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Democratizing protein language model 
training, sharing and collaboration
 

Jin Su    1,2, Zhikai Li2, Tianli Tao2, Chenchen Han    2, Yan He2, Fengyuan Dai2, 
Qingyan Yuan3, Yuan Gao4, Tong Si    4, Xuting Zhang    2, Yuyang Zhou2, 
Junjie Shan2, Xibin Zhou    2, Xing Chang    2, Shiyu Jiang2, Dacheng Ma5,  
The OPMC*, Martin Steinegger    6, Sergey Ovchinnikov    7 & Fajie Yuan    2 

Training and deploying large-scale protein language models typically 
requires deep machine learning expertise—a barrier for researchers outside 
this field. SaprotHub overcomes this challenge by offering an intuitive 
platform that facilitates training and prediction as well as storage and 
sharing of models. Here we provide the ColabSaprot framework built on 
Google Colab, which potentially powers hundreds of protein training and 
prediction applications, enabling researchers to collaboratively build and 
share customized models.

Proteins are fundamental to virtually all biological processes and cen-
tral to medicine and biotechnology1–3. Despite this centrality, deci-
phering protein structure and function has remained a formidable 
challenge. This landscape was recently transformed by two break-
throughs: The success of AlphaFold2 (ref. 4) ushered in a new era for 
structural biology by predicting structures with experimental-level 
accuracy; in parallel, large-scale protein language models (PLMs) are 
driving unprecedented advances in function prediction.

This progress is driven by a suite of powerful PLMs that have dem-
onstrated remarkable efficacy across diverse tasks5–14. However, lever-
aging these advanced models presents notable technical hurdles for 
researchers without extensive machine learning (ML) expertise. The 
challenges span the entire workflow, from model selection and data 
preprocessing to the training and evaluation of models with billions 
of parameters. This complexity creates a critical barrier, hindering 
broader adoption and innovation by the very researchers who stand 
to benefit most.

ColabFold15 addressed a similar accessibility barrier for struc-
ture prediction by deploying AlphaFold2 on Google Colab, effectively 
democratizing its use. Despite this success, a critical gap remains: 
ColabFold does not support the more complex task of training custom 
models for function prediction.

To bridge this gap, we introduce ColabSaprot and SaprotHub, a 
platform designed specifically for protein function prediction. Built 
on Google Colab, ColabSaprot empowers researchers without ML 

expertise to train their own task-specific PLMs through an intuitive 
interface. Crucially, the platform supports a broad spectrum of pre-
diction tasks, ensuring that its utility extends far beyond single-task 
applications.

Complementing this user-friendly platform, we introduce the 
Open Protein Modeling Consortium (OPMC), an initiative to foster 
a collaborative ecosystem for community-driven protein language 
modeling (Supplementary Information). The OPMC framework enables 
researchers to share their bespoke models, fine-tune existing ones 
contributed by peers or apply them directly for their own research. 
This creates a virtuous cycle of sharing, refinement and applica-
tion, accelerating collective progress in the field. As the inaugural  
platform integrated with OPMC, SaprotHub represents the first step 
in realizing this vision for community-centric artificial intelligence 
(AI) development.

This work comprises three key contributions: a foundation PLM 
named Saprot14 (Fig. 1a,b), ColabSaprot (Fig. 2a–c), enabling easy 
training (or fine-tuning) and inference of Saprot on the Colab plat-
form through the adapter learning technique16,17, and SaprotHub, a 
community repository (Fig. 2d) for storing, sharing, searching and 
collaborative development of fine-tuned Saprot models. By integrating 
advanced PLMs, cloud-based computing on Colab and adapter-based 
fine-tuning techniques, it addresses several key challenges—namely, 
the difficulty of sharing and collectively using large-scale PLMs, the risk 
of parameter catastrophic forgetting during continual learning18 and 
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Ap, Ac, …, Ya, Yp, Yy, allowing proteins to be represented as a sequence 
of SA tokens that captures both primary and tertiary structures (Fig. 1b 
and Methods). Despite its conciseness, applying the SAA successfully 
addresses the key challenges of scalability and overfitting in training 
on large-scale AlphaFold2-generated atomic structures (Supplemen-
tary Note 1 and Supplementary Fig. 1). The adoption of ‘AA + structural 
token’ sequences (Fig. 1b) for protein representation has garnered 
increasing attention in much subsequent studies20–27, emerging as a 
promising paradigm for protein representation.

The Saprot model uses a bidirectional Transformer28 architecture 
(Fig. 1b). It was pretrained to reconstruct certain partially masked 
tokens in the SA token sequences (Methods). The model was trained 
from scratch on 40 million protein SA sequences, filtered from Alpha-
Fold’s 214 million proteins29 at 50% identity (Methods). Saprot is 

the need to protect proprietary biological data when sharing results. 
Below, we detail these three modules.

We first developed Saprot, a cutting-edge, large-scale PLM that 
forms the foundation for ColabSaprot and SaprotHub. Saprot intro-
duces a novel protein alphabet and representation, distinct from tra-
ditional amino acid (AA) sequences or explicit three-dimensional (3D) 
coordinate structures. This alphabet is structure-aware (SA), with each 
‘letter’ encoding both the AA type and the local geometry of the protein. 
Formally, the SA alphabet (SAA) is defined as SAA = 𝒱𝒱 𝒱 𝒱 , represent-
ing the Cartesian product of 𝒱𝒱  and 𝒱 , where 𝒱𝒱  denotes the 20 AA and 
𝒱  represents the 20 structural (3Di) letters (Fig. 1a). These 3Di tokens 
are derived from protein 3D structures through Foldseek discretiza-
tion19. The SAA encompasses all possible combinations of AA  
(capital letters) and 3Di tokens (lowercase letters) in SAA, such as Aa, 
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Fig. 1 | Illustration of Saprot. a, The proposed SAA. #a, #p, …, #y represent only 
the 3Di token being visible, while A#, C#, …, Y# represent the AA token being 
visible. b, Model architecture of Saprot. c, Saprot supports a wide range of 
protein prediction tasks (more tasks in Supplementary Table 1). d, Performance 
comparison on 14 diverse prediction tasks. e. Performance on protein sequence 

design. ‘AF2+CATH’ indicates that Saprot was pretrained using AlphaFold2-
predicted structures and fine-tuned with experimental structures from CATH. 
‘AF2’ is a version of Saprot trained only with the AlphaFold2 predicted structure. 
CATH is also used for training ProteinMPNN.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Brief Communication https://doi.org/10.1038/s41587-025-02859-7

