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To better characterize the potential biological mechanisms underlying insulin resistance (IR) and
dementia, we derive cross-population and population specific polygenic scores [PSs] for fasting
insulin and IR-related partitioned PSs [pPSs]. We conduct a cross-sectional study of the associations
of these genetic scores with neurological outcomes in >17k participants (36% men, mean age 55 yrs)
from the Trans-Omics for Precision Medicine (TOPMed) program (50% Non-Hispanic White, 23%
Black/African American, 21% Hispanic/Latino American, and 4% Asian American). We report
significant negative associations (P < 0.002) of the cross-population (P = 1.3 x 10°) and European
(Pea = 3.0 x 108 fasting insulin PSs with total cranial volume, and of a metabolic syndrome European
PS with general cognitive function (Bga =-0.13, Pea = 0.0002) and lateral ventricular volume

(Bea =0.09, Pea =0.002). We identify suggestive negative associations (P < 0.007) of metabolic
syndrome and obesity pPSs with general cognitive function, and of lipodystrophy pPSs with total
cranial volume. A higher genetic predisposition to IR is associated with lower brain size, and a genetic
predisposition to specific IR-related type 2 diabetes subtypes, such as metabolic syndrome and
mechanisms of IR mediated through obesity and lipodystrophy, is potentially involved in cognitive

decline.

Alzheimer’s disease (AD) is a slowly progressive neurodegenerative disorder
and the most common form of age-related dementia. Genetic factors play a
significant role in AD, with heritability estimates from twin studies ranging
between 58% and 79%'~". Type 2 diabetes (T2D) is strongly associated with
risk of dementia*®. Patients with T2D are at higher risk of developing mild
cognitive impairment™, dementia or AD'*", and have more rapid pro-
gression of AD"*""°. Midlife obesity, defined by a BMI higher than 30 kg/m’,
is also a risk factor for AD'*".

One pathologic and hallmark feature shared by T2D, obesity, and
neuropathological processes underlying cognitive aging and dementia is
insulin resistance (IR), an impaired response of the body to insulin action'®.
Decreases in the sensitivity of central nervous pathways to insulin, i.e., brain
insulin resistance, is an early, common, and major feature in patients with
AD, whether they have T2D or not'**. It is also a major risk factor for

subsequent development of AD**”. In brains of AD patients, impaired
insulin signaling has also been shown to aggravate pathology”**’. Metabolic
syndrome, a cluster of cardiometabolic risk factors associated with increased
risk of cardiovascular disease (CVD) and T2D and closely related to IR**", is
a strong risk factor for AD and all-cause dementia, and has been reported
associated with cognitive decline and structural brain changes™ .

Metabolic traits and AD share common clinical or epidemiological risk
factors, which could be due to an overlap in causal genes and pathways”.
Some genetic variants have been reported associated with both AD and IR
disorders in loci like FTO, APOE, CLU, and TOMM40®. Several studies
attempted to better understand the genetic link and etiology between gly-
cemic/metabolic traits, including fasting insulin (FI) and AD/dementia,
using genetic correlation analyses, genetic and polygenic scores, and Men-
delian Randomization (MR) as described hereafter.
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Some studies evaluated the genetic overlap between insulin-related
(including obesity, T2D, metabolic syndrome, fasting glucose, FI, and IR
quantified using the Homeostasis Model Assessment for Insulin Resistance
[HOMA-IR]) and neuropsychiatric disorders, including AD***'. One study
did not report significant global genetic correlation between AD and FI or
HOMA-IR (Rg=0.142, P = 0.218)"". A cross-trait meta-analysis of AD and
10 metabolic traits reported a genetic correlation between FI and AD
(Rg=—0.196, P = 0.087) and identified three loci common to AD and FI
(CLU, CRI/CR2, and BCL3)”. One study found that evidence of local cor-
relations between IR-related conditions (T2D, obesity, and metabolic syn-
drome) and AD can be detected even in the absence of global genetic
correlations”. A few MR analyses have focused on characterizing the con-
tribution of glycemic traits or IR to AD, but did not find evidence of
causality™"*. These studies were conducted in participants of European
ancestry and used a small number of genetic loci or variants associated with
FI or IR (quantified using HOMA-IR), leading to a modest proportion of
variance explained by these genetic instruments.

Using polygenic scores (PSs) as genetic instruments for IR can increase
the power of the association analyses. Inconsistent findings have been
reported regarding the association of genetic instruments for T2D (genetic
scores or PSs) and AD or dementia risk, with some studies reporting sig-
nificant associations with all-cause dementia and vascular dementia, while
other studies did not identify significant association'**. One of this study,
performed predominantly in White European participants, also evaluated
association between glycemic traits PSs with dementia and reported nega-
tive associations of FI PSs on mixed dementia, and on all-cause dementia,
and AD (although not surviving Bonferroni correction)”. Leveraging newly
developed methods for PS derivation in diverse populations and recently
proposed partitioned PSs (pPSs) related to IR based on large clustering
analyses of T2D and FI loci*~* that predispose differentially to cardiome-
tabolic disease risk could help disentangle heterogeneity and pinpoint to
specific biological mechanisms of IR in AD. It thus represents a com-
plementary strategy to identify relevant pathways on a risk factor that can be
intervened on. Furthermore, such PS and pPSs related to IR could be used
for risk stratification to help identify subgroup of individuals at higher risk of
developing neurological outcomes and who could benefit more from pre-
ventive treatments.

