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Abstract

Background Epigenetic alterations during fetal development have been proposed as key factors explaining
associations between maternal lifestyle during pregnancy and later health outcomes in the offspring, pertaining
to the developmental origin of health and disease hypothesis.

Objectives To assess the association of maternal lifestyle with offsprings’birth weight and underlying epigenetic
mediatory mechanisms in the NorthPop prospective birth cohort.

Methods A three-step analytic pipeline was applied. In 722 mother—child pairs, overall associations between ten
maternal lifestyle factors and the offspring’s standardized birth weight were first evaluated by multiple linear regres-
sion. Three high-dimensional mediation methods, based on sure independence screening and penalized regression,
were then applied on the beta methylation matrix to identify candidate CpG mediators in cord blood driving the sig-
nificant overall associations. Finally, robust and ordinary least squares (OLS) regression-based classical mediation
methods were used with candidate CpG probes to assess single- and multiple (parallel and serial)-mediator models
on a low-dimensional space.

Results Gestational weight gain (GWG) (3-adj=0.03; p=2x 107) and maternal BMI at the beginning of preg-

nancy (B-adj=0.036; p=1x 10~ were significantly associated with the offspring’s standardized birth weight. High-
dimensional mediation analyses identified pooled sets of four (cg19242268 [TCEA2]; cg08461903 [N/A]; 14798382
[CHERP/C190rf44] and cg21516291 [SLC35C2]) and five (cg17040807 [CYGBI; cg19242268 [TCEA2]; cg26552621 [CIRBPI;
€g04457572 [CDH23] and cg06457011 [PLCGT]) candidate CpG mediators related to GWG and BMI at the beginning
of pregnancy, respectively. For both exposures, classical mediation analyses revealed a range of significant single-
and multiple (both serial and parallel)-mediator models via both robust and OLS regression based approaches. These
indicated the likely presence of individual, causally linked multiple, and causally independent multiple mediatory
pathways underlying the two significant overall associations.
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Conclusions Our findings support the hypothesis that neonatal health effects related to maternal lifestyle may be
partly mediated by epigenetic alterations. Findings also suggest the possible involvement of multiple DNA methyla-

tion sites via various mediatory pathways.

Keywords Birth weight, Classical mediation, Epigenetics, High-dimensional mediation, Intergenerational obesity,

Maternal lifestyle

Introduction

Epidemiological studies that lend support for the impact
of maternal lifestyle on offspring’s life course health are
mounting [1-3]. Historical cohorts have indicated inter-
generational transmission of adverse health outcomes
from pregnant women exposed to extreme conditions
such as famines [4, 5]. Current epidemiological evidence
suggests that a broad spectrum of maternal lifestyle fac-
tors including diet, sedentary behavior, smoking, alcohol
consumption, and obesity may have long lasting effects
on the offspring’s health [1-3, 6, 7]. For example, mater-
nal smoking during pregnancy may influence fetal devel-
opment through mechanisms including in utero hypoxia,
nicotine-induced uteroplacental blood flow diminution,
and placental toxicity [8] while maternal obesity could
increase the risk of childhood obesity and overall cardio-
metabolic health [1-5]. Maternal diet during pregnancy
likely affects nutrient availability to the fetus, whereas
regular physical activity during pregnancy may optimize
maternal health through mechanisms such as blood
glucose homeostasis, healthy weight management, and
enhanced cardiovascular fitness, leading to improved
fetoplacental circulation and reduced risk of preterm
birth [6, 7].

Birth weight is a multifaceted indicator of neonatal
health reflecting the prenatal environment, nutritional
status, fetal growth, and potential risks for both imme-
diate and long-term health outcomes [9, 10]. Low birth
weight is known to increase perinatal morbidity and
mortality and is associated to poor cardiometabolic
health in adulthood [11]. On the other hand, higher
birth weights have been linked to elevated risks of obe-
sity and type 2 diabetes later in life [12]. Notably, mater-
nal behaviors such as diet, smoking, stress, and physical
activity have also been associated with offspring’s birth
weight [9]. It should be noted that in addition to mater-
nal lifestyle, other factors such as maternal genetics [13]
and paternal lifestyle [14] are also likely to contribute to
later childhood obesity. While DNA methylation is so far
the most thoroughly studied mechanism linking lifestyle
and exposures during fetal life to later phenotypes, other
epigenetic alterations such as histone modifications and
non-coding RNA-associated gene silencing are likely to
be of equal, or maybe even higher importance. Future
efforts to decouple such mechanisms will likely aid our

understanding of the generational effects of modifiable
exposures in pregnancy [15].

Although mechanisms are still poorly understood, the
link between maternal lifestyle and offsprings’ health out-
comes is thought to be, at least partly, driven by devel-
opmental programming mediated through epigenetic
modifications [16]. The concept of developmental pro-
gramming is underpinned by heightened sensitivity of
the developing fetus and the intrauterine environment
to external stressors. Maternal metabolic disruptions
may induce sustained genetic, phenotypic, and physi-
ologic adaptations in the developing fetus, leading to
lasting effects on its future health postnatally [17]. Epige-
netic modifications, which entail the modulation of gene
expression without altering the original DNA sequence,
encompass multiple mechanisms including, histone acet-
ylation, RNA modifications and DNA methylation. In
epidemiological studies, DNA methylation is the mecha-
nism that has been most thoroughly studied as it can be
readily assessed at a large scale and previous work has
supported the theory of epigenetics providing a modifi-
able link between maternal lifestyle and childhood health
risks. One example includes a lifestyle intervention in
pregnant women with obesity which was found to impact
cord blood DNA methylation, which also associated
to body composition in the offspring [18]. The primary
aim of the current study was therefore to assess asso-
ciations between maternal lifestyle and offsprings’ birth
weight and evaluate underlying epigenetic mediatory
mechanisms. The rationale was that a stepwise approach
would be highly suited to this, and we proceeded with
the following analytical pipeline: First, investigate which
maternal exposures are linked to offspring birthweight,
and which covariates are relevant for these associations.
Next, assess the CpGs that act as mediators of these asso-
ciations. Last, examine the specific roles of these media-
tory CpGs in the association between maternal exposures
and children’s birthweight.

Materials and methods

Study population

The NorthPop Birth Cohort Study (NorthPop) is an
ongoing population-based, prospective birth cohort
conducted in Visterbotten county, Northern Sweden
[19]. It includes an extensive longitudinal database and
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a biobank. NorthPop aims to include 10,000 pregnant
women and follow their children through birth until
7 years of age (https://www.umu.se/en/research/infra
structure/northpop/). With prospectively collected, life-
style-related information of pregnant women, epigenetic
measures in cord blood, and follow-up information of
children at birth being available, the NorthPop cohort
provides a unique opportunity to assess not only the
association between maternal lifestyle and the offspring’s
health but also associated putative epigenetic mediatory
mechanisms.

