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Epigenetic mediation may explain 
intergenerational associations 
between maternal obesogenic lifestyle 
and children’s birth weight: findings 
from the NorthPop prospective birth cohort
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Abstract 

Background  Epigenetic alterations during fetal development have been proposed as key factors explaining 
associations between maternal lifestyle during pregnancy and later health outcomes in the offspring, pertaining 
to the developmental origin of health and disease hypothesis.

Objectives  To assess the association of maternal lifestyle with offsprings’ birth weight and underlying epigenetic 
mediatory mechanisms in the NorthPop prospective birth cohort.

Methods  A three-step analytic pipeline was applied. In 722 mother–child pairs, overall associations between ten 
maternal lifestyle factors and the offspring’s standardized birth weight were first evaluated by multiple linear regres‑
sion. Three high-dimensional mediation methods, based on sure independence screening and penalized regression, 
were then applied on the beta methylation matrix to identify candidate CpG mediators in cord blood driving the sig‑
nificant overall associations. Finally, robust and ordinary least squares (OLS) regression-based classical mediation 
methods were used with candidate CpG probes to assess single- and multiple (parallel and serial)-mediator models 
on a low-dimensional space.

Results  Gestational weight gain (GWG) (β-adj = 0.03; p = 2 × 10–5) and maternal BMI at the beginning of preg‑
nancy (β-adj = 0.036; p = 1 × 10–4) were significantly associated with the offspring’s standardized birth weight. High-
dimensional mediation analyses identified pooled sets of four (cg19242268 [TCEA2]; cg08461903 [N/A]; cg14798382 
[CHERP/C19orf44] and cg21516291 [SLC35C2]) and five (cg17040807 [CYGB]; cg19242268 [TCEA2]; cg26552621 [CIRBP]; 
cg04457572 [CDH23] and cg06457011 [PLCG1]) candidate CpG mediators related to GWG and BMI at the beginning 
of pregnancy, respectively. For both exposures, classical mediation analyses revealed a range of significant single- 
and multiple (both serial and parallel)-mediator models via both robust and OLS regression based approaches. These 
indicated the likely presence of individual, causally linked multiple, and causally independent multiple mediatory 
pathways underlying the two significant overall associations.
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Introduction
Epidemiological studies that lend support for the impact 
of maternal lifestyle on offspring’s life course health are 
mounting [1–3]. Historical cohorts have indicated inter-
generational transmission of adverse health outcomes 
from pregnant women exposed to extreme conditions 
such as famines [4, 5]. Current epidemiological evidence 
suggests that a broad spectrum of maternal lifestyle fac-
tors including diet, sedentary behavior, smoking, alcohol 
consumption, and obesity may have long lasting effects 
on the offspring’s health [1–3, 6, 7]. For example, mater-
nal smoking during pregnancy may influence fetal devel-
opment through mechanisms including in utero hypoxia, 
nicotine-induced uteroplacental blood flow diminution, 
and placental toxicity [8] while maternal obesity could 
increase the risk of childhood obesity and overall cardio-
metabolic health [1–5]. Maternal diet during pregnancy 
likely affects nutrient availability to the fetus, whereas 
regular physical activity during pregnancy may optimize 
maternal health through mechanisms such as blood 
glucose homeostasis, healthy weight management, and 
enhanced cardiovascular fitness, leading to improved 
fetoplacental circulation and reduced risk of preterm 
birth [6, 7].

Birth weight is a multifaceted indicator of neonatal 
health reflecting the prenatal environment, nutritional 
status, fetal growth, and potential risks for both imme-
diate and long-term health outcomes [9, 10]. Low birth 
weight is known to increase perinatal morbidity and 
mortality and is associated to poor cardiometabolic 
health in adulthood [11]. On the other hand, higher 
birth weights have been linked to elevated risks of obe-
sity and type 2 diabetes later in life [12]. Notably, mater-
nal behaviors such as diet, smoking, stress, and physical 
activity have also been associated with offspring’s birth 
weight [9]. It should be noted that in addition to mater-
nal lifestyle, other factors such as maternal genetics [13] 
and paternal lifestyle [14] are also likely to contribute to 
later childhood obesity. While DNA methylation is so far 
the most thoroughly studied mechanism linking lifestyle 
and exposures during fetal life to later phenotypes, other 
epigenetic alterations such as histone modifications and 
non-coding RNA-associated gene silencing are likely to 
be of equal, or maybe even higher importance. Future 
efforts to decouple such mechanisms will likely aid our 

understanding of the generational effects of modifiable 
exposures in pregnancy [15].