···

Training data

+

···

Saprot block Plugin
module

Task-spcific 
head

Predicted value/category

× N

b

Model

Thermostability prediction

Stability prediction

Fluorescence prediction

···

 Function prediciton

Structure prediciton

Secondary structure prediction

Contact prediction

···

···

Localization prediciton

Subcelluar prediction

Binary prediction

···

Shared

Loaded

SaprotHub

One click  to install environment 

Preparing private data

Local computer

One click  to process data

One click  to train model

Cloud server

One click  to make inference

One click  to share model

Preparing private data

Local computer

Environment installation

Coding for evaluation

Coding for data processing

Coding for model training

Coding for inference

Normal pipeline ColabSaprot
a

c

0

Publicly accessiblePrivate data

Adapter1

Adapter2

Adapter3

Aggregate Vote

1

0

0

Fold stability

Localization
···

Task

Predict

Predict

PredictSaprot 
backbone

d

Model sharing

Model searching Model training

Model aggregation

+

Up

Result

SaprotHub

Model continual learning

e f

gg

Training from scratch
Continual training

Training from scratch
Continual training

hh

AMIE_PSEAE_Wrenbeck_2017

eYFP fitness prediction

GFP fitness prediction

Binary localization

Subcellular localization

Stability

Thermostability

OTC_HUMAN_Lo_2023
P53_HUMAN_Giacomelli_

2018_WT_Nutlin

Q59976_STRSQ_Romero_2015

AI expert Biologist

0.664

0.811

0.931

0.570

0.592

0.563

0.607

0.616

0.480

0.634

0.658

0.806

0.930

0.547

0.607

0.970

0.607

0.616

0.480

0.634

8PGC-A
TM-score: 0.96
Sequence recovery: 46.98%

8BYR-A
TM-score: 0.94
Sequence recovery: 41.26%

8C20-A
TM-score: 0.94
Sequence recovery: 37.71%

8HX0-A
TM-score: 0.98
Sequence recovery: 44.45%

Thermostability

0.619
0.643 0.646 0.650 0.657

0.690

80.37 80.59 81.23
81.90

83.19 84.58

0.695 0.693 0.692

0.597

78.01

58.01

64.04

71.80

78.80 79.49

0.593

0.563

Models
Model_0

Model_1

Model_2

Model_3

Model_4

Model_a
gg

Models Number of data Number of data
Model_0

Model_1

Model_2

Model_3

Model_4

Model_a
gg

Sp
ea

rm
an

’s
 ρ

Sp
ea

rm
an

’s
 ρ

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Subcellular localization Thermostability Subcellular localization

0.75

0.70

0.65

0.60

0.55

0.50

86

82

78

74

70

0.70

0.68

0.66

0.64

0.62

0.60

0.58

0.56

80

75

70

65

60

55

100 200 500 100 200 500

1.0 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1.0

Fig. 2 | Illustration of ColabSaprot and SaprotHub. a, Comparison of model 
training and inferring between normal pipeline and ColabSaprot. ColabSaprot 
streamlines the process, offering simplified procedures for model training 
and inference with just a few clicks. b, A lightweight plugin architecture (that 
is, adapter) is integrated within Saprot to facilitate efficient training, sharing 
and coconstruction. Throughout this process, the model parameters of the 
Saprot backbone remain unchanged. c, ColabSaprot performs predictions by 
aggregating multiple shared models using adapters in SaprotHub without the 
need for private training data. d, Illustration of SaprotHub features, enabling 
biologists to coshare, cobuild, couse and collaborate within the community. 
e, ColabSaprot’s community-wide model collaboration mechanism (c) allows 
it to achieve higher performance (orange bars) by aggregating multiple 

individually trained models (blue bars). Each individual model is trained with 
its own data, which may or may not overlap (reflecting real-world situations; 
Supplementary Table 10). Data represent the mean ± s.d. of n = 5 independent 
experiments. f, By continually learning on models trained and shared by other 
biologists, ColabSaprot substantially outperforms those training-from-scratch 
models, especially when users lack sufficient training data (the x axis represents 
the number of training examples). Data represent the mean ± s.d. of n = 5 
independent experiments. g, User study on supervised fine-tuning and zero-shot 
mutation effect prediction tasks (Supplementary Table 11). For fine-tuning tasks, 
the data represent the mean ± s.d. of n = 5 independent experiments. h, User 
study on the inverse folding task. Experimental structures are shown in green, 
while predicted structures are in blue. TM-score, template modeling score.
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available in three sizes, 35M, 650M and 1.3B, indicating the number of 
parameters (M, million; B, billion) (Supplementary Table 2). The 650M 
model, used for most evaluations unless otherwise specified (Sup-
plementary Tables 3 and 4), was trained for 3 months using 64 NVIDIA 
A100 80-GB GPUs, representing computational resources comparable 
to those used for ESM-2 (650M).

After its pretraining, Saprot has become a general-purpose foun-
dation PLM that excels across diverse protein prediction tasks, such 
as various supervised training tasks30–32 (encompassing both regres-
sion and classification at the protein level or residue level), zero-shot 
mutation effect prediction33,34 and protein sequence design35 (Fig. 1c,d 
and Supplementary Tables 1 and 5). Figure 1d shows Saprot’s superior 
performance across 14 different protein prediction tasks compared to 
two well-known PLMs: ESM-2 (ref. 6) and ProtBert9 (see detailed task, 
dataset, baseline and experimental setup descriptions in Methods and 
Supplementary Table 6; more baseline comparison in Supplementary 
Tables 7 and 8). For tasks where protein structural information is avail-
able (indicated by purple, blue and red colors), Saprot consistently 
surpasses both models. Even in scenarios without structural data (green 
tasks), Saprot maintains competitive performance with ESM-2 under 
the fine-tuning settings. Notably, Saprot substantially outperforms 
ESM-2 in three zero-shot mutational effect prediction tasks (Meth-
ods): Mega-scale36 (0.574 versus 0.478), ProteinGym37 (0.457 versus 
0.414), and ClinVar38 (0.909 versus 0.862) (Supplementary Table 7). 
Furthermore, despite being trained with a masked language mod-
eling objective not specifically optimized for generation, Saprot per-
forms effectively in protein sequence design while achieving a 16-fold 
acceleration in inference speed compared to ProteinMPNN35(Fig. 1e) 
(Methods, Supplementary Fig. 2 and Supplementary Table 9). Addi-
tionally, recent studies demonstrated Saprot’s effectiveness across 
a broad spectrum of applications39,40, including protein engineering 
and de novo design41–43, fitness and stability prediction44,45, molecular 
understanding46,47, fast and sensitive structure search48 and drug–
target interaction prediction49,50. This versatility across multiple 
protein-related tasks supports SaprotHub’s vision for community 
collaboration (Supplementary Table 1).