Study sample

A sample of 722 mother—child pairs from the NorthPop
cohort, with cord blood DNA methylation measured at
birth, were included in this study. Participating moth-
ers were selected based on previous parity (primipara
single-birth mothers or multiparous twin or triplet moth-
ers) and sample availability. Eligible pregnant women
were recruited during the years 2016-2020, from the
University Hospital of Umea catchment area at the time
of their routine ultrasound examination at gestational
week 14-24. Informed consent was given by all partici-
pating women and their partner. Web-based question-
naires were administered to the participating women at
multiple times during and after the pregnancy. The first
questionnaire was administered during gestational week
14-24, to collect information on socioeconomic status
and medical history. Details on lifestyle during pregnancy
including diet, physical activity, and stress, were collected
through questionnaires provided at gestational week
26-34. Questions about the woman’s health during preg-
nancy and the health of the newborn were included in
a questionnaire sent four months postpartum. Informa-
tion on maternal education level and country of birth was
available to be used as proxy measures of participants’
socioeconomic status.

Exposures and outcome

Ten maternal lifestyle-related exposures were originally
included in the study, with details provided in Supple-
mentary material 1. These comprised physical activity,
stress, six different diet-related exposures, gestational
weight gain (GWG@G) and body mass index (BMI) at the
beginning of pregnancy (Table 1). The outcome, birth
weight, was obtained from The Swedish Pregnancy Reg-
ister [20] and standardized using the latest published
intrauterine growth reference ranges for estimated fetal
weight applicable to Sweden [21].

DNA methylation data
Cord blood buffy coat DNA samples from the children
were bisulphite treated and analyzed for methylation
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using the Infinium MethylationEPIC BeadChip (Illu-
mina) 850 k v1.0. DNA quality control, pre-processing,
processing, and output data quality control were per-
formed at the SNP&SEQ Technology Platform, Uppsala,
Sweden, part of the National Genomics Infrastructure
(NGI) Sweden and Science for Life Laboratory.

The methodological workflow consisted of three steps
as outlined below and presented in Fig. 1.

Step 1 We applied multiple linear regression to assess
overall associations between ten maternal lifestyle-
related exposures and offsprings’ standardized birth
weight. Directed acyclic graphs (DAGs) were drawn
a priori to determine covariates to be included in the
analysis of each exposure-outcome association, using
the “dagitty” R package [22]. Based on DAGs, the multi-
ple regression modelling the association between mater-
nal BMI at the beginning of pregnancy and standardized
birth weight was adjusted for maternal age, maternal
education, maternal country of birth, and maternal
smoking during pregnancy. The remaining overall asso-
ciation analyses were adjusted for maternal age, maternal
BMI at the beginning of pregnancy, maternal education,
maternal country of birth, and maternal smoking during
pregnancy. Missing data were excluded from the multiple
regression analyses. The maternal exposures significantly
associated with offsprings’ standardized birth weight as
per Step 1, were the focus in subsequent downstream
analyses.

As a supplementary analysis, we also assessed mater-
nal BMI-GWG correlations and associations of mater-
nal BMI and GWG with z-birthweight of children in
the entire cohort as well as sub-cohorts of obesity, obe-
sity + overweight, overweight, and normal weight.

Step 2 An account of the methylation data processing
and the analytic pipeline is provided in Supplementary
material 2. A DNA methylation matrix with beta values
produced by the processing pipeline detailed in Sup-
plementary material 2 was used for high-dimensional
mediation analyses in Step 2. We applied three high-
dimensional mediation methods amenable for DNA
methylation data to identify candidate CpG mediators
that drive the significant overall associations observed
in Step 1. These methods represent recent develop-
ments in epigenetic mediation analysis which strive to
overcome high-dimensionality by a two-step proce-
dure. Briefly, the initial sure independence screening
(SIS) step is followed by a subsequent variable selection
step to further reduce dimensions. The ultimate statisti-
cal testing is performed on a low-dimensional feature
space which has both survived SIS (in step i) and filter-
ing by the subsequent feature selection step (in step ii)
to determine significant mediators [23]. All three meth-
ods entail some form of penalized regression to estimate
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Table 1 General characteristics of maternal- and offspring samples in the NorthPop prospective birth cohort analyzed in the present

study

Maternal cohort

Offspring cohort

Characteristic? N=702 Characteristic® N=722
Maternal age (years)b 299 (4.1) Birth weight (grams) 3449 (526.2)
Previous parity Standardized birth weight (z-score) — 042 (0.04)
0 682 Birth length (cm) 50.0 (2.3)
>=1 20 Gestational age at birth (weeks) 39.8(1.7)
Physical activity“® 94 (4.7) Apgar
Less, n 434 1-min score 84(14)
More, n 227 5-min score 9.0 (0.9
Missing 41 10-min score 94(0.7)
Stress®’ 19(2.4) Missing
No, n 515 Sex, n
Yes, n 168 Female 334
Missing, n 19 Male 388
DDS9 20.7 (5.3) Delivery Mode, n
DDS-ead;” 218 (4.7) Vaginal 610
DIl -12(1.9) Cesarean 112
MDY 45(17) Year of birth, n
HNFI® 25014 2016 41
Total energy intake (kcal/d) 2275 (777) 2017 183
Dietary CO, e/DCP 1560.9 (1023.7) 2018 240
GWGl(kg) 15.2(5.6) 2019 180
BMI™ (kg/m?) 245 (4.1) 2020 78
<18,n 5
18-24.9,n 439
>=25n 238
Missing 20
Smoking", n
No 681
Yes 2
Missing 19
Country of birth® n
Sweden 630
Other 62
Missing 10

Educational level®, n
9 year primary school 11

Upper secondary education 164
University or university college 516
Missing 1

? Reported as mean (SD) unless otherwise specified

b Mother’s age at delivery

“Validated questionnaire-based index

dScore< 11 is’less, score > 11 is‘more

€ Based on the General Health Questionnaire—12 items (GHQ-12)
fScore >3 is'Yes, score <3 is'No’

9 Based on 40 food items

P Based on 40 food items and adjusted for total energy intake

iBased on 30 of the 45 food items used in the original study
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Table 1 (continued)
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J An adapted version based on 8 food items

kBased on 6 food groups typically consumed in Nordic countries
' Self-reported at 4 months postpartum, in kg

™ Calculated at the beginning of pregnancy

" Self-reported at gestational age 26 weeks

° Self-reported at gestational age 14-24 weeks

BMI body mass index, DDS diet diversity score, Dietary CO2 e/DCP dietary CO2 emission/dietary carbon footprint, DIl diet inflammatory index, GDM gestational
diabetes mellitus, GWG gestational weight gain, HNF/ healthy Nordi food index, QR inter-quartile range, MDS mediterranean diet score, NA number of missing data,

SD standard deviation

exposures
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Physical activity
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Total energy intake
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Fig. 1 Study workflow

mediator-specific contributions [23]. Of these, the
“HDMA” [24] and “HIMA” [25] methods were deployed
using the “HDMED” R package [23] while the “HIMA2”
[26] method was deployed through the “HIMA” R pack-
age [25].