Here, we aimed to derive several genetic scores related to IR to
demonstrate that leveraging diverse populations improves genetic instru-
ments for IR, to evaluate whether the genetic liability for IR is associated with
AD and related traits, and to compare neurological trait associations of IR-
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Fig. 1 | Analytic strategy to derive polygenic scores related to insulin resistance in
TOPMed. LD Linkage Disequilibrium, T2D Type 2 Diabetes, FI Fasting Insulin, MtS
Metabolic Syndrome, ALP alkaline phosphatase. EUR/AFR/AMR denotes LD

related PS and pPSs to provide insight into specific biological processes
underlying IR and AD.

We derived a cross-population PS for FI and compared its perfor-
mance with population-specific PSs. We also leveraged results from recent
large clustering analyses of both T2D and FI loci** performed using
GWAS from European and multi-ancestry populations, to construct 19
pPSs for T2D subtypes related to IR. We evaluated associations of these IR-
related genetic scores with prevalent dementia and AD, and related traits
such as general cognitive function and MRI-defined brain volumes in up to
17,000 ancestrally diverse participants from the National Heart, Lung, and
Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed)
program”.

We detected significant and negative associations of a cross-population
and European population FI PSs with total cranial volume. We also found
significant associations of IR-related T2D subtypes pPSs with neurological
outcomes, including a liver/lipid pPS with AD, dementia, and general
cognitive function, and a metabolic syndrome PS with general cognitive
function and lateral ventricular volume.

Results
The analytic strategy to derive the cross-population PS and the pPSs related
to IR in TOPMed is presented in Fig. 1.

Associations with HOMA-IR

In the validation set, the proportion of variance explained (PVE) by the
cross-population FI PS derived from the population-specific PSs using
global shrinkage parameters phi = 107%,107%, 1072, and 1 was equal to 5.71%,
10.90%, 13.56%, and 13.77%, respectively. We conducted association ana-
lyses in the testing set using population-specific PSs derived using phi = 1 to
maximize the PVE by the cross-population PS. In the pooled sample
included in the testing set, the PVE by the cross-population PS was equal to
11.55% and higher than the population-specific PSs PVEs (PSg, = 10.76%,
PSaa =1.72%, PSpa =0.28%), Table 1. We confirmed strong positive
associations of the cross-population and population-specific FI PSs with
HOMA-IR (P < 107", Table 1). We observed positive associations of all IR-
related pPSs with HOMA-IR in the pooled sample (P <0.001, Supple-
mentary Tables 6-9) except for the set 3-Suzuki liver/lipid cluster with
HOMA-IR, likely due to the low number of genetic variants included in the
cluster definition (n = 3). We observed the association of most (60 out of 72)
of the IR-related pPSs with HOMA-IR in population groups (Supplemen-
tary Tables 6-9), even when differing from the ones from which the clusters
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reference panels provided by PRS-CSx and constructed using the UK Biobank data
(Pan UKBB European ancestry, African ancestry, and Admixed American ancestry);
Left-side panel has been adapted from Ruan et al.”.
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Table 1| Association results of the fasting insulin (FI) polygenic
scores (PSs) with HOMA-IR in the pooled sample of studies
included in the testing set

Table 2| Association results of the fasting insulin (Fl) polygenic
scores (PSs) with neurological outcomes in the pooled sample
of studies included in the testing set

B SE P Proportion of
variance explained®
Cross-population PSg, 0.193 0.0037 <<2x 1071 11.55%
European PSg 0.237 0.0046 <<2x 107" 10.76%
African American PSg 0.129 0.0067 3.1x10°®% 1.72%
Hispanic PSg 0.033 0.0044 54x107" 0.28%

Cross-Population PS¢, (weighted linear combination from regression of population-specific scores
on HOMA-IR in the validation set): 0.12 x PSg_EA + 0.10 x PSg_AA + 0.04 x PSg_HA, where EA
means Non-Hispanic White, AA Black/African American, and HA Hispanic Latino American.
HOMA-IR The Homeostatic Model Assessment for Insulin Resistance, N =20,095.

“Proportion of variance explained derived using the function jointScoreTest in the R package
Genesis®' (null model and matrix of scores).

were derived. One example includes the association of the alkaline phos-
phatase (ALP) negative clusters [set 1-Kim and set 2-Smith, Deutsch] with
HOMA-IR in the Asian population group (Supplementary Tables 6 and 7).
For both clusters, the genetic variant with the highest weight was in the ABO
locus, a major determinant for serum ALP levels in the Asian population®*”.
Exceptions included the hyper insulin secretion cluster [set 1-Kim] in the
African American population, obesity and hyper insulin secretion cluster
[set 1-Kim] in the Asian population, hyper insulin secretion and ALP
negative [set 2-Smith, Deutsch] in the African American population, ALP
negative [set 2-Smith, Deutsch] in the Hispanic/Latino population, obesity
[set 2-Smith, Deutsch] in the Asian population, adiposity-driven hyper-
insulinemia [set 4-Sevilla-Gonzalez] in the European, Hispanic/Latino and
Asian populations, and lipodystrophy [set 4-Sevilla-Gonzalez] and IR
mediated by visceral adiposity in the Asian population (Supplementary
Tables 6,7 and 9), that were not found to be associated with HOMA-IR. We
detected an association of the metabolic syndrome PS with HOMA-IR in the
pooled and European samples, populations in which the GWAS was con-
ducted (Supplementary Table 10).