We then developed the ColabSaprot platform by integrating Sap-
rot into Google Colab’s infrastructure to support PLM training and 
prediction (Methods and Supplementary Fig. 3). ColabSaprot enables 
seamless deployment and execution of various task-specific trained 
Saprot models, eliminating the need for environment setup and code 
debugging. It also allows researchers to initiate training sessions with 
just a few clicks (Fig. 2a). ColabSaprot is designed to accommodate all 
tasks within the original Saprot framework, enabling direct prediction 
for tasks such as zero-shot mutation effect prediction34,51,52 and protein 
sequence design35,53. For mutation effect prediction, it implements 
single-site, multisite and whole-protein-sequence single-site satura-
tion mutation. For protein design, it can generate de novo sequences 
on the basis of a given backbone structure.

For these supervised training tasks, a particular focus of this work, 
users can fine-tune ColabSaprot with their own experimental data. 
Here, we implement a parameter-efficient fine-tuning technique16,17 
by integrating lightweight adapter networks into ColabSaprot (Fig. 2b 
and Methods). During training, only adapter parameters are updated, 
achieving comparable accuracy as fine-tuning all Saprot parameters 
(Supplementary Fig. 4). This design not only improves learning 
efficiency54–57 but also establishes a collaborative and centralized 
framework that enables biologists to fine-tune task-specific Saprot 
within the research community, particularly through cloud-based 
environments (Fig. 2c–f). With adapters and the ColabSaprot inter-
face, researchers can easily store and exchange their retrained Sap-
rot models in SaprotHub by loading or uploading adapter networks 
instead of the full pretrained model. As adapter networks contain much 
fewer parameters (around 1% of the whole Saprot model), this method 
greatly reduces storage, communication and management burdens on 

SaprotHub, making model accessibility, coconstruction, couse and 
cosharing possible for a broader and diverse scientific community 
(Fig. 2b–d and Methods).

Additionally, we developed several key features to streamline 
workflows for researchers. The ColabSaprot interface supports both 
sequence and structure inputs, offering automated dataset handling 
capabilities including efficient large-file upload mechanisms, real-time 
training monitoring with loss visualization, automatic saving and 
evaluation of the best checkpoints, breakpoint training resumption 
and numerous safety checks to minimize user errors. To enhance GPU 
memory efficiency, we implemented adaptive batch sizing through 
gradient accumulation4. The platform also includes customizable 
settings, allowing researchers to modify code and adjust training 
parameters for specific research needs.

Lastly, we developed SaprotHub with an integrated search engine, 
providing a centralized platform for sharing and collaboratively devel-
oping peer-retrained Saprot models within the biology community 
(Fig. 2d and Supplementary Fig. 5). Through the ColabSaprot interface, 
we implemented features like model storage, model sharing, model 
search, model continuous learning and multiple model aggregation 
for enhanced performance (Methods). Specifically, SaprotHub offers 
three key advantages. First, researchers can share their trained models 
on SaprotHub for broader scientific applications without worrying 
about the leakage of private data. This feature effectively promotes 
knowledge dissemination and has the potential to establish a new 
paradigm for collaborative research (Fig. 2c). Second, researchers can 
leverage shared models on SaprotHub contributed by peers to perform 
continuous training on their own dataset18. This approach is particularly 
advantageous in data-limited scenarios, as fine-tuning from a better 
pretrained model typically delivers superior predictive performance 
(Fig. 2f). Furthermore, these fine-tuned models can be contributed 
back to the hub through one-click upload of the adapter networks, 
fostering a collaborative ecosystem where the community collectively 
and iteratively enhances the available PLM resources. Third, as the Sap-
rotHub community expands, it will accumulate a diverse collection of 
models for various protein prediction tasks, with multiple fine-tuned 
Saprot models becoming available for specific protein functions. To 
leverage this growing model collection, we implemented a model 
aggregation mechanism in ColabSaprot (Methods), enabling users to 
enhance predictive performance (Fig. 2e) through the integration of 
multiple existing models (Fig. 2c).

Saprot and SaprotHub have attracted community attention 
and demonstrated usefulness through multiple wet lab validations. 
The T.Z. team at a commercial biological company used ColabSap-
rot for the zero-shot single-point mutation prediction on a xylanase 
(XP_069217686.1) from Mycothermus thermophilus and experimentally 
validated the top 20 predicted variants. Among these, 13 variants 
exhibited enhanced enzyme activity, with R59S showing a 2.55-fold 
improvement and F212N demonstrating a 1.88-fold increase in enzyme 
activity along with enhanced thermostability (Methods, Supplemen-
tary Tables 12–14 and Supplementary Figs. 6 and 7). Similarly, the 
X.C. lab used ColabSaprot to perform zero-shot single-point muta-
tion predictions on TDG, a uracil-N-glycosylase variant. Following 
experimental validation in HeLa cells, the top 20 variants were incor-
porated into the nCas9 protein. At the Dicer 1 target site, 17 of the 
20 predicted mutations showed enhanced editing efficiency com-
pared to the wild type, as measured by the percentage of T-to-G sub-
stitutions at position T5 (the fifth thymine in the target sequence). 
Notably, three substitutions (L74E, H11K and L74Q) achieved nearly 
doubled editing efficiency (Methods and Supplementary Table 15). 
Another OPMC member recently fine-tuned Saprot using a dataset 
of approximately 140,000 GFP variants with corresponding fluores-
cence intensities to predict brighter avGFP variants from a pool of 
5 million candidates. Experimental validation revealed that seven 
of the top nine predicted double-site variants exhibited enhanced 
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fluorescence compared to the wild type, with one variant reaching 
more than eightfold of the wild-type fluorescence intensity (Methods 
and Supplementary Table 16). Similarly, the J. Zheng lab shared an 
eYFP fluorescence prediction model, trained on 100,000 experimen-
tally validated variants, that achieved a Spearman correlation (ρ) of 
0.94 with experimental fluorescence intensity on an independent 
test set of 6,000 variants, demonstrating near-experimental accuracy 
for double-site and triple-site mutants (Model-EYFP_100K-650M on 
the SaprotHub webpage). We recently received more feedback from 
community researchers who obtained positive wet lab results using  
ColabSaprot.