In order for the paper to be self-explanatory, we
describe the three high-dimensional mediation methods
used, including their methodological similarities and dif-
ferences, with further statistical information available in
Supplementary material 3.

SIS: This is a method to address high-dimensional-
ity challenge by first screening the variables based on
their marginal correlation with the response variable.
Variables are ranked based on their marginal correla-
tions and a subset of the top-ranked variables based
on a specified threshold is selected for further analysis.
SIS reduces the dimensionality from a high amount to

a moderate size, where it is typically chosen to be less
than the sample size. The key feature of SIS is its "sure
screening” property, meaning that it is designed to
retain all the important variables with high probability.
This is crucial for ensuring that the subsequent variable
selection process focuses on the most relevant features.
Methodological information of SIS has been previously
published [27].

1. HDMA: In the first feature reduction step, HDMA
conducts SIS to determine the number of mediators
that are most associated with the outcome (in case of
a continuous response variable) or the exposure (in
case of a categorical response variable). This initial
screening selects features based on p-values from lin-
ear regression. In the second step of feature reduc-
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tion, the outcome model is fitted for the remaining
mediators using de-sparsified/de-biased LASSO.
Next, mediator models are fitted using linear regres-
sion among those mediators that have both sur-
vived SIS (in step i) and been identified by de-biased
LASSO (in step ii), obtaining p-values for mediation
contributions by taking the maximum of «a, (coef-
ficient estimate of the exposure —>mediator asso-
ciation) and f,, (coefficient estimate of the mediator
—>outcome association adjusted for exposure) p-val-
ues. Mediation contributions of individual mediators
are summed up to estimate the global indirect effect
while the direct effect is equivalent to the difference
between the total effect and the global indirect effect.
Details of the HDMA method have been published
elsewhere [24].

2. HIMA: The first step in HIMA is identical to HDMA
i.e., SIS to choose mediators that are most associated
with the outcome (when the outcome variable is con-
tinuous) or the exposure (when the outcome variable
is categorical) based on p-values from linear regres-
sion. Minimax concave penalty (MCP) is used in the
second step to fit the outcome model for the remain-
ing mediators. Next, mediator models are fitted using
linear regression among those mediators that have
both survived SIS (in step i) and been selected by the
MCP (in step ii), to determine mediation contribu-
tions. Corresponding p-values for mediation contri-
butions are estimated in the same way as HDMA, by
taking the maximum of a, and B, p-values. Multiple
testing correction is applied to p-values to obtain the
ultimate set of statistically significant mediators. The
global indirect effect and the direct effect are also
enumerated similarly to the HDMA method. The
HIMA method is detailed elsewhere [25]

3. HIMAZ2: Identical to HDMA in terms of SIS (Step 1)
and de-biased LASSO (Step ii). The difference is that
HIMA 2 applies a less conservative multiple test-
ing correction for the joint significance test p-values
termed “joint significance mixture” approach con-
trary to “joint significance uniform” approach used
in HIMA, aiming to more efficiently detect active
mediators. The HIMA2 methodology is elaborated
elsewhere [26].

Given the similarities across the three methods, they
are in fact categorized within a single group of “penalized
regression to estimate mediator-specific contributions”
in a study on high-dimensional epigenetic mediation
methods [23]. The primary difference between HDMA
and HIMA is the penalty function; HDMA uses more-
recently introduced de-sparsified/de-biased LASSO
whereas HIMA applies MCP. Compared to HIMA,
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advantages of HDMA include its ability to fit and test
multiple mediators in one regression model and superior
handling of correlations between methylation sites due to
de-sparsifying strategy. Compared to HIMA, strengths of
HIMAZ2 include more accurate SIS screening taking into
account both o, and B, and less conservative false dis-
covery rate (FDR) control.

As customarily performed in previous studies [24, 26,
28, 29], we assessed several high-dimensional mediation
methods instead of a single method, as there is no gold
standard at present [23, 28]. Notably, this multi-algorith-
mic approach in previous studies has yielded comple-
mentary results, identifying both overlapping CpGs and
unique methylation loci [24, 26, 28, 29]. This could be
attributed to aforementioned methodological similarities
and differences between HDMA, HIMA, and HIMA2.

Covariates determined by DAGs and cord blood cell
type proportion estimates were included in all high-
dimensional mediation analyses. An FDR adjusted
p-value threshold <0.05 was applied to further filter the
set of CpG sites selected by each high-dimensional medi-
ation method and determine candidate CpG mediators.
Findings from each method were merged to produce the
pooled set of candidate CpG mediators. Classical media-
tion analyses were performed on these candidate CpG
mediators in Step 3.

Step 3 Typically, mediation analysis entails a series of
linear regressions whereby indirect effects are enumer-
ated as products of regression coefficients and their sta-
tistical significance is determined by a bootstrap test
based on ordinary least-squares (OLS) estimates. The
OLS-regression-based test is sensitive to deviations
from normality assumptions or the presence of outliers
hindering empirical testing of mediation mechanisms.
In contrast, robust regression-based mediation is resist-
ant to deviations such as outliers or skewed distribu-
tions, which utilizes the robust MM-regression estimator
instead of the OLS estimator for regression. In order to
get a comprehensive understanding of causal mediatory
pathways and compare results between the two methods,
we assessed epigenetic mediation on a low-dimensional
space via both robust-regression based bootstrap method
and OLS-regression-based bootstrap method using the
‘robmed’ R package [30]. DNA methylation beta values
of the candidate CpG mediators produced by the pro-
cessing pipeline detailed in Supplementary material 2
was used for classical mediation analyses in Step 3. With
respect to each significant overall association identified
in Step 1, we analyzed single mediator models, multiple
serial mediator models (assuming causal dependence
between multiple mediators), and parallel mediator mod-
els (assuming causal independence between multiple
mediators). All analyses were adjusted for DAG-based
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covariates. As the number of mediatory pathways com-
binatorially increase in serial models quickly growing in
complexity, the ‘robmed’ package allows only a maximum
of three mediators in serial multiple mediation analyses.
We determined the three CpG mediators to be included
in serial mediation analyses, based on the results from
single mediation assessments.

