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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• New technologies at single-cell level 
reveal large diversity of heart macro
phages with diverse roles in health and 
disease.

• Tissue-resident cardiac macrophages 
contribute to heart development and 
regulate adult heart physiology.

• Macrophages actively participate in all 
stages of the cardiac injury response, 
from initial damage sensing to repair.

• Future research should address whether 
macrophages may provide therapeutic 
targets in the context of heart injury.
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A B S T R A C T

Due to their remarkable plasticity, macrophages can adapt to diverse environments and challenges therein, 
thereby exerting tissue-specific and context-specific functions. Macrophages are the most frequent immune cell 
population present in the heart and contribute substantially to cardiac homeostasis and function. Moreover, 
macrophages are key regulators throughout all stages of heart injury, acquiring diverse phenotypes that can 
either ameliorate or exacerbate cardiac pathology in a context-dependent manner. The contribution of macro
phages to both tissue damage as well as to recovery/tissue repair during heart injury provides avenues for 
therapeutic modulation of their functions to beneficially influence heart injury progression and hence prevent 
heart failure. However, to effectively fine-tune macrophage function, a deep understanding of their heteroge
neity is required. The present review focuses on the phenotypic diversity and different roles of macrophages in 
cardiac homeostasis as well as in ischemic and non-ischemic heart disease, and discusses macrophages as po
tential therapeutic targets in the settings of heart injury.
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1. Introduction

Tissue macrophages were originally thought to exclusively originate 
from the bone marrow (BM) and particularly from blood monocytes that 
infiltrate peripheral tissues where they differentiate into macrophages 
[1]. However, in recent years, our understanding regarding the 
ontogeny, phenotypic heterogeneity and functional diversity of macro
phages has completely shifted based on a series of landmark studies that 
demonstrated that tissue macrophages can have an origin that is distinct 
from that of circulating adult mononuclear cells in the periphery. Spe
cifically, development of macrophages during embryonic stages gives 
rise to the majority of adult tissue-resident macrophages that can persist 
throughout adulthood, as evidenced in various tissues [2–5]. Such 
embryonically derived adult tissue-resident macrophages are 
self-maintained through local proliferation at steady state [3,6–9]. In 
certain tissues, monocyte-derived macrophages can also contribute to 
the tissue resident macrophage pool or partially replace the embryoni
cally derived cells over time; this process may especially occur in 
response to tissue injury or inflammation [3,6,10]. Tissue-resident 
macrophages play key roles in tissue remodeling during development 
and contribute to tissue homeostasis maintenance [9,11,12]. As opposed 
to infiltrated macrophages deriving from monocytes that frequently bear 
pro-inflammatory properties, macrophages of embryonic origin rather 
display reduced capacity to generate inflammatory responses [11–14].

Macrophages located in the heart [9,10,15] play a crucial role not 
only in supporting cardiac homeostasis, that is of importance because 
the heart has limited regenerative capacity [16,17], but also during the 
response to heart stress due to various conditions, including hemody
namic overload, mechanical strain, metabolic disturbances, inflamma
tory and neurohormonal activation, infectious agents, and toxic insults, 
or to injury [18], which can manifest as both ischemic and non-ischemic 
conditions [18,19]. Ischemic heart injury, primarily caused by athero
sclerosis, includes acute ischemic injury, caused by a sudden and severe 
interruption of blood flow that deprives a segment of the myocardium of 
oxygen and nutrient supply leading to myocardial infarction; 
ischemia-reperfusion injury, occurring upon restoration of blood supply 
due to oxidative stress and consequent inflammation; and chronic 
ischemic injury, which results from moderate and prolonged reduction 
in blood supply or unresolved acute ischemic injury [19,20]. Causes of 
non-ischemic cardiac injury include cardiomyopathies—heterogeneous 
conditions influenced by risk factors, such as hypertension-driven 
chronic pressure overload, diabetes, genetic mutations, unhealthy life
style and age—and myocarditis, representing inflammation of the 
myocardium that can be caused by diverse stresses, such as viral in
fections, autoimmunity or drug toxicity [18]. Independent of their na
ture, heart injuries are characterized by immune activation and 
associated inflammation followed by reparative responses, aiming at 
restoring tissue integrity [19]. Upon ischemic injury, inflammation often 
occurs before fibrosis, whereas during non-ischemic heart injury, in
flammatory and fibrotic processes may temporally coincide [19]. Car
diac injury is often associated with unresolved inflammation and/or 
excessive fibrosis, thereby resulting in maladaptive tissue repair, 
adverse remodeling, and ultimately impaired heart function, eventually 
progressing to heart failure (HF) [20,21]. Despite significant advance
ments in research and pharmacological therapies, HF remains one of the 
leading global causes of death, with 50 % of individuals diagnosed with 
the condition dying within five years of their diagnosis [22]. Due to their 
diverse phenotypes, heart macrophages play a central role throughout 
the various stages of the response to injury, where they can contribute to 
both tissue damage as well as recovery responses [19].

In this review, we discuss the diverse functions of macrophages in the 
maintenance of heart homeostasis, and in various types and stages of 
ischemic and non-ischemic heart disease, highlighting their broad 
plasticity and different phenotypes. We also discuss the novel aspects 
regarding the possible therapeutic targeting of macrophages in the heart 
[19].

2. Heterogeneity and functions of cardiac macrophages at 
steady-state

Cardiac tissue-resident macrophages are present at steady state and 
are the most abundant immune cells in the adult heart [9,10,13,23–25] 
accounting for ~5–10 % of the total cells of both the human and murine 
heart [9,10,23–25]. Cardiac macrophages sequentially arise from em
bryonic primitive hematopoiesis, which begins in the yolk sac, and then 
from definitive hematopoiesis, which starts in the fetal liver and later 
shifts to the bone marrow, the major site of hematopoiesis for the rest of 
the life [3,6,26].