We also conducted a user study by recruiting 12 biology research-
ers (without an ML background) and compared their performance to 
that of an AI expert (Methods). The results demonstrated that, with 
ColabSaprot and SaprotHub, biology researchers can train and use 
state-of-the-art PLMs with performance comparable to that of an AI 
expert (Fig. 2g,h). Notably, in certain scenarios—such as the eYFP fitness 
prediction task illustrated in Fig. 2g—biologists leveraging preexisting 
models from SaprotHub achieved higher prediction accuracy than 
AI experts. This higher performance stems from the fact that these 
shared models have been trained on larger or higher-quality data-
sets, highlighting the potential of model sharing within the scientific 
community—a key argument in this paper.

ColabSaprot and SaprotHub enable biology researchers to train 
and share sophisticated PLMs for diverse prediction tasks, even without 
extensive AI expertise. This platform empowers the broader protein 
research community to contribute and exchange PLMs, facilitating 
collaborative research and knowledge sharing through peer-trained 
models. We have made both Saprot and ColabSaprot open-source, 
providing a framework for other PLMs to develop their own model 
hubs. Importantly, ColabSaprot and SaprotHub represent just the 
first step in this evolution; our OPMC members have expanded 
this ecosystem by integrating more cutting-edge PLMs, including 
ProTrek (35M and 650M)58, ESM-2 (35M, 150M and 650M)6, ESM-1b 
(650M)5), ProtBert (420M)9 and ProtT5 (1.2B)9 into the OPMC frame-
work, thereby democratizing access to diverse PLMs for biologists  
worldwide.

This community-wide participation approach to protein language 
modeling aligns with the OPMC vision. Our goal here is to inspire and 
foster the cooperative construction of open PLMs through SaprotHub. 
We envision SaprotHub as the catalyst that initializes OPMC, driving 
innovation and collaboration in the field.
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Methods
Constructing SA protein sequence
The SA vocabulary encompasses both residue and structure informa-
tion, as illustrated in Fig. 1a. Given a protein P, its primary sequence can 
be denoted as (s1, s2, …, sn), where si ∈ 𝒱𝒱  represents the residue at the 
ith site and 𝒱𝒱  represents the residue alphabet. Drawing inspiration 
from the vector quantization learning technique59, we encode protein 
3D structures into discrete residue-like structural tokens. Here, we use 
Foldseek19, a fast and accurate protein structure aligner. Through 
Foldseek, we have a structure alphabet 𝒱 , wherein P is expressed as the 
sequence (f1, f2, …, fn), with f j ∈ 𝒱  representing the 3Di token for the 
jth residue site. To maintain simplicity, we adhere to the default con-
figuration of Foldseek, which sets the size m of 𝒱  to 20. We then com-
bine the residue and structure tokens per residue site, generating a 
new SA protein sequence P = (s1f1, s2f2, …, snfn), where sifi ∈ 𝒱𝒱 𝒱 𝒱  is the 
so-called SA token naturally fusing both residue and geometric con-
formation information. The SA token protein sequence can then be fed 
into a standard Transformer encoder as basic input. It is important to 
note that we also introduce a mask signal ‘#’ to both the residue and 
the structure alphabet, which results in ‘si#’ and ‘#fi’, indicating that 
only residue or structure information is available. The size of the SA 
vocabulary is 21 × 21 = 441.

Model architecture and pretraining of Saprot
Saprot follows the same network architecture and parameter size as 
ESM-2 (ref. 6), which draws inspiration from the BERT28 model in natural 
language processing. The primary difference lies in the embedding 
layer: Saprot incorporates 441 SA tokens in place of the conventional 20 
AA tokens. This nearly identical architecture enables straightforward 
performance comparison to the ESM model.

Saprot is pretrained with the masked language modeling (MLM) 
objective28, like ESM-2 and BERT. Formally, for a protein sequence 
P = (s1f1, s2f2, …, snfn), the input and output can be represented as input: 
(s1f1, …, #fi, …, snfn) → output: sifi (Fig. 1b). Given that the 3Di token may 
not always be accurate for certain regions in predicted structures by 
AlphaFold2, fi in #fi is made visible during training so as to reduce the 
emphasis the model places on its predictions.

AlphaFold2 (AF2) predictions include predicted local distance 
difference test (pLDDT) confidence scores that indicate the precision 
of predicted atom coordinates. Therefore, we implement specialized 
handling for regions with low confidence scores. During pretraining, 
regions with pLDDT scores below 70 are processed distinctly. When 
these regions are selected for MLM prediction, we use the ‘si#’ token as 
the prediction target, while masking the input SA sequence with the ‘##’ 
token. This approach encourages the model to predict residue types 
based solely on contextual information. When these low-confidence 
regions are not selected for MLM prediction, we use the ‘si#’ token in the 
input, ensuring the model relies solely on residue context rather than 
inaccurate structural information. For downstream tasks, we main-
tain consistency with the pretraining protocol by applying the same 
handling to regions with pLDDT scores below 70. These regions are 
represented using ‘si#’ tokens, with only residue information remain-
ing visible.

Saprot 35M and 650M underwent typical pretraining from scratch 
as described above. In contrast, Saprot 1.3B used an efficient training 
strategy60 by architecturally combining two identical 33-layer Saprot 
650M models. The initialization process involved duplicating the 
pretrained 650M model’s parameters to populate both the lower (lay-
ers 1–33) and upper (layers 34–66) sections of the 1.3B architecture. 
After initialization, Saprot 1.3B was trained following the same training 
protocol used for the 35M and 650M models, except that 30% of the 
protein sequences in a training batch were transformed into the AA 
sequence only format (s1#, s2#, …, sn#) to enhance the model’s ability 
to handle proteins without available structural information. Training 
was terminated upon convergence of the loss function.

Processing pretraining dataset
We followed the procedures outlined in ESM-2 (ref. 6) to generate 
sequence identity filtered protein data. Subsequently, we acquired all 
AF2 structures through the AlphaFold DB website (https://alphafold.
ebi.ac.uk/), using the UniProt IDs of protein sequences. Proteins with-
out structures in AlphaFold DB were removed. This process yielded a 
collection of approximately 40 million structures. Using Foldseek, we 
encoded these structures into 3Di tokens. Subsequently, we formulated 
SA sequences by combining residue and 3Di tokens, treating them as a 
single SA token at each position. These datasets were used for training 
all three versions of the Saprot models.