Finally, we searched the CpG mediators identified by
the present study on several databases in order to obtain
biological insights. These included the MRC-IEU catalog
of epigenome-wide association studies (EWAS Catalog)
[31] and the EWAS Atlas [32] to uncover any consist-
ent findings reported in previous studies, the EPIGEN
MeQTL Database (https://epicmeqtl.kcl.ac.uk/) to exam-
ine associated genetic variants, and the eFORGE TF [33]
to identify overlapping with known transcription bind-
ing-sites to regulate gene expression.

Results

General characteristics of the maternal—offspring paired
cohorts, including maternal exposures and standardized
birthweight of offsprings, analyzed in the present study
are summarized in Table 1. Body composition of the off-
spring measured as z-birthweight and birth length are
reported (Table 1).

Step 1 Associations between maternal exposures and
offspring’s birthweight.

Results from DAGs analysis that determined the covar-
iates to be included in overall association analyses are
presented in Supplementary material 4. In the adjusted
linear regression models, two maternal lifestyle markers,
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gestational weight gain (GWG) and BMI at the begin-
ning of pregnancy, were significantly associated with
offspring’s standardized birth weight (Bgyg=20.03; 95%
CI 0.02-0.04 and Pgy;=0.036; 95% CI 0.019-0.054)
(Table 2).

Maternal BMI-GWG correlations and their multivari-
able associations with children’s z-birthweight are sum-
marized in Supplementary material 5. Maternal BMI at
the beginning of pregnancy and GWG were positively
correlated, albeit weakly, in the entire cohort and in the
normal weight sub-cohort. In obesity, obesity+over-
weight, and overweight sub-cohorts, the correlations
were negative, albeit weak. The inclusion of these mater-
nal exposures did not substantially change their signifi-
cant associations with children’s z-birthweight, except
in the sub-cohort of women with obesity in which only
GWG remained significant when both maternal BMI
and GWG were included. Both these maternal exposures
remained independently associated with z-birthweight
in the full cohort and all sub-cohorts except in pregnant
women with obesity.

The original EPIC array had 862,452 CpG probes, after
the quality control steps detailed in Supplementary mate-
rial 2 were performed, 755,671 unique CpG probes were
retained for interrogation.

Step 2 High-dimensional epigenetic mediation analysis.

The HDMA method identified 21 CpG sites medi-
ating the association between GWG and offspring’s
standardized birth weight, four of which (cg19242268;
cg08461903; cgl4798382; cg21516291) passed an FDR
adjusted threshold of 0.05 and were selected as candidate

Table 2 Overall associations between maternal lifestyle markers and offspring’s standardized birth weight in the NorthPop
prospective birth cohort as per simple- and multiple- linear regression

Maternal lifestyle factor B-unadj 95% Cl of B-unadj p-value B-adj 95% Cl of B-adj p-value
GWG? 0.034 0.021 to 0.047 6e—07 0.031 0.021 to 0.042 2e—-05
Physical activity (continuous)? —0.0011 -0.0187t0 0.0167 091 —0.0009 —0.01921t0 0.0178 092
More physical activity (Ref.=Less)? —0.026 -0.179t0 0.127 0.74 0.021 —0.1341t00.176 0.79
BMI at the beginning of pregnancy® 0.039 0.02 to 0.055 3e—-05 0.036 0.019 to 0.054 1e—04
Total energy intake? 0.00003 —0.00007 to 0.00011 0.58 0.00005 —0.00004 to 0.00014 0.28
Stress (continuous)? 0.017 —0.013t00.047 0.27 0.007 —0.024 t0 0.039 0.65
More stress (Ref=Less)? 0.027 —0.138t00.193 0.75 —-0.026 —0.196t0 0.143 0.76
Diet diversity score? 0.003 -0011t00.017 0.69 0.009 —0.005 t0 0.023 022
Dietary CO, emission/carbon footprint? 0.00001  —0.00006 to 0.00008 0.69 0.000008 - 0.00006 to 0.00008 0.83
Diet inflammatory index® 0.025 —0.013t0 0.063 0.20 0.007 —0.032 to 0.046 0.73
Mediterranean diet score® —-0.038 —0.081 to 0.005 0.09 -0017 —0.062 t0 0.027 045
Healthy Nordic food index? 0.022 —0.03t00.075 040 0.042 —0.0111t00.096 0.12

2 Adjusted for maternal age, maternal BMI at the beginning of pregnancy, maternal education, maternal country of birth, maternal smoking during pregnancy

b Adjusted for maternal age, maternal education, maternal country of birth, maternal smoking during pregnancy

BMI body mass index, Cl confidence interval, GWG gestational weight gain, 8-adj effect size measured as the multiple linear regression coefficient, 8-unadj effect size

measured as the simple linear regression coefficient
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CpG sites for classical causal mediation analysis. The
HIMA method derived a set of 24 CpG sites mediating
the association between GWG and offspring’s standard-
ized birth weight, 3 of which (cg19242268; cg08461903;
€g21516291) passed the FDR-adjusted threshold of 0.05
and were selected as candidate CpG sites for classical
causal mediation analysis. Finally, the HIMA2 method
also identified 24 CpG sites as mediating the association
between GWG and the offsprings’ standardized birth
weight, 2 of which (cg19242268; cg08461903) passed the
FDR-adjusted threshold of 0.05 and were selected for
classical causal mediation analysis. The pooled set of four
candidate CpG sites eligible for classical mediation analy-
sis of the association between GWG and the offspring’s
standardized birth weight included the same four CpG
sites as captured by the HDMA method (cg19242268;
¢g08461903; cg14798382 and cg21516291) (Table 3; Sup-
plementary material 6).

The same methods were used to identify CpG sites
mediating the association between maternal BMI at the
beginning of pregnancy and the offspring’s standardized
birth weight. The HIMA, HDMA, and HIMA2 methods
yielded 24, 25, and 24 CpG mediatory sites, respectively.
Of these, both HDMA and HIMA output comprised
the same subset of 5 candidate CpG sites that passed
the FDR-adjusted threshold of 0.05 and were selected
for classical causal mediation analysis (cg17040807;
€g19242268; ¢g26552621; cg04457572; cg06457011)
(Table 3; Supplementary material 6).

Step 3 Low-dimensional epigenetic mediation analysis.