Associations with neurological diseases and related traits

After multiple-testing correction (i.e., Bonferroni), we detected significant
associations of the cross-population and European FI PSs with total cranial
volume (P =1.3x107% Py, =3.0 x 10°%, respectively), Table 2 and Sup-
plementary Table 11. The association remained with greater statistical sig-
nificance after adjusting for height and BMI (Bgy=—13.34,
Pga = 1.4 x 107° for the European FI PS tested in the European population
group). The effect size was reduced but the association still observed after
sensitivity analyses that excluded participants with T2D at the time neu-
rological traits were measured (Bgs=—12.10, Pgy=13x107 for the
European FI PS tested in the European population group) or stratifying on
APOE-¢4 allele (non-carriers, Bpy = —13.11, Ppy =12 % 1077 for the Eur-
opean FI PS tested in the European population group), indicating that the
association is at least partially distinct from T2D and presence of the APOE-
&4 allele.

We detected a significant association of the metabolic syndrome PS
with general cognitive function (B = —0.10, P = 0.0004 in the pooled sample;
Bga = —0.13, Pga =0.0002 in the European population group) and lateral
ventricular volume (B =0.06, P =0.005 in the pooled sample; Bga = 0.09,
Pra =0.002 in the European population group) after correcting for the
number of traits tested, Tables 3 and 4 and Supplementary Table 12. The
association was reduced but still observed after excluding participants with
prevalent T2D at the time neurological traits were measured from the
analysis likely due to a reduced power (in the European population group,
association with general cognitive function Bgs = —0.13, Pgs =0.0004;
association with lateral ventricular volume, Bgs = 0.07, Pgs =0.01) indi-
cating that the associations are at least partially distinct from T2D. We did
not observe association with cognition in those individuals carrying at least
one copy of the APOE-¢4 allele (likely due to a smaller sample size in that
subgroup, n =4543 vs n = 11117 non-carriers) and observed consistent and

Effect estimates in the pooled sample

B SE P

Dementia (N =9388; N cases = 1124)

Cross-population PSg; 0.039 0.039 0.320

European PSg, 0.046 0.048 0.341

African American PSg 0.021 0.064 0.739
Alzheimer’s disease (N =9388; N cases = 880)

Cross-population PSg 0.039 0.044 0.370

European PSg 0.046 0.054 0.398

African American PSg, 0.025 0.071 0.728
General Cognitive Function (N =19,191)

Cross-population PSg —0.009 0.007 0.174

European PS¢, —0.008 0.008 0.339

African American PSg, —-0.010 0.01 0.367

Hispanic PSg, —0.004 0.007 0.591
Hippocampal Volume (N = 7674)

Cross-population PSg 0.004 0.009 0.653

European PSg —0.004 0.011 0.682

African American PSg, 0.009 0.015 0.559

Hispanic PSg 0.008 0.009 0.398
Total Brain Volume (N = 7674)

Cross-population PSg —0.395 0.457 0.387

European PSg —0.613 0.563 0.276

African American PSg; —0.950 0.769 0.217

Hispanic PSg 0.317 0.485 0.512
Lateral Ventricular Volume (N = 7674)

Cross-population PSg 0.010 0.005 0.041

European PSg, 0.016 0.006 0.015

African American PSg, 0.004 0.008 0.667

Hispanic PSg 0.002 0.005 0.674
Total Cranial Volume (N = 7674)

Cross-population PSg —-6.135 1.405 1.3x10°°

Cross-population PSg model adjusted for height —6.545 1.385 23x10°

European PSg —9.847 1.776 3.0x10°

European PSg model adjusted for height —10.088 1.750 82x10°°

European PSg model adjusted for height & BMI —10.638 1.968 6.5x10°°

European PSg model adjusted for height, —10.775 1.863 7.3x10°°

excluding participants with prevalent diabetes at

the time of neurological traits measurement

European PSg model adjusted for height in —10.685 2.154 7.1x107

APOE-¢4 non-carriers

African American PSg —2.327 2.338 0.320

Hispanic PSg, —0.702 1.446 0.627

AD/Dementia: N = 9382 (89% EA, 11% AA); Cross-Population PSg, (weighted linear combination
from regression of population-specific scores on HOMA-IR in the validation set):

0.16 x PSg_EA + 0.05 x PSE_AA, where EA means Non-Hispanic White and AA Black/African
American.

General Cognitive Function: N = 17,707 (69% EA, 25% AA, 6% HA); Cross-Population PSg
(weighted linear combination from regression of population-specific scores on HOMA-IR in the
validation set): 0.12 x PSg_EA + 0.11 x PSg_AA + 0.03 x PSg,_HA, where EA means Non-Hispanic
White, AA Black/African American, and HA Hispanic Latino American.