Hyperparameters for pretraining
Following ESM-2 and BERT, during training, 15% of the SA tokens in 
each batch were masked. We replaced the SA token sifi with the #fi token 
80% of the time, while 10% of the tokens were replaced with randomly 
selected tokens, and the other 10% tokens remained unchanged. For the 
optimization of Saprot, we adopted similar hyperparameters to those 
used in the ESM-2 training phase. Specifically, we used the AdamW 
optimizer61, setting β1 = 0.9, β2 = 0.98 and we used an L2 weight decay of 
0.01. We gradually increased the learning rate from 0 to 4 × 10−4 over the 
first 2,000 steps and linearly lowered it to 4 × 10−5 from 150,000 steps 
to 1.5 million steps. The overall training phase lasted approximately  
3 million steps. Like the ESM model, we also truncated them to a maxi-
mum of 1,024 tokens and our batch size consisted of 512 sequences. 
Additionally, we used mixed precision training to train Saprot.

Descriptions of baseline models
We compared Saprot to several prominent PLMs (Supplementary 
TableS 7 and 8). For supervised learning tasks, we compared Saprot to 
ESM-2 (the 650M version)6, ProtBert (the BFD version)9, MIF-ST62, Gear-
Net63 and ESM-3 (ref. 20). The first two models use residue sequences 
as input, while the latter three models incorporate both residue and 
structures as input. ESM-2 (650M) stands out as the primary baseline 
for comparison, given its similar model architecture, size and training 
approach when compared to Saprot. ESM-2 also offers a 15B version, 
which can be challenging to fine-tune even on GPUs with 80 GB of 
memory. Therefore, we only conducted comparisons to ESM-2 (15B) 
for zero-shot mutational effect prediction tasks, which can be achieved 
without the need for fine-tuning.

For the zero-shot mutational effect prediction task, we compare 
to the state-of-the-art ESM-2, ProtBert, ESM-1v (ref. 7), Tranception L 
(without MSA retrieval)11, MSA Transformer8, EVE34 and ESM-3 models. 
For the protein inverse folding task, we compare to ProteinMPNN35 as 
baseline.

The formula for the zero-shot mutation effect prediction task
Previous sequence-based PLMs like the ESM models predict mutational 
effects using the log odds ratio at the mutated position. The calculation 
can be formalized as follows:

∑
t∈T

[logP (xt = smt
t |x\T) − logP (xt = swt

t |x\T)] (1)

Here, T represents all mutations and st ∈ 𝒱𝒱  is the residue type for 
mutant and wild-type sequence. We slightly modify the formula above 
to adapt to the SAA in Saprot, where the probability assigned to each 
residue corresponds to the summation of tokens encompassing that 
specific residue type, as shown below.

∑
t∈T

[log ∑
f∈ℱ

P (xt = smt
t f|x\T) − log ∑

f∈ℱ
P (xt = swt

t f|x\T)] (2)

Here, f ∈ 𝒱  is the 3Di token generated by Foldseek and stf ∈ 𝒱𝒱 𝒱 𝒱 is the 
SA token in our new alphabet.

http://www.nature.com/naturebiotechnology
https://alphafold.ebi.ac.uk/
https://alphafold.ebi.ac.uk/


Nature Biotechnology

Brief Communication https://doi.org/10.1038/s41587-025-02859-7

Zero-shot mutational effect prediction tasks and datasets
ProteinGym. ProteinGym37 comprises an extensive collection of deep 
mutational scanning assays, enabling comprehensive comparison 
among zero-shot predictors. We evaluate all baseline models (Sup-
plementary Table 7) on ProteinGym’s substitution branch, using its 
provided protein structures and adhering to the standard evaluation 
protocol outlined in the original paper37. We use Spearman’s rank cor-
relation as our evaluation metric.

ClinVar. ClinVar38 is a publicly accessible repository housing informa-
tion about human genetic variants and their clinical importance in 
disease. For our analysis, we use data curated from EVE34, excluding 
proteins exceeding 1,024 residues in length. To ensure data quality, we 
restrict our analysis to proteins with reliability ratings of one ‘gold star’ 
or higher. Following EVE’s methodology, we assess model performance 
using the area under the curve.

Mega-scale. Mega-scale36 uses complementary DNA display prote-
olysis to measure thermodynamic folding stability across protein 
domains. The dataset encompasses all single mutations and selected 
double mutants in both natural and de novo designed proteins. For 
this dataset, we also use Spearman’s rank correlation as our evalua-
tion metric.

For each mutation dataset, we provide all variants with the 
wild-type structure, as AF2 does not reliably distinguish the structural 
changes induced by single substitutions. Additionally, the ClinVar data-
set only provides UniProt IDs; thus, we manually downloaded all AF2 
structures and eliminated proteins without structures in AlphaFold DB. 
Both ProteinGym and Mega-scale datasets provide protein structures, 
either predicted from AF2 or derived from de novo design.

Supervised fine-tuning tasks and datasets
Fine-tuning Saprot with the AF2 structure. These benchmarks include 
the Thermostability task from FLIP64 and the localization prediction 
task from DeepLoc65. The DeepLoc benchmark has two prediction 
branches: a multiclass classification with ten subcellular locations and 
a binary classification with two location categories. We use the datasets 
provided by these original literature. For structural information, we 
obtain AlphaFold2-predicted structures for all proteins using their 
corresponding UniProt IDs.

Fine-tuning Saprot with the PDB structure. There are a few tasks 
providing experimentally determined structures as training data. We 
evaluate the metal-ion-binding task66 and a series of tasks from Pro-
teinShake31, including structure class prediction, structural similarity 
prediction and binding site detection. The corresponding datasets are 
provided in the respective literature.

Fine-tuning Saprot without structure. While Saprot is designed to 
leverage protein structural information, it can still work in scenarios 
where structural data are not provided during supervised fine-tuning. 
In these cases, we mask the 3Di token in the SA sequence. We evaluate 
performance on the fluorescence and stability prediction datasets from 
TAPE30, the AAV dataset from FLIP64 and the β-lactamase landscape 
prediction dataset from PEER32.

Regarding the evaluation metrics, we adopt those established in 
the original literature. Details on dataset splits are described below.

Data split
In the existing literature, datasets are typically partitioned on the basis 
of protein sequence identity. However, a recent benchmark study 
called ProteinShake31 argued that protein structures exhibit higher 
conservation than sequences, indicating that structure-based splitting 
provides a more stringent evaluation of model generalization. Inspired 
by this, we adopted the same structure-based data splitting for most 

of our evaluation (unless otherwise specified). The splitting criterion 
is quantified using the LDDT, as proposed in ProteinShake. To be spe-
cific, for datasets that include protein structures, we use the default 
70% LDDT threshold recommended in ProteinShake31. For tasks where 
only sequence data are available, we retain the original splits provided 
in the official literature, as these datasets consist of only mutational 
variants of one single protein. To show performance sensitivity across 
different splitting criteria, we perform further evaluation by compar-
ing Saprot (35M) and ESM (35M) using a more stringent 30% LDDT 
threshold and the commonly used 30% sequence identity threshold32,67. 
The corresponding results are presented in Supplementary  
Table 3.

