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e New technologies at single-cell level
reveal large diversity of heart macro-

phages with diverse roles in health and Heterogeneity Context
disease Origin Development Homeostasis Injury

e Tissue-resident cardiac macrophages
contribute to heart development and ) Subset
regulate adult heart physiology.

e Macrophages actively participate in all

stages of the cardiac injury response, Function
from initial damage sensing to repair.

o Future research should address whether
macrophages may provide therapeutic
targets in the context of heart injury.
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Keywords: Due to their remarkable plasticity, macrophages can adapt to diverse environments and challenges therein,
Macrophages thereby exerting tissue-specific and context-specific functions. Macrophages are the most frequent immune cell
Heart

population present in the heart and contribute substantially to cardiac homeostasis and function. Moreover,
macrophages are key regulators throughout all stages of heart injury, acquiring diverse phenotypes that can
either ameliorate or exacerbate cardiac pathology in a context-dependent manner. The contribution of macro-
phages to both tissue damage as well as to recovery/tissue repair during heart injury provides avenues for
therapeutic modulation of their functions to beneficially influence heart injury progression and hence prevent
heart failure. However, to effectively fine-tune macrophage function, a deep understanding of their heteroge-
neity is required. The present review focuses on the phenotypic diversity and different roles of macrophages in
cardiac homeostasis as well as in ischemic and non-ischemic heart disease, and discusses macrophages as po-
tential therapeutic targets in the settings of heart injury.
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1. Introduction

Tissue macrophages were originally thought to exclusively originate
from the bone marrow (BM) and particularly from blood monocytes that
infiltrate peripheral tissues where they differentiate into macrophages
[1]. However, in recent years, our understanding regarding the
ontogeny, phenotypic heterogeneity and functional diversity of macro-
phages has completely shifted based on a series of landmark studies that
demonstrated that tissue macrophages can have an origin that is distinct
from that of circulating adult mononuclear cells in the periphery. Spe-
cifically, development of macrophages during embryonic stages gives
rise to the majority of adult tissue-resident macrophages that can persist
throughout adulthood, as evidenced in various tissues [2-5]. Such
embryonically derived adult tissue-resident macrophages are
self-maintained through local proliferation at steady state [3,6-9]. In
certain tissues, monocyte-derived macrophages can also contribute to
the tissue resident macrophage pool or partially replace the embryoni-
cally derived cells over time; this process may especially occur in
response to tissue injury or inflammation [3,6,10]. Tissue-resident
macrophages play key roles in tissue remodeling during development
and contribute to tissue homeostasis maintenance [9,11,12]. As opposed
to infiltrated macrophages deriving from monocytes that frequently bear
pro-inflammatory properties, macrophages of embryonic origin rather
display reduced capacity to generate inflammatory responses [11-14].

Macrophages located in the heart [9,10,15] play a crucial role not
only in supporting cardiac homeostasis, that is of importance because
the heart has limited regenerative capacity [16,17], but also during the
response to heart stress due to various conditions, including hemody-
namic overload, mechanical strain, metabolic disturbances, inflamma-
tory and neurohormonal activation, infectious agents, and toxic insults,
or to injury [18], which can manifest as both ischemic and non-ischemic
conditions [18,19]. Ischemic heart injury, primarily caused by athero-
sclerosis, includes acute ischemic injury, caused by a sudden and severe
interruption of blood flow that deprives a segment of the myocardium of
oxygen and nutrient supply leading to myocardial infarction;
ischemia-reperfusion injury, occurring upon restoration of blood supply
due to oxidative stress and consequent inflammation; and chronic
ischemic injury, which results from moderate and prolonged reduction
in blood supply or unresolved acute ischemic injury [19,20]. Causes of
non-ischemic cardiac injury include cardiomyopathies—heterogeneous
conditions influenced by risk factors, such as hypertension-driven
chronic pressure overload, diabetes, genetic mutations, unhealthy life-
style and age—and myocarditis, representing inflammation of the
myocardium that can be caused by diverse stresses, such as viral in-
fections, autoimmunity or drug toxicity [18]. Independent of their na-
ture, heart injuries are characterized by immune activation and
associated inflammation followed by reparative responses, aiming at
restoring tissue integrity [19]. Upon ischemic injury, inflammation often
occurs before fibrosis, whereas during non-ischemic heart injury, in-
flammatory and fibrotic processes may temporally coincide [19]. Car-
diac injury is often associated with unresolved inflammation and/or
excessive fibrosis, thereby resulting in maladaptive tissue repair,
adverse remodeling, and ultimately impaired heart function, eventually
progressing to heart failure (HF) [20,21]. Despite significant advance-
ments in research and pharmacological therapies, HF remains one of the
leading global causes of death, with 50 % of individuals diagnosed with
the condition dying within five years of their diagnosis [22]. Due to their
diverse phenotypes, heart macrophages play a central role throughout
the various stages of the response to injury, where they can contribute to
both tissue damage as well as recovery responses [19].