Although mechanisms are still poorly understood, the 
link between maternal lifestyle and offsprings’ health out-
comes is thought to be, at least partly, driven by devel-
opmental programming mediated through epigenetic 
modifications [16]. The concept of developmental pro-
gramming is underpinned by heightened sensitivity of 
the developing fetus and the intrauterine environment 
to external stressors. Maternal metabolic disruptions 
may induce sustained genetic, phenotypic, and physi-
ologic adaptations in the developing fetus, leading to 
lasting effects on its future health postnatally [17]. Epige-
netic modifications, which entail the modulation of gene 
expression without altering the original DNA sequence, 
encompass multiple mechanisms including, histone acet-
ylation, RNA modifications and DNA methylation. In 
epidemiological studies, DNA methylation is the mecha-
nism that has been most thoroughly studied as it can be 
readily assessed at a large scale and previous work has 
supported the theory of epigenetics providing a modifi-
able link between maternal lifestyle and childhood health 
risks. One example includes a lifestyle intervention in 
pregnant women with obesity which was found to impact 
cord blood DNA methylation, which also associated 
to body composition in the offspring [18]. The primary 
aim of the current study was therefore to assess asso-
ciations between maternal lifestyle and offsprings’ birth 
weight and evaluate underlying epigenetic mediatory 
mechanisms. The rationale was that a stepwise approach 
would be highly suited to this, and we proceeded with 
the following analytical pipeline: First, investigate which 
maternal exposures are linked to offspring birthweight, 
and which covariates are relevant for these associations. 
Next, assess the CpGs that act as mediators of these asso-
ciations. Last, examine the specific roles of these media-
tory CpGs in the association between maternal exposures 
and children’s birthweight.

Materials and methods
Study population
The NorthPop Birth Cohort Study (NorthPop) is an 
ongoing population-based, prospective birth cohort 
conducted in Västerbotten county, Northern Sweden 
[19]. It includes an extensive longitudinal database and 

Conclusions  Our findings support the hypothesis that neonatal health effects related to maternal lifestyle may be 
partly mediated by epigenetic alterations. Findings also suggest the possible involvement of multiple DNA methyla‑
tion sites via various mediatory pathways.
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a biobank. NorthPop aims to include 10,000 pregnant 
women and follow their children through birth until 
7  years of age (https://​www.​umu.​se/​en/​resea​rch/​infra​
struc​ture/​north​pop/). With prospectively collected, life-
style-related information of pregnant women, epigenetic 
measures in cord blood, and follow-up information of 
children at birth being available, the NorthPop cohort 
provides a unique opportunity to assess not only the 
association between maternal lifestyle and the offspring’s 
health but also associated putative epigenetic mediatory 
mechanisms.

Study sample
A sample of 722 mother–child pairs from the NorthPop 
cohort, with cord blood DNA methylation measured at 
birth, were included in this study. Participating moth-
ers were selected based on previous parity (primipara 
single-birth mothers or multiparous twin or triplet moth-
ers) and sample availability. Eligible pregnant women 
were recruited during the years 2016–2020, from the 
University Hospital of Umeå catchment area at the time 
of their routine ultrasound examination at gestational 
week 14–24. Informed consent was given by all partici-
pating women and their partner. Web-based question-
naires were administered to the participating women at 
multiple times during and after the pregnancy. The first 
questionnaire was administered during gestational week 
14–24, to collect information on socioeconomic status 
and medical history. Details on lifestyle during pregnancy 
including diet, physical activity, and stress, were collected 
through questionnaires provided at gestational week 
26–34. Questions about the woman’s health during preg-
nancy and the health of the newborn were included in 
a questionnaire sent four months postpartum. Informa-
tion on maternal education level and country of birth was 
available to be used as proxy measures of participants’ 
socioeconomic status.