Protein inverse folding
Saprot for protein inverse folding. To use Saprot for inverse folding, 
we first encode the protein backbone into 3Di tokens (f1, f2, …, fn). We 
then mask all residue parts of the SA tokens, forming an SA sequence 
(#f1, #f2, …, #fn). This sequence is input into Saprot to predict residue 
distributions at all positions. In contrast to ProteinMPNN35 that gen-
erates residues in an autoregressive manner (that is, generating next 
token conditioned on all previous outputs), Saprot is able to simultane-
ously predict all residues with only one forward propagation.

Fine-tuning Saprot on the CATH dataset. We evaluate two variants of 
Saprot for protein design: one pretrained using AF2-predicted struc-
tures and another further fine-tuned on the CATH dataset68. This CATH 
database, which was also used to train ProteinMPNN35, is partitioned 
into training, validation and test sets using an 80:10:10 split, as detailed 
by Ingraham et al.69.

Hyperparameters for fine-tuning tasks
We use the AdamW61 optimizer during fine-tuning, setting β1 = 0.9 and 
β2 = 0.98, along with an L2 weight decay of 0.01. We use a batch size of 
64 for all datasets. We empirically found that the optimal learning rate 
for most baselines are in the range of 1 × 10−5 to 5 × 10−5. For training with 
AF2 structure and training with PDB structure, the optimal learning 
rate was set to 5 × 10−5, whereas, for training without structure, it was 
set to 1 × 10−5. We fine-tuned all model parameters until convergence 
and selected the best checkpoints based on their performance on the 
validation set.

Adapter learning
The adapter learning technique, originated in general AI 
community70–72, has recently been adopted in protein research54,56,73,74. 
While these studies mainly focused on its advantage for model accu-
racy and training efficiency, we use adapter here by integrating it with 
Google Colab to create a platform that enables model fine-tuning, 
sharing, continuous retraining and collaboration within the biological 
research community through our online SaprotHub.

In the broader AI community, various types of adapters exist, 
including Houlsby70, Pfeiffer17, Compacter75 and LoRA16. We choose 
LoRA for its capacity to deliver comparable results with fewer param-
eters. By integrating learnable low-rank matrices into each Saprot 
block while freezing the backbone, LoRA enables parameter-efficient 
fine-tuning and model sharing for these downstream tasks.

Community-wide collaboration
As the SaprotHub community grows, more fine-tuned Saprot models 
become available for each protein function, facilitating collaborative 
development among biologists. To evaluate this advantage (Fig. 2e), 
we adopt the following approach. For each task, we randomly partition 
the training data into five subsets and train one model on each subset, 
yielding models model_0 through model_4, simulating models shared 
by different researchers. For regression tasks (for example, thermo-
stability), the final prediction (model_agg) is computed as the mean 

http://www.nature.com/naturebiotechnology
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of all model outputs. For classification tasks (for example, subcellular 
localization), we implement majority voting, where the final predic-
tion (model_agg) is determined by the most frequent class prediction 
across the ensemble. The lightweight adapter technique is crucial for 
model aggregation, addressing the challenges of loading and sharing 
multiple large pretrained models.

To evaluate the effectiveness of model continue learning 
(Fig. 2f), we randomly sampled 100, 200 and 500 training instances 
per task to simulate researchers’ private data. We then performed 
fine-tuning using two base models, updating only their adapter 
parameters: the official Saprot model (blue) and a shared model 
from SaprotHub (orange). The latter represents models previously 
trained by researchers with larger or higher-quality datasets. Results 
demonstrate that continuing training from existing well-trained 
models substantially outperforms training from scratch with lim-
ited data. Note that the official Saprot model (blue) is pretrained on 
large-scale protein sequence and structure data but has not under-
gone supervised fine-tuning for specific tasks. This highlights a key 
advantage of SaprotHub, whereby researchers can build upon others’  
achievements.

ColabSaprot notebooks
ColabSaprot consists of three key components, with the first focusing 
on model training. This component enables researchers to rapidly con-
figure the runtime environment, process training data and fine-tune 
Saprot efficiently. We provide access to four base models: Saprot 35M, 
Saprot 650M, custom fine-tuned Saprot models and community-shared 
fine-tuned models from SaprotHub. Additionally, we offer advanced 
hyperparameter customization options, allowing researchers to 
tailor their training strategies to specific requirements. These cus-
tomizable parameters include batch size, learning rate, training  
steps, etc.

The second component focuses on prediction capabilities. Colab-
Saprot supports a diverse range of prediction tasks (Supplementary 
Table 1) using both community-shared models from SaprotHub and 
locally fine-tuned models. This includes protein-level, residue-level 
and protein–protein interaction predictions, as well as zero-shot muta-
tional effect predictions and protein design. Each task category offers 
multiple configuration options to accommodate different research 
requirements. Moreover, ColabSaprot enhances prediction accuracy 
by implementing ensemble methods that aggregate multiple models 
from SaprotHub, delivering more robust and reliable results. This 
collaborative approach facilitates a community-driven model ecosys-
tem where researchers can leverage and combine multiple models to 
achieve superior performance.

The third component enables model sharing, searching (imple-
mented in SaprotHub; Supplementary Fig. 5) and community col-
laboration. Upon completion of training, researchers can contribute 
their model weights (specifically the adapter weights) to the Sapro-
tHub community repository, making them accessible to the broader 
biological research community. Through SaprotHub’s specialized 
search engine, researchers can efficiently locate and use relevant 
models. These shared models can be leveraged for continual learn-
ing, direct application or model aggregation to achieve enhanced  
performance.

User study
We evaluated ColabSaprot-v1 through eight protein prediction tasks 
with 12 participants who, on the basis of brief conversations and back-
ground checks, had biological backgrounds but no prior involvement 
in coding or ML projects. The evaluation encompassed supervised 
fine-tuning, zero-shot mutation effect prediction and protein inverse 
folding tasks. Each participant had 3 days to complete their assign-
ments and received compensation upon submitting either their results 
or documentation of encountered obstacles through screenshots 

or recordings. Additional information is provided online (https://
drive.google.com/file/d/1LdGRnwt2lttnszNBAJ0F967A8rguPq8b/
view?usp=sharing).