In this review, we discuss the diverse functions of macrophages in the
maintenance of heart homeostasis, and in various types and stages of
ischemic and non-ischemic heart disease, highlighting their broad
plasticity and different phenotypes. We also discuss the novel aspects
regarding the possible therapeutic targeting of macrophages in the heart
[19].
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2. Heterogeneity and functions of cardiac macrophages at
steady-state

Cardiac tissue-resident macrophages are present at steady state and
are the most abundant immune cells in the adult heart [9,10,13,23-25]
accounting for ~5-10 % of the total cells of both the human and murine
heart [9,10,23-25]. Cardiac macrophages sequentially arise from em-
bryonic primitive hematopoiesis, which begins in the yolk sac, and then
from definitive hematopoiesis, which starts in the fetal liver and later
shifts to the bone marrow, the major site of hematopoiesis for the rest of
the life [3,6,26].

In the adult mouse heart, the classification of resident cardiac
macrophage subsets relies on a range of both overlapping and distinct
cell-surface markers, as identified by different experimental approaches
[3,6,10,27,28]. A recent study [6] identified three different cardiac
macrophage subsets by single-cell RNA sequencing (scRNA-seq). Each
subset has unique origin and turnover dynamics, as documented by
inducible fate-mapping approaches, and receives a differential input
from blood-derived monocytes, as assessed through parabiosis experi-
ments [6] (Fig. 1A). The most abundant population (named TLF") ex-
presses the markers TIMD4, LYVE1, and FOLR2 while lacking CCR2
expression and displays low levels of MHC-II [6] (Fig. 1A-Table 1). TLF"
macrophages originate from yolk-sac macrophages as well as fetal liver
monocytes; they represent a long-lived subset that is maintained almost
completely by self-renewal with minimal input from blood-derived
monocytes during adulthood [6] (Fig. 1A). A second population is
defined by the absence of expression of the aforementioned three
markers, TIMD4, LYVE1, FOLR2 (TLF’), but expresses CCR2 in addition
to high levels of MHC-II [6] (Fig. 1A-Table 1). These CCR2" macro-
phages originate from fetal liver monocytes, are short-lived and are
almost completely replaced by blood monocytes in the adult heart [6]
(Fig. 1A). A third population is TLF" and CCR2 and displays high
expression of MHC-II (MHC-IIhi cells) [6] (Fig. 1A-Table 1). This latter
subset, similar to the TLF" cells, originates from the yolk sac and from
fetal liver cells and exhibits self-renewal capacity; however, there is also
a modest contribution of blood monocytes to this population during life
[6] (Fig. 1A). Another study [27] identified a population in the adult
murine heart as LYVE1MMHC-II'% cells (Table 1); this population is
analogous to the TLF™ macrophages, described by Dick et al. [6].
However, unlike the TLF" population [6], this study demonstrated a
significantly higher contribution of blood-derived monocytes to the
LYVE1MMHC-1" population that further increases with age [27]. In
addition, according to the data reported by Epelman et al. [3], the
CCR2" macrophage population is replaced to a less extent by blood
monocytes, as compared to the findings of Dick et al. [6]. These dis-
crepancies are likely due to differences in the methodological ap-
proaches used for the identification of the different macrophage subsets,
as well as variations in the methods employed to assess the monocyte
contribution to the macrophage populations.

During steady-state, the contribution of monocytes to the TLF" and
MHC-II" macrophage population is limited and does not increase with
age in adult mice [6]. Of note, the heart microenvironment guides the
differentiation of recruited monocyte-derived macrophages into specific
resident macrophage subsets, thereby warranting that the overall
composition of cardiac macrophage populations remains constant in
homeostasis [6,16]. At steady-state, monocyte-derived macrophages
initially display distinct transcriptional profiles as compared to that of
pre-existing tissue-resident subsets; however, as they mature in the tis-
sue, their transcriptome gradually changes, eventually converging with
that of the original subsets [6]. Pathway analysis of scRNA-seq data
revealed that TLF™ macrophages are likely involved in homeostatic
functions, including cellular transport and endocytosis [6,16]. The
transcriptome of MHC-II" macrophages, in turn, was associated with
cell migration functions and inflammatory responses while the tran-
scriptome of CCR2' macrophages was linked to cellular activation,
degranulation, and immune effector processes [6]. Importantly,
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pathway analysis of transcriptomic data from other studies supports the Table 1

pro-inflammatory phenotype of CCR2" macrophages [3,10]. The TLF" Different murine macrophage subsets discussed in this review and their surface
macrophage subset is conserved between mouse and human hearts [26]. markers.

As observed in mouse models, human myocardial tissue also contains Macrophage Surface markers Reference
CCR2" macrophages, CCR2" macrophages, and CCR2" monocytes subset

(Table 2) [29]. Both human CCR2" and CCR2” macrophage populations TLF* CD45+ CD11b* CD64" TIMD4" LYVE1* FOLR2® 6
display high expression of HLA-DR (human MHC class II, Table 2) [29]. ) MHC-II'" CCR2"

Additionally, distinct LYVEI" resident macrophage subsets have been MHC-I" CD45" EDllbf CD64" TIMD4 LYVEL" FOLR2’

identified in human myocardial tissue by transcriptomic analysis, MHC-IT™ CCR2 i i .

. . . . . CCR2* CD45" CD11b* CD64* TIMD4 LYVE1  FOLR2

including monocyte-derived macrophages [23]. However, unlike their MHC-I™ CCR2*

murine counterparts, these human LYVEI" macrophages lack TIMD4 LYVE1MMHC- LY6C— F4/80" MERTK" CD64+ LYVE1™ MHC- 27
expression [23]. Moreover, a LYVEI™ macrophage subset enriched in v 1" CX3CR1""

antigen-presenting molecules has been described [23].