In the adult mouse heart, the classification of resident cardiac 
macrophage subsets relies on a range of both overlapping and distinct 
cell-surface markers, as identified by different experimental approaches 
[3,6,10,27,28]. A recent study [6] identified three different cardiac 
macrophage subsets by single-cell RNA sequencing (scRNA-seq). Each 
subset has unique origin and turnover dynamics, as documented by 
inducible fate-mapping approaches, and receives a differential input 
from blood-derived monocytes, as assessed through parabiosis experi
ments [6] (Fig. 1A). The most abundant population (named TLF+) ex
presses the markers TIMD4, LYVE1, and FOLR2 while lacking CCR2 
expression and displays low levels of MHC-II [6] (Fig. 1A–Table 1). TLF+

macrophages originate from yolk-sac macrophages as well as fetal liver 
monocytes; they represent a long-lived subset that is maintained almost 
completely by self-renewal with minimal input from blood-derived 
monocytes during adulthood [6] (Fig. 1A). A second population is 
defined by the absence of expression of the aforementioned three 
markers, TIMD4, LYVE1, FOLR2 (TLF-), but expresses CCR2 in addition 
to high levels of MHC-II [6] (Fig. 1A–Table 1). These CCR2+ macro
phages originate from fetal liver monocytes, are short-lived and are 
almost completely replaced by blood monocytes in the adult heart [6] 
(Fig. 1A). A third population is TLF- and CCR2- and displays high 
expression of MHC-II (MHC-IIhi cells) [6] (Fig. 1A–Table 1). This latter 
subset, similar to the TLF+ cells, originates from the yolk sac and from 
fetal liver cells and exhibits self-renewal capacity; however, there is also 
a modest contribution of blood monocytes to this population during life 
[6] (Fig. 1A). Another study [27] identified a population in the adult 
murine heart as LYVE1hiMHC-IIlow cells (Table 1); this population is 
analogous to the TLF+ macrophages, described by Dick et al. [6]. 
However, unlike the TLF+ population [6], this study demonstrated a 
significantly higher contribution of blood-derived monocytes to the 
LYVE1hiMHC-IIlow population that further increases with age [27]. In 
addition, according to the data reported by Epelman et al. [3], the 
CCR2+ macrophage population is replaced to a less extent by blood 
monocytes, as compared to the findings of Dick et al. [6]. These dis
crepancies are likely due to differences in the methodological ap
proaches used for the identification of the different macrophage subsets, 
as well as variations in the methods employed to assess the monocyte 
contribution to the macrophage populations.

During steady-state, the contribution of monocytes to the TLF+ and 
MHC-IIhi macrophage population is limited and does not increase with 
age in adult mice [6]. Of note, the heart microenvironment guides the 
differentiation of recruited monocyte-derived macrophages into specific 
resident macrophage subsets, thereby warranting that the overall 
composition of cardiac macrophage populations remains constant in 
homeostasis [6,16]. At steady-state, monocyte-derived macrophages 
initially display distinct transcriptional profiles as compared to that of 
pre-existing tissue-resident subsets; however, as they mature in the tis
sue, their transcriptome gradually changes, eventually converging with 
that of the original subsets [6]. Pathway analysis of scRNA-seq data 
revealed that TLF+ macrophages are likely involved in homeostatic 
functions, including cellular transport and endocytosis [6,16]. The 
transcriptome of MHC-IIhi macrophages, in turn, was associated with 
cell migration functions and inflammatory responses while the tran
scriptome of CCR2+ macrophages was linked to cellular activation, 
degranulation, and immune effector processes [6]. Importantly, 
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pathway analysis of transcriptomic data from other studies supports the 
pro-inflammatory phenotype of CCR2+ macrophages [3,10]. The TLF+

macrophage subset is conserved between mouse and human hearts [26]. 
As observed in mouse models, human myocardial tissue also contains 
CCR2- macrophages, CCR2+ macrophages, and CCR2+ monocytes 
(Table 2) [29]. Both human CCR2+ and CCR2- macrophage populations 
display high expression of HLA-DR (human MHC class II, Table 2) [29]. 
Additionally, distinct LYVE1+ resident macrophage subsets have been 
identified in human myocardial tissue by transcriptomic analysis, 
including monocyte-derived macrophages [23]. However, unlike their 
murine counterparts, these human LYVE1+ macrophages lack TIMD4 
expression [23]. Moreover, a LYVE1- macrophage subset enriched in 
antigen-presenting molecules has been described [23].

A body of evidence from mouse studies highlights that cardiac resi
dent macrophages engage in a wide array of tissue-specific functions, 
not strictly related to immunity, that are essential to both cardiac 
development and the regulation of heart homeostasis at steady-state 

[30–35] (Fig. 1B). For instance, in the murine developing heart, CCR2- 

yolk-sac-derived tissue resident macrophages spatially associate with 
the endothelial cells of the perfused coronary vasculature where they 
regulate vascular patterning, an essential step for the functional 

Fig. 1. Origin and heterogeneity of murine tissue-resident cardiac macrophages and their role during heart development and homeostasis. (A) Adult tissue-resident 
cardiac macrophages include three populations namely TLF+, MHC-IIhi and CCR2+ [6]. These populations are established at various stages of development and have 
different lifecycles during adulthood [6]. Yolk-sac macrophages and fetal liver monocytes are the primary source for both TLF+ and MHC-IIhi cells [6]. Both pop
ulations exhibit self-renewal capacity; however, TLF+ macrophages are maintained with minimal input from blood-derived monocytes during adulthood, whereas 
MHC-IIhi macrophages receive a modest contribution from blood monocytes over time [6]. CCR2+ macrophages mainly derive from fetal liver monocytes, are 
short-lived and are almost entirely replaced by blood monocytes in the adult heart [6]. (B) In mice, tissue-resident macrophages orchestrate the development of the 
cardiac lymphatic [31,32] and coronary vasculature [30–33] via the production of hyaluronan [31] and insulin-like growth factor (IGF) 1 and 2 [30], respectively. In 
adult hearts, connexin-43 (Cx43)-expressing tissue-resident macrophages interact with cardiomyocytes to facilitate electrical conduction [34]. Macrophages also 
support cardiomyocyte fitness by MER tyrosine kinase (MERTK)-dependent phagocytosis of phosphatidylserine (PS)-marked exophers containing dysfunctional 
mitochondria extruded by cardiomyocytes [35].

Table 1 
Different murine macrophage subsets discussed in this review and their surface 
markers.