Two robust regression-based single mediator models
(cg19242268; cg14798382) (Table 4; Fig. 2) and three OLS
regression-based single mediator models (cgl19242268;
cg14798382; ¢g08461903) (Supplementary material 7;
Supplementary material 8) examining the association
between GWG and offspring’s standardized birth weight
were significant. All three CpG sites were also identified
by the high-dimensional mediation analyses described
above and included in multiple mediator models.

When examining serial multiple mediation in relation
to the GWG-z-birthweight association, we identified sev-
eral significant indirect pathways, two in robust regres-
sion-based serial models (cg19242268; cgl4798382)
(Table 4; Fig. 3) and five in OLS regression-based serial
models (cg19242268; cg08461903; cgl14798382; GWG —
cg19242268 — ¢gl14798382 — z-birth weight; GWG —
cg08461903 — ¢gl4798382 — z-birth weight) (Supple-
mentary material 7; Supplementary material 8).

Robust parallel multiple mediation of GWG’s asso-
ciation with offspring’s standardized birth weight
revealed two significant indirect pathways (cg19242268
and cg14798382) (Table 4; Fig. 4), whereas OLS paral-
lel multiple mediation of the same association found
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three indirect pathways (cgl19242268; ¢g08461903;
cg14798382) (Supplementary material 7; Supplementary
material 8).

Three robust single mediator models (cg19242268:
€g26552621; cg04457572) (Table 4) and all five OLS single
mediator models (cg17040807; cg19242268; cg26552621;
cg04457572; ¢g06457011) examining the association
between maternal BMI and offspring’s standardized birth
weight were significant (Supplementary material 7; Sup-
plementary material 8). The three significant CpG sites
in robust single mediator models were included in serial
multiple mediation analysis.

In relation to maternal BMI-children’s z-birthweight
association, we observed several significant indirect path-
ways as per serial multiple mediation, five robust path-
ways (cg19242268; ¢g26552621; BMI — cgl19242268 —
€g26552621 — z-birth weight; BMI — ¢g26552621 —
cg04457572 — z-birth weight; BMI — ¢g19242268 —
€g26552621 — cg04457572 — z-birth weight) (Table 4)
and six OLS pathways (cg19242268; cg26552621;
cg04457572; BMI — ¢g19242268 — ¢g26552621 —
z-birth weight; BMI — ¢g26552621 — cg04457572 —
z-birth weight; BMI — ¢g19242268 — cg26552621 —
cg04457572 — z-birth weight) (Supplementary material
7; Supplementary material 8).

In contrast, parallel robust multiple mediation
revealed two significant indirect pathways (cgl19242268;
€g04457572) (Table 4) while OLS multiple parallel medi-
ation found three significant pathways (cgl19242268;
cg04457572; cg06457011) (Supplementary material 7;
Supplementary material 8) for the association between
maternal BMI and offspring’s standardized birthweight.

In total, eight CpG sites were selected as potential
mediators of associations between GWG or pregnancy
BMI and birth weight (Table 5). Previous studies on the
association of candidate CpG sites with markers of obe-
sity found on the EWAS Catalog are summarized in
Supplementary material 9. A single candidate CpG site,
namely, ¢g19242268 was found to mediate both signifi-
cant overall associations, emerging significant in all sin-
gle- and multiple- mediator models.

We present findings on the direction of effects, correla-
tions, and associations as reported on EWAS Catalog and
EWAS Atlas from previous studies in relation to methyla-
tion markers and exposures (GWG, BMI) or related traits
and outcome (birthweight) in Supplementary material
10.

Discussion

We identified eight potential CpG mediators that could
be mapped to genes with obesogenic potential. Seven
of these mediated associations between either GWG
or pregnancy BMI and birth weight, whereas one,
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Table 3 Summary of results from high-dimensional mediation analysis including the candidate CpG sites selected as mediators

High-dimensional

mediation analytic after 2-step dimension reduction

CpG sites selected by high-dimensional mediation approach Candidate CpG sites selected for classical causal

mediation analysis (FDR-adjusted p < 0.05)

approach
Number Composition

Number

Composition

Association between GWG and offspring’s z-birth weight

HDMA (h=21) cg04968127; cg14798382; cg21516291;
€g27053299; cg10660916; cg14556683;
cg10178960; cg16752400; cg09247736;
€g18137450; cg07002832; cg02832224;
cg05779272; cg19242268; cg16402875;
€g15672022;cg13131501; cg04457572;
€g01940139; cg08461903; cg00154986

€q04968127; cg05349624; cg21516291;
€g27053299; cg10660916; cg14556683
q10178960; cg16752400; cg05304729
cg04751761; cg09247736; cg 18137450
€q02832224; cg05779272; cq19242268
€g05560494; cq16402875; cg13131501;
€q12804755; cq04457572; cg22247250
€g08461903; cg00154986; cg 12145085

€g04968127; cg05349624; cg21516291;
€g27053299; cg10660916; cg14556683;
€g10178960; cg16752400; cg05304729;
€g04751761; cg09247736; cg18137450;
€g02832224; cg05779272; cg19242268;
€g05560494; cg16402875; cg13131501;
€g12804755; cg04457572; cg22247250;
€g08461903; cg00154986; cg12145085

Association between maternal BMI and offspring’s z-birth weight

HDMA (n=25) €g04968127; cg21516291; cg23260105;
cg00376553; cg17040807; cg21649604;
€g16752400; cg25494075; cg08289567;
€g18137450; cg02832224; cg05779272;
€g19242268; cg26552621; cg18034719;
cg09171931; cg13131501; cg03688987;
€g04457572; cg06457011; cg14787880;
€g01940139; cg08461903; cg00154986;
€g12145085

€g04968127; cg14798382; cg21516291;
€g23260105; cg00376553; cg17040807;
€g16752400; cg05304729; cg15482893;
€g18137450; cg02832224; cg05779272;
€g19242268; cg26552621; cg18034719;
€g13131501; cg03688987; cg04457572;
cg06457011; cg14787880; cg01940139,
€g08461903; cg00154986; cg05632420

€g04968127; cg14798382; cg21516291;
€g23260105; cg00376553; cg17040807;
€g16752400; cg05304729; cg15482893;
€g18137450; cg02832224; cg05779272;
€g19242268; cg26552621; cg18034719;
€g13131501; cg03688987; cg04457572;
cg06457011; cg14787880; cg01940139;
€g08461903; cg00154986; cg05632420

HIMA (n=24)

HIMA2 (n=24)

HIMA (n=24)

HIMA2 (n=24)

(n=4)

(n=5)

