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Training and deploying large-scale protein language models typically
requires deep machine learning expertise—abarrier for researchers outside
this field. SaprotHub overcomes this challenge by offering an intuitive
platform that facilitates training and prediction as well as storage and
sharing of models. Here we provide the ColabSaprot framework built on
Google Colab, which potentially powers hundreds of protein training and
prediction applications, enabling researchers to collaboratively build and
share customized models.

Proteins are fundamental to virtually all biological processes and cen-
tral to medicine and biotechnology' . Despite this centrality, deci-
phering protein structure and function has remained a formidable
challenge. This landscape was recently transformed by two break-
throughs: The success of AlphaFold2 (ref. 4) ushered in a new era for
structural biology by predicting structures with experimental-level
accuracy; in parallel, large-scale protein language models (PLMs) are
driving unprecedented advances in function prediction.

This progressis driven by a suite of powerful PLMs that have dem-
onstrated remarkable efficacy across diverse tasks’'*. However, lever-
aging these advanced models presents notable technical hurdles for
researchers without extensive machine learning (ML) expertise. The
challenges span the entire workflow, from model selection and data
preprocessing to the training and evaluation of models with billions
of parameters. This complexity creates a critical barrier, hindering
broader adoption and innovation by the very researchers who stand
to benefit most.

ColabFold"” addressed a similar accessibility barrier for struc-
ture prediction by deploying AlphaFold2 on Google Colab, effectively
democratizing its use. Despite this success, a critical gap remains:
ColabFold does not support the more complex task of training custom
models for function prediction.

To bridge this gap, we introduce ColabSaprot and SaprotHub, a
platform designed specifically for protein function prediction. Built
on Google Colab, ColabSaprot empowers researchers without ML

expertise to train their own task-specific PLMs through an intuitive
interface. Crucially, the platform supports a broad spectrum of pre-
diction tasks, ensuring that its utility extends far beyond single-task
applications.

Complementing this user-friendly platform, we introduce the
Open Protein Modeling Consortium (OPMC), an initiative to foster
a collaborative ecosystem for community-driven protein language
modeling (Supplementary Information). The OPMC framework enables
researchers to share their bespoke models, fine-tune existing ones
contributed by peers or apply them directly for their own research.
This creates a virtuous cycle of sharing, refinement and applica-
tion, accelerating collective progress in the field. As the inaugural
platform integrated with OPMC, SaprotHub represents the first step
in realizing this vision for community-centric artificial intelligence
(Al) development.

This work comprises three key contributions: afoundation PLM
named Saprot** (Fig. 1a,b), ColabSaprot (Fig. 2a—c), enabling easy
training (or fine-tuning) and inference of Saprot on the Colab plat-
form through the adapter learning technique'®”, and SaprotHub, a
community repository (Fig. 2d) for storing, sharing, searching and
collaborative development of fine-tuned Saprot models. By integrating
advanced PLMs, cloud-based computing on Colab and adapter-based
fine-tuning techniques, it addresses several key challenges—namely,
the difficulty of sharing and collectively using large-scale PLMs, the risk
of parameter catastrophic forgetting during continual learning'® and
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Fig.1|Illustration of Saprot. a, The proposed SAA. #a, #p, ..., #y represent only
the 3Di token being visible, while A#, C#, ..., Y# represent the AA token being
visible.b, Model architecture of Saprot. ¢, Saprot supports a wide range of
protein prediction tasks (more tasks in Supplementary Table1). d, Performance
comparison on 14 diverse prediction tasks. e. Performance on protein sequence

design.‘AF2+CATH’ indicates that Saprot was pretrained using AlphaFold2-
predicted structures and fine-tuned with experimental structures from CATH.
‘AF2’is a version of Saprot trained only with the AlphaFold2 predicted structure.
CATHis also used for training ProteinMPNN.

the need to protect proprietary biological data when sharing results.
Below, we detail these three modules.

We first developed Saprot, a cutting-edge, large-scale PLM that
forms the foundation for ColabSaprot and SaprotHub. Saprot intro-
duces anovel protein alphabet and representation, distinct from tra-
ditionalaminoacid (AA) sequences or explicit three-dimensional (3D)
coordinate structures. Thisalphabet is structure-aware (SA), with each
‘letter’ encoding boththe AA type and the local geometry of the protein.
Formally, the SAalphabet (SAA)is defined as SAA = V x ¥, represent-
ing the Cartesian product of V and #, where V denotes the 20 AA and
F represents the 20 structural (3Di) letters (Fig. 1a). These 3Di tokens
are derived from protein 3D structures through Foldseek discretiza-
tion'. The SAA encompasses all possible combinations of AA
(capital letters) and 3Di tokens (lowercase letters) in SAA, such as Aa,

Ap,Ac, ..., Ya, Yp,Yy,allowing proteins to be represented as asequence
of SAtokens that captures both primary and tertiary structures (Fig. 1b
and Methods). Despiteits conciseness, applying the SAA successfully
addresses the key challenges of scalability and overfitting in training
on large-scale AlphaFold2-generated atomic structures (Supplemen-
tary Note1and SupplementaryFig.1). Theadoption of ‘AA + structural
token’ sequences (Fig. 1b) for protein representation has garnered
increasing attention in much subsequent studies’”, emerging as a
promising paradigm for protein representation.

The Saprot model uses abidirectional Transformer® architecture
(Fig. 1b). It was pretrained to reconstruct certain partially masked
tokens in the SA token sequences (Methods). The model was trained
from scratch on 40 million protein SA sequences, filtered from Alpha-
Fold’s 214 million proteins® at 50% identity (Methods). Saprot is
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Fig. 2 |Illustration of ColabSaprot and SaprotHub. a, Comparison of model
training and inferring between normal pipeline and ColabSaprot. ColabSaprot
streamlines the process, offering simplified procedures for model training
andinference with just a few clicks. b, A lightweight plugin architecture (that
is, adapter) is integrated within Saprot to facilitate efficient training, sharing
and coconstruction. Throughout this process, the model parameters of the
Saprot backbone remain unchanged. ¢, ColabSaprot performs predictions by
aggregating multiple shared models using adapters in SaprotHub without the
need for private training data. d, Illustration of SaprotHub features, enabling
biologists to coshare, cobuild, couse and collaborate within the community.
e, ColabSaprot’s community-wide model collaboration mechanism (c) allows
itto achieve higher performance (orange bars) by aggregating multiple
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individually trained models (blue bars). Each individual model is trained with

its own data, which may or may not overlap (reflecting real-world situations;
Supplementary Table 10). Datarepresent the mean +s.d. of n =5independent
experiments. f, By continually learning on models trained and shared by other
biologists, ColabSaprot substantially outperforms those training-from-scratch
models, especially when users lack sufficient training data (the x axis represents
the number of training examples). Data represent the mean +s.d.ofn =35
independent experiments. g, User study on supervised fine-tuning and zero-shot
mutation effect prediction tasks (Supplementary Table 11). For fine-tuning tasks,
the datarepresent the mean + s.d. of n=5independent experiments. h, User
study on the inverse folding task. Experimental structures are shown in green,
while predicted structures are in blue. TM-score, template modeling score.
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availablein threesizes, 35M, 650M and 1.3B, indicating the number of
parameters (M, million; B, billion) (Supplementary Table 2). The 650M
model, used for most evaluations unless otherwise specified (Sup-
plementary Tables 3 and 4), was trained for 3 months using 64 NVIDIA
A10080-GB GPUs, representing computational resources comparable
to those used for ESM-2 (650M).