Macrophage 
subset

Surface markers Reference

TLF+ CD45+ CD11b+ CD64+ TIMD4+ LYVE1+ FOLR2+

MHC-IIlow CCR2-
6

MHC-IIhi CD45+ CD11b+ CD64+ TIMD4- LYVE1- FOLR2- 

MHC-IIhi CCR2-

CCR2+ CD45+ CD11b+ CD64+ TIMD4- LYVE1- FOLR2- 

MHC-IIhi CCR2+

LYVE1hiMHC- 
IIlow

LY6C– F4/80+ MERTK+ CD64+ LYVE1hi MHC- 
IIlow CX3CR1low

27
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maturation of the coronary vasculature [30–33] (Fig. 1B). This proan
giogenic role is mediated in part by the secretion of insulin like growth 
factor (IGF) 1 and 2 and is achieved through regulation of endothelial 
cell proliferation and migration, with subsequent endothelial cell 
incorporation into areas of active remodeling [30] (Fig. 1B). Macro
phages with similar properties are also found in the adult heart where 
they were shown to play a pro-angiogenic role at steady state [30,33]. 
Similar to their crucial function in coronary angiogenesis, yolk-sac 
derived tissue resident macrophages play a role in the lymphatic 
development of the embryonic murine heart, a process orchestrated by 
macrophage-derived hyaluronan that facilitates the interaction between 
macrophages and lymphatic endothelial cells, thereby promoting 
lymphatic sprouting, branching, and fusion [31,32] (Fig. 1B). These 
macrophages are typically LYVE1+, reflecting their specialized role in 
hyaluronan-mediated crosstalk with the developing lymphatic vascula
ture [36]. In the distal atrioventricular node of the adult mouse heart, 
tissue resident macrophages are interspersed with cardiomyocytes, with 
which they interact via connexin-43 (Cx43+)-containing gap junctions 
facilitating electrical conduction [34] (Fig. 1B). Similar to the murine 
heart, tissue-resident macrophages expressing Cx43+ gap junctions at 
their contact points with conducting cardiomyocytes were also detected 
in the human AV node [34], though a possible role for these cells in the 
human heart homeostasis remains unclear. Another study demonstrated 
that ventricular tissue-resident cardiac macrophages support the fitness 
of surrounding cardiomyocytes by degrading damaged and dysfunc
tional mitochondria released from cardiomyocytes, a process that is 
autophagy-dependent and complements autophagic mitochondrial 
turnover [35] (Fig. 1B). Mechanistically, this process involves the MER 
tyrosine kinase (MERTK)-dependent recognition of the ‘eat-me’ signal 
phosphatidylserine (PS) on the surface of mitochondria-containing 
subcellular particles (called exophers) extruded from cardiomyocytes, 
followed by the phagocytosis of these exophers [35] (Fig. 1B). Exopher 
phagocytosis by macrophages prevents free mitochondria and mtDNA 
from accumulating in the cardiac extracellular space, thereby avoiding 
inflammatory activation and ultimately preventing ventricular 
dysfunction [35]. Exopher-like structures were also found in the human 
myocardium [35], although their exact role in human heart physiology 
remains unknown. Taken together, multiple articles in recent years 
established that cardiac tissue-resident macrophages play essential roles 
in heart development and homeostasis.

3. Macrophage function in the context of heart injury

Following heart injury, the initial inflammatory phase is followed by 
a reparative phase (in some cases referred to as proliferative or anti- 
inflammatory) that involves fibrosis, collagen deposition, granulation 
tissue formation and angiogenesis following resolution of inflammation 
[20,37,38] (Fig. 2). During the subsequent maturation phase, the 
granulation tissue is cleared, angiogenesis is terminated and a 
cross-linked collagen matrix is formed, leading to scar remodeling [21,
38] (Fig. 2). Here we will discuss the function of cardiac macrophages in 
these different phases of heart injury.

3.1. Inflammatory phase

An ischemic cardiac event results in limited delivery of oxygen and 
nutrients to the heart, consequently leading to necrosis of cells located in 
the infarcted area, including cardiomyocytes and resident macrophages 
[20,21,39] (Fig. 2). This process drives the release of inflammatory 
factors, particularly damage-associated molecular patterns (DAMPs) 
that activate parenchymal and stromal cells and tissue-resident macro
phages via interaction with pattern recognition receptors (PRRs) [16,
19–21,40,41] (Fig. 2). Alarmins, such as extracellular RNA, trigger the 
DAMP-related inflammatory response [20,42,43]. Activation of PRRs, 
such as toll-like receptors (TLRs), occurs on fibroblasts and 
tissue-resident macrophages [16,20,40], and triggers proliferation of the 
latter [10] and, as demonstrated in models of cardiac transplantation, 
expression of pro-inflammatory cytokines, such as interleukin (IL)-1b, as 
well as chemokines, such as CXCL5, which promote recruitment of 
monocytes and neutrophils, in turn further aggravating the inflamma
tory response [19,44,45] (Fig. 2). The C–C Motif Chemokine Ligand 2 
(CCL2) signaling axis is a central axis involved in monocyte recruitment 
[44,46–48]. Moreover, disrupting the CCL5-dependent leukocyte-r
ecruitment axis in mice is protective after MI [49]. Bearing a 
pro-inflammatory profile at baseline, mouse tissue resident CCR2+

macrophages [3,6,10] are the main drivers of initial monocyte recruit
ment. Indeed, transplantation of hearts from CCR2-diphtheria toxin re
ceptor (DTR) transgenic mice after depletion of the CCR2+ population 
by diphtheria toxin administration was associated with reduced recip
ient inflammatory monocyte and macrophage accumulation in the 
donor heart [44]. CCR2+ tissue-resident macrophages in the human 
system are also pro-inflammatory and their increase is associated with 
detrimental remodeling of the left ventricle and consequent systolic 
dysfunction in patients with HF [29]. Conversely, CCR2- macrophages 
rather prevent excessive inflammation and monocyte recruitment to 
infarcted murine hearts [44].