€g19242268; cg08461903; cg14798382;
€g21516291

€g19242268; cg08461903; cg21516291

€g19242268; cg08461903

€g17040807; cg19242268; cg26552621;
€g04457572; cg06457011

cg17040807; cg19242268; cg26552621;
€g04457572; cg06457011

BMI body mass index, GWG gestational weight gain

cg19242268, stood out as a potential mediator in all mod-
els. Cg19242268 is positioned in a CpG island situated in
the first exon of one isoform of the gene TCEA2 (Tran-
scription Elongation Factor A2), the protein of which
is involved in transcriptional regulation and mainly

expressed in the testis and brain. Interestingly, at least
one previous study identified a differentially methyl-
ated region (DMR) in cord blood associated with birth-
weight that overlapped with the promoter of TCEA2
and another gene (RP13-152015.5) [34], lending further
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Table 4 Summary of results from robust mediation analysis with candidate CpG sites selected by high-dimensional mediation analysis

Epigenetic mediation of the association between gestational weight gain and offspring’s standardized birth weight

Single mediator models—robust bootstrap approach

CpG Indirect effect Direct effect Total effect

Estimate 95% Cl Estimate SE p-value Estimate SE p-value
€g19242268 0.0026 0.0003, 0.0066 0.0267 0.007 0.0001 0.0293 0.007 0.00002
cg08461903 0.0019 —0.0006, 0.0051 0.0260 0.007 0.0001 0.0279 0.007 0.00004
914798382 0.0042 0.0012,0.0082 0.0240 0.007 0.0003 0.0282 0.007 0.00004
€g21516291 0.0019 —0.0008, 0.0054 0.0248 0.007 0.0002 0.0267 0.007 0.00009

Serial multiple mediator model—robust bootstrap approach

Pathway Indirect effects Direct effect Total effect
Estimate 95% Cl Estimate SE p-value Estimate SE p-value
Total indirect 0.00703 0.00267,0.01218 0.01898 0.007 0.005 0.02601 0.007 0.0002
Indirect1 0.00223 0.00025, 0.00578 (Indirect1: GWG—> cg19242268—> z-birth weight)
Indirect2 0.00167 —0.00065, 0.00462 (Indirect2: GWG—> cg08461903—> z-birth weight)
Indirect3 0.00267 0.00017,0.00624 (Indirect3: GWG—> cg14798382—> z-birth weight)
Indirect4 0.00010 —0.00006, 0.00055 (Indirect4: GWG—> cg19242268—> cg08461903—> z-birth weight)
Indirect5 0.00014 —0.00002, 0.00062 (Indirect5: GWG—> cg19242268—> cg14798382—> z-birth weight)
Indirect6 0.00021 —0.00005, 0.00071 (Indirect6: GWG—> cg08461903—> cg14798382—> z-birth weight)
Indirect7 0.00001 —0.00001, 0.00009 (Indirect7: GWG—> cg19242268—> cg08461903—> cg14798382—> z-birth
weight)

Parallel multiple mediator model—robust bootstrap approach

Pathway Indirect effects Direct effect Total effect

Estimate 95% CI Estimate SE p-value Estimate SE p-value
Total indirect 0.0075 0.0032,0.0127 0.0190 0.007 0.005 0.0265 0.007 0.0001
€g19242268 0.0022 0.0002, 0.0058
cg08461903 0.0018 —0.0005, 0.0048
914798382 0.0035 0.0010, 0.0071

Epigenetic mediation of the association between BMI at the beginning of pregnancy and offspring’s standardized birth weight

Single mediator models—robust bootstrap approach

CpG Indirect effect Direct effect Total effect

Estimate 95% Cl Estimate SE p-value Estimate SE p-value
€g17040807 0.0033 —0.000T, 0.0085 0.0308 0.009 0.001 0.0341 0.009 0.0003
€g19242268 0.0037 0.0004, 0.0084 0.0310 0.009 0.0006 0.0347 0.009 0.0001
€g26552621 0.0051 0.0012,0.0107 0.0313 0.009 0.001 0.0364 0.009 0.0001
cg04457572 0.0041 0.0006, 0.0097 0.0327 0.009 0.0002 0.0368 0.009 0.00007
cg06457011 0.0030 —0.0006, 0.0078 00318 0.009 0.0006 0.0348 0.009 0.0002

Serial multiple mediator model—robust bootstrap approach

Pathway Indirect effects Direct effect Total effect

Estimate 95% Cl Estimate SE p-value Estimate SE p-value
Total indirect 0.009124 0.003671,0.016250 0.026174 0.009 0.003 0.035298 0.009 0.0001
Indirect1 0.002940 0.000405, 0.007337 (Indirect1: BMI—> cg19242268—> z-birth weight)
Indirect2 0.002378 0.000245, 0.006358 (Indirect2: BMI—> cg26552621—> z-birth weight)
Indirect3 0.002302 —0.000221, 0.006550 (Indirect3: BMI—>cg04457572—> z-birth weight)
Indirect4 0.000439 0.000047,0.001313 (Indirect4: BMI—> cg19242268—> cg26552621—> z-birth weight)

Indirect5 —0.000005 —0.000317,0.000271 (Indirect5: BMI—>cg19242268—> cg04457572—> z-birth weight)




De Silva et al. Clinical Epigenetics (2025) 17:180

Table 4 (continued)
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Serial multiple mediator model—robust bootstrap approach

Pathway Indirect effects Direct effect Total effect

Estimate 95% Cl Estimate SE p-value Estimate SE p-value
Indirect6 0.000903 0.000146, 0.002294 (Indirect6: BMI—>cg26552621—>cg04457572—> z-birth weight)
Indirect7 0.000167 0.000024, 0.000482 (Indirect7: BMI—> cg19242268—> cg26552621—>cg04457572—> z-birth

weight)

Parallel multiple mediator model—robust bootstrap approach

Pathway Indirect effects Direct effect Total effect
Estimate 95% Cl Estimate SE p-value Estimate SE p-value
Total indirect 0.0102 0.0041,0.0177 0.0232 0.009 0.009 0.0334 0.009 0.0002
cg17040807 0.0015 —0.00009, 0.0051
€g19242268 0.0027 0.0004, 0.0068
€g26552621 0.0015 —0.0003, 0.0052
cg04457572 0.0026 0.0004, 0.0072
cg06457011 0.0019 —0.0001, 0.0061
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Fig. 2 Single mediator models as per the robust bootstrapped approach with candidate CpG sites as mediators of the association between GWG
and offspring’s z-birth weight. Significant pathways are drawn in orange while non-significant pathways are drawn in blue. Red text indicates
coefficients of significant pathways, their standard errors, p-values, and 95% confidence intervals. Black text indicates those values in non-significant
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support for its involvement as an important epigenetic
mediator of weight.