Afterits pretraining, Saprot has become a general-purpose foun-
dation PLM that excels across diverse protein prediction tasks, such
as various supervised training tasks®**? (encompassing both regres-
sion and classification at the protein level or residue level), zero-shot
mutation effect prediction®?*and protein sequence design® (Fig. 1c,d
and Supplementary Tables1and 5). Figure 1d shows Saprot’s superior
performance across 14 different protein prediction tasks compared to
two well-known PLMs: ESM-2 (ref. 6) and ProtBert’ (see detailed task,
dataset, baseline and experimental setup descriptionsin Methods and
Supplementary Table 6; more baseline comparisonin Supplementary
Tables7 and 8). For tasks where protein structural information is avail-
able (indicated by purple, blue and red colors), Saprot consistently
surpasses bothmodels. Eveninscenarios without structural data(green
tasks), Saprot maintains competitive performance with ESM-2 under
the fine-tuning settings. Notably, Saprot substantially outperforms
ESM-2 in three zero-shot mutational effect prediction tasks (Meth-
ods): Mega-scale®® (0.574 versus 0.478), ProteinGym®’ (0.457 versus
0.414), and ClinVar*® (0.909 versus 0.862) (Supplementary Table 7).
Furthermore, despite being trained with a masked language mod-
eling objective not specifically optimized for generation, Saprot per-
forms effectively in protein sequence design while achieving a16-fold
acceleration in inference speed compared to ProteinMPNN*(Fig. 1e)
(Methods, Supplementary Fig. 2 and Supplementary Table 9). Addi-
tionally, recent studies demonstrated Saprot’s effectiveness across
abroad spectrum of applications®**°, including protein engineering
and de novo design**, fitness and stability prediction****, molecular
understanding*®*, fast and sensitive structure search*® and drug-
target interaction prediction*>*°. This versatility across multiple
protein-related tasks supports SaprotHub’s vision for community
collaboration (Supplementary Table1).

Wethen developed the ColabSaprot platform by integrating Sap-
rot into Google Colab’s infrastructure to support PLM training and
prediction (Methods and Supplementary Fig. 3). ColabSaprot enables
seamless deployment and execution of various task-specific trained
Saprot models, eliminating the need for environment setup and code
debugging. It also allows researchers toinitiate training sessions with
justafew clicks (Fig. 2a). ColabSaprot is designed to accommodate all
tasks within the original Saprot framework, enabling direct prediction
fortasks suchas zero-shot mutation effect prediction®***"** and protein
sequence design®*, For mutation effect prediction, it implements
single-site, multisite and whole-protein-sequence single-site satura-
tion mutation. For protein design, it can generate de novo sequences
onthebasis of a given backbone structure.

For these supervised training tasks, a particular focus of this work,
users can fine-tune ColabSaprot with their own experimental data.
Here, we implement a parameter-efficient fine-tuning technique'®”
byintegrating lightweight adapter networks into ColabSaprot (Fig.2b
and Methods). During training, only adapter parameters are updated,
achieving comparable accuracy as fine-tuning all Saprot parameters
(Supplementary Fig. 4). This design not only improves learning
efficiency®* ™’ but also establishes a collaborative and centralized
framework that enables biologists to fine-tune task-specific Saprot
within the research community, particularly through cloud-based
environments (Fig. 2c-f). With adapters and the ColabSaprot inter-
face, researchers can easily store and exchange their retrained Sap-
rot models in SaprotHub by loading or uploading adapter networks
instead of the full pretrained model. As adapter networks contain much
fewer parameters (around 1% of the whole Saprot model), this method
greatly reduces storage, communication and managementburdens on

SaprotHub, making model accessibility, coconstruction, couse and
cosharing possible for a broader and diverse scientific community
(Fig.2b-d and Methods).

Additionally, we developed several key features to streamline
workflows for researchers. The ColabSaprot interface supports both
sequence and structure inputs, offering automated dataset handling
capabilitiesincluding efficient large-file upload mechanisms, real-time
training monitoring with loss visualization, automatic saving and
evaluation of the best checkpoints, breakpoint training resumption
and numerous safety checks to minimize user errors. Toenhance GPU
memory efficiency, we implemented adaptive batch sizing through
gradient accumulation®. The platform also includes customizable
settings, allowing researchers to modify code and adjust training
parameters for specific research needs.

Lastly, we developed SaprotHub with anintegrated search engine,
providing acentralized platform for sharing and collaboratively devel-
oping peer-retrained Saprot models within the biology community
(Fig.2d and SupplementaryFig. 5). Through the ColabSaprotinterface,
we implemented features like model storage, model sharing, model
search, model continuous learning and multiple model aggregation
forenhanced performance (Methods). Specifically, SaprotHub offers
threekey advantages. First, researchers canshare their trained models
on SaprotHub for broader scientific applications without worrying
about the leakage of private data. This feature effectively promotes
knowledge dissemination and has the potential to establish a new
paradigm for collaborative research (Fig. 2c). Second, researchers can
leverage shared models on SaprotHub contributed by peersto perform
continuous training on their own dataset’®. This approachis particularly
advantageous in data-limited scenarios, as fine-tuning from a better
pretrained model typically delivers superior predictive performance
(Fig. 2f). Furthermore, these fine-tuned models can be contributed
back to the hub through one-click upload of the adapter networks,
fosteringa collaborative ecosystem where the community collectively
anditeratively enhances the available PLM resources. Third, as the Sap-
rotHub community expands, it willaccumulate a diverse collection of
models for various protein prediction tasks, with multiple fine-tuned
Saprot models becoming available for specific protein functions. To
leverage this growing model collection, we implemented a model
aggregation mechanismin ColabSaprot (Methods), enabling users to
enhance predictive performance (Fig. 2e) through the integration of
multiple existing models (Fig. 2c).