Brain MRI Volumes and Total Cranial Volume: N = 7567 (61% EA, 21% AA, 16% HA); Cross-
Population PSg, (weighted linear combination from regression of population-specific scores on
HOMA-IR in the validation set): 0.11 x PSg_EA + 0.09 x PSg_AA + 0.08 x PSg_HA, where EA
means Non-Hispanic White, AA Black/African American, and HA Hispanic Latino American.
Threshold for significance: P = 0.05/4/7 =0.0018.

P-values in bold and italics are significant after multiple-testing correction.
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Table 3 | Main associations of partitioned polygenic scores (pPSs) and polygenic score (PS) related to insulin resistance with
neurological outcomes in the pooled sample of TOPMed studies

pPSs
Set 1-Kim Set 2-Smith, Deutsch Set 3-Suzuki Set 4-Sevilla-Gonzalez Van Walree PS
General Cognitive Function
Metabolic Syndrome pPS or PS NA NA B=-0.062 NA B=-0.104
P =0.006 P =0.0004
Obesity pPS ns B=-0.002 B=-0.065 NA NA
P =0.028 P =0.005
Total Cranial Volume
Lipodystrophy pPS B=-0.479 Score 1 ns B=-0.482 NA
P =0.006 B =-0.401 P=0.031
P=0.035
Score 2
B=-0.613
P=0.034

ns non-significant associations detected (P > 0.05), NA cluster not identified in this study.

Table 4 | Association results of the metabolic syndrome van
Walree European GWAS polygenic score (n =318 genetic
variants) [PMID: 35983957] with neurological outcomes in
TOPMed

Effect estimates in the
pooled sample

B SE P
Dementia 0.157 0.168 0.35
Alzheimer’s disease 0.087 0.188 0.64
General Cognitive Function —0.104 0.030 0.0004
General Cognitive Function, excluding —0.109 0.031 0.0005
participants with prevalent diabetes at the time of
neurological traits measurement
General Cognitive Function in APOE-&4 non- -0.151 0.039 87x10°
carriers
Hippocampal Volume —0.047 0.088 0.22
Total Brain Volume —2.613 1.984 0.19
Lateral Ventricular Volume 0.063 0.023  0.005
Total Cranial Volume -1.010 6.218 0.87

Threshold for significance: P = 0.05/9 = 0.006.

P-values in bold and italics are significant after multiple-testing correction.

N Dementia and Alzheimer’s disease analyses: 9388; N General Cognitive Function analyses:
19,191; N volumes derived from MRI: 7674.

even slightly more significant association in those not carrying the APOE-¢4
allele (pooled analysis B = —0.15, P=8.7 x 10~) indicating that the asso-
ciation is likely distinct from the APOE-¢4 allele. We did not observe a
difference in association with lateral ventricular volume when stratifying on
APOE-¢4 (in the European population group, APOE-e4 non-carriers
B =0.06, P =0.06; APOE-¢4 carriers B=0.11, P = 0.06), despite effect size
was larger in the APOE-&4 carriers group, which could be due to lim-
ited power.

We detected significant associations of the liver/lipid set 3-Suzuki pPS
with AD (B = —5.78,P =9.2 x 10™"), dementia (B = —6.15,P = 7.3 x 107'7),
and general cognitive function (B = 0.47, P = 0.001, Supplementary Data 1),
likely driven by the variant rs429358-T, defining APOE-¢2, included in this
cluster definition. We found some suggestive associations of the lipody-
strophy pPSs (set 1-Kim, set 2-Smith, Deutsch and set 4-Sevilla-Gonzalez)
with total cranial volume (Bgey; = —0.48, Py = 0.006; Bgega-jipo1 = —0.40,
PsetZ—lipol =0.04, Bsethlip()Z =—0.61, Pset2—1ip02 =0.03, and Bset4 =—043,
Pgers = 0.03 respectively), of the obesity pPSs (set 2-Smith, Deutsch and set 3-
Suzuki) with general cognitive function (Bge =—0.002, Py, =0.03 and
Bgets = —0.07, Pyers = 0.005 respectively), and of the metabolic syndrome set
3-Suzuki pPS with total cranial volume (B = —13.98, P = 0.004) and general

cognitive function (B = —0.06, P = 0.006), see Table 3. Results in the pooled
sample and by population group are provided in Supplementary Data 1.

As the two metabolic syndrome scores (set 3-Suzuki and van Walree)
were negatively associated with cognition, we evaluated their joint asso-
ciation in the same model. Both associations remained (Bgy,yi = —0.06,
Psuzuki = 0.006, Byanwalree = —0.11, Pyanwairee = 0.0004) indicating that these
associations are distinct.

Discussion

By deriving FI PSs, we detected statistically significant and negative asso-
ciations of a cross-population and European population PSs with total
cranial volume. Through the construction of IR-related T2D subtypes pPSs,
we found significant associations of the liver/lipid (set 3-Suzuki) pPS with
AD, dementia, and general cognitive function, and of a metabolic syndrome
PS with general cognitive function and lateral ventricular volume.