A body of evidence from mouse studies highlights that cardiac resi-
dent macrophages engage in a wide array of tissue-specific functions,
not strictly related to immunity, that are essential to both cardiac
development and the regulation of heart homeostasis at steady-state

[30-35] (Fig. 1B). For instance, in the murine developing heart, CCR2"
yolk-sac-derived tissue resident macrophages spatially associate with
the endothelial cells of the perfused coronary vasculature where they
regulate vascular patterning, an essential step for the functional
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Fig. 1. Origin and heterogeneity of murine tissue-resident cardiac macrophages and their role during heart development and homeostasis. (A) Adult tissue-resident
cardiac macrophages include three populations namely TLF*, MHC-II" and CCR2" [6]. These populations are established at various stages of development and have
different lifecycles during adulthood [6]. Yolk-sac macrophages and fetal liver monocytes are the primary source for both TLF* and MHC-TI" cells [6]. Both pop-
ulations exhibit self-renewal capacity; however, TLF* macrophages are maintained with minimal input from blood-derived monocytes during adulthood, whereas
MHC-II" macrophages receive a modest contribution from blood monocytes over time [6]. CCR2* macrophages mainly derive from fetal liver monocytes, are
short-lived and are almost entirely replaced by blood monocytes in the adult heart [6]. (B) In mice, tissue-resident macrophages orchestrate the development of the
cardiac lymphatic [31,32] and coronary vasculature [30-33] via the production of hyaluronan [31] and insulin-like growth factor (IGF) 1 and 2 [30], respectively. In
adult hearts, connexin-43 (Cx43)-expressing tissue-resident macrophages interact with cardiomyocytes to facilitate electrical conduction [34]. Macrophages also
support cardiomyocyte fitness by MER tyrosine kinase (MERTK)-dependent phagocytosis of phosphatidylserine (PS)-marked exophers containing dysfunctional
mitochondria extruded by cardiomyocytes [35].



G. Trimaglio et al.

Table 2
Different human macrophage subsets discussed in this review and their surface
markers.

Macrophage Surface markers Reference
subset
CCR2 HLA-DR"™  CD14* CD45" CD64* CCR2" HLA-DR™ MERTK'" 29
CD33" CD163* CD3  CD19" CD56°
CCR2" HLA- CD14" CD45* CD64" CCR2* HLA-DR" MERTK
DRM CD33* CD163* CD3" CD19" CD56

maturation of the coronary vasculature [30-33] (Fig. 1B). This proan-
giogenic role is mediated in part by the secretion of insulin like growth
factor (IGF) 1 and 2 and is achieved through regulation of endothelial
cell proliferation and migration, with subsequent endothelial cell
incorporation into areas of active remodeling [30] (Fig. 1B). Macro-
phages with similar properties are also found in the adult heart where
they were shown to play a pro-angiogenic role at steady state [30,33].
Similar to their crucial function in coronary angiogenesis, yolk-sac
derived tissue resident macrophages play a role in the lymphatic
development of the embryonic murine heart, a process orchestrated by
macrophage-derived hyaluronan that facilitates the interaction between
macrophages and lymphatic endothelial cells, thereby promoting
lymphatic sprouting, branching, and fusion [31,32] (Fig. 1B). These
macrophages are typically LYVE1", reflecting their specialized role in
hyaluronan-mediated crosstalk with the developing lymphatic vascula-
ture [36]. In the distal atrioventricular node of the adult mouse heart,
tissue resident macrophages are interspersed with cardiomyocytes, with
which they interact via connexin-43 (Cx43™)-containing gap junctions
facilitating electrical conduction [34] (Fig. 1B). Similar to the murine
heart, tissue-resident macrophages expressing Cx43" gap junctions at
their contact points with conducting cardiomyocytes were also detected
in the human AV node [34], though a possible role for these cells in the
human heart homeostasis remains unclear. Another study demonstrated
that ventricular tissue-resident cardiac macrophages support the fitness
of surrounding cardiomyocytes by degrading damaged and dysfunc-
tional mitochondria released from cardiomyocytes, a process that is
autophagy-dependent and complements autophagic mitochondrial
turnover [35] (Fig. 1B). Mechanistically, this process involves the MER
tyrosine kinase (MERTK)-dependent recognition of the ‘eat-me’ signal
phosphatidylserine (PS) on the surface of mitochondria-containing
subcellular particles (called exophers) extruded from cardiomyocytes,
followed by the phagocytosis of these exophers [35] (Fig. 1B). Exopher
phagocytosis by macrophages prevents free mitochondria and mtDNA
from accumulating in the cardiac extracellular space, thereby avoiding
inflammatory activation and ultimately preventing ventricular
dysfunction [35]. Exopher-like structures were also found in the human
myocardium [35], although their exact role in human heart physiology
remains unknown. Taken together, multiple articles in recent years
established that cardiac tissue-resident macrophages play essential roles
in heart development and homeostasis.