Exposures and outcome
Ten maternal lifestyle-related exposures were originally 
included in the study, with details provided in Supple-
mentary material 1. These comprised physical activity, 
stress, six different diet-related exposures, gestational 
weight gain (GWG) and body mass index (BMI) at the 
beginning of pregnancy (Table  1). The outcome, birth 
weight, was obtained from The Swedish Pregnancy Reg-
ister [20] and standardized using the latest published 
intrauterine growth reference ranges for estimated fetal 
weight applicable to Sweden [21].

DNA methylation data
Cord blood buffy coat DNA samples from the children 
were bisulphite treated and analyzed for methylation 

using the Infinium MethylationEPIC BeadChip (Illu-
mina) 850  k v1.0. DNA quality control, pre-processing, 
processing, and output data quality control were per-
formed at the SNP&SEQ Technology Platform, Uppsala, 
Sweden, part of the National Genomics Infrastructure 
(NGI) Sweden and Science for Life Laboratory.

The methodological workflow consisted of three steps 
as outlined below and presented in Fig. 1.

Step 1 We applied multiple linear regression to assess 
overall associations between ten maternal lifestyle-
related exposures and offsprings’ standardized birth 
weight. Directed acyclic graphs (DAGs) were drawn 
a priori to determine covariates to be included in the 
analysis of each exposure-outcome association, using 
the “dagitty” R package [22]. Based on DAGs, the multi-
ple regression modelling the association between mater-
nal BMI at the beginning of pregnancy and standardized 
birth weight was adjusted for maternal age, maternal 
education, maternal country of birth, and maternal 
smoking during pregnancy. The remaining overall asso-
ciation analyses were adjusted for maternal age, maternal 
BMI at the beginning of pregnancy, maternal education, 
maternal country of birth, and maternal smoking during 
pregnancy. Missing data were excluded from the multiple 
regression analyses. The maternal exposures significantly 
associated with offsprings’ standardized birth weight as 
per Step 1, were the focus in subsequent downstream 
analyses.

As a supplementary analysis, we also assessed mater-
nal BMI-GWG correlations and associations of mater-
nal BMI and GWG with z-birthweight of children in 
the entire cohort as well as sub-cohorts of obesity, obe-
sity + overweight, overweight, and normal weight.

Step 2 An account of the methylation data processing 
and the analytic pipeline is provided in Supplementary 
material 2. A DNA methylation matrix with beta values 
produced by the processing pipeline detailed in Sup-
plementary material 2 was used for high-dimensional 
mediation analyses in Step 2. We applied three high-
dimensional mediation methods amenable for DNA 
methylation data to identify candidate CpG mediators 
that drive the significant overall associations observed 
in Step 1. These methods represent recent develop-
ments in epigenetic mediation analysis which strive to 
overcome high-dimensionality by a two-step proce-
dure. Briefly, the initial sure independence screening 
(SIS) step is followed by a subsequent variable selection 
step to further reduce dimensions. The ultimate statisti-
cal testing is performed on a low-dimensional feature 
space which has both survived SIS (in step i) and filter-
ing by the subsequent feature selection step (in step ii) 
to determine significant mediators [23]. All three meth-
ods entail some form of penalized regression to estimate 

https://www.umu.se/en/research/infrastructure/northpop/
https://www.umu.se/en/research/infrastructure/northpop/
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Table 1  General characteristics of maternal- and offspring samples in the NorthPop prospective birth cohort analyzed in the present 
study

a Reported as mean (SD) unless otherwise specified
b Mother’s age at delivery
c Validated questionnaire-based index
d Score < 11 is ‘less’, score ≥ 11 is ‘more
e Based on the General Health Questionnaire—12 items (GHQ-12)
f Score ≥ 3 is ‘Yes’, score < 3 is ‘No’
g Based on 40 food items
h Based on 40 food items and adjusted for total energy intake
i Based on 30 of the 45 food items used in the original study

Maternal cohort Offspring cohort

Characteristica N = 702 Characteristica N = 722

Maternal age (years)b 29.9 (4.1) Birth weight (grams) 3449 (526.2)

Previous parity Standardized birth weight (z-score) − 0.42 (0.04)

 0 682 Birth length (cm) 50.0 (2.3)

 > = 1 20 Gestational age at birth (weeks) 39.8 (1.7)