We did not observe significant association of the FI PSs with AD and
dementia in our analysis, which contrasts with the study from Dybjer et al.,
who evaluated associations between PSs of T2D and glycemic traits with
dementia diagnoses and reported negative associations of FI PSs on mixed
dementia, and on all-cause dementia and AD (although not surviving
Bonferroni correction)”. Importantly, the two studies differ in terms of
methodologies used to generate PSs (clumping and thresholding for Dybjer
etal. versus PRS-CSx in our study), study design (incident analyses in Dybjer
et al. versus cross-sectional analyses in our study), population diversity
(Dybjer et al. included participants from Sweden, reported as pre-
dominantly White Europeans versus multi-ancestry population in our
study), and sample size (29,139 participants among which 1914 had all-
cause dementia in Dybjer et al. compared to 9388 participants, including
1124 dementia cases in our analyses).

When considering suggestive signals, we detected negative associations
of a metabolic syndrome cluster pPS (set 3-Suzuki) and two obesity cluster
pPSs (set 2-Smith, Deutsch, and set 3-Suzuki) with general cognitive
function, and three lipodystrophy cluster pPSs (set 1-Kim, set 2-Smith,
Deutsch, and set 4-Sevilla-Gonzalez) with total cranial volume.

Our analyses identified a negative association of the two metabolic
syndrome scores, constructed using different methods and sets of genetic
scores, with general cognitive function. The difference in association of the
two metabolic syndrome scores with general cognitive function may be due
to the number of genetic variants used (318 for van Walree versus 166 for
Suzuki) and the higher proportion of European samples in the cognition
analysis (~69%). The set 3-Suzuki cluster pPS was much more strongly
associated with IR than the van Walree European score (Supplementary
Tables 8 and 10) in the pooled sample of TOPMed participants with gly-
cemic traits where the proportion of European samples was ~50%, indi-
cating the power of multi-ancestry scores when analyzing an ancestrally
diverse sample. We did not find an overlap between sets of genetic variants
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included in the two metabolic syndrome scores (Supplementary Table 13).
Joint analysis of the two scores in the same model provided evidence of
distinct associations. The metabolic syndrome pPS has been reported by
Suzuki et al. to be, in the human brain, significantly enriched for regions of
open chromatin in cell types including intratelencephalic (IT) projecting
neurons and somatostatin-positive (SST+) GABAergic inhibitory
neurons™.

We observed a negative association of the two multi-ancestry obesity
cluster pPSs (set 2-Smith, Deutsch and set 3-Suzuki) but not of the European
obesity cluster pPS (set 1-Kim) with general cognitive function, which could
be due again to the number of genetic variants used (35 for set 1-Kim versus
75 for set 2-Smith, Deutsch and 233 for set 3-Suzuki). The sets 2-Smith,
Deutsch, and 3-Suzuki cluster pPSs were more strongly associated with IR
than the set 1-Kim pPS (Supplementary Tables 6-8), also highlighting the
power of multi-ancestry genetic scores when analyzing an ancestrally
diverse sample. The overlap between set 2-Smith, Deutsch, and set
3-Suzuki was higher than between set 1-Kim and set 2-Smith, Deutsch/set
3-Suzuki (Supplementary Table 13). The obesity pPS has been reported by
Suzuki et al. to be, in the human brain, significantly enriched for regions of
open chromatin in cell types including IT projecting neurons, SST-
GABAergic inhibitory neurons, and D1 medium spiny neurons™.

Epidemiological associations have been described between metabolic
syndrome or obesity and cognition® . Genetic studies have identified
genetic overlap and shared genetic contributions for BMI, blood pressure or
blood lipid levels, and cognition®"*’. Genetic variants related to higher
cognitive ability are correlated with a lower BMI"'. Genetic risk factors for
AD are associated with higher blood lipid levels*. High blood pressure,
especially systolic blood pressure, is causally associated with poorer pro-
cessing speed, verbal memory, and executive function during midlife*.

Our analyses highlighted potentially novel associations of PSg;s and of
metabolic syndrome and lipodystrophy pPSs with greater lateral ventricular
volume and lower total cranial volume, which was only observed among
individuals of European descent and independent of body size. These
relationships were not observed in total brain volume or other ethnic
groups. The PSgs, metabolic syndrome (1 score among 2 tested, set 3-
Suzuki), and lipodystrophy (4 scores among 5 tested) pPSs are associated
with lower total cranial volume (significantly for PSg;s, suggestively for
lipodystrophy pPSs and metabolic syndrome pPS). In addition, one meta-
bolic syndrome (1 score of 2 tested, van Walree score) pPS is significantly
associated with larger lateral ventricular volume. Ventricular enlargement
reflecting cerebral atrophy has been reported particularly in elderly patients
with T2D. Lateral ventricular enlargement could begin in the early stage of
T2D*. In late middle-aged adults, IR has been reported associated with
progressive atrophy in regions affected by early AD®. In a study of depressed
and obese children, IR was associated with smaller brain volumes®. In cross-
sectional studies, T2D is often associated with smaller brain volumes®.