For comparison, we engaged an AI expert—a third-year PhD stu-
dent specializing in ML with over 2 years of research experience in 
protein-focused AI applications. The expert executed these tasks using 
the Saprot codebase from our GitHub repository, conducting five 
independent runs with optimized hyperparameters using different 
random seeds.

The 12 participants were organized as follows: one assigned to 
zero-shot mutational effect prediction, another assigned to protein 
design and the remaining ten randomly divided into two groups of 
five. Each group handled three supervised fine-tuning tasks, covering 
six tasks in total. In other words, each supervised fine-tuning task was 
completed by five participants. We evaluated the average accuracy 
across all participants, including those who were unable to finish the 
task completely (when such cases occurred).

For the supervised fine-tuning tasks, we used five public datasets 
for predicting: thermostability, subcellular and binary localization, GFP 
fluorescence and stability (Supplementary Table 6). We also included 
a proprietary eYFP fitness prediction dataset from the X. Zheng lab, 
containing 3,087 validation and 3,088 test samples, bringing the total 
to six supervised fine-tuning tasks. To reduce training time and com-
puting power consumption, we randomly selected 1,000 samples 
from the training set of each dataset while keeping the validation and 
test sets unchanged.

For model evaluation, all participants generated predictions 
on designated test sets. In the eYFP task, biology participants lev-
eraged continual learning on a pretrained model from SaprotHub 
(Model-EYFP-650M (search model name through https://huggingface.
co/spaces/SaProtHub/SaprotHub-search), achieving 0.95 Spearman’s 
ρ on test data), while the AI expert used the base Saprot 650M model. 
This setup is used to show how SaprotHub enables researchers with 
limited data to build upon existing fine-tuned models. For other tasks, 
both biology participants and the AI expert trained their models using 
the same SaProt_650M_AF2 base model with identical training and test 
sets, ensuring fair comparison.

For the zero-shot mutational effect prediction, we randomly 
selected four mutation datasets from ProteinGym benchmark37 for 
evaluation. Three of these datasets focus on the impact of mutations 
on enzyme activity, while the fourth addresses drug resistance. We 
assigned one participant to conduct predictions on these datasets 
using ColabSaprot in a zero-shot manner.

For the protein inverse folding task, we assigned one participant 
to use ColabSaprot to generate protein sequences based on given 
structures. Subsequently, the participant used ESMFold (an interface 
provided by ColabSaprot) to predict the structures of the generated 
sequences. To assess Saprot’s ability on new proteins, we selected these 
recently released structures (Fig. 2h).

Participants were provided with related protein datasets (includ-
ing training and test sets), GPU-enabled Google Colab accounts and 
detailed task instructions. Participants had 3 days to complete the 
assignments on their own using ColabSaprot. To encourage honest 
feedback and thorough documentation, compensation was guaran-
teed to all participants who documented their challenges through 
screenshots or recordings, regardless of whether they completed the 
assigned tasks.

We acknowledge a potential self-selection bias, as the biology par-
ticipants were volunteers likely interested in novel computational tools. 
This may imply that their aptitude for learning new software could be 
higher than the general average for the biology community. However, 
as the study’s primary goal was a comparative analysis of workflows, 
this bias is not expected to alter the main conclusions regarding the 
platform’s relative efficiency and accessibility. All participants were 
fully informed about the study.

http://www.nature.com/naturebiotechnology
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Experimental validation on the xylanase
There are several steps. Let’s name the protein (XP_069217686.1) Mth.

	(1)	 Use AlphaFold3 (https://golgi.sandbox.google.com/) to get the 
protein structure of Mth.

	(2)	 Use Foldseek or ColabSaprot to get the SA sequence of Mth.
	(3)	 Use ColabSaprot (650M) to perform zero-shot (single-point) 

mutation effect prediction for the entire SA sequence.
	(4)	 Choose the 20 highest-ranked variants (Supplementary 

Table 12) excluding A15G and I13P; A15G and I13P were not 
selected because they are located in the signal peptide region 
of the protein, which would be removed during the process of 
protein secretion in P. pastoris.

	(5)	 Construct mutants as detailed below.
	(51)	� The gene sequence of Mth was optimized according to 

the codon preference of P. pastoris, and the plasmid 
pPIC9K-Mth was synthesized by GenScript.

	(52)	� Mutations of Mth were generated through site-directed 
mutagenesis by PCR, using the plasmid pPIC9K-Mth as a 
template. The primers are listed in Supplementary Table 13.

	(53)	� After confirmation by DNA sequencing, the wild-type and 
mutated plasmids were linearized with SalI and used to 
transform P. pastoris strain GS115. The recombinant strains 
were selected on MD plates (1.34% YNB (yeast nitrogen 
base without AAs), 2% glucose and 2% agar) and verified by 
PCR and sequencing.

	(6)	 Conduct enzyme activity assay of wild-type Mth and mutants as 
detailed below.

	(61)	� The positive transformants were cultivated in liquid medium 
BMGY (1% yeast extract, 2% peptone, 1.34% YNB, 1% glycerol 
and 100 mM potassium phosphate pH 6.0) for 20–24 h. The 
cells were collected by centrifugation at 3,500g and 4 °C for 
5 min and then transferred to 250-ml shake flasks containing 
25 ml of BMMY (1% yeast extract, 2% peptone, 1.34% YNB, 1% 
methanol and 100 mM potassium phosphate pH 6.0) with 
initial optical density at 600 nm (OD600) of 0.5. Fed-batch 
fermentation was proceeded to express xylanase by feeding 
1% methanol per 24 h. All liquid cultures were performed at 
30 °C and 250 rpm. After 120 h of cultivation, the superna-
tants were obtained by centrifugation at 3,500g and 4 °C for 
5 min and tested for xylanase activity.

	(62)	� Xylanase activity assay: The reaction mixture contained 
0.1 ml of 1% (w/v) beechwood xylan and 0.1 ml of a suitably 
diluted enzyme solution (100 mM acetate buffer pH 5.0) in-
cubated at 60 °C for 30 min. The amount of reducing sugar 
released was determined using the 3,5-dinitrosalicylic acid 
method, with xylose as the standard. Here, 1 U of xylanase  
activity was defined as the amount of enzyme that catalyzes the 
release of 1 μmol of xylose equivalent per min under the assay 
conditions. The enzyme activity was measured at 40–70 °C  
to determine the optimal temperature of the enzymes, with 
the pH of the reaction maintained at 5.0. After incubation at 
60 °C for various time periods, the residual enzyme activity 
was measured to assess the thermostability of the enzymes.