Physical activityc,d 9.4 (4.1) Apgar

 Less, n 434  1-min score 8.4 (1.4)

 More, n 227  5-min score 9.0 (0.9)

 Missing 41  10-min score 9.4 (0.7)

Stresse,f 1.9 (2.4)  Missing

 No, n 515 Sex, n

 Yes, n 168  Female 334

 Missing, n 19  Male 388

DDSg 20.7 (5.3) Delivery Mode, n

DDS-eadjh 21.8 (4.7)  Vaginal 610

DIIi − 1.2 (1.9)  Cesarean 112

MDSj 4.5 (1.7) Year of birth, n

HNFIk 2.5 (1.4)  2016 41

Total energy intake (kcal/d) 2275 (777)  2017 183

Dietary CO2 e/DCP 1560.9 (1023.7)  2018 240

GWG​l(kg) 15.2 (5.6)  2019 180

BMIm (kg/m2) 24.5 (4.1)  2020 78

  < 18, n 5

 18–24.9, n 439

 > = 25, n 238

 Missing 20

Smokingn, n

 No 681

 Yes 2

 Missing 19

Country of birtho, n

 Sweden 630

 Other 62

 Missing 10

Educational levelo, n

 9 year primary school 11

 Upper secondary education 164

 University or university college 516

 Missing 11
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mediator-specific contributions [23]. Of these, the 
“HDMA” [24] and “HIMA” [25] methods were deployed 
using the “HDMED” R package [23] while the “HIMA2” 
[26] method was deployed through the “HIMA” R pack-
age [25].

In order for the paper to be self-explanatory, we 
describe the three high-dimensional mediation methods 
used, including their methodological similarities and dif-
ferences, with further statistical information available in 
Supplementary material 3.

SIS: This is a method to address high-dimensional-
ity challenge by first screening the variables based on 
their marginal correlation with the response variable. 
Variables are ranked based on their marginal correla-
tions and a subset of the top-ranked variables based 
on a specified threshold is selected for further analysis. 
SIS reduces the dimensionality from a high amount to 

a moderate size, where it is typically chosen to be less 
than the sample size. The key feature of SIS is its "sure 
screening" property, meaning that it is designed to 
retain all the important variables with high probability. 
This is crucial for ensuring that the subsequent variable 
selection process focuses on the most relevant features. 
Methodological information of SIS has been previously 
published [27].

1.	 HDMA: In the first feature reduction step, HDMA 
conducts SIS to determine the number of mediators 
that are most associated with the outcome (in case of 
a continuous response variable) or the exposure (in 
case of a categorical response variable). This initial 
screening selects features based on p-values from lin-
ear regression. In the second step of feature reduc-

j An adapted version based on 8 food items
k Based on 6 food groups typically consumed in Nordic countries
l Self-reported at 4 months postpartum, in kg
m Calculated at the beginning of pregnancy
n Self-reported at gestational age 26 weeks
o Self-reported at gestational age 14–24 weeks

BMI body mass index, DDS diet diversity score, Dietary CO2 e/DCP dietary CO2 emission/dietary carbon footprint, DII diet inflammatory index, GDM gestational 
diabetes mellitus, GWG​ gestational weight gain, HNFI healthy Nordi food index, IQR inter-quartile range, MDS mediterranean diet score, NA number of missing data, 
SD standard deviation

Table 1  (continued)

Fig. 1  Study workflow
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tion, the outcome model is fitted for the remaining 
mediators using de-sparsified/de-biased LASSO. 
Next, mediator models are fitted using linear regres-
sion among those mediators that have both sur-
vived SIS (in step i) and been identified by de-biased 
LASSO (in step ii), obtaining p-values for mediation 
contributions by taking the maximum of αa (coef-
ficient estimate of the exposure – > mediator asso-
ciation) and βm (coefficient estimate of the mediator 
– > outcome association adjusted for exposure) p-val-
ues. Mediation contributions of individual mediators 
are summed up to estimate the global indirect effect 
while the direct effect is equivalent to the difference 
between the total effect and the global indirect effect. 
Details of the HDMA method have been published 
elsewhere [24].