Strengths of our study include the derivation of different and com-
plementary genetic scores related to IR, such as cross-population PS and
pPSs, to evaluate their strength as predictors of IR in different populations,
as well as their associations with neurological outcomes using an ancestrally
diverse sample. One of the T2D clustering analysis’' and the FI clustering
analysis™ used to derive the pPSs were conducted in populations of Eur-
opean ancestry. The GWAS we used to derive the metabolic syndrome PS
was also restricted to participants of European ancestry’'. We thus com-
plemented our analyses with the inclusion of two recent clustering analyses
of T2D loci conducted in diverse populations**”’. We showed that the cross-
population PS explained a larger proportion of the variance of HOMA-IR
than the population-specific PSs, and the pPSs had stronger association with
HOMA-IR compared to PSs derived using top associations from GWAS,
particularly when derived from a multi-ancestry population.

Our study includes some limitations. First, a small overlap might exist
between the TOPMed studies included in our analyses and the studies
included in the clustering analyses of T2D or FI. However, this overlap is not
ofhigh concern as our outcomes of interest, the neurological outcomes, were
not part of the definition of these clusters. We opted to use FI as a proxy for

IR to select GWAS to derive the PS based on high genetic correlation
between FI and HOMA-IR. Derivation of PS using additional diverse
GWAS conducted with other traits genetically correlated with HOMA-IR
would be worth investigating in future studies. We observed a low variance
explained for the Hispanic/Latino PS which could be due to an imperfectly
matched LD reference panel® as building such reference panel is challenging
for admixed populations®, as well as differences in the distribution and
representation of Hispanic/Latino population groups in the studies included
in the validation (HCHS/SOL) and the testing (MESA and SAFHS) sets
(Supplementary Table 15). Additional methods could be considered for
building PSs in admixed populations, including penalized-regression-based
methods such as inclusive PGS (iPGS) that can capture ancestry-shared
genetic effects and does not require LD reference panels or local-ancestry
inference’”’, and GAUDI, modeling ancestry-differential effects while bor-
rowing information across segments with shared ancestry in admixed
genomes’'. Overlap between studies used in the clustering analyses of T2D
loci might exist, particularly as Smith, Deutsch et al. expanded the set of
input T2D GWAS used in Kim et al. to include participants of non-
European ancestry”®'. As participants with T2D were included in the
TOPMed association analyses with neurological outcomes, we conducted
sensitivity analyses to evaluate the influence of T2D at the time neurological
traits were measured on the associations observed. Some pPSs were not
found to be associated with HOMA-IR in some population groups like
African American or Asian American, which could be due to the limited
sample sizes in these groups, the number of genetic variants included to
define these clusters, and a difference in ancestry proportions between the
clustering/ GWAS study and our pool of participants with glycemic traits.
The difference in association with neurological outcomes for clusters
representing the same biological mechanism may be explained by the
number of genetic variants defining the clusters and their modest to small
overlap (Supplementary Table 13), variation in traits selected to define the
clusters (Supplementary Table 14), trait and population of the clustering
analyses (T2D versus FI, and multi-ancestry versus European), and ancestry
proportions in the pool of participants with neurological outcomes.

Conclusion

In conclusion, our findings suggest that a higher genetic predisposition to IR
is associated with lower brain size, consistent with literature. Analyzing a
diverse sample, our analyses also shed light on a genetic predisposition to
specific IR-related T2D subtypes associated with cognitive decline, such as
metabolic syndrome and specific mechanisms of IR mediated through
obesity and lipodystrophy.

Methods

The Trans-Omics for Precision Medicine (TOPMed) program
The TOPMed program is an NHLBI initiative to improve the under-
standing of heart, lung, blood, and sleep disorders as well as to advance
precision medicine”. As part of TOPMed, whole-genome sequencing
(WGS) and other omics (metabolic profiles, epigenomics, protein and RNA
expression patterns) data are being generated and integrated with mole-
cular, behavioral, imaging, environmental, and clinical data. TOPMed
includes 196,938 participants from 90 different studies with varying designs,
among which 60% were of non-European ancestry.

WGS in TOPMed is performed by several sequencing centers to a
median depth of 30X using DNA from blood and Illumina HiSeq X tech-
nology. Joint genotype calling is performed across all samples available.
Some studies have samples sequenced through both the NHLBI TOPMed
program and the NHGRI Centers for Common Disease Genetics (CCDG)
program. For these studies, the joint variant identification and genotype
calling performed by the TOPMed Informatics Research Center at the
University of Michigan includes both TOPMed- and CCDG-funded sam-
ples sequenced within the same time frame. For this study, we used
TOPMed data freeze 9, for which variant discovery was initially made on
~206,000 samples, including CCDG samples, and then subset to 158,470
TOPMed samples with 2504 1000 Genomes Project samples. A total of

Communications Biology | (2025)8:1352


www.nature.com/commsbio

https://doi.org/10.1038/s42003-025-08674-9

Article

~781 million single-nucleotide variants (SNVs) and 62 million short
insertion/deletion variants (indels) were identified and passed variant
quality control.