Saprot and SaprotHub have attracted community attention
and demonstrated usefulness through multiple wet lab validations.
The T.Z. team at a commercial biological company used ColabSap-
rot for the zero-shot single-point mutation prediction on a xylanase
(XP_069217686.1) from Mycothermus thermophilus and experimentally
validated the top 20 predicted variants. Among these, 13 variants
exhibited enhanced enzyme activity, with R59S showing a 2.55-fold
improvement and F212N demonstrating a1.88-fold increase inenzyme
activity along with enhanced thermostability (Methods, Supplemen-
tary Tables 12-14 and Supplementary Figs. 6 and 7). Similarly, the
X.C. lab used ColabSaprot to perform zero-shot single-point muta-
tion predictions on TDG, a uracil-N-glycosylase variant. Following
experimental validation in HeLa cells, the top 20 variants were incor-
porated into the nCas9 protein. At the Dicer 1target site, 17 of the
20 predicted mutations showed enhanced editing efficiency com-
pared to the wild type, as measured by the percentage of T-to-G sub-
stitutions at position T5 (the fifth thymine in the target sequence).
Notably, three substitutions (L74E, H11K and L74Q) achieved nearly
doubled editing efficiency (Methods and Supplementary Table 15).
Another OPMC member recently fine-tuned Saprot using a dataset
of approximately 140,000 GFP variants with corresponding fluores-
cence intensities to predict brighter avGFP variants from a pool of
5 million candidates. Experimental validation revealed that seven
of the top nine predicted double-site variants exhibited enhanced
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fluorescence compared to the wild type, with one variant reaching
more than eightfold of the wild-type fluorescence intensity (Methods
and Supplementary Table 16). Similarly, the J. Zheng lab shared an
eYFP fluorescence prediction model, trained on 100,000 experimen-
tally validated variants, that achieved a Spearman correlation (p) of
0.94 with experimental fluorescence intensity on an independent
test set of 6,000 variants, demonstrating near-experimental accuracy
for double-site and triple-site mutants (Model-EYFP_100K-650M on
the SaprotHub webpage). We recently received more feedback from
community researchers who obtained positive wet lab results using
ColabSaprot.

We also conducted a user study by recruiting 12 biology research-
ers (without an ML background) and compared their performance to
that of an Al expert (Methods). The results demonstrated that, with
ColabSaprot and SaprotHub, biology researchers can train and use
state-of-the-art PLMs with performance comparable to that of an Al
expert (Fig.2g,h). Notably, in certain scenarios—such asthe eYFP fitness
predictiontaskillustrated in Fig. 2g—biologists leveraging preexisting
models from SaprotHub achieved higher prediction accuracy than
Al experts. This higher performance stems from the fact that these
shared models have been trained on larger or higher-quality data-
sets, highlighting the potential of model sharing within the scientific
community—akey argument in this paper.

ColabSaprot and SaprotHub enable biology researchers to train
andshare sophisticated PLMs for diverse prediction tasks, even without
extensive Al expertise. This platform empowers the broader protein
research community to contribute and exchange PLMs, facilitating
collaborative research and knowledge sharing through peer-trained
models. We have made both Saprot and ColabSaprot open-source,
providing a framework for other PLMs to develop their own model
hubs. Importantly, ColabSaprot and SaprotHub represent just the
first step in this evolution; our OPMC members have expanded
this ecosystem by integrating more cutting-edge PLMs, including
ProTrek (35M and 650M)*¢, ESM-2 (35M, 150M and 650M)¢, ESM-1b
(650M)°), ProtBert (420M)° and ProtT5 (1.2B)° into the OPMC frame-
work, thereby democratizing access to diverse PLMs for biologists
worldwide.

This community-wide participation approachto proteinlanguage
modeling aligns with the OPMC vision. Our goal here is to inspire and
foster the cooperative construction of open PLMs through SaprotHub.
We envision SaprotHub as the catalyst that initializes OPMC, driving
innovation and collaboration in the field.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
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Methods

Constructing SA protein sequence

The SA vocabulary encompasses both residue and structure informa-
tion, asillustratedin Fig. 1a. Given a protein P, its primary sequence can
be denoted as (s, s, ..., S,), where s; € v represents the residue at the
ith site and v represents the residue alphabet. Drawing inspiration
from the vector quantization learning technique*’, we encode protein
3Dstructuresinto discreteresidue-like structural tokens. Here, we use
Foldseek™, a fast and accurate protein structure aligner. Through
Foldseek, we have astructure alphabet 7, wherein Pis expressed as the
sequence (f,, f5, ..., f,), with f; € # representing the 3Di token for the
Jjthresidue site. To maintain simplicity, we adhere to the default con-
figuration of Foldseek, which sets the size m of # to 20. We then com-
bine the residue and structure tokens per residue site, generating a
new SA protein sequence P= (Sf;, Sof5, ..., Sofn), where sif; € V x F isthe
so-called SA token naturally fusing both residue and geometric con-
formationinformation. The SA token protein sequence canthen be fed
into astandard Transformer encoder as basic input. Itisimportant to
note that we also introduce a mask signal ‘#’ to both the residue and
the structure alphabet, which results in ‘s#  and ‘#f;, indicating that
only residue or structure information is available. The size of the SA
vocabulary is 21 x 21 =441.

Model architecture and pretraining of Saprot

Saprot follows the same network architecture and parameter size as
ESM-2 (ref. 6), which draws inspiration from the BERT* model in natural
language processing. The primary difference lies in the embedding
layer: Saprotincorporates 441SAtokensin place of the conventional 20
AAtokens. Thisnearly identical architecture enables straightforward
performance comparison to the ESM model.

Saprot is pretrained with the masked language modeling (MLM)
objective®, like ESM-2 and BERT. Formally, for a protein sequence
P=(sf1,S:f> ..., S.f5), theinput and output can berepresented asinput:
(Sifss ooor #fsy .., Sof ) > output: sf; (Fig. 1b). Given that the 3Di token may
not always be accurate for certain regions in predicted structures by
AlphaFold2, f;in #f,is made visible during training so as to reduce the
emphasis the model places onits predictions.