Experimental validation on GFP variants
The objective of this task was to engineer brighter avGFP variants as 
part of the 2024 Critical Assessment of Protein Engineering (CAPE) 
competition76. CAPE, a student-focused challenge modeled after the 
Critical Assessment of Structure Prediction competition, emphasizes 
protein function design and variant effect prediction. The parent GFP 
sequence is based on avGFP (AA sequence information in Supplemen-
tary Table 14) derived from Aequorea victoria (UniProt P42212). These 
top-ranked predicted variants by Saprot were experimentally validated 
by the CAPE organizers.

The process of fine-tuning Saprot (35M) and subsequent predic-
tion consisted of the following steps:

Step 1: Data preparation. The CAPE organizers provided a dataset 
of 140,000 GFP variants (including avGFP, amacGFP, cgreGFP and 
ppluGFP2; Supplementary Table 14), along with their correspond-
ing fitness scores, and the structures of four wild-type GFP proteins 
(avGFP, amacGFP, cgreGFP and ppluGFP2). Our OPMC member X. 
Zhang used Foldseek to generate 3Di tokens for these wild-type 
structures, which were then used to converted to SA tokens by 
their corresponding variants.
Step 2: Model fine-tuning. The Saprot model underwent full param-
eter fine-tuning using the SA token sequences of these variants.
Step 3: Variant prediction and validation. A pool of 5 million avGFP 
double-site mutants was generated through random mutagenesis. 
The fine-tuned Saprot model from Step 2 was used to predict their 
fitness scores. The top nine variants were selected for experimen-
tal validation.

Experimental validation was conducted using the robotic bio-
foundries at the Shenzhen Infrastructure for Synthetic Biology accord-
ing to the following procedure:

Step 1: Expression plasmid pET28a vectors containing designed 
mutant GFP sequences were ordered from Genescript Biotech 
and used to transform chemically competent Escherichia coli 
BL21(DE3) cells through heat shock at 42 °C. Two independent 
clones for each mutant were randomly selected to inoculate 1 ml of 
noninducing Luria–Bertani medium supplemented with 50 μg ml−1 
kanamycin (LB+Kan) for plasmid maintenance by antibiotic selec-
tion in 96-well microtiter plates to prepare seed cultures, which 
were grown at 37 °C for 16–20 h.
Step 2: For inducible protein expression, 40 μl of stationary-phase 
seed cultures were used to reinoculate 4 ml of fresh LB+Kan 
medium in 24-well microtiter plates, followed by approximately 
4 h of incubation at 37 °C to reach the exponential growth phase 
(OD600 = 0.6–0.8). Then, IPTG was added to achieve a final concen-
tration of 1 mM for inducible expression at 18 °C for 20 h.
Step 3: Biomass growth was monitored by using OD600 measure-
ment and GFP fluorescence was assessed with excitation at 488 nm 
and emission at 520 nm in 96-well flat-bottom plates. For each 
strain, GFP signal intensities were divided by OD600 values to cal-
culate biomass-normalized fluorescence.

Experimental validation of the TDG variants
The X.C. lab used ColabSaprot version 1 (650M) for zero-shot prediction 
of single-site mutation effects of TDG (AA sequence in Supplementary 
Table 14). They input only the AA sequence with all structural tokens 
masked into ColabSaprot to identify the top 20 highest-ranked vari-
ants. Experimental validation and results of these variants are docu-
mented in Supplementary Table 15.

Following protocols described previously51,77, base editors used in 
this paper were cloned into a pCMV plasmid with blasticidin resistance. 
Single guide RNA (sgRNA) was cloned into a pSuper-sgRNA plasmid 
with puromycin resistance. The TDG sequence was amplified from 
plasmid TSBE2 (ref. 51) and TDG variants were generated through 
site-directed mutagenesis by PCR and then fused with SpCas9 (D10A) 
protein as TSBE2. All primers are listed in Supplementary Table 13. The 
protein sequence of TSBE2 and protospacer sequences of sgRNA are 
available from a previous study51. The experimental validation process 
was performed as previously described51,77.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.
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Data availability
The pretraining dataset for training Saprot is available online (https://
huggingface.co/datasets/westlake-repl/AF2_UniRef50. Downstream 
task datasets are all stored online (https://huggingface.co/SaProtHub). 
Materials for user study (https://drive.google.com/file/d/1LdGRnwt2lt
tnszNBAJ0F967A8rguPq8b/view?usp=sharing), raw data with detailed 
wet lab information (https://drive.google.com/file/d/1IYcOqRuF76L
usG7DMI4kEr2mJL6aE7g-/view?usp=sharing) and additional wet lab 
experimental results collected from the research community (https://
drive.google.com/file/d/1ZcDl0XYksTcUEaCfPI0tuEVo5CA031dg/
view?usp=sharing) are available from a Google Drive. All unique/stable 
reagents generated in this study are available from the lead contact 
(yuanfajie@westlake.edu.cn).

Code availability
Saprot is an open-sourced model with MIT license. The code is available 
from GitHub (https://github.com/westlake-repl/Saprot). The code 
implementation of ColabSaprot notebook is also available from GitHub 
(https://github.com/westlake-repl/SaProtHub). ColabSaprot service 
(latest version: version 2) is available online (https://colab.research.
google.com/github/westlake-repl/SaprotHub/blob/main/colab/Sap-
rotHub_v2.ipynb?hl=en; the previous version is still maintained on the 
SaprotHub GitHub). All fine-tuned Saprot models can be obtained 
through SaprotHub (https://huggingface.co/SaProtHub) through the 
dedicated search engine (https://huggingface.co/spaces/SaProtHub/
SaprotHub-search). Our OPMC members have also implemented Colab-
Seprot (https://colab.research.google.com/github/westlake-repl/
SaprotHub/blob/main/colab/ColabSeprot.ipynb?hl=en), including 
ColabProTrek (35M and 650M), ColabESM1b (650M), ColabESM2(35M, 
150M and 650M), ColabProtBert (420M), SeprotHub (https://hugging-
face.co/SeprotHub) and an independent ColabProtT5 (https://colab.
research.google.com/github/westlake-repl/SaprotHub/blob/main/
colab/ColabProtT5.ipynb).
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AlphaFold DB dataset. Y.H., X.C. and X.Z. (TDG), Q.Y. (xylanase) and 
Y.G. and T.S. (GFP) conducted the wet lab experiments. S.J. conducted 
some experimental result analysis. D.M. participated in early wet lab 
experiments. J. Su and F.Y. wrote the manuscript. Other OPMC authors 
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