This project included TOPMed studies with information on either
glycemic or neurological outcomes and participants representing four major
population groups (Non-Hispanic White [EA], Black/African American
[AA], Hispanic/Latino American [HA], and Asian American [AS]). A brief
description of each study is included in the Supplementary Methods.

Derivation of polygenic scores (PSs) for Fi

The Homeostasis Model Assessment for Insulin Resistance [HOMA-IR]
is the most extensively validated surrogate of IR””. As few multi-ancestry
GWASs have been performed on IR, we used FI as a proxy for IR based on
high genetic correlation reported between FI and HOMA-IR™7. We
derived three population-specific PSs for FI using PRS-CSx*. PRS-CSx,
unlike other traditional methods based on clumping and thresholding,
does not require a p-value threshold and thus uses all genetic variants. We
leveraged population-specific summary statistics (European, African
American, and Hispanic/Latino) from a recent multi-ancestry meta-
analysis of Genome-Wide Association Studies (GWAS) for FI adjusted for
BMI conducted by the Meta-Analyses of Glucose and Insulin-related
traits Consortium (MAGIC)”, and population-specific linkage dis-
equilibrium (LD) reference panels (European ancestry EUR, African
ancestry AFR, and Admixed American ancestry AMR) from the UK
Biobank” (Fig. 1). To avoid overfitting, we removed the effect of studies
that overlap between TOPMed and MAGIC from the FI meta-analyses
using the R package MetaSubtract. We derived population-specific scores
with PRS-CSx using different global shrinkage parameter phi values (e.g.,
phi=107%107% 1077 1). To derive the cross-population PS, we estimated
in a validation set weights of a linear combination of the standardized
population-specific PSs by regressing IR, quantified using HOMA-IR, on
the three population-specific PSs, adjusting for age, sex, study, BMI, and
the first 11 genetic principal components using a linear mixed-effects
model. The validation set comprised five TOPMed studies (GOLDN,
HyperGEN, JHS, WHI, and HCHS/SOL) totaling ~17,000 participants
without T2D (33.2% Non-Hispanic White, 28.2% Black/African Amer-
ican, 37.9% Hispanic/Latino, Supplementary Table 1). We then applied
the linear combination of the standardized population-specific PSs in a
testing set to compute the cross-population PS. This testing set was
composed of eight TOPMed studies (ARIC, CARDIA, CHS, FHS, Gen-
eSTAR, GENOA, MESA, and SAFHS) totaling ~21,000 participants
without T2D (66.5% Non-Hispanic White, 22.8% Black/African Amer-
ican, 8.2% Hispanic/Latino, Supplementary Table 2). Duplicates within
and between studies were excluded. To account for the unbalanced
proportion of populations between the validation and the testing sets, we
re-weighted each population-specific PS contribution in the linear com-
bination using the ratio of the proportion of populations in the testing and
the validation sets (Supplementary Table 3). The exact formula used to
derive the cross-population PS for each trait tested is provided in
Tables 1 and 2 and Supplementary Table 3.

Construction of partitioned polygenic scores (pPSs) related to IR
We leveraged results from recent and large clustering analyses of both T2D
and FI loci to derive 19 pPSs for T2D subtypes related to IR (Fig. 1 and
Supplementary Table 4) in TOPMed using weighted sum of risk alleles**".

We included three clustering analyses of T2D (one European, set 1-
Kim, and two multi-ancestry, set 2-Smith, Deutsch, and set 3-Suzuki)"~'
and one clustering analysis of FI (European, set 4-Sevilla-Gonzalez)”’. We
selected 19 clusters positively associated with FI and/or HOMA-IR to derive
19 pPSs: five clusters in set 1-Kim (Obesity, Lipodystrophy, Liver/Lipid,
alkaline phosphatase (ALP) negative, and Hyper Insulin secretion), six
clusters in set 2-Smith, Deutsch (Obesity, Lipodystrophy 1 and 2, Liver/
Lipid, ALP negative, and Hyper Insulin secretion), four clusters in set
3-Suzuki (Obesity, Lipodystrophy, Liver/Lipid, and Metabolic syndrome),
and four clusters in set 4-Sevilla-Gonzalez (IR mediated by visceral

adiposity, Adiposity-driven hyperinsulinemia, IR-lipodystrophy, and
Hepatic IR). A description of these clusters by study is provided in Sup-
plementary Tables 4 and 14.

One of the T2D clustering analysis (set 1-Kim)*' and the FI clustering
analysis (set 4-Sevilla-Gonzalez)*™ used to derive the pPSs were conducted in
populations of European ancestry. We thus complemented our analyses
with the inclusion of two recent clustering analyses of T2D loci conducted in
diverse populations (set 2-Smith, Deutsch, and Set 3-Suzuki)***’. In addition
to the pPSs, we derived in TOPMed a PS for metabolic syndrome using 318
lead genetic variants located in 235 genomic risk loci from a recent European
GWAS (Fig. 1)’". TOPMed studies used in association analyses of pPSs and
PS with neurological outcomes were the same as the ones included in the
testing set, to which we added back WHIL

Association analyses of the PS and pPSs with HOMA-IR and
neurological diseases and related traits