AlphaFold2 (AF2) predictions include predicted local distance
difference test (pLDDT) confidence scores that indicate the precision
of predicted atom coordinates. Therefore, we implement specialized
handling for regions with low confidence scores. During pretraining,
regions with pLDDT scores below 70 are processed distinctly. When
theseregionsare selected for MLM prediction, we use the ‘s # token as
the prediction target, while masking theinput SA sequence with the ‘##’
token. This approach encourages the model to predict residue types
based solely on contextual information. When these low-confidence
regions are not selected for MLM prediction, we use the ‘s #’ tokenin the
input, ensuring the model relies solely on residue context rather than
inaccurate structural information. For downstream tasks, we main-
tain consistency with the pretraining protocol by applying the same
handling to regions with pLDDT scores below 70. These regions are
represented using ‘s#’ tokens, with only residue information remain-
ing visible.

Saprot35M and 650M underwent typical pretraining from scratch
asdescribed above. In contrast, Saprot 1.3B used an efficient training
strategy®® by architecturally combining two identical 33-layer Saprot
650M models. The initialization process involved duplicating the
pretrained 650M model’s parameters to populate both the lower (lay-
ers 1-33) and upper (layers 34-66) sections of the 1.3B architecture.
Afterinitialization, Saprot 1.3B was trained following the same training
protocol used for the 35M and 650M models, except that 30% of the
protein sequences in a training batch were transformed into the AA
sequence only format (s;#, s,#, ..., s, #) to enhance the model’s ability
to handle proteins without available structural information. Training
was terminated upon convergence of the loss function.

Processing pretraining dataset

We followed the procedures outlined in ESM-2 (ref. 6) to generate
sequenceidentity filtered protein data. Subsequently, we acquired all
AF2 structures through the AlphaFold DB website (https://alphafold.
ebi.ac.uk/), using the UniProt IDs of protein sequences. Proteins with-
out structures in AlphaFold DB were removed. This process yielded a
collection of approximately 40 million structures. Using Foldseek, we
encoded these structuresinto 3Di tokens. Subsequently, we formulated
SAsequences by combining residue and 3Ditokens, treatingthemasa
single SAtoken at each position. These datasets were used for training
all three versions of the Saprot models.

Hyperparameters for pretraining

Following ESM-2 and BERT, during training, 15% of the SA tokens in
each batch were masked. We replaced the SA token s/f; with the #f; token
80% of the time, while 10% of the tokens were replaced with randomly
selected tokens, and the other 10% tokens remained unchanged. For the
optimization of Saprot, we adopted similar hyperparameters to those
used in the ESM-2 training phase. Specifically, we used the AdamW
optimizer®, setting 8; = 0.9, 8, = 0.98 and we used an L, weight decay of
0.01. Wegraduallyincreased the learning rate from O to 4 x 10 over the
first 2,000 steps and linearly lowered it to 4 x 10~ from 150,000 steps
to 1.5 million steps. The overall training phase lasted approximately
3 millionsteps. Like the ESM model, we also truncated them to a maxi-
mum of 1,024 tokens and our batch size consisted of 512 sequences.
Additionally, we used mixed precision training to train Saprot.

Descriptions of baseline models
We compared Saprot to several prominent PLMs (Supplementary
TableS 7 and 8). For supervised learning tasks, we compared Saprot to
ESM-2 (the 650M version)®, ProtBert (the BFD version)®, MIF-ST®, Gear-
Net® and ESM-3 (ref. 20). The first two models use residue sequences
as input, while the latter three models incorporate both residue and
structures as input. ESM-2 (650M) stands out as the primary baseline
for comparison, given its similar model architecture, size and training
approach when compared to Saprot. ESM-2 also offers a 15B version,
which can be challenging to fine-tune even on GPUs with 80 GB of
memory. Therefore, we only conducted comparisons to ESM-2 (15B)
forzero-shot mutational effect prediction tasks, which canbe achieved
without the need for fine-tuning.

For the zero-shot mutational effect prediction task, we compare
to the state-of-the-art ESM-2, ProtBert, ESM-1v (ref. 7), Tranception L
(without MSA retrieval)", MSA Transformer®, EVE** and ESM-3 models.
For the protein inverse folding task, we compare to ProteinMPNN* as
baseline.

The formula for the zero-shot mutation effect prediction task
Previous sequence-based PLMs like the ESM models predict mutational
effects using thelog odds ratio at the mutated position. The calculation
can be formalized as follows:

> [logP (x; = s™|xr) — logP (x, = sIx7)] 1
teT

Here, T represents all mutations and s, € v is the residue type for
mutant and wild-type sequence. We slightly modify the formula above
to adapt to the SAA in Saprot, where the probability assigned to each
residue corresponds to the summation of tokens encompassing that
specific residue type, as shown below.

2, |log X7 P(x: = s7fixir) —log 3 P(x, = s¢*fxir) @)

teT feF feF

Here, f € #isthe3Ditokengenerated by Foldseekand s,f € v x Fisthe
SAtokeninour new alphabet.
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Zero-shot mutational effect prediction tasks and datasets
ProteinGym. ProteinGym® comprises an extensive collection of deep
mutational scanning assays, enabling comprehensive comparison
among zero-shot predictors. We evaluate all baseline models (Sup-
plementary Table 7) on ProteinGym’s substitution branch, using its
provided protein structures and adhering to the standard evaluation
protocol outlined in the original paper®’. We use Spearman’s rank cor-
relation as our evaluation metric.

ClinVar. Clinvar®*isapublicly accessible repository housing informa-
tion about human genetic variants and their clinical importance in
disease. For our analysis, we use data curated from EVE*, excluding
proteins exceeding 1,024 residuesin length. To ensure data quality, we
restrict our analysis to proteins with reliability ratings of one ‘gold star’
or higher. Following EVE’s methodology, we assess model performance
using the area under the curve.

Mega-scale. Mega-scale® uses complementary DNA display prote-
olysis to measure thermodynamic folding stability across protein
domains. The dataset encompasses all single mutations and selected
double mutants in both natural and de novo designed proteins. For
this dataset, we also use Spearman’s rank correlation as our evalua-
tion metric.

For each mutation dataset, we provide all variants with the
wild-type sstructure, as AF2 does not reliably distinguish the structural
changesinduced by single substitutions. Additionally, the ClinVar data-
set only provides UniProt IDs; thus, we manually downloaded all AF2
structures and eliminated proteins without structures in AlphaFold DB.
Both ProteinGym and Mega-scale datasets provide protein structures,
either predicted from AF2 or derived from de novo design.

Supervised fine-tuning tasks and datasets

Fine-tuning Saprot with the AF2 structure. These benchmarksinclude
the Thermostability task from FLIP®* and the localization prediction
task from DeepLoc®. The DeepLoc benchmark has two prediction
branches: amulticlass classification with ten subcellular locations and
abinary classification with two location categories. We use the datasets
provided by these original literature. For structural information, we
obtain AlphaFold2-predicted structures for all proteins using their
corresponding UniProt IDs.