2.	 HIMA: The first step in HIMA is identical to HDMA 
i.e., SIS to choose mediators that are most associated 
with the outcome (when the outcome variable is con-
tinuous) or the exposure (when the outcome variable 
is categorical) based on p-values from linear regres-
sion. Minimax concave penalty (MCP) is used in the 
second step to fit the outcome model for the remain-
ing mediators. Next, mediator models are fitted using 
linear regression among those mediators that have 
both survived SIS (in step i) and been selected by the 
MCP (in step ii), to determine mediation contribu-
tions. Corresponding p-values for mediation contri-
butions are estimated in the same way as HDMA, by 
taking the maximum of αa and βm p-values. Multiple 
testing correction is applied to p-values to obtain the 
ultimate set of statistically significant mediators. The 
global indirect effect and the direct effect are also 
enumerated similarly to the HDMA method. The 
HIMA method is detailed elsewhere [25]

3.	 HIMA2: Identical to HDMA in terms of SIS (Step i) 
and de-biased LASSO (Step ii). The difference is that 
HIMA 2 applies a less conservative multiple test-
ing correction for the joint significance test p-values 
termed “joint significance mixture” approach con-
trary to “joint significance uniform” approach used 
in HIMA, aiming to more efficiently detect active 
mediators. The HIMA2 methodology is elaborated 
elsewhere [26].

Given the similarities across the three methods, they 
are in fact categorized within a single group of “penalized 
regression to estimate mediator-specific contributions” 
in a study on high-dimensional epigenetic mediation 
methods [23]. The primary difference between HDMA 
and HIMA is the penalty function; HDMA uses more-
recently introduced de-sparsified/de-biased LASSO 
whereas HIMA applies MCP. Compared to HIMA, 

advantages of HDMA include its ability to fit and test 
multiple mediators in one regression model and superior 
handling of correlations between methylation sites due to 
de-sparsifying strategy. Compared to HIMA, strengths of 
HIMA2 include more accurate SIS screening taking into 
account both αa and βm, and less conservative false dis-
covery rate (FDR) control.

As customarily performed in previous studies [24, 26, 
28, 29], we assessed several high-dimensional mediation 
methods instead of a single method, as there is no gold 
standard at present [23, 28]. Notably, this multi-algorith-
mic approach in previous studies has yielded comple-
mentary results, identifying both overlapping CpGs and 
unique methylation loci [24, 26, 28, 29]. This could be 
attributed to aforementioned methodological similarities 
and differences between HDMA, HIMA, and HIMA2.

Covariates determined by DAGs and cord blood cell 
type proportion estimates were included in all high-
dimensional mediation analyses. An FDR adjusted 
p-value threshold < 0.05 was applied to further filter the 
set of CpG sites selected by each high-dimensional medi-
ation method and determine candidate CpG mediators. 
Findings from each method were merged to produce the 
pooled set of candidate CpG mediators. Classical media-
tion analyses were performed on these candidate CpG 
mediators in Step 3.

Step 3 Typically, mediation analysis entails a series of 
linear regressions whereby indirect effects are enumer-
ated as products of regression coefficients and their sta-
tistical significance is determined by a bootstrap test 
based on ordinary least-squares (OLS) estimates. The 
OLS-regression-based test is sensitive to deviations 
from normality assumptions or the presence of outliers 
hindering empirical testing of mediation mechanisms. 
In contrast, robust regression-based mediation is resist-
ant to deviations such as outliers or skewed distribu-
tions, which utilizes the robust MM-regression estimator 
instead of the OLS estimator for regression. In order to 
get a comprehensive understanding of causal mediatory 
pathways and compare results between the two methods, 
we assessed epigenetic mediation on a low-dimensional 
space via both robust-regression based bootstrap method 
and OLS-regression-based bootstrap method using the 
‘robmed’ R package [30]. DNA methylation beta values 
of the candidate CpG mediators produced by the pro-
cessing pipeline detailed in Supplementary material 2 
was used for classical mediation analyses in Step 3. With 
respect to each significant overall association identified 
in Step 1, we analyzed single mediator models, multiple 
serial mediator models (assuming causal dependence 
between multiple mediators), and parallel mediator mod-
els (assuming causal independence between multiple 
mediators). All analyses were adjusted for DAG-based 
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covariates. As the number of mediatory pathways com-
binatorially increase in serial models quickly growing in 
complexity, the ‘robmed’ package allows only a maximum 
of three mediators in serial multiple mediation analyses. 
We determined the three CpG mediators to be included 
in serial mediation analyses, based on the results from 
single mediation assessments.