3. Macrophage function in the context of heart injury

Following heart injury, the initial inflammatory phase is followed by
a reparative phase (in some cases referred to as proliferative or anti-
inflammatory) that involves fibrosis, collagen deposition, granulation
tissue formation and angiogenesis following resolution of inflammation
[20,37,38] (Fig. 2). During the subsequent maturation phase, the
granulation tissue is cleared, angiogenesis is terminated and a
cross-linked collagen matrix is formed, leading to scar remodeling [21,
38] (Fig. 2). Here we will discuss the function of cardiac macrophages in
these different phases of heart injury.
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3.1. Inflammatory phase

An ischemic cardiac event results in limited delivery of oxygen and
nutrients to the heart, consequently leading to necrosis of cells located in
the infarcted area, including cardiomyocytes and resident macrophages
[20,21,39] (Fig. 2). This process drives the release of inflammatory
factors, particularly damage-associated molecular patterns (DAMPs)
that activate parenchymal and stromal cells and tissue-resident macro-
phages via interaction with pattern recognition receptors (PRRs) [16,
19-21,40,41] (Fig. 2). Alarmins, such as extracellular RNA, trigger the
DAMP-related inflammatory response [20,42,43]. Activation of PRRs,
such as toll-like receptors (TLRs), occurs on fibroblasts and
tissue-resident macrophages [16,20,40], and triggers proliferation of the
latter [10] and, as demonstrated in models of cardiac transplantation,
expression of pro-inflammatory cytokines, such as interleukin (IL)-1b, as
well as chemokines, such as CXCL5, which promote recruitment of
monocytes and neutrophils, in turn further aggravating the inflamma-
tory response [19,44,45] (Fig. 2). The C-C Motif Chemokine Ligand 2
(CCL2) signaling axis is a central axis involved in monocyte recruitment
[44,46-48]. Moreover, disrupting the CCL5-dependent leukocyte-r-
ecruitment axis in mice is protective after MI [49]. Bearing a
pro-inflammatory profile at baseline, mouse tissue resident CCR2™
macrophages [3,6,10] are the main drivers of initial monocyte recruit-
ment. Indeed, transplantation of hearts from CCR2-diphtheria toxin re-
ceptor (DTR) transgenic mice after depletion of the CCR2™ population
by diphtheria toxin administration was associated with reduced recip-
ient inflammatory monocyte and macrophage accumulation in the
donor heart [44]. CCR2™ tissue-resident macrophages in the human
system are also pro-inflammatory and their increase is associated with
detrimental remodeling of the left ventricle and consequent systolic
dysfunction in patients with HF [29]. Conversely, CCR2" macrophages
rather prevent excessive inflammation and monocyte recruitment to
infarcted murine hearts [44].

Activation of acute emergency myelopoiesis in the bone marrow in
mice leads to monocyte generation underlying the sustained large-scale
recruitment of monocytes to the infarcted area [50] (Fig. 2). Moreover,
IL-1 expression upon TLR activation [51] and activation of the sympa-
thetic nervous system [52] induce extramedullary generation of splenic
macrophages, which support the sustained demand for macrophages at
the injury site (Fig. 2). Infiltrated monocytes differentiate into macro-
phages, mainly into the CCR2" population [10,33,44], possibly
compensating for the decrease of resident macrophages, which are
depleted through cell death and egress [9,10]. An increase in CCR2"
macrophages during myocardial infarction was also described in human
patients with the help of molecular imaging [53]. Interestingly, in a
cardiomyocyte ablation mouse model, recruited CCR2" macrophages
displayed increased production of pro-inflammatory chemokines and
cytokines relative to the tissue-resident CCR2* macrophages [44].
Moreover, at 11 days post MI in mice, a large proportion of recruited
macrophages adopted a gene expression signature that resembled that of
resident macrophages with the exception of some genes that confer
essential repair functions to resident macrophages, demonstrating that
infiltrated macrophages are not capable to completely compensate for
the functions of the diminished resident macrophages [10]. In mice,
although the remaining resident macrophages proliferate post infarction
and the number of recruited macrophages decreases, the ratio of resi-
dent to infiltrated macrophages four weeks after infarction does not
reach the ratio at steady-state [10].

During the inflammatory phase, both recruited and remaining resi-
dent macrophages can clear dead tissue via efferocytosis, thereby
generating an environment that facilitates resolution of inflammation
and subsequent tissue repair [19,37,54] (Fig. 2). In mice deficient for
REG3f, an important regulator of macrophage trafficking to the
damaged heart, the reduction of macrophage abundance resulted in
diminished clearance of neutrophils within the ischemic heart envi-
ronment, thereby leading to elevated matrix degradation, delayed
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Fig. 2. The processes occurring during the different phases of cardiac injury. Following an ischemic event, necrosis of cardiomyocytes and resident macrophages in
the infarcted area leads to the release of damage-associated molecular patterns (DAMPs) that activate pattern recognition receptors (PRRs, e.g., toll-like receptors
[TLRs]) on fibroblasts and immune cells [16,20,40]. This process leads to cellular activation and initiates an inflammatory cascade that promotes neutrophil and
monocyte recruitment [44,45]. Concurrently, emergency myelopoiesis in the bone marrow and extramedullary hematopoiesis in the spleen further contribute to the
infiltrated macrophage pool [50-52]. During the inflammatory phase, both tissue-resident and infiltrated macrophages clear necrotic tissue via efferocytosis, which
fosters an environment that supports inflammation resolution and tissue repair [19,37,54]. Neutrophils support the switch of macrophages to a reparative phenotype
via neutrophil gelatinase-associated lipocalin, enhancing efferocytosis [61]. During the reparative phase, anti-inflammatory macrophages secrete factors to promote
fibroblast-to-myofibroblast transition and collagen synthesis [19,73,74]. Moreover, they promote angiogenesis and regulate extracellular matrix (ECM) composition
via the production of vascular endothelial growth factor A (VEGFA) [98-100] and matrix metalloproteinases (MMPs) [91-96], respectively. In the maturation phase,
a stable cross-linked collagen scar forms [21,38]. While macrophage density decreases, a persistent population remains in mature scars [102]. Non-infarcted
myocardium undergoes hypertrophy and remodeling under chronic load, associated with low-grade inflammation and macrophage accumulation, continuing for

weeks post-injury [21,38,52].