Fine-tuning Saprot with the PDB structure. There are a few tasks
providing experimentally determined structures as training data. We
evaluate the metal-ion-binding task®® and a series of tasks from Pro-
teinShake”, including structure class prediction, structural similarity
prediction and binding site detection. The corresponding datasets are
provided in the respective literature.

Fine-tuning Saprot without structure. While Saprot is designed to
leverage protein structural information, it can still work in scenarios
where structural dataare not provided during supervised fine-tuning.
Inthese cases, we mask the 3Di token in the SA sequence. We evaluate
performance on the fluorescence and stability prediction datasets from
TAPE®, the AAV dataset from FLIP®* and the B-lactamase landscape
prediction dataset from PEER®.

Regarding the evaluation metrics, we adopt those established in
the original literature. Details on dataset splits are described below.

Data split

Inthe existingliterature, datasets are typically partitioned on the basis
of protein sequence identity. However, a recent benchmark study
called ProteinShake® argued that protein structures exhibit higher
conservation thansequences, indicating that structure-based splitting
provides amore stringent evaluation of model generalization. Inspired
by this, we adopted the same structure-based data splitting for most

of our evaluation (unless otherwise specified). The splitting criterion
is quantified using the LDDT, as proposed in ProteinShake. To be spe-
cific, for datasets that include protein structures, we use the default
70% LDDT threshold recommended in ProteinShake™. For tasks where
onlysequence dataare available, we retain the original splits provided
in the official literature, as these datasets consist of only mutational
variants of one single protein. To show performance sensitivity across
different splitting criteria, we perform further evaluation by compar-
ing Saprot (35M) and ESM (35M) using a more stringent 30% LDDT
threshold and the commonly used 30% sequence identity threshold***",
The corresponding results are presented in Supplementary
Table 3.

Proteininverse folding

Saprot for protein inverse folding. To use Saprot for inverse folding,
we first encode the protein backbone into 3Di tokens (f,, f5, ..., f,). We
then mask all residue parts of the SA tokens, forming an SA sequence
(#f, #1», ..., #f,). This sequence is input into Saprot to predict residue
distributions at all positions. In contrast to ProteinMPNN* that gen-
erates residues in an autoregressive manner (that is, generating next
token conditioned onall previous outputs), Saprot is able to simultane-
ously predict all residues with only one forward propagation.

Fine-tuning Saprot on the CATH dataset. We evaluate two variants of
Saprot for protein design: one pretrained using AF2-predicted struc-
tures and another further fine-tuned on the CATH dataset®®. This CATH
database, which was also used to train ProteinMPNN?¥, is partitioned
intotraining, validation and test sets using an 80:10:10 split, as detailed
by Ingraham et al.®’.

Hyperparameters for fine-tuning tasks

We use the AddamW¢ optimizer during fine-tuning, setting 8, = 0.9 and
S,=0.98, along with an L, weight decay of 0.01. We use a batch size of
64 for all datasets. We empirically found that the optimal learning rate
formostbaselines are in the range of 1 x 10 to 5 x 107, For training with
AF2 structure and training with PDB structure, the optimal learning
rate was set to 5 x 1075, whereas, for training without structure, it was
set to 1x107%. We fine-tuned all model parameters until convergence
and selected the best checkpoints based on their performance on the
validation set.

Adapter learning

The adapter learning technique, originated in general Al
community’®?, has recently been adopted in protein research®°¢7>7,
While these studies mainly focused on its advantage for model accu-
racy and training efficiency, we use adapter here by integrating it with
Google Colab to create a platform that enables model fine-tuning,
sharing, continuousretraining and collaboration within the biological
research community through our online SaprotHub.

In the broader Al community, various types of adapters exist,
including Houlsby’, Pfeiffer””, Compacter” and LoRA'®. We choose
LoRA for its capacity to deliver comparable results with fewer param-
eters. By integrating learnable low-rank matrices into each Saprot
block while freezing the backbone, LoRA enables parameter-efficient
fine-tuning and model sharing for these downstream tasks.

Community-wide collaboration

As the SaprotHub community grows, more fine-tuned Saprot models
become available for each protein function, facilitating collaborative
development among biologists. To evaluate this advantage (Fig. 2e),
we adopt the following approach. For each task, we randomly partition
thetraining datainto five subsets and train one model on each subset,
yielding models model_O through model_4, simulating models shared
by different researchers. For regression tasks (for example, thermo-
stability), the final prediction (model_agg) is computed as the mean
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of allmodel outputs. For classification tasks (for example, subcellular
localization), we implement majority voting, where the final predic-
tion (model_agg) is determined by the most frequent class prediction
across the ensemble. The lightweight adapter technique s crucial for
model aggregation, addressing the challenges of loading and sharing
multiple large pretrained models.

To evaluate the effectiveness of model continue learning
(Fig. 2f), we randomly sampled 100, 200 and 500 training instances
per task to simulate researchers’ private data. We then performed
fine-tuning using two base models, updating only their adapter
parameters: the official Saprot model (blue) and a shared model
from SaprotHub (orange). The latter represents models previously
trained by researchers with larger or higher-quality datasets. Results
demonstrate that continuing training from existing well-trained
models substantially outperforms training from scratch with lim-
ited data. Note that the official Saprot model (blue) is pretrained on
large-scale protein sequence and structure data but has not under-
gone supervised fine-tuning for specific tasks. This highlights a key
advantage of SaprotHub, whereby researchers can build upon others’
achievements.

ColabSaprot notebooks

ColabSaprot consists of three key components, with the first focusing
onmodel training. This component enables researchers to rapidly con-
figure the runtime environment, process training data and fine-tune
Saprot efficiently. We provide access to four base models: Saprot 35M,
Saprot 650M, custom fine-tuned Saprot models and community-shared
fine-tuned models from SaprotHub. Additionally, we offer advanced
hyperparameter customization options, allowing researchers to
tailor their training strategies to specific requirements. These cus-
tomizable parameters include batch size, learning rate, training
steps, etc.

The second component focuses on prediction capabilities. Colab-
Saprot supports a diverse range of prediction tasks (Supplementary
Table 1) using both community-shared models from SaprotHub and
locally fine-tuned models. This includes protein-level, residue-level
and protein-proteininteraction predictions, as well as zero-shot muta-
tional effect predictions and protein design. Each task category offers
multiple configuration options to accommodate different research
requirements. Moreover, ColabSaprot enhances prediction accuracy
byimplementing ensemble methods that aggregate multiple models
from SaprotHub, delivering more robust and reliable results. This
collaborative approach facilitates acommunity-driven model ecosys-
tem where researchers can leverage and combine multiple models to
achieve superior performance.