Finally, we searched the CpG mediators identified by 
the present study on several databases in order to obtain 
biological insights. These included the MRC-IEU catalog 
of epigenome-wide association studies (EWAS Catalog) 
[31] and the EWAS Atlas [32] to uncover any consist-
ent findings reported in previous studies, the EPIGEN 
MeQTL Database (https://​epicm​eqtl.​kcl.​ac.​uk/) to exam-
ine associated genetic variants, and the eFORGE TF [33] 
to identify overlapping with known transcription bind-
ing-sites to regulate gene expression.

Results
General characteristics of the maternal—offspring paired 
cohorts, including maternal exposures and standardized 
birthweight of offsprings, analyzed in the present study 
are summarized in Table 1. Body composition of the off-
spring measured as z-birthweight and birth length are 
reported (Table 1).

Step 1 Associations between maternal exposures and 
offspring’s birthweight.

Results from DAGs analysis that determined the covar-
iates to be included in overall association analyses are 
presented in Supplementary material 4. In the adjusted 
linear regression models, two maternal lifestyle markers, 

gestational weight gain (GWG) and BMI at the begin-
ning of pregnancy, were significantly associated with 
offspring’s standardized birth weight (βGWG​ = 0.03; 95% 
CI 0.02–0.04 and βBMI = 0.036; 95% CI 0.019–0.054) 
(Table 2).

Maternal BMI-GWG correlations and their multivari-
able associations with children’s z-birthweight are sum-
marized in Supplementary material 5. Maternal BMI at 
the beginning of pregnancy and GWG were positively 
correlated, albeit weakly, in the entire cohort and in the 
normal weight sub-cohort. In obesity, obesity + over-
weight, and overweight sub-cohorts, the correlations 
were negative, albeit weak. The inclusion of these mater-
nal exposures did not substantially change their signifi-
cant associations with children’s z-birthweight, except 
in the sub-cohort of women with obesity in which only 
GWG remained significant when both maternal BMI 
and GWG were included. Both these maternal exposures 
remained independently associated with z-birthweight 
in the full cohort and all sub-cohorts except in pregnant 
women with obesity.

The original EPIC array had 862,452 CpG probes, after 
the quality control steps detailed in Supplementary mate-
rial 2 were performed, 755,671 unique CpG probes were 
retained for interrogation.

Step 2 High-dimensional epigenetic mediation analysis.
The HDMA method identified 21 CpG sites medi-

ating the association between GWG and offspring’s 
standardized birth weight, four of which (cg19242268; 
cg08461903; cg14798382; cg21516291) passed an FDR 
adjusted threshold of 0.05 and were selected as candidate 

Table 2  Overall associations between maternal lifestyle markers and offspring’s standardized birth weight in the NorthPop 
prospective birth cohort as per simple- and multiple- linear regression

a Adjusted for maternal age, maternal BMI at the beginning of pregnancy, maternal education, maternal country of birth, maternal smoking during pregnancy
b Adjusted for maternal age, maternal education, maternal country of birth, maternal smoking during pregnancy

BMI body mass index, CI confidence interval, GWG​ gestational weight gain, β-adj effect size measured as the multiple linear regression coefficient, β-unadj effect size 
measured as the simple linear regression coefficient

Maternal lifestyle factor β-unadj 95% CI of β-unadj p-value β-adj 95% CI of β-adj p-value

GWG​a 0.034 0.021 to 0.047 6e−07 0.031 0.021 to 0.042 2e−05
Physical activity (continuous)a − 0.0011 − 0.0187 to 0.0167 0.91 − 0.0009 − 0.0192 to 0.0178 0.92

More physical activity (Ref. = Less)a − 0.026 − 0.179 to 0.127 0.74 0.021 − 0.134 to 0.176 0.79

BMI at the beginning of pregnancyb 0.039 0.02 to 0.055 3e−05 0.036 0.019 to 0.054 1e−04
Total energy intakea 0.00003 − 0.00007 to 0.00011 0.58 0.00005 − 0.00004 to 0.00014 0.28