collagen deposition, and a higher risk of heart rupture [55]. Macrophage
efferocytosis is mediated through the expression of phagocytic receptors
such as MERTK or opsonins bridging apoptotic cells to phagocytic
macrophage receptors, such as milk fat globule-EGF factor 8 (MFGES)
[38,54,56-58]. The clearance of apoptotic cells drives macrophages
toward an anti-inflammatory and reparative phenotype [57,58]. In a
mouse model of ischemia-reperfusion injury, expression of constitu-
tively active MERTK, engineered to resist protease cleavage, promotes
inflammation resolution, as evidenced by reduced infiltration of neu-
trophils and monocytes and increased expression of the
anti-inflammatory mediators IL-10 and transforming growth factor-p
(TGF-p) [38,57]. The cleavage of MERTK in macrophages is regulated by
hypoxia inducible factor (HIF)1a, which promotes the expression of the
metalloprotease ADAM17 [59]. While deletion of HIF1a in myeloid cells
improves efferocytosis and promotes resolution of inflammation, com-
bined deletion of HIF1la and HIF2a in myeloid cells results in macro-
phage necroptosis and cardiac rupture—highlighting the essential role
of basal HIF signaling in maintaining macrophage survival during

cardiac injury [59].

Beyond inflammation control, efferocytosis also contributes to tissue
repair. Following MI in mice, the MERTK- and MFGE8-dependent
efferocytosis facilitates the switch of macrophages towards a repara-
tive phenotype, accompanied by production of vascular endothelial-
derived growth factor A (VEGFA), which may promote survival and
proliferation of endothelial cells [58]. Additionally, MERTK facilitates
the removal of exophers, containing damaged mitochondria, released by
stressed cardiomyocytes, thus preserving tissue integrity during heart
injury [35]. A similar role in scavenging cardiomyocyte-ejected
dysfunctional mitochondria was demonstrated for TREM2" macro-
phages in the settings of cardiac septic stress [60]. Interestingly,
neutrophil gelatinase-associated lipocalin secreted by neutrophils,
which are recruited very early to the site of injury, promotes a reparative
macrophage phenotype with elevated efferocytosis capacity [61]
(Fig. 2). Depletion of macrophages, or inhibition of their efferocytosis
ability, impact also on non-immune functions as the disruption of the
clearance of toxic material and dying cells upon MI causes abnormal
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electrical conduction, and thus ventricular tachycardia driven by rapidly
infiltrating neutrophils [62]. In another context, specifically, in a pres-
sure overload model, macrophages were found to maintain heart elec-
trical conduction and prevent cardiac death [63]. Mechanistically,
amphiregulin produced by macrophages leads to Cx43 phosphorylation
in cardiomyocytes and promotes the formation of gap junctions thus
facilitating intercellular communication between cardiomyocytes dur-
ing stress, thereby preventing lethal arrhythmias [63].

During the inflammatory phase of MI, macrophages can also produce
matrix-metalloproteinases (MMPs), which modulate disease outcome
[19]. For instance, decreased MMP-9 expression owing to deficiency of
the inflammatory signaling adapter CARD9 was associated with reduced
cardiomyocyte apoptosis and beneficial effects post-MI [64]. Altogether,
there is ample scientific evidence supporting a central role for both
tissue-resident and recruited macrophages in regulating the inflamma-
tory phase upon heart injury.