The third component enables model sharing, searching (imple-
mented in SaprotHub; Supplementary Fig. 5) and community col-
laboration. Upon completion of training, researchers can contribute
their model weights (specifically the adapter weights) to the Sapro-
tHub community repository, making them accessible to the broader
biological research community. Through SaprotHub’s specialized
search engine, researchers can efficiently locate and use relevant
models. These shared models can be leveraged for continual learn-
ing, direct application or model aggregation to achieve enhanced
performance.

User study

We evaluated ColabSaprot-vl through eight protein prediction tasks
with12 participants who, on the basis of brief conversations and back-
ground checks, had biological backgrounds but no prior involvement
in coding or ML projects. The evaluation encompassed supervised
fine-tuning, zero-shot mutation effect prediction and proteininverse
folding tasks. Each participant had 3 days to complete their assign-
ments and received compensation upon submitting either their results
or documentation of encountered obstacles through screenshots

or recordings. Additional information is provided online (https://
drive.google.com/file/d/ILAGRnwt2lttnszZNBAJOF967A8rguPq8b/
view?usp=sharing).

For comparison, we engaged an Al expert—a third-year PhD stu-
dent specializing in ML with over 2 years of research experience in
protein-focused Alapplications. The expert executed these tasks using
the Saprot codebase from our GitHub repository, conducting five
independent runs with optimized hyperparameters using different
random seeds.

The 12 participants were organized as follows: one assigned to
zero-shot mutational effect prediction, another assigned to protein
design and the remaining ten randomly divided into two groups of
five. Each group handled three supervised fine-tuning tasks, covering
six tasksintotal. In other words, each supervised fine-tuning task was
completed by five participants. We evaluated the average accuracy
across all participants, including those who were unable to finish the
task completely (when such cases occurred).

Forthe supervised fine-tuning tasks, we used five public datasets
for predicting: thermostability, subcellular and binarylocalization, GFP
fluorescence and stability (Supplementary Table 6). We also included
a proprietary eYFP fitness prediction dataset from the X. Zheng lab,
containing 3,087 validation and 3,088 test samples, bringing the total
to six supervised fine-tuning tasks. To reduce training time and com-
puting power consumption, we randomly selected 1,000 samples
from the training set of each dataset while keeping the validation and
test sets unchanged.

For model evaluation, all participants generated predictions
on designated test sets. In the eYFP task, biology participants lev-
eraged continual learning on a pretrained model from SaprotHub
(Model-EYFP-650M (search model name through https://huggingface.
co/spaces/SaProtHub/SaprotHub-search), achieving 0.95 Spearman’s
pontestdata), whilethe Al expert used the base Saprot 650M model.
This setup is used to show how SaprotHub enables researchers with
limited data to build upon existing fine-tuned models. For other tasks,
both biology participants and the Al expert trained their models using
the same SaProt_650M_AF2base model withidentical training and test
sets, ensuring fair comparison.

For the zero-shot mutational effect prediction, we randomly
selected four mutation datasets from ProteinGym benchmark® for
evaluation. Three of these datasets focus on the impact of mutations
on enzyme activity, while the fourth addresses drug resistance. We
assigned one participant to conduct predictions on these datasets
using ColabSaprotin azero-shot manner.

For the protein inverse folding task, we assigned one participant
to use ColabSaprot to generate protein sequences based on given
structures. Subsequently, the participant used ESMFold (aninterface
provided by ColabSaprot) to predict the structures of the generated
sequences. To assess Saprot’s ability on new proteins, we selected these
recently released structures (Fig. 2h).

Participants were provided with related protein datasets (includ-
ing training and test sets), GPU-enabled Google Colab accounts and
detailed task instructions. Participants had 3 days to complete the
assignments on their own using ColabSaprot. To encourage honest
feedback and thorough documentation, compensation was guaran-
teed to all participants who documented their challenges through
screenshots or recordings, regardless of whether they completed the
assigned tasks.

We acknowledge a potential self-selectionbias, as the biology par-
ticipants were volunteers likely interested in novel computational tools.
This may imply that their aptitude for learning new software could be
higher thanthe general average for the biology community. However,
as the study’s primary goal was a comparative analysis of workflows,
this bias is not expected to alter the main conclusions regarding the
platform’s relative efficiency and accessibility. All participants were
fully informed about the study.
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Experimental validation on the xylanase
There are several steps. Let’s name the protein (XP_069217686.1) Mth.

(1) Use AlphaFold3 (https://golgi.sandbox.google.com/) to get the
protein structure of Mth.

(2) Use Foldseek or ColabSaprot to get the SA sequence of Mth.

(3) Use ColabSaprot (650M) to perform zero-shot (single-point)
mutation effect prediction for the entire SA sequence.

(4) Choose the 20 highest-ranked variants (Supplementary

Table 12) excluding A15G and I13P; A15G and I13P were not

selected because they are located in the signal peptide region

of the protein, which would be removed during the process of
protein secretion in P. pastoris.
(5) Construct mutants as detailed below.

(51) The gene sequence of Mth was optimized according to
the codon preference of P.pastoris, and the plasmid
pPIC9K-Mth was synthesized by GenScript.

(52) Mutations of Mth were generated through site-directed
mutagenesis by PCR, using the plasmid pPIC9K-Mth as a
template. The primers arelisted in Supplementary Table 13.

(53) After confirmation by DNA sequencing, the wild-type and
mutated plasmids were linearized with Sall and used to
transform P. pastoris strain GS115. The recombinant strains
were selected on MD plates (1.34% YNB (yeast nitrogen
base without AAs), 2% glucose and 2% agar) and verified by
PCR and sequencing.

(6) Conduct enzyme activity assay of wild-type Mth and mutants as
detailed below.

(61) Thepositive transformants were cultivatedinliquid medium
BMGY (1% yeast extract, 2% peptone, 1.34% YNB, 1% glycerol
and 100 mM potassium phosphate pH 6.0) for 20-24 h. The
cells were collected by centrifugation at 3,500g and 4 °C for
5minand then transferred to 250-ml shake flasks containing
25 ml of BMMY (1% yeast extract, 2% peptone, 1.34% YNB, 1%
methanol and 100 mM potassium phosphate pH 6.0) with
initial optical density at 600 nm (OD,,) of 0.5. Fed-batch
fermentation was proceeded to express xylanase by feeding
1% methanol per 24 h. All liquid cultures were performed at
30°C and 250 rpm. After 120 h of cultivation, the superna-
tants were obtained by centrifugation at 3,500g and 4 °C for
5min and tested for xylanase activity.