Activation of acute emergency myelopoiesis in the bone marrow in 
mice leads to monocyte generation underlying the sustained large-scale 
recruitment of monocytes to the infarcted area [50] (Fig. 2). Moreover, 
IL-1 expression upon TLR activation [51] and activation of the sympa
thetic nervous system [52] induce extramedullary generation of splenic 
macrophages, which support the sustained demand for macrophages at 
the injury site (Fig. 2). Infiltrated monocytes differentiate into macro
phages, mainly into the CCR2+ population [10,33,44], possibly 
compensating for the decrease of resident macrophages, which are 
depleted through cell death and egress [9,10]. An increase in CCR2+

macrophages during myocardial infarction was also described in human 
patients with the help of molecular imaging [53]. Interestingly, in a 
cardiomyocyte ablation mouse model, recruited CCR2+ macrophages 
displayed increased production of pro-inflammatory chemokines and 
cytokines relative to the tissue-resident CCR2+ macrophages [44]. 
Moreover, at 11 days post MI in mice, a large proportion of recruited 
macrophages adopted a gene expression signature that resembled that of 
resident macrophages with the exception of some genes that confer 
essential repair functions to resident macrophages, demonstrating that 
infiltrated macrophages are not capable to completely compensate for 
the functions of the diminished resident macrophages [10]. In mice, 
although the remaining resident macrophages proliferate post infarction 
and the number of recruited macrophages decreases, the ratio of resi
dent to infiltrated macrophages four weeks after infarction does not 
reach the ratio at steady-state [10].

During the inflammatory phase, both recruited and remaining resi
dent macrophages can clear dead tissue via efferocytosis, thereby 
generating an environment that facilitates resolution of inflammation 
and subsequent tissue repair [19,37,54] (Fig. 2). In mice deficient for 
REG3β, an important regulator of macrophage trafficking to the 
damaged heart, the reduction of macrophage abundance resulted in 
diminished clearance of neutrophils within the ischemic heart envi
ronment, thereby leading to elevated matrix degradation, delayed 

Table 2 
Different human macrophage subsets discussed in this review and their surface 
markers.

Macrophage 
subset

Surface markers Reference

CCR2- HLA-DRhi CD14+ CD45+ CD64+ CCR2- HLA-DRhi MERTK+/- 

CD33+ CD163+ CD3- CD19- CD56-
29

CCR2+ HLA- 
DRhi

CD14+ CD45+ CD64+ CCR2+ HLA-DRhi MERTK+/- 

CD33+ CD163+ CD3- CD19- CD56-
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collagen deposition, and a higher risk of heart rupture [55]. Macrophage 
efferocytosis is mediated through the expression of phagocytic receptors 
such as MERTK or opsonins bridging apoptotic cells to phagocytic 
macrophage receptors, such as milk fat globule-EGF factor 8 (MFGE8) 
[38,54,56–58]. The clearance of apoptotic cells drives macrophages 
toward an anti-inflammatory and reparative phenotype [57,58]. In a 
mouse model of ischemia-reperfusion injury, expression of constitu
tively active MERTK, engineered to resist protease cleavage, promotes 
inflammation resolution, as evidenced by reduced infiltration of neu
trophils and monocytes and increased expression of the 
anti-inflammatory mediators IL-10 and transforming growth factor-β 
(TGF-β) [38,57]. The cleavage of MERTK in macrophages is regulated by 
hypoxia inducible factor (HIF)1α, which promotes the expression of the 
metalloprotease ADAM17 [59]. While deletion of HIF1α in myeloid cells 
improves efferocytosis and promotes resolution of inflammation, com
bined deletion of HIF1α and HIF2α in myeloid cells results in macro
phage necroptosis and cardiac rupture—highlighting the essential role 
of basal HIF signaling in maintaining macrophage survival during 

cardiac injury [59].
Beyond inflammation control, efferocytosis also contributes to tissue 

repair. Following MI in mice, the MERTK- and MFGE8-dependent 
efferocytosis facilitates the switch of macrophages towards a repara
tive phenotype, accompanied by production of vascular endothelial- 
derived growth factor A (VEGFA), which may promote survival and 
proliferation of endothelial cells [58]. Additionally, MERTK facilitates 
the removal of exophers, containing damaged mitochondria, released by 
stressed cardiomyocytes, thus preserving tissue integrity during heart 
injury [35]. A similar role in scavenging cardiomyocyte-ejected 
dysfunctional mitochondria was demonstrated for TREM2hi macro
phages in the settings of cardiac septic stress [60]. Interestingly, 
neutrophil gelatinase-associated lipocalin secreted by neutrophils, 
which are recruited very early to the site of injury, promotes a reparative 
macrophage phenotype with elevated efferocytosis capacity [61] 
(Fig. 2). Depletion of macrophages, or inhibition of their efferocytosis 
ability, impact also on non-immune functions as the disruption of the 
clearance of toxic material and dying cells upon MI causes abnormal 

Fig. 2. The processes occurring during the different phases of cardiac injury. Following an ischemic event, necrosis of cardiomyocytes and resident macrophages in 
the infarcted area leads to the release of damage-associated molecular patterns (DAMPs) that activate pattern recognition receptors (PRRs, e.g., toll-like receptors 
[TLRs]) on fibroblasts and immune cells [16,20,40]. This process leads to cellular activation and initiates an inflammatory cascade that promotes neutrophil and 
monocyte recruitment [44,45]. Concurrently, emergency myelopoiesis in the bone marrow and extramedullary hematopoiesis in the spleen further contribute to the 
infiltrated macrophage pool [50–52]. During the inflammatory phase, both tissue-resident and infiltrated macrophages clear necrotic tissue via efferocytosis, which 
fosters an environment that supports inflammation resolution and tissue repair [19,37,54]. Neutrophils support the switch of macrophages to a reparative phenotype 
via neutrophil gelatinase-associated lipocalin, enhancing efferocytosis [61]. During the reparative phase, anti-inflammatory macrophages secrete factors to promote 
fibroblast-to-myofibroblast transition and collagen synthesis [19,73,74]. Moreover, they promote angiogenesis and regulate extracellular matrix (ECM) composition 
via the production of vascular endothelial growth factor A (VEGFA) [98–100] and matrix metalloproteinases (MMPs) [91–96], respectively. In the maturation phase, 
a stable cross-linked collagen scar forms [21,38]. While macrophage density decreases, a persistent population remains in mature scars [102]. Non-infarcted 
myocardium undergoes hypertrophy and remodeling under chronic load, associated with low-grade inflammation and macrophage accumulation, continuing for 
weeks post-injury [21,38,52].
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electrical conduction, and thus ventricular tachycardia driven by rapidly 
infiltrating neutrophils [62]. In another context, specifically, in a pres
sure overload model, macrophages were found to maintain heart elec
trical conduction and prevent cardiac death [63]. Mechanistically, 
amphiregulin produced by macrophages leads to Cx43 phosphorylation 
in cardiomyocytes and promotes the formation of gap junctions thus 
facilitating intercellular communication between cardiomyocytes dur
ing stress, thereby preventing lethal arrhythmias [63].