Another CpG of interest was cgl4798382 which
mapped to the CHERP (calcium homeostasis ER pro-
tein) gene, previously shown to be involved in cellu-
lar growth and proliferation through the regulation

of calcium homeostasis [35]. In another study which
aimed to identify genes associated with nonalcoholic
fatty liver disease, CHERP was shown to be strongly
downregulated in afflicted individuals [36], but not
much is known about its potential involvement in dis-
ease development so far.
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Table 5 Annotated details of the CpG sites selected as mediators of the association between gestational weight gain/maternal BMI at
the beginning of pregnancy and offspring’s standardized birth weight

CpG site Exposure(s) CHR Position Gene Gene region Relation to island
cg14798382 GWG chr19 16,629,806 CHERP; C190rf44 3'UTR N_Shore
€g19242268 GWG & BMI chr20 62,688,573 TCEA2 1st Exon; 5'UTR Island

€g21516291 GWG chr20 44,979,100 SLC35C2 Body OpenSea
cg08461903 GWG chr21 45,884,825 - - S_Shore
cg17040807 BMI chr17 74,533,282 CYGB Body Island

€g26552621 BMI chr19 1,271,019 C190rf23; CIRBP TSS 1500; Body S_Shore
cg04457572 BMI chr10 73,303,234 CDH23 Body OpenSea
cg06457011 BMI chr20 39,767,490 PLCG1 Body S_Shore

BMI body mass index, GWG gestational weight gain, CHR chromosome

Other CpGs of interest were situated in the genes
SLC35C2 (cg21516291), CYGB (cgl7040807), CIRBP
(cg26552621) and PCLGI (cg06457011). The SCL35C2
gene regulates glycosylation—an essential post-transla-
tional modification process important for multiple bio-
logical processes, including embryonic development [37].
CYGB is essential for regulation of adipogenesis, inflam-
mation, blood pressure, and oxidative stress response [38,
39], CIRBP is involved in regulation of glucose metabo-
lism, adipose tissue function, and inflammation [40, 41]
and finally, PLCG1 is involved in insulin signaling, leptin
signaling, and the regulation of adipose tissue functions
[42]. Taken together, mediatory CpG sites found by the
present study are situated close to multiple genes capa-
ble of elevating an individual’s obesogenic risk through
diverse functional pathways.

Furthermore, consistent findings from existing lit-
erature on the EWAS Catalog [31] add to the biologi-
cally plausibility. A multi-ancestry meta-analysis of
epigenome-wide association studies revealed that three
mediators identified by the present study (cg19242268
in TCEA2, cg21516291 in SLC35C2, and cgl17040807
in CYGB) are all previously identified DNA methyla-
tion markers of birth weight [43]. Meanwhile, a previous
EWAS reported that seven of the methylation mediators
revealed by the current study (cg19242268, cg21516291,
€g26552621, ¢g04457572, cg06457011, cgl4798382,
cg08461903) associate with childhood growth trajec-
tories from birth to late adolescence [44]. Moreover,
two mediators in the present study (cg21516291 and
cg04457572) were identified as epigenetic markers of
incident type 2 diabetes by another EWAS [45]. These
findings from previous EWAS studies bolster the credible
link between the CpG mediators identified through the
present analysis and obesity phenotypes.

Interestingly, an integrated methylome- and phenome-
wide assessment of the circulating proteome revealed
the associations of ¢g26552621 in CIRB2 (identified as

an epigenetic mediator in the present study) with obe-
sogenic NOG protein levels and ¢g04457572 in CDH23
(another epigenetic mediator in the present study) with
ADIPOQ protein/adiponectin levels which regulate fat
metabolism and insulin sensitivity [46]. Moreover, an
integrative cross-omics analysis of DNA methylation sites
of glucose and insulin homeostasis found that a third
epigenetic mediator of the current study, cg06457011 in
PLCGI was associated with fasting insulin while differ-
ential methylation explained at least 16.9% of the asso-
ciation between obesity and insulin [47]. Some of these
obesity-associated methylation signatures have been
robustly replicated across cohorts [43]. The discovery of
¢g19242268 as a mediator with respect to both maternal
BMI and GWG is intriguing. Notably, cg19242268 is also
associated with birthweight as per previous EWASs [34].
Our findings may allude to an important epigenetic sig-
nal and further investigations are warranted.

As per EWAS Atlas [32], two of the CpG mediators
(cg19242268 in the TCEA2 gene and ¢g21516291 in the
SLC35C2 gene) are hypermethylated in relation to birth-
weight. In tandem, EWAS Catalog [31] revealed both are
positively associated with birthweight (Supplementary
material 10). As revealed by high-dimensional media-
tion analyses, mediation pathways of cg14798382 (GWG
— ¢g14798382 and cgl14798382 — z-birthweight) were
positive (Supplementary material 6), indicating potential
hypermethylation and downregulation of CHERP/CI9
orf44. However, we note the presence of inconsistencies
in the direction and correlation/association of methyla-
tion for the same phenotype reported by different EWAS
studies. Therefore, caution is warranted when interpret-
ing findings related to hypermethylation or hypometh-
ylation, and further research is needed to confirm their
effects and their directional impact.

Previous large-scale observational epidemiological
studies have linked maternal obesity with large-for-ges-
tational-age offspring [48, 49] and suggested a potential
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causal relationship [50] and several of the methylation
sites identified in our study have been connected to birth
weight, obesity, and diabetes. For instance, as per EWAS
Catalog [31], a previous EWAS revealed that cg19242268
and cg21516291 are positively associated with birth-
weight whereas cg17040807 is negatively associated with
birthweight [42] (Supplementary material 10). However,
information on mediatory pathways have been lacking.
Using both robust regression-based and OLS regression-
based multiple mediation analyses we have been able
to unravel potentially causally linked and causally inde-
pendent mediatory pathways involving multiple methyla-
tion sites. We thus provide suggestive evidence that the
methylation sites may exert their mediatory effects indi-
vidually as well as concomitantly via complex pathways.
These statistically intuitive findings together with exist-
ing literature shed light on the complex nature of epige-
netic mediation that may underlie later health effects in
the offspring highlighting epigenetic mediation as a likely
mechanism contributing to intergenerational obesity.

The present study adopted a comprehensive analytic
pipeline. It comprised the application of multiple topical
high-dimensional mediation methods followed by both
OLS- and robust classical mediation analyses and the
evaluation of single as well as multiple mediatory mod-
els. High-dimensional mediation methods are especially
amenable to DNA methylation data as revealed by previ-
ous birth cohort studies yielding novel findings [28, 29,
51].