(62) Xylanase activity assay: The reaction mixture contained
0.1ml of 1% (w/v) beechwood xylan and 0.1 ml of a suitably
diluted enzyme solution (100 mM acetate buffer pH 5.0) in-
cubated at 60 °C for 30 min. The amount of reducing sugar
released was determined using the 3,5-dinitrosalicylic acid
method, with xylose as the standard. Here, 1U of xylanase
activitywasdefinedastheamountofenzymethatcatalyzesthe
release of 1 pmol of xylose equivalent per min under the assay
conditions. The enzyme activity was measured at 40-70 °C
to determine the optimal temperature of the enzymes, with
the pH of the reaction maintained at 5.0. After incubation at
60 °C for various time periods, the residual enzyme activity
was measured to assess the thermostability of the enzymes.

Experimental validation on GFP variants

The objective of this task was to engineer brighter avGFP variants as
part of the 2024 Critical Assessment of Protein Engineering (CAPE)
competition’. CAPE, a student-focused challenge modeled after the
Critical Assessment of Structure Prediction competition, emphasizes
proteinfunction design and variant effect prediction. The parent GFP
sequenceisbased on avGFP (AA sequence informationinSupplemen-
tary Table14) derived from Aequoreavictoria (UniProt P42212). These
top-ranked predicted variants by Saprot were experimentally validated
by the CAPE organizers.

The process of fine-tuning Saprot (35M) and subsequent predic-
tion consisted of the following steps:

Step1: Data preparation. The CAPE organizers provided a dataset
0f140,000 GFP variants (including avGFP,amacGFP, cgreGFP and
ppluGFP2; Supplementary Table 14), along with their correspond-
ingfitnessscores, and the structures of four wild-type GFP proteins
(avGFP,amacGFP, cgreGFP and ppluGFP2). Our OPMC member X.
Zhang used Foldseek to generate 3Di tokens for these wild-type
structures, which were then used to converted to SA tokens by
their corresponding variants.

Step 2: Model fine-tuning. The Saprot model underwent full param-
eter fine-tuning using the SA token sequences of these variants.
Step 3: Variant prediction and validation. A pool of 5 million avGFP
double-site mutants was generated through random mutagenesis.
The fine-tuned Saprot model from Step 2 was used to predict their
fitness scores. The top nine variants were selected for experimen-
tal validation.

Experimental validation was conducted using the robotic bio-
foundries at the Shenzhen Infrastructure for Synthetic Biology accord-
ing to the following procedure:

Step 1: Expression plasmid pET28a vectors containing designed
mutant GFP sequences were ordered from Genescript Biotech
and used to transform chemically competent Escherichia coli
BL21(DE3) cells through heat shock at 42 °C. Two independent
clones for each mutant were randomly selected toinoculate 1 ml of
noninducing Luria-Bertani medium supplemented with 50 pg miI™*
kanamycin (LB+Kan) for plasmid maintenance by antibiotic selec-
tion in 96-well microtiter plates to prepare seed cultures, which
were grown at 37 °C for16-20 h.

Step 2:Forinducible protein expression, 40 pl of stationary-phase
seed cultures were used to reinoculate 4 ml of fresh LB+Kan
medium in 24-well microtiter plates, followed by approximately
4 hofincubation at 37 °C to reach the exponential growth phase
(OD¢oo=0.6-0.8). Then, IPTGwas added to achieve afinal concen-
tration of 1 mM for inducible expression at 18 °C for 20 h.

Step 3: Biomass growth was monitored by using OD,, measure-
ment and GFP fluorescence was assessed with excitation at 488 nm
and emission at 520 nm in 96-well flat-bottom plates. For each
strain, GFP signal intensities were divided by OD,, values to cal-
culate biomass-normalized fluorescence.

Experimental validation of the TDG variants

The X.C.labused ColabSaprot version1(650M) for zero-shot prediction
of single-site mutation effects of TDG (AA sequence in Supplementary
Table 14). They input only the AA sequence with all structural tokens
masked into ColabSaprot to identify the top 20 highest-ranked vari-
ants. Experimental validation and results of these variants are docu-
mented in Supplementary Table 15.

Following protocols described previously®””, base editors usedin
this paper were cloned intoa pCMV plasmid with blasticidin resistance.
Single guide RNA (sgRNA) was cloned into a pSuper-sgRNA plasmid
with puromycin resistance. The TDG sequence was amplified from
plasmid TSBE2 (ref. 51) and TDG variants were generated through
site-directed mutagenesis by PCR and then fused with SpCas9 (D10A)
proteinas TSBE2. All primers arelisted in Supplementary Table 13. The
protein sequence of TSBE2 and protospacer sequences of sgRNA are
available froma previous study®'. The experimental validation process
was performed as previously described™””.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability

The pretraining dataset for training Saprot is available online (https://
huggingface.co/datasets/westlake-repl/AF2_UniRef50. Downstream
task datasets are all stored online (https://huggingface.co/SaProtHub).
Materials for user study (https://drive.google.com/file/d/1ILdGRnwt2lt
tnszNBAJOF967A8rguPq8b/view?usp=sharing), raw datawith detailed
wet lab information (https://drive.google.com/file/d/11YcOqRuF76L
usG7DMI4KEr2mJL6aE7g-/view?usp=sharing) and additional wet lab
experimental results collected from the research community (https://
drive.google.com/file/d/1ZcDI0OXYksTcUEaCfPIOtuEVo5CA031dg/
view?usp=sharing) are available from a Google Drive. Allunique/stable
reagents generated in this study are available from the lead contact
(yuanfajie@westlake.edu.cn).