We first evaluated the association of the cross-population and population-
specific PSs, and of the pPSs with HOMA-IR to confirm that they are good
instruments for IR. We then evaluated if the PSs and pPSs were differ-
entially associated with neurological diseases and related traits. We tested
the association of the PSs and pPSs with seven neurological outcomes
(prevalent dementia, prevalent AD, general cognitive function”, and MRI
defined total cranial, total brain, hippocampal, and lateral ventricular
volumes) in the pooled sample of all TOPMed studies (Supplementary
Table 5) and by population groups (Non-Hispanic White, Black/African
American, Hispanic/Latino, and Asian American). A description of the
measurement of glycemic (fasting glucose and fasting insulin) and neu-
rological diseases and related traits for each study is included in the
Supplementary Methods and Supplementary Data 2 and available
elsewhere”*. We conducted analyses using logistic or linear mixed-
effects models adjusted for age, sex, study, and 11 genetic principal
components with the GENESIS R package®'. We accounted for relatedness
using an empirical kinship matrix and allowed for heterogeneous variance
across studies. Association analyses with HOMA-IR were additionally
adjusted for BMI and performed in participants without T2D at the time
glycemic traits (fasting glucose and fasting insulin) were measured.
Analyses with general cognitive function were additionally adjusted for
education. Brain volume analyses were additionally adjusted for total
cranial volume. As total cranial volume is related to head size, additional
adjustments for height (at baseline) and BMI (at time when glycemic traits
were measured) were performed as secondary analyses when analyzing
this trait. We conducted sensitivity analyses for statistically significant
findings with neurological outcomes by excluding individuals with pre-
valent T2D at the time neurological traits were measured from the ana-
lyses to evaluate the influence of T2D on the associations observed, and by
stratifying on APOE-&4 (carriers vs non-carriers), the major genetic risk
factor for late-onset AD, to evaluate the influence of APOE-¢4 allele on the
associations observed. For each analysis, we defined statistical significance
using a multiple-testing Bonferroni correction for the number of pPSs,
traits, and population groups tested. If several pPSs from different clus-
tering studies reporting IR-related T2D genetic subtypes with the same
denomination (e.g., “obesity”) were found to be associated with the same
neurological disease/trait, we analyzed them together in the same model to
estimate their joint effect.

Analyses evaluating the association of genetic scores with general
cognitive function included the Women’s Health Initiative (WHI) study,
among other studies. We excluded the WHI study (n=6042) from the
testing set and thus from the association analyses conducted with the PSs to
maximize the sample size in the validation set.

Statistics and reproducibility

Sample size. 7K participants in the validation set, 21K participants in the
testing set for polygenic scores analyses with HOMA-IR; 9.4K, 19.2K, and
7.7K participants for Dementia/AD, general cognitive function, and
volumes derived from MRI analyses, respectively.
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Sample exclusion. Exclusions have been described above. We excluded
duplicates within and between studies, and participants with type 2
diabetes at the time of glycemic traits measurement (for HOMA-IR
analyses) and at the time of neurological traits measurement (for
Dementia, AD, general cognitive function, and volumes derived from
MRI analyses).

Replication. We divided our datasets into a validation and a testing set as
described above to assess the robustness of our polygenic scores. We
performed association analyses in all TOPMed cohort studies with har-
monized neurological outcomes available. The code to derive the poly-
genic scores is publicly available (http://github.com/chloesar77/FI_
PRSCSx_Scores/). The population-specific scoring files derived using
PRS-CSx are available on the PGS Catalog (publication ID: PGP000750
and score IDs: PGS005276-5278).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability

Data for each participating study can be accessed through the database of
Genotypes and Phenotypes (dbGaP) with the corresponding accession
numbers (ARIC, phs001211; CARDIA, phs001612; CHS, phs001368; FHS,
phs000974; GeneSTAR, phs001218; GENOA, phs001345; GOLDN,
phs001359; HyperGEN, phs001293; HCHS/SOL, phs001395; JHS,
phs000964; MESA, phs001416; SAFHS, phs001215; WHI, phs001237).
GWAS summary data on glycemic traits have been contributed by MAGIC
investigators and downloaded from www.magicinvestigators.org’®. Study-
specific GWAS summary statistics for glycemic traits were provided by the
MAGIC consortium. Description of the TOPMed Program, sequence data
processing, and TOPMed WGS quality assessment is available in the flag-
ship publication™. The population-specific scoring files derived using PRS-
CSx are available on the PGS Catalog (publication ID: PGP000750 and score
IDs: PGS005276-5278). URLs: GENESIS: https://bioconductor.org/
packages/release/bioc/html/GENESIS html. MAGIC FI GWAS results:
https://magicinvestigators.org/downloads/. MetaSubtract: https://cran.r-
project.org/web/packages/MetaSubtract/index. html. PGS Catalog: https://
www.pgscatalog.org/. PRS-CSx:  https:/github.com/getian107/PRScsx.
T2DGGI: https://www.diagram-consortium.org/T2DGGLhtml. TOPMed:
https://topmed.nhlbi.nih.gov/.

Code availability

The code used to generate the polygenic scores and partitioned polygenic
scores is publicly available at http://github.com/chloesar77/FI_PRSCSx_
Scores/.
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