During the inflammatory phase of MI, macrophages can also produce 
matrix-metalloproteinases (MMPs), which modulate disease outcome 
[19]. For instance, decreased MMP-9 expression owing to deficiency of 
the inflammatory signaling adapter CARD9 was associated with reduced 
cardiomyocyte apoptosis and beneficial effects post-MI [64]. Altogether, 
there is ample scientific evidence supporting a central role for both 
tissue-resident and recruited macrophages in regulating the inflamma
tory phase upon heart injury.

3.2. Reparative phase

The reprogramming of macrophages from pro-inflammatory to anti- 
inflammatory cells, along with the proliferation of the latter, underlies 
the process of resolution of inflammation, which initiates cardiac repair 
[19,37,38,65] (Fig. 2). Several factors contribute to this phenotypic 
transition of macrophages in mice [38]. These include the clearance of 
apoptotic cells by macrophages through efferocytosis [54], already 
outlined earlier in the text, the production of intrinsic anti-inflammatory 
signals in macrophages, triggered by pro-inflammatory cytokines within 
the infarct microenvironment [66], and the induction of various 
anti-inflammatory cytokines in the injured heart [67]. 
Anti-inflammatory macrophages express genes encoding reparative 
factors, such as Pdgf (platelet-derived growth factor) b and Igf1 [38,68]. 
A wide variety of secreted mediators derived from macrophages, such as 
TGF-β [69], IL-10, IL-4, and IL-13 [67,70], VEGF-C [71] and IGF1 [72], 
have been associated with anti-inflammatory properties in the infarcted 
heart. Following termination of inflammation, myofibroblasts work 
together with macrophages and other cells to shape the scar tissue that 
will replace the injured region [20,37]. Indeed, among the factors pro
duced by the macrophages in this phase, the anti-inflammatory cytokine 
IL-10 and the profibrotic TGF-β boost the migration of fibroblasts, their 
transdifferentiation to myofibroblasts, their proliferation and collagen 
synthesis [19,73,74] (Fig. 2). Mouse studies implied IL-10 in enhancing 
fibrosis [75], via mechanisms that include galectin-3- and 
MERTK-dependent enhanced expression of osteopontin [56,76,77]. 
Macrophage-derived IL-10 was also shown to stimulate fibroblasts and 
enhance collagen deposition eventually promoting diastolic dysfunction 
in mice [78]. However, anti-fibrotic actions of IL-10 have been reported 
as well [79–81]. Further mediators released by injury-associated mac
rophages that contribute to fibrosis include Neuregulin 1 [82] and 
SPARC [83]. Another study showed that TREM2+ macro
phages—previously associated with anti-inflammatory and reparative 
functions [60]—have increased production of the metabolite itaconate 
upon efferocytosis [84]. Itaconate is synthesized from the TCA-cycle 
intermediate cis-aconitate in response to inflammatory stimuli [85]. 
This leads to reduced cardiomyocyte apoptosis and increased fibroblast 
proliferation, thereby improving mouse cardiac function [84]. Sup
porting these findings, spatial transcriptomic analysis revealed that 
TREM2hi macrophages gradually increase over time in the infarct zone 
and become abundant in the late phase after MI, associated with tissue 
remodeling functions and cardiac repair [86]. Moreover, macrophages 
can reduce fibrosis through the production of exosomes enriched in 
mir-155 [87]. Interestingly, macrophages are also capable of undergo
ing mesenchymal transition to adopt a fibroblast-like phenotype [88]. In 
this context, the absence of IKKε, which is responsible for phosphory
lating NF-κB inhibitors, thereby releasing NF-κB into the nucleus for 
transcription [89], impedes cardiac repair after myocardial infarction in 
mice by excessive increase of the macrophage-myofibroblast transition 

[90]. Although macrophages produce little collagen themselves, they 
are essential for tissue remodeling, regulating extracellular matrix 
composition through the secretion of proteases and anti-proteases that 
control extracellular matrix [38]. Indeed, as already mentioned above, 
they serve as the primary cellular source for various members of the 
MMP family within the infarct [91–96] (Fig. 2). Some MMPs may have 
functions that extend beyond extracellular matrix remodeling and 
endothelial proangiogenic actions [38]; for instance, they can influence 
the availability of bioactive chemokines [93] or modify proteins essen
tial for cardiomyocyte contraction [97] and electrical signaling [95]. 
Reparative macrophages also produce vascular endothelial growth fac
tor A (VEGFA) [98–100], which induces angiogenesis and mediates 
repair of the infarcted heart [58] (Fig. 2). Indeed, the emergence of 
newly generated vessels is essential for delivering oxygen and nutrients 
to the actively healing infarct area [38,101]. Altogether, the works 
discussed here underscore the multifaceted and dynamic role of mac
rophages in coordinating scar formation, fibrosis, and angiogenesis, 
ultimately shaping the structural and functional recovery of the 
infarcted heart.

3.3. Maturation phase

The final stage of cardiac repair may result in either effective healing 
or pathological remodeling, which in turn may lead to HF [21,38]. After 
its peak during the proliferative phase, macrophage density usually 
decreases during the subsequent transition to the maturation phase, 
however a substantial macrophage number persists in scars [38,102] 
(Fig. 2). During infarct healing, the non-infarcted myocardial regions are 
exposed to increased volume and pressure loads and undergo hyper
trophic adaptation, which in turn may trigger prolonged macrophage 
activation and subsequent stimulation of a fibrogenic program [21,38] 
(Fig. 2). Mouse studies revealed that, 8 weeks after MI, macrophage 
numbers rose in distant remodeling heart regions due to both local cell 
division and incoming monocyte-derived cells [52] (Fig. 2). Activation 
of macrophages in the remote regions of remodeling myocardium may 
be triggered as a consequence of increased wall stress in these areas [38,
52]. In murine dilated cardiomyopathy, macrophages can recognize 
mechanical stretch via specific mechanosensitive ion channels, such as 
the transient receptor potential vanilloid (TRPV) 4, that in turn results in 
their stimulation and the subsequent production of growth factors [38,
103].