Code availability

Saprotis an open-sourced model with MIT license. The code is available
from GitHub (https://github.com/westlake-repl/Saprot). The code
implementation of ColabSaprot notebook s also available from GitHub
(https://github.com/westlake-repl/SaProtHub). ColabSaprot service
(latest version: version 2) is available online (https://colab.research.
google.com/github/westlake-repl/SaprotHub/blob/main/colab/Sap-
rotHub_v2.ipynb?hl=en;the previous versionis still maintained on the
SaprotHub GitHub). All fine-tuned Saprot models can be obtained
through SaprotHub (https://huggingface.co/SaProtHub) through the
dedicated searchengine (https://huggingface.co/spaces/SaProtHub/
SaprotHub-search). Our OPMC members have alsoimplemented Colab-
Seprot (https://colab.research.google.com/github/westlake-repl/
SaprotHub/blob/main/colab/ColabSeprot.ipynb?hl=en), including
ColabProTrek (35M and 650M), ColabESM1b (650M), ColabESM2(35M,
150M and 650M), ColabProtBert (420M), SeprotHub (https://hugging-
face.co/SeprotHub) and anindependent ColabProtT5 (https://colab.
research.google.com/github/westlake-repl/SaprotHub/blob/main/
colab/ColabProtT5.ipynb).
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Data collection  The pre-training dataset for training Saprot is available at https://huggingface.co/datasets/westlake-repl/AF2_UniRef50. Downstream
taskdatasets are all stored at https://huggingface.co/SaProtHub. User study datasets are available at https://drive.google.com/file/
d/1LdGRnwt2lttnszNBAJOF967A8rguPg8b/view?usp=sharing. The CATH dataset is available at https://www.cathdb.info/.

The pre-training datasets were collected from AlphaFold DB: https://alphafold.ebi.ac.uk/
The downstream task datasets were collected from exiting literature, as cited in the manuscript.

Data analysis All python-generated figures were made using matplotlib==3.9.1 and the embedding visualizations were made using scikit-learn==1.4.0.
Protein structures were encoded using Foldseek with the version ef4e960ab84fc502665eb7b84573dfff9c2aa89d and TM-scores were
calculated using TMalign with the version 20220412.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Code and service availability

Saprot is an open-sourced model with MIT license. The code is available at https://github.com/westlake-repl/Saprot. The code implementation of ColabSaprot
notebook is available at https://colab.research.google.com/github/westlake-repl/SaprotHub/blob/main/colab/SaprotHub_v2.ipynb?hl=en (the previous v1 version is
still maintained in our SaprotHub github webpage). All fine-tuned Saprot models can be obtained through SaprotHub https://huggingface.co/SaProtHub by the
dedicated search engine https://huggingface.co/spaces/SaProtHub/SaprotHub-serach.

Our OPMC members have also implemented ColabSeprot (https://colab.research.google.com/github/westlake-repl/SaprotHub/blob/main/colab/
ColabSeprot.ipynb?hl=en), including ColabProTrek (35M, 650M), ColabESM1b (650M), ColabESM2 (35M, 150M, 650M) and ColabProtBert (420M) and SeprotHub
(https://huggingface.co/SeprotHub) and an independent ColabProtT5 (https://colab.research.google.com/github/westlake-repl/SaprotHub/blob/main/colab/
ColabProtT5.ipynb). Our OPMC members will continue to integrate newly developed and state-of-the-art PLMs in the future.

Data Availability

The pre-training dataset for training Saprot is available at https://huggingface.co/datasets/westlake-repl/AF2_UniRef50. Downstream task datasets are all stored at
https://huggingface.co/SaProtHub.Materials for user study are available at https://drive.google.com/file/d/1LdGRnwt2IttnszNBAJOF967A8rguPg8b/view?
usp=sharing. The raw data with detailed wet lab information is available at https://drive.google.com/file/d/11YcOqRUF76LusG7DMI4kEr2mJL6aE7g-/view?
usp=sharing. Additional wet lab experimental results collected from the research community are available at https://drive.google.com/file/
d/1ZcDIOXYksTcUEaCfPIOtuEVo5CAO031dg/view?usp=sharing. All unique/stable reagents generated in this study are available from the lead contact
yuanfajie@westlake.edu.cn.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Not applicable
Population characteristics Not applicable

Recruitment We recruited 12 college students majoring in biology, all of whom had no prior experience in coding or machine learning,
compensating each with 500 Yuan for the user study. Relative statements are described in Methods Section 1.15.

Ethics oversight Not applicable

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Saprot and ColabSaprot were evaluated on standard benchmark datasets that are publicly available, so we do not consider the sample size in
this case.

Data exclusions  For downstream tasks, we only remove proteins without structures in AlphaFoldDB.
Replication All experiments were conducted with a fixed random seed to ensure the reproducibility.
Randomization  For user study, the tasks assigned to each participant were randomized.

Blinding Not applicable
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Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description
Research sample

Sampling strategy
Data collection

Timing
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Data exclusions
Non-participation

Randomization

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description
Research sample
Sampling strategy

Data collection

Timing and spatial scale
Data exclusions
Reproducibility
Randomization

Blinding

Did the study involve field work? |:| Yes |:| No

Field work, collection and transport

Field conditions

Location
Access & import/export

Disturbance

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.




Materials & experimental systems Methods

Involved in the study n/a | Involved in the study

|:| Antibodies |Z |:| ChiIP-seq

|:| Eukaryotic cell lines |:| Flow cytometry

|:| Palaeontology and archaeology |Z |:| MRI-based neuroimaging

|:| Animals and other organisms
[] clinical data

|:| Dual use research of concern
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Antibodies

Antibodies used
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Validation

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s)
Authentication

Mycoplasma contamination

Commonly misidentified lines
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance

Specimen deposition

Dating methods

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals
Wild animals
Reporting on sex
Field-collected samples

Ethics oversight

Note that full information on the approval of the study protocol must also be provided in the manuscript.




Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration
Study protocol
Data collection

Outcomes

Dual use research of concern
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Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

Yes

[] Public health

|:| National security

|:| Crops and/or livestock

|:| Ecosystems
|:| Any other significant area

O0Oodfds

Experiments of concern

Does the work involve any of these experiments of concern:

Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Oooodoods
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Any other potentially harmful combination of experiments and agents

ChlP-seq

Data deposition
|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links
May remain private before publication.

Files in database submission

Genome browser session
(e.g. UCSC)

Methodology
Replicates

Sequencing depth




Antibodies
Peak calling parameters
Data quality

Software

Flow Cytometry

Plots
Confirm that:
|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).
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|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.
Methodology

Sample preparation

Instrument

Software

Cell population abundance

Gating strategy

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type

Design specifications

Behavioral performance measures
Acquisition

Imaging type(s)

Field strength

Sequence & imaging parameters

Area of acquisition

Diffusion MRI [ ] used [ ] Not used
Preprocessing

Preprocessing software

Normalization

120C Y210

Normalization template
Noise and artifact removal

Volume censoring




Statistical modeling & inference

Model type and settings

Effect(s) tested

Specify type of analysis: [ | Whole brain [ | ROI-based [ | Both

Statistic type for inference
(See Eklund et al. 2016)

Correction
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Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis
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Functional and/or effective connectivity
Graph analysis

Multivariate modeling and predictive analysis
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