost-effective

remediation options (Table 2) [102].

Permeable reactive barriers (PRB) are engineered zones below

the water table. The intention is to remove dissolved groundwater

contaminants by immobilization, by adsorption or transforma-

tion to less harmful products [103]. The materials within the

barrier of PRBs depend on the respective contaminant. Iron oxides

are used for the removal of, for example, U, Mo, and Cr by

adsorption and the chemical reduction of nitroaromatics and

dechlorinated aliphatics [103]. Iron oxides have a significant

impact on the fate of organic contaminants via oxidative and

reductive transformation processes [104]. Structural and mineral-

bound Fe(II) reduces chlorinated hydrocarbons and nitroaromatic
TABLE 2

Different Fe-based remediation technologies: stage of development
et al. [102]

Technology Stage of development In s

Assisted natural remediation Laboratory and pilot field trials In s

Chemical reduction via addition
of Fe(II)-containing solutions

Commercial systems available In s

Permeable reactive barriers Commercial systems available In s
compounds [105–112]. Interestingly, no size-effect was observed

for Fe(II)-mediated abiotic reduction of nitrobenzene with

goethite nanoparticles between 7 and 670 nm after specific surface

area normalization [113]. However, the authors explain this obser-

vation with aggregation of the particles and that the BET values

should not be used for the determination of surface site densities of

aggregated particles.

The dechlorination reaction of carbon tetrachloride by micro-

bially formed nano-magnetite in a study of McCormick et al. [114]

was estimated to be 260-fold faster than the enzymatic degrada-

tion by Geobacter metallireducens. Similar results were found by

Tobler et al. [115]. Ferrous Fe, formed during the microbial oxida-

tion of toluene with amorphous Fe oxides as electron acceptor by

G. metallireducens, bound to highly crystalline, macroparticulate Fe

oxide surfaces and led to abiotic reduction of 4-nitroacetophe-

none. Both results indicate the potential of ferrihydrite nanoag-

gregates as highly reactive material by coupling fast microbial Fe

oxide reduction and abiotic Fe(II)-induced reduction of organic

contaminants. Use of highly reactive nano-sized Fe oxides could

putatively increase the efficiency of the aforementioned remedia-

tion technologies.

Arsenic is a widespread naturally occurring contaminant espe-

cially in inland or closed basins in arid or semi-arid regions, in

strongly reducing aquifers, or in geothermal and mining areas

[116]. Different Fe oxides were tested for their potential to remove

As by adsorption, with amorphous Fe oxides as the most effective

due to the high specific surface area [117,118]. High phosphate

concentrations can reduce the sorption capacity of Fe oxides

because phosphate competes for adsorption sites with As on

hydrous ferric oxides and inhibits therefore As adsorption [102].

However, a study with ferrihydrite colloids derived from a soil

column experiment revealed the strong binding of As to ferrihy-

drite surfaces via inner-sphere complexes which was not impeded

by the presence of phosphate and polymerized silica [119].

Magnetite nanoparticles coated with SiO2 [120] or organic

molecules [121] or goethite [102] were shown to be highly efficient

for metal ion removal (e.g. Cu2+, Hg2+, Pb2+). Aggregation of Fe

oxide nanoparticles decrease the sorption capacity of Cu2+ again

[122], proving the high efficiency of nanoparticulate Fe oxides for

metal ion removal. Those ‘assisted natural remediation’ treat-

ments decrease metal concentrations in soil leachates and soil

water and reduce microbial toxicity [102]. Therefore, highly reac-

tive barriers could be easily implemented by using Fe oxide nano-

particles as these are mobile when injected as stable suspensions.
, mode of application, and estimated costsModified from Cundy

itu or ex situ Remedial mechanism Estimated cost (US $)

itu Contaminant

immobilization

Likely to be relatively

low (<$50 per ton

material treated)

itu or ex situ Reductive

precipitation

Cost varies depending

on surrounding conditions.

$250 000–$300 000 per site

itu Sorption or
degradation

in barrier

$60–$245 per ton
material treated

www.elsevier.com/locate/nbt 799
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Several Fe-based remediation technologies are still at an experi-

mental or pilot stage and there is a need to verify their effective

application in the large-scale field [102]. Widespread applied PRB

systems revealed limitations, which include installation methods

and the precipitation of minerals derived from reactions with

groundwater over time and therefore the significant loss of por-

osity and permeability within the PRB system [102].

Alternatively, we propose a new in situ remediation technology

for aquifers contaminated with aromatic hydrocarbons. Direct sti-

mulation of microbial iron reduction seems feasible by injecting

Fe oxide colloids into the plume. The fast microbial reduction of the

Fe oxide colloids with contaminants as electron donor makes the

development of a cost-effective remediation technology possible.

Conclusion and environmental implications
Iron oxide nanoparticles occur in a wide range of environmental

compartments. Formed by precipitation from ferrous leachates or

by dissolution of larger minerals, they are important agents of

redox cycles. In association with organic matter, substitution of

Fe3+ with other ions, and structural defects especially in natural Fe

oxide nanoparticles reduce their crystallinity and increase their
800 www.elsevier.com/locate/nbt
microbial availability. Nevertheless, laboratory studies with hardly

reactive macroparticulate Fe oxides led to a general underestima-

tion of Fe oxide reduction rates, and neglected the impact of

ferric colloids. Yet during the last years more attention was paid

to natural and synthetic nano-sized Fe oxides with respect to

reactivity and transport behavior in porous media. Results

imply an important role of nanoparticles in natural redox cycles.

Furthermore, these recent findings indicate a huge potential for

ferric nanoparticles in new remediation technologies for organic

contaminants and as sorbents for heavy metals.
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