According to our knowledge, this is the first and the
largest prospective birth cohort study in a Northern
European setting to unravel the epigenetically mediated
association of two obesogenic maternal lifestyle mark-
ers in pregnancy with children’s birth weight. A previous
birth cohort study provided some evidence of epigenet-
ics being involved in the intergenerational risk of obesity,
however, their study population consisted of a predomi-
nantly urban, low-income ethnic minority and results
might therefore be difficult to generalize for other popu-
lations [52].

Our study also has imitations. Although, our sample is
of considerable size compared to most epigenetic studies
reported earlier, larger cohorts may be required to gain
more robust findings with higher statistical power. The
sample size in this study is noticeably large compared to
contemporary epigenetic mediation studies [53]. Sample
size or statistical power estimation methods for epige-
netic mediation assessment are sparse, still nascent with
no wide acceptance, and there is a lack of consensus on
a single, standard strategy. A recent study revealed that
for achieving a statistical power of 80% in causal media-
tion studies with small effect sizes, 413 samples would be
required to determine total indirect effects, when both
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mediator and outcome are continuous [54]. Notewor-
thily, most contemporary epigenetic mediation studies
have not performed formal sample size/statistical power
calculations [53].

The presence of residual confounding may have influ-
enced effect estimates, despite the inclusion of an array
of DAG-based covariates. The genetic heritability com-
ponent including the effect of maternal genetics on chil-
dren’s obesity is non-trivial [55] and could confound,
modulate, or interact with epigenetic effects or indepen-
dently associate with birthweight. Therefore, epigenetic
mediation is unlikely to fully explain the association
between maternal obesogenic traits and children’s birth-
weight, and other mediatory mechanisms are worthy
of being explored. For example, several CpG loci in our
study (cg19242268; cg08461903; cg06457011) associate
with SNPs, alluding to the possible influence of genetic
effects on DNA methylation (Supplementary material
10).

Since some of the identified CpGs are associated with
smoking, we reconducted all analyses omitting the two
smokers in the cohort, which did not change the findings.
We also note that all reported analyses were adjusted for
maternal smoking in pregnancy. Still, we acknowledge
that the cohort is homogeneous in terms of smoking,
as there were only two self-reported smokers, making
it impossible to assess the potential impact of smoking.
Since non-responders to the questionnaire on smoking
could be smokers or non-smokers, we did not exclude
them in our re-analyses, but a “sensitivity analysis” omit-
ting non-responders as well could have been informa-
tive. Exposure to secondhand smoking and thirdhand
smoking in non-smoking pregnant women could further
confound the associations. Therefore, confounding of
the effects by maternal exposure to smoking cannot be
entirely ruled out in the present study.

Socioeconomic status of participants was proxied
via their education level and the country of birth. We
acknowledge that these two covariates may not have fully
accounted for socioeconomic-driven confounding and
additional information such as income may have been
useful. Another limitation is that mothers participat-
ing in these studies are more often highly educated and
have higher incomes than mothers in the general popula-
tion, raising generalizability issues [56]. Our cohort was
relatively homogeneous with only 11 participants hav-
ing education lower than upper secondary level and a
majority born in Sweden. However, the NorthPop cohort
covers a large catchment area representing the whole
Visterbotten region and selective participation is unlikely
to have been a major issue.

Maternal BMI and GWG were only weakly correlated,
and revealed independent associations with children’s
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birthweight in our cohort, except in pregnant women
with obesity. While we did not conduct sub-analyses
among pregnant women with obesity, due to the smaller
sub-cohort size (N=90), future studies in this direction
may provide valuable insight. As methods for multiple
exposure-multiple mediator-single outcome models are
not widely available, and tend to be overly complex and
less intuitive, we did not conduct mediation analyses that
simultaneously incorporated both maternal exposures.

Significant results of our study pertain to maternal BMI
and GWG only, although ten maternal lifestyle factors
were assessed initially. Lack of statistical power to reveal
associations may be a possible explanation that other
maternal lifestyle factors did not achieve significance.
This warrants future analyses on larger samples. The
U-shaped relationship of birthweight with health out-
comes reported in previous literature [57, 58] might not
be apparent in our cohort given the likely under-sampling
of underweight pregnant women in the maternal cohort
and offsprings at the lower end of the birthweight spec-
trum. Of note, there were only 5 underweight (<18 kg/
m?) participants in the maternal cohort. Hence, associa-
tions of the present analysis could have been driven by an
overrepresentation of pregnant women with overweight/
obesity.

It should be noted that besides maternal genetics and
maternal lifestyle, there is mounting evidence that other
modifiable and non-modifiable factors also contribute
to intergenerational obesity. For example, a recent study
provided epidemiologic and functional evidence of pater-
nal contribution to offspring obesity and metabolic risk
mediated through changes in sperm, including epigenetic
modifications [59]. Modifiable factors such as paternal
diet and paternal smoking are also associated with off-
spring’s birthweight [59-61].

At present, genes associated with CpG mediators in
this study are not directly linked to obesity in the same
way as genes like MC4R or FTO. However, epigenetic
modifications affecting these genes can play a role in obe-
sity development by influencing how genes are turned on
or off in response to environmental factors like maternal
obesogenic lifestyle. Our findings highlight the neces-
sity for conducting future studies to unravel their role in
intergenerational obesity.

Causal inference cannot be drawn from observational
designs and future studies are recommended to validate
our findings. Furthermore, despite there being poten-
tial connections between birthweight and early child-
hood BMI trajectories the follow-up time in the current
study was too short to study such associations. However,
NorthPop aims to follow the included children until
at least 7 years of age, with data being collected at the
ages of 18 months, 3 years, and 7 years. With these data,
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weight trajectories of the offspring cohort will be ana-
lyzed in future studies. Since the temporal patterns of the
association might be complex and change as the offspring
grows, we will also investigate the potential epigenetic
mediation of BMI at different ages of the child.

Conclusions

We present new insights suggesting epigenetic factors
as mediators of associations between maternal lifestyle
and birthweight in this predominantly Northern Euro-
pean population. Our top findings include identification
of eight CpG sites that appear to mediate associations
between maternal characteristics (GWG and pregnancy
BMI) and children’s birth weight. The most notable meth-
ylation site was ¢g19242268 in TCEA2, as DNA meth-
ylation of this site was involved in mediation between
both characteristics and birth weight. Cord blood DNA
methylation surrounding this gene has also previously
been implicated as a marker of birth weight [34]. How-
ever, most importantly, we believe that our results may
increase the general understanding of intergenerational
inheritance of obesity and highlights the importance of
adhering to healthy lifestyle throughout the life span,
which could benefit potentially transcending generations.
Future studies are warranted to validate and elucidate the
functional mechanisms.
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