4. Role of macrophages during heart regeneration

Adult human hearts have a very limited ability to regenerate after 
injury [16,17], as mature cardiomyocytes cannot divide and must 
instead rely on structural remodeling to preserve function. In contrast, 
neonatal hearts can regenerate damaged myocardium, an ability lost in 
adulthood [104,105]. Macrophages are potential mediators of cardiac 
repair in neonatal mice that have inherent regenerative capacity [106]. 
In response to injury, MHC-IIlowCCR2- resident macrophages accumu
late in the neonatal cardiac tissue [16,33]. Importantly, neonatal mac
rophages promote heart recovery by triggering endothelial cell 
proliferation [33,106] and cardiomyocyte proliferation [33,107,108] 
the latter via secretion of CCL24 [107] and Oncostatin M [108]. 
Conversely, the adult heart’s resident macrophages are mainly replaced 
by monocyte-derived macrophages, which have no regenerative ca
pacity and rather promote inflammation, which may in turn result in 
fibrosis [16,33]. Maintaining the reparative potential of resident mac
rophages thus depends on their ability to respond appropriately to tissue 
stress. One key factor involved in this adaptation is HIF1α. Resident 
cardiac macrophages act as local sensors of ischemia, and recent find
ings show that deletion of HIF1α in these cells by using Cx3cr1ERT2Cre x 
Hif1αflox/flox mice, disrupts monocyte-to-macrophage differentiation and 
impairs the resolution of inflammation, ultimately worsening cardiac 
remodeling [109]. Without HIF1α, Arginase 1+ macrophages fail to 
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differentiate into reparative Trem2+, Gdf15+, and MHC-IIhi subsets 
[109]. These findings suggest that HIF1α not only regulates resident 
macrophage-intrinsic pathways but also influences the surrounding 
microenvironment to guide monocyte differentiation after MI [109].

5. Macrophage-targeted therapeutic approaches

Macrophage-targeting strategies may offer a promising path in the 
ongoing quest for new effective therapies for heart injury and HF. In 
several experimental models, inhibition of recruitment of monocyte- 
derived macrophages to the diseased heart led to blunted inflamma
tion and resulted in beneficial effects, such as reduced myocardial le
sions or improved heart function [48,49,110–116]. Strategies to reduce 
inflammatory cell recruitment include blocking chemokine axes 
involved in monocyte infiltration [48,49,110–113], suppressing toll-like 
receptor 4 signaling [114] or inhibiting the angiotensin axis [115,116], 
consistent with the beneficial effects of angiotensin-converting enzyme 
inhibitors on the heart [117]. Another preclinical approach is the 
modulation of the macrophage phenotype by reducing their 
pro-inflammatory activation that was achieved by silencing the tran
scription factor interferon regulatory factor 5 (IRF5) [118] or via inhi
bition of the calcium-sensing receptor (CaSR), involved in the activation 
of NLRP3 inflammasome in macrophages [119]. Additional strategies 
attempted the increase of the anti-inflammatory properties of 
MI-infiltrating macrophages by different approaches, including the 
administration of the anti-inflammatory cytokines IL-10 [79] and IL-4 
[120,121] as well as the silencing of collapsin response mediator 
protein-2 (CRMP2) [122] and the inhibition of the class I/II histone 
deacetylases (HDACs) [123]. Furthermore, treatment with IL-35 in
creases the presence of reparative macrophages in murine infarcted 
hearts partially by promoting their survival [124].

Interestingly, preclinical studies demonstrated that cell therapies 
(mainly involving bone marrow, adipose or cardiac stem cells/mesen
chymal stromal cells, as well as bone marrow mononuclear cells) may 
have beneficial effects in ameliorating cardiac fibrosis and maladaptive 
remodeling, while promoting optimal cardiac healing, primarily 
through macrophage-mediated mechanisms, including the polarization 
of the latter toward an anti-inflammatory phenotype and/or intercel
lular communication and paracrine effects [125–130]. This triggered 

the approach of directly administering ex vivo/in vitro reprogrammed 
macrophages, such as macrophages preconditioned with hypoxia or 
incubated with macrophage colony-stimulating factor (M-CSF) and IL-4; 
these therapies resulted in attenuated adverse tissue remodeling, 
enhanced myocardial tissue repair or cardiac function in pre-clinical 
settings [131–133] (Table 3). At the clinical level, Ixmyelocel-T, 
which is a therapy obtained by expanded patient-derived bone 
marrow mesenchymal stromal cells and alternatively activated macro
phages [134], showed reduction of adverse cardiovascular events in 
patients with ischemic dilated cardiomyopathy but not in patients with 
nonischemic dilated cardiomyopathy (NCT00765518, NCT01020968, 
[16,135]) (Table 3). A clinical trial (NCT01670981) established to treat 
patients with ischemic HF revealed that treatment with Ixmyelocel-T 
resulted in a reduction of clinical cardiac events compared to placebo 
(Table 3) [16,136]. However, another clinical trial (NCT00824005) 
with administration of patient-derived bone marrow mononuclear cells 
transendocardially reported that the ischemic HF patients did not show 
improved heart function relative to the group that received placebo 
treatment [16,137] (Table 3). Other pre-clinical studies highlighted the 
potential of administering engineered macrophages to overexpress 
VEGF [138] or neonatal macrophages [139] in order to promote cardiac 
repair (Table 3). The use of chimeric antigen receptor (CAR)-expressing 
macrophages engineered to phagocytose FAP+ myofibroblasts alleviated 
cardiac fibrosis and improved heart function in mice [140] (Table 3). As 
reprogrammed macrophage administration strategies are hindered by 
the methodological challenges related to macrophage collection, genetic 
manipulation and expansion processes, the use of embryonic pluripotent 
stem cells derived from healthy donors is currently under consideration; 
this approach may represent a valuable source for reparative macro
phages in experimental studies [141,142].

Given that an important mechanism by which cardiac stem cells and 
bone marrow mesenchymal stromal cells exert their beneficial effects 
involves extracellular vesicles (EVs) [143,144] and their cargo, such as 
microRNAs (miRNAs) and other RNAs [145–147], EVs are considered a 
promising cell-free therapeutic approach. In several preclinical studies 
with cardiac injury such EV-based approaches promoted macrophage 
polarization towards an anti-inflammatory and reparative phenotype, 
thereby ameliorating inflammation, and leading to beneficial effects, 
such as reduction of infarct size and fibrosis, or improving heart function 

Table 3 
Current macrophage-focused therapeutic approaches in pre-clinical models and clinical trials.

Research phase Organism Disease model Therapeutic strategy Disease outcome Reference

Pre-clinical Mouse MI Hypoxia-induced Mϕ ↓ Scar size 131
↑ Capillaries
↑ Heart function
↑ Survival

Pre-clinical Mouse MI M-CSF and IL-4-induced Mϕ ↓ Infarct size 132
↑ Thickness of the infarcted LV
↑ Capillary density
↑ Replacement fibrosis
↓ Interstitial fibrosis
↑ Cardiac function

Pre-clinical Mouse HF ↓ Interstitial fibrosis 133
↑ Cardiac function

Clinical (phase 2A) Human IDCM Ixmyelocel-T ↓ Adverse cardiovascular events 135
NIDCM No improvement

Clinical (phase 2B) Human IDCM ↓ Adverse cardiac events 136
Clinical (phase 2) Human CIHF Autologous bone marrow mononuclear cells No improvement 137
Pre-clinical Mouse MI VEGF-overexpressing Mϕ ↑ Capillary density 138

↑ Heart function
Pre-clinical Mouse MI Murine neonatal cardiac Mϕ ↓ Infarcted area 139

↑ Cardiomyocyte proliferation
↑ Heart function
↑ Survival

Pre-clinical Mouse HI CAR Mϕ engineered to phagocytose FAP+ myofibroblasts ↓ Cardiac fibrosis 140

Mϕ; macrophages; MI; myocardial infarction; HF, heart failure; IDCM, ischemic dilated cardiomyopathy; NIDCM, nonischemic dilated cardiomyopathy; CIHF, chronic 
ischemic heart failure; HI, heart injury; M-CSF, macrophage colony-stimulating factor; IL, interleukin; LV, left ventricle; VEGF, vascular endothelial growth factor; 
CAR, chimeric antigen receptor.
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[143–147]. Importantly, the lipid bilayer structure of EVs can be 
modified to improve their delivery to infarcted heart tissue [148]. 
Another cell-free strategy involves the use of small interfering RNAs 
(siRNAs) as therapeutic agents that may exert different beneficial ac
tions, such as limit leukocyte recruitment, promote macrophage 
anti-inflammatory phenotypes, reduce heart damage or enhance cardiac 
function in the setting of murine cardiac injury [52,111,113,149–152]. 
A promising recent preclinical study developed a nanotherapeutic de
livery system that specifically targets CD86+ (pro-inflammatory) mac
rophages in the infarct zone post-MI, using ultrasound-responsive 
nanoparticles to deliver nitro-oleic acid, a compound known to modu
late various pathophysiological processes, e.g. by suppressing inflam
mation and fibrosis, and a siRNA against STAT1 [152]. This approach 
reduced ventricular remodeling and preserved cardiac function in ani
mal models, suggesting strong translational potential [152]. Despite 
advancements in macrophage-related therapies, this approach still has 
substantial challenges; in this context developing advanced systems is of 
crucial importance for enabling precise delivery of therapeutic agents to 
tissue macrophages [16]. Future efforts should hence put their focus on 
preserving tissue-resident macrophage function while decreasing 
inflammation from monocyte-derived macrophages in order to enhance 
cardiac recovery [16,153].

6. Conclusions and perspectives

Heart injury can lead to HF, which, despite decades of research, 
continues to represent a significant burden on global health and 
healthcare systems [22]. Our article focused on the continuously 
expanding understanding of macrophage heterogeneity, and on their 
plasticity to adapt their phenotype in response to environmental cues 
following injury. Since macrophages exert crucial roles in the 
post-injury response, they have emerged as promising targets for ther
apeutic intervention, which is supported by encouraging basic research 
and preclinical findings [16]. However, macrophage-targeted therapies 
are still at the early stage of development, and translating basic research 
into clinical applications remains a substantial challenge. Additional 
studies are necessary to assess the efficacy and safety of 
macrophage-targeted therapies in clinical settings. To leverage the 
therapeutic potential of targeting macrophages, it is essential to deepen 
our understanding of macrophage phenotypic and functional diversity, 
and their interactions with surrounding cells in the heart. Advances in 
spatial transcriptomics have revealed the diversity and precise locali
zation of macrophage subsets during cardiac remodeling after myocar
dial infarction [154]. By elucidating gene-regulatory networks, the 
niche-specific functions of macrophages in cardiac repair can be char
acterized, including their activation states and interactions with myo
fibroblasts. These observations underline the dual roles of macrophages 
in inflammation and fibrosis/scar formation—and underscore their po
tential as therapeutic targets to improve outcomes after MI [14,155,
156].

The impact of aging, sex, and comorbidities such as diabetes and 
other non-communicable diseases on macrophage function in the 
human heart is poorly understood. The extent to which monocyte- 
derived macrophages can adopt tissue-resident-like phenotypes post- 
injury also requires further investigation.

Importantly, most of our current knowledge on macrophage function 
in the heart comes from mouse models. Hence, efforts to translate 
findings from mice to human settings should take into account inter
species differences in macrophage origin [157], and marker expression 
[158] as well as in transcriptomic and metabolic responses to stimula
tion [159,160]. Moreover, one should not overlook that mice are housed 
in sterile, pathogen-free facilities, while humans are continuously 
exposed to pathogens throughout life, which significantly influences 
macrophage function [161]. Furthermore, since myocardial diseases are 
more prevalent in the elderly, studies using young mice may not accu
rately model the altered immune dynamics characteristic of aged 

individuals [38]. Together, these differences underscore the importance 
of cautious interpretation and careful validation of mouse macrophage 
data before extrapolating them to human biology and clinical 
application.

Future research should prioritize developing advanced drug delivery 
systems to selectively target macrophage subsets and modulate their 
functions beneficially. Validation of such approaches is crucial for the 
development of effective therapies that can balance protective and 
detrimental macrophage responses in cardiac tissue, ultimately leading 
to improved outcomes after heart injury.
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[156] Brancewicz J, Wójcik N, Sarnowska Z, Robak J, Król M. The multifaceted role of 
macrophages in biology and diseases. Int J Mol Sci 2025;26(5):2107. https://doi. 
org/10.3390/ijms26052107.

G. Trimaglio et al.                                                                                                                                                                                                                              Atherosclerosis 409 (2025) 120480 

11 

https://doi.org/10.1160/TH13-04-0297
https://doi.org/10.1038/nbt.1989
https://doi.org/10.1161/CIRCULATIONAHA.105.572396
https://doi.org/10.1093/eurheartj/ehu225
https://doi.org/10.1093/eurheartj/ehu225
https://doi.org/10.1093/cvr/cvz066
https://doi.org/10.1016/j.biopha.2019.108660
https://doi.org/10.1016/j.taap.2016.06.005
https://doi.org/10.1016/j.taap.2016.06.005
https://doi.org/10.1016/S0002-8703(02)94777-0
https://doi.org/10.1016/S0002-8703(02)94777-0
https://doi.org/10.1016/j.jacc.2013.11.023
https://doi.org/10.1016/j.jacc.2013.11.023
https://doi.org/10.1111/jcmm.15969
https://doi.org/10.1038/s41598-017-07328-z
https://doi.org/10.1172/JCI85782
https://doi.org/10.1186/s12950-015-0053-8
https://doi.org/10.1016/j.yjmcc.2018.04.011
https://doi.org/10.1161/CIRCRESAHA.118.314569
https://doi.org/10.1016/j.ymthe.2020.01.011
https://doi.org/10.1016/j.ymthe.2020.01.011
https://doi.org/10.1038/s41586-019-1802-2
https://doi.org/10.1016/j.jacc.2013.07.057
https://doi.org/10.1016/j.jacc.2013.07.057
https://doi.org/10.1038/s12276-018-0171-5
https://doi.org/10.1038/s41374-018-0181-x
https://doi.org/10.1172/JCI81321
https://doi.org/10.7150/thno.63642
https://doi.org/10.1007/s00395-019-0742-1
https://doi.org/10.1007/s00395-019-0742-1
https://doi.org/10.1186/s40824-022-00260-y
https://doi.org/10.1186/scrt117
https://doi.org/10.1161/CIRCRESAHA.115.304554
https://doi.org/10.1161/CIRCRESAHA.115.304554
https://doi.org/10.1016/S0140-6736(16)30137-4
https://doi.org/10.1016/S0140-6736(16)30137-4
https://doi.org/10.1001/jama.2012.418
https://doi.org/10.1001/jama.2012.418
https://doi.org/10.1016/j.ijcard.2011.07.026
https://doi.org/10.1038/s41423-020-0371-5
https://doi.org/10.1038/s41421-024-00718-4
https://doi.org/10.1038/s41421-024-00718-4
https://doi.org/10.1038/s44161-024-00471-7
https://doi.org/10.1016/j.stem.2024.05.011
https://doi.org/10.1016/j.stem.2024.05.011
https://doi.org/10.1186/s13287-021-02591-4
https://doi.org/10.1111/jcmm.14635
https://doi.org/10.1093/cvr/cvz040
https://doi.org/10.1161/CIRCULATIONAHA.116.024590
https://doi.org/10.1161/CIRCULATIONAHA.116.024590
https://doi.org/10.15252/emmm.201606924
https://doi.org/10.15252/emmm.201606924
https://doi.org/10.7150/thno.20524
https://doi.org/10.1016/j.bioactmat.2022.01.026
https://doi.org/10.1002/advs.202403542
https://doi.org/10.1002/advs.202403542
https://doi.org/10.1126/scitranslmed.aaf1435
https://doi.org/10.1126/sciadv.adp7126
https://doi.org/10.1126/sciadv.adp7126
https://doi.org/10.3389/fcell.2020.617879
https://doi.org/10.1038/s41586-022-05060-x
https://doi.org/10.1038/s41586-022-05060-x
https://doi.org/10.1038/s41569-024-01109-8
https://doi.org/10.1038/s41569-024-01109-8
https://doi.org/10.3390/ijms26052107
https://doi.org/10.3390/ijms26052107


[157] Gallerand A, Han J, Ivanov S, Randolph GJ. Mouse and human macrophages and 
their roles in cardiovascular health and disease. Nat Cardiovasc Res 2024;3(12): 
1424–37. https://doi.org/10.1038/s44161-024-00580-3.

[158] Herb M, Schatz V, Hadrian K, Hos D, Holoborodko B, et al. Macrophage variants 
in laboratory research: most are well done, but some are RAW. Front Cell Infect 
Microbiol 2024;14:1457323. https://doi.org/10.3389/fcimb.2024.1457323.

[159] Wong A, Sun Q, Latif II, Karwi QG. Macrophage energy metabolism in 
cardiometabolic disease. Mol Cell Biochem 2025;480(3):1763–83. https://doi. 
org/10.1007/s11010-024-05099-6.

[160] Vijayan V, Pradhan P, Braud L, Fuchs HR, Gueler F, et al. Human and murine 
macrophages exhibit differential metabolic responses to lipopolysaccharide - a 
divergent role for glycolysis. Redox Biol 2019;22:101147. https://doi.org/ 
10.1016/j.redox.2019.101147.

[161] Mass E, Nimmerjahn F, Kierdorf K, Schlitzer A. Tissue-specific macrophages: how 
they develop and choreograph tissue biology. Nat Rev Immunol 2023;23(9): 
563–79. https://doi.org/10.1038/s41577-023-00848-y.

G. Trimaglio et al.                                                                                                                                                                                                                              Atherosclerosis 409 (2025) 120480 

12 

https://doi.org/10.1038/s44161-024-00580-3
https://doi.org/10.3389/fcimb.2024.1457323
https://doi.org/10.1007/s11010-024-05099-6
https://doi.org/10.1007/s11010-024-05099-6
https://doi.org/10.1016/j.redox.2019.101147
https://doi.org/10.1016/j.redox.2019.101147
https://doi.org/10.1038/s41577-023-00848-y

	Cardiac macrophages and their functions in homeostasis and injury
	1 Introduction
	2 Heterogeneity and functions of cardiac macrophages at steady-state
	3 Macrophage function in the context of heart injury
	3.1 Inflammatory phase
	3.2 Reparative phase
	3.3 Maturation phase

	4 Role of macrophages during heart regeneration
	5 Macrophage-targeted therapeutic approaches
	6 Conclusions and perspectives
	Author contributions
	Financial support
	Declaration of competing interest
	Acknowledgements
	References