Stress (continuous)a 0.017 − 0.013 to 0.047 0.27 0.007 − 0.024 to 0.039 0.65

More stress (Ref = Less)a 0.027 − 0.138 to 0.193 0.75 − 0.026 − 0.196 to 0.143 0.76

Diet diversity scorea 0.003 − 0.011 to 0.017 0.69 0.009 − 0.005 to 0.023 0.22

Dietary CO2 emission/carbon footprinta 0.00001 − 0.00006 to 0.00008 0.69 0.000008 − 0.00006 to 0.00008 0.83

Diet inflammatory indexa 0.025 − 0.013 to 0.063 0.20 0.007 − 0.032 to 0.046 0.73

Mediterranean diet scorea − 0.038 − 0.081 to 0.005 0.09 − 0.017 − 0.062 to 0.027 0.45

Healthy Nordic food indexa 0.022 − 0.03 to 0.075 0.40 0.042 − 0.011 to 0.096 0.12

https://epicmeqtl.kcl.ac.uk/
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CpG sites for classical causal mediation analysis. The 
HIMA method derived a set of 24 CpG sites mediating 
the association between GWG and offspring’s standard-
ized birth weight, 3 of which (cg19242268; cg08461903; 
cg21516291) passed the FDR-adjusted threshold of 0.05 
and were selected as candidate CpG sites for classical 
causal mediation analysis. Finally, the HIMA2 method 
also identified 24 CpG sites as mediating the association 
between GWG and the offsprings’ standardized birth 
weight, 2 of which (cg19242268; cg08461903) passed the 
FDR-adjusted threshold of 0.05 and were selected for 
classical causal mediation analysis. The pooled set of four 
candidate CpG sites eligible for classical mediation analy-
sis of the association between GWG and the offspring’s 
standardized birth weight included the same four CpG 
sites as captured by the HDMA method (cg19242268; 
cg08461903; cg14798382 and cg21516291) (Table 3; Sup-
plementary material 6).

The same methods were used to identify CpG sites 
mediating the association between maternal BMI at the 
beginning of pregnancy and the offspring’s standardized 
birth weight. The HIMA, HDMA, and HIMA2 methods 
yielded 24, 25, and 24 CpG mediatory sites, respectively. 
Of these, both HDMA and HIMA output comprised 
the same subset of 5 candidate CpG sites that passed 
the FDR-adjusted threshold of 0.05 and were selected 
for classical causal mediation analysis (cg17040807; 
cg19242268; cg26552621; cg04457572; cg06457011) 
(Table 3; Supplementary material 6).

Step 3 Low-dimensional epigenetic mediation analysis.
Two robust regression-based single mediator models 

(cg19242268; cg14798382) (Table 4; Fig. 2) and three OLS 
regression-based single mediator models (cg19242268; 
cg14798382; cg08461903) (Supplementary material 7; 
Supplementary material 8) examining the association 
between GWG and offspring’s standardized birth weight 
were significant. All three CpG sites were also identified 
by the high-dimensional mediation analyses described 
above and included in multiple mediator models.

When examining serial multiple mediation in relation 
to the GWG-z-birthweight association, we identified sev-
eral significant indirect pathways, two in robust regres-
sion-based serial models (cg19242268; cg14798382) 
(Table  4; Fig.  3) and five in OLS regression-based serial 
models (cg19242268; cg08461903; cg14798382; GWG → 
cg19242268 → cg14798382 → z-birth weight; GWG → 
cg08461903 → cg14798382 → z-birth weight) (Supple-
mentary material 7; Supplementary material 8).

Robust parallel multiple mediation of GWG’s asso-
ciation with offspring’s standardized birth weight 
revealed two significant indirect pathways (cg19242268 
and cg14798382) (Table  4; Fig.  4), whereas OLS paral-
lel multiple mediation of the same association found 

three indirect pathways (cg19242268; cg08461903; 
cg14798382) (Supplementary material 7; Supplementary 
material 8).

Three robust single mediator models (cg19242268: 
cg26552621; cg04457572) (Table 4) and all five OLS single 
mediator models (cg17040807; cg19242268; cg26552621; 
cg04457572; cg06457011) examining the association 
between maternal BMI and offspring’s standardized birth 
weight were significant (Supplementary material 7; Sup-
plementary