3.2. Reparative phase

The reprogramming of macrophages from pro-inflammatory to anti-
inflammatory cells, along with the proliferation of the latter, underlies
the process of resolution of inflammation, which initiates cardiac repair
[19,37,38,65] (Fig. 2). Several factors contribute to this phenotypic
transition of macrophages in mice [38]. These include the clearance of
apoptotic cells by macrophages through efferocytosis [54], already
outlined earlier in the text, the production of intrinsic anti-inflammatory
signals in macrophages, triggered by pro-inflammatory cytokines within
the infarct microenvironment [66], and the induction of various
anti-inflammatory  cytokines in the injured heart [67].
Anti-inflammatory macrophages express genes encoding reparative
factors, such as Pdgf (platelet-derived growth factor) b and Igf1 [38,68].
A wide variety of secreted mediators derived from macrophages, such as
TGF-f [69], IL-10, IL-4, and IL-13 [67,70], VEGF-C [71] and IGF1 [72],
have been associated with anti-inflammatory properties in the infarcted
heart. Following termination of inflammation, myofibroblasts work
together with macrophages and other cells to shape the scar tissue that
will replace the injured region [20,37]. Indeed, among the factors pro-
duced by the macrophages in this phase, the anti-inflammatory cytokine
IL-10 and the profibrotic TGF-§ boost the migration of fibroblasts, their
transdifferentiation to myofibroblasts, their proliferation and collagen
synthesis [19,73,74] (Fig. 2). Mouse studies implied IL-10 in enhancing
fibrosis [75], via mechanisms that include galectin-3- and
MERTK-dependent enhanced expression of osteopontin [56,76,77].
Macrophage-derived IL-10 was also shown to stimulate fibroblasts and
enhance collagen deposition eventually promoting diastolic dysfunction
in mice [78]. However, anti-fibrotic actions of IL-10 have been reported
as well [79-81]. Further mediators released by injury-associated mac-
rophages that contribute to fibrosis include Neuregulin 1 [82] and
SPARC [83]. Another study showed that TREM2" macro-
phages—previously associated with anti-inflammatory and reparative
functions [60]—have increased production of the metabolite itaconate
upon efferocytosis [84]. Itaconate is synthesized from the TCA-cycle
intermediate cis-aconitate in response to inflammatory stimuli [85].
This leads to reduced cardiomyocyte apoptosis and increased fibroblast
proliferation, thereby improving mouse cardiac function [84]. Sup-
porting these findings, spatial transcriptomic analysis revealed that
TREM2" macrophages gradually increase over time in the infarct zone
and become abundant in the late phase after MI, associated with tissue
remodeling functions and cardiac repair [86]. Moreover, macrophages
can reduce fibrosis through the production of exosomes enriched in
mir-155 [87]. Interestingly, macrophages are also capable of undergo-
ing mesenchymal transition to adopt a fibroblast-like phenotype [88]. In
this context, the absence of IKKe, which is responsible for phosphory-
lating NF-xB inhibitors, thereby releasing NF-«kB into the nucleus for
transcription [89], impedes cardiac repair after myocardial infarction in
mice by excessive increase of the macrophage-myofibroblast transition
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[90]. Although macrophages produce little collagen themselves, they
are essential for tissue remodeling, regulating extracellular matrix
composition through the secretion of proteases and anti-proteases that
control extracellular matrix [38]. Indeed, as already mentioned above,
they serve as the primary cellular source for various members of the
MMP family within the infarct [91-96] (Fig. 2). Some MMPs may have
functions that extend beyond extracellular matrix remodeling and
endothelial proangiogenic actions [38]; for instance, they can influence
the availability of bioactive chemokines [93] or modify proteins essen-
tial for cardiomyocyte contraction [97] and electrical signaling [95].
Reparative macrophages also produce vascular endothelial growth fac-
tor A (VEGFA) [98-100], which induces angiogenesis and mediates
repair of the infarcted heart [58] (Fig. 2). Indeed, the emergence of
newly generated vessels is essential for delivering oxygen and nutrients
to the actively healing infarct area [38,101]. Altogether, the works
discussed here underscore the multifaceted and dynamic role of mac-
rophages in coordinating scar formation, fibrosis, and angiogenesis,
ultimately shaping the structural and functional recovery of the
infarcted heart.

3.3. Maturation phase

The final stage of cardiac repair may result in either effective healing
or pathological remodeling, which in turn may lead to HF [21,38]. After
its peak during the proliferative phase, macrophage density usually
decreases during the subsequent transition to the maturation phase,
however a substantial macrophage number persists in scars [38,102]
(Fig. 2). During infarct healing, the non-infarcted myocardial regions are
exposed to increased volume and pressure loads and undergo hyper-
trophic adaptation, which in turn may trigger prolonged macrophage
activation and subsequent stimulation of a fibrogenic program [21,38]
(Fig. 2). Mouse studies revealed that, 8 weeks after MI, macrophage
numbers rose in distant remodeling heart regions due to both local cell
division and incoming monocyte-derived cells [52] (Fig. 2). Activation
of macrophages in the remote regions of remodeling myocardium may
be triggered as a consequence of increased wall stress in these areas [38,
52]. In murine dilated cardiomyopathy, macrophages can recognize
mechanical stretch via specific mechanosensitive ion channels, such as
the transient receptor potential vanilloid (TRPV) 4, that in turn results in
their stimulation and the subsequent production of growth factors [38,
103].

4. Role of macrophages during heart regeneration

Adult human hearts have a very limited ability to regenerate after
injury [16,17], as mature cardiomyocytes cannot divide and must
instead rely on structural remodeling to preserve function. In contrast,
neonatal hearts can regenerate damaged myocardium, an ability lost in
adulthood [104,105]. Macrophages are potential mediators of cardiac
repair in neonatal mice that have inherent regenerative capacity [106].
In response to injury, MHC-I'®CCR2" resident macrophages accumu-
late in the neonatal cardiac tissue [16,33]. Importantly, neonatal mac-
rophages promote heart recovery by triggering endothelial cell
proliferation [33,106] and cardiomyocyte proliferation [33,107,108]
the latter via secretion of CCL24 [107] and Oncostatin M [108].
Conversely, the adult heart’s resident macrophages are mainly replaced
by monocyte-derived macrophages, which have no regenerative ca-
pacity and rather promote inflammation, which may in turn result in
fibrosis [16,33]. Maintaining the reparative potential of resident mac-
rophages thus depends on their ability to respond appropriately to tissue
stress. One key factor involved in this adaptation is HIF1la. Resident
cardiac macrophages act as local sensors of ischemia, and recent find-
ings show that deletion of HIF1« in these cells by using Cx3cr1ERT2Cre x
Hif17%/f0% mice, disrupts monocyte-to-macrophage differentiation and
impairs the resolution of inflammation, ultimately worsening cardiac
remodeling [109]. Without HIFlo, Arginase 17 macrophages fail to
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differentiate into reparative Trem2', Gdfl5", and MHC-II" subsets
[109]. These findings suggest that HIFla not only regulates resident
macrophage-intrinsic pathways but also influences the surrounding
microenvironment to guide monocyte differentiation after MI [109].

5. Macrophage-targeted therapeutic approaches

Macrophage-targeting strategies may offer a promising path in the
ongoing quest for new effective therapies for heart injury and HF. In
several experimental models, inhibition of recruitment of monocyte-
derived macrophages to the diseased heart led to blunted inflamma-
tion and resulted in beneficial effects, such as reduced myocardial le-
sions or improved heart function [48,49,110-116]. Strategies to reduce
inflammatory cell recruitment include blocking chemokine axes
involved in monocyte infiltration [48,49,110-113], suppressing toll-like
receptor 4 signaling [114] or inhibiting the angiotensin axis [115,116],
consistent with the beneficial effects of angiotensin-converting enzyme
inhibitors on the heart [117]. Another preclinical approach is the
modulation of the macrophage phenotype by reducing their
pro-inflammatory activation that was achieved by silencing the tran-
scription factor interferon regulatory factor 5 (IRF5) [118] or via inhi-
bition of the calcium-sensing receptor (CaSR), involved in the activation
of NLRP3 inflammasome in macrophages [119]. Additional strategies
attempted the increase of the anti-inflammatory properties of
MI-infiltrating macrophages by different approaches, including the
administration of the anti-inflammatory cytokines IL-10 [79] and IL-4
[120,121] as well as the silencing of collapsin response mediator
protein-2 (CRMP2) [122] and the inhibition of the class I/II histone
deacetylases (HDACs) [123]. Furthermore, treatment with IL-35 in-
creases the presence of reparative macrophages in murine infarcted
hearts partially by promoting their survival [124].

Interestingly, preclinical studies demonstrated that cell therapies
(mainly involving bone marrow, adipose or cardiac stem cells/mesen-
chymal stromal cells, as well as bone marrow mononuclear cells) may
have beneficial effects in ameliorating cardiac fibrosis and maladaptive
remodeling, while promoting optimal cardiac healing, primarily
through macrophage-mediated mechanisms, including the polarization
of the latter toward an anti-inflammatory phenotype and/or intercel-
lular communication and paracrine effects [125-130]. This triggered
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the approach of directly administering ex vivo/in vitro reprogrammed
macrophages, such as macrophages preconditioned with hypoxia or
incubated with macrophage colony-stimulating factor (M-CSF) and IL-4;
these therapies resulted in attenuated adverse tissue remodeling,
enhanced myocardial tissue repair or cardiac function in pre-clinical
settings [131-133] (Table 3). At the clinical level, Ixmyelocel-T,
which is a therapy obtained by expanded patient-derived bone
marrow mesenchymal stromal cells and alternatively activated macro-
phages [134], showed reduction of adverse cardiovascular events in
patients with ischemic dilated cardiomyopathy but not in patients with
nonischemic dilated cardiomyopathy (NCT00765518, NCT01020968,
[16,135]) (Table 3). A clinical trial (NCT01670981) established to treat
patients with ischemic HF revealed that treatment with Ixmyelocel-T
resulted in a reduction of clinical cardiac events compared to placebo
(Table 3) [16,136]. However, another clinical trial (NCT00824005)
with administration of patient-derived bone marrow mononuclear cells
transendocardially reported that the ischemic HF patients did not show
improved heart function relative to the group that received placebo
treatment [16,137] (Table 3). Other pre-clinical studies highlighted the
potential of administering engineered macrophages to overexpress
VEGF [138] or neonatal macrophages [139] in order to promote cardiac
repair (Table 3). The use of chimeric antigen receptor (CAR)-expressing
macrophages engineered to phagocytose FAP™ myofibroblasts alleviated
cardiac fibrosis and improved heart function in mice [140] (Table 3). As
reprogrammed macrophage administration strategies are hindered by
the methodological challenges related to macrophage collection, genetic
manipulation and expansion processes, the use of embryonic pluripotent
stem cells derived from healthy donors is currently under consideration;
this approach may represent a valuable source for reparative macro-
phages in experimental studies [141,142].

Given that an important mechanism by which cardiac stem cells and
bone marrow mesenchymal stromal cells exert their beneficial effects
involves extracellular vesicles (EVs) [143,144] and their cargo, such as
microRNAs (miRNAs) and other RNAs [145-147], EVs are considered a
promising cell-free therapeutic approach. In several preclinical studies
with cardiac injury such EV-based approaches promoted macrophage
polarization towards an anti-inflammatory and reparative phenotype,
thereby ameliorating inflammation, and leading to beneficial effects,
such as reduction of infarct size and fibrosis, or improving heart function

Table 3
Current macrophage-focused therapeutic approaches in pre-clinical models and clinical trials.
Research phase Organism Disease model Therapeutic strategy Disease outcome Reference
Pre-clinical Mouse MI Hypoxia-induced M¢ | Scar size 131
1 Capillaries
1 Heart function
1 Survival
Pre-clinical Mouse MI M-CSF and IL-4-induced M¢ | Infarct size 132
1 Thickness of the infarcted LV
1 Capillary density
1 Replacement fibrosis
| Interstitial fibrosis
1 Cardiac function
Pre-clinical Mouse HF | Interstitial fibrosis 133
1 Cardiac function
Clinical (phase 2A) Human IDCM Ixmyelocel-T | Adverse cardiovascular events 135
NIDCM No improvement
Clinical (phase 2B) Human IDCM | Adverse cardiac events 136
Clinical (phase 2) Human CIHF Autologous bone marrow mononuclear cells No improvement 137
Pre-clinical Mouse MI VEGF-overexpressing M¢ 1 Capillary density 138
1 Heart function
Pre-clinical Mouse MI Murine neonatal cardiac M¢ | Infarcted area 139
1 Cardiomyocyte proliferation
1 Heart function
1 Survival
Pre-clinical Mouse HI CAR M¢ engineered to phagocytose FAP™ myofibroblasts | Cardiac fibrosis 140

M¢; macrophages; MI; myocardial infarction; HF, heart failure; IDCM, ischemic dilated cardiomyopathy; NIDCM, nonischemic dilated cardiomyopathy; CIHF, chronic
ischemic heart failure; HI, heart injury; M-CSF, macrophage colony-stimulating factor; IL, interleukin; LV, left ventricle; VEGF, vascular endothelial growth factor;

CAR, chimeric antigen receptor.
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[143-147]. Importantly, the lipid bilayer structure of EVs can be
modified to improve their delivery to infarcted heart tissue [148].
Another cell-free strategy involves the use of small interfering RNAs
(siRNAs) as therapeutic agents that may exert different beneficial ac-
tions, such as limit leukocyte recruitment, promote macrophage
anti-inflammatory phenotypes, reduce heart damage or enhance cardiac
function in the setting of murine cardiac injury [52,111,113,149-152].
A promising recent preclinical study developed a nanotherapeutic de-
livery system that specifically targets CD86" (pro-inflammatory) mac-
rophages in the infarct zone post-MI, using ultrasound-responsive
nanoparticles to deliver nitro-oleic acid, a compound known to modu-
late various pathophysiological processes, e.g. by suppressing inflam-
mation and fibrosis, and a siRNA against STAT1 [152]. This approach
reduced ventricular remodeling and preserved cardiac function in ani-
mal models, suggesting strong translational potential [152]. Despite
advancements in macrophage-related therapies, this approach still has
substantial challenges; in this context developing advanced systems is of
crucial importance for enabling precise delivery of therapeutic agents to
tissue macrophages [16]. Future efforts should hence put their focus on
preserving tissue-resident macrophage function while decreasing
inflammation from monocyte-derived macrophages in order to enhance
cardiac recovery [16,153].

6. Conclusions and perspectives

Heart injury can lead to HF, which, despite decades of research,
continues to represent a significant burden on global health and
healthcare systems [22]. Our article focused on the continuously
expanding understanding of macrophage heterogeneity, and on their
plasticity to adapt their phenotype in response to environmental cues
following injury. Since macrophages exert crucial roles in the
post-injury response, they have emerged as promising targets for ther-
apeutic intervention, which is supported by encouraging basic research
and preclinical findings [16]. However, macrophage-targeted therapies
are still at the early stage of development, and translating basic research
into clinical applications remains a substantial challenge. Additional
studies are necessary to assess the efficacy and safety of
macrophage-targeted therapies in clinical settings. To leverage the
therapeutic potential of targeting macrophages, it is essential to deepen
our understanding of macrophage phenotypic and functional diversity,
and their interactions with surrounding cells in the heart. Advances in
spatial transcriptomics have revealed the diversity and precise locali-
zation of macrophage subsets during cardiac remodeling after myocar-
dial infarction [154]. By elucidating gene-regulatory networks, the
niche-specific functions of macrophages in cardiac repair can be char-
acterized, including their activation states and interactions with myo-
fibroblasts. These observations underline the dual roles of macrophages
in inflammation and fibrosis/scar formation—and underscore their po-
tential as therapeutic targets to improve outcomes after MI [14,155,
156].

The impact of aging, sex, and comorbidities such as diabetes and
other non-communicable diseases on macrophage function in the
human heart is poorly understood. The extent to which monocyte-
derived macrophages can adopt tissue-resident-like phenotypes post-
injury also requires further investigation.

Importantly, most of our current knowledge on macrophage function
in the heart comes from mouse models. Hence, efforts to translate
findings from mice to human settings should take into account inter-
species differences in macrophage origin [157], and marker expression
[158] as well as in transcriptomic and metabolic responses to stimula-
tion [159,160]. Moreover, one should not overlook that mice are housed
in sterile, pathogen-free facilities, while humans are continuously
exposed to pathogens throughout life, which significantly influences
macrophage function [161]. Furthermore, since myocardial diseases are
more prevalent in the elderly, studies using young mice may not accu-
rately model the altered immune dynamics characteristic of aged
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individuals [38]. Together, these differences underscore the importance
of cautious interpretation and careful validation of mouse macrophage
data before extrapolating them to human biology and clinical
application.

Future research should prioritize developing advanced drug delivery
systems to selectively target macrophage subsets and modulate their
functions beneficially. Validation of such approaches is crucial for the
development of effective therapies that can balance protective and
detrimental macrophage responses in cardiac tissue, ultimately leading
to improved outcomes after heart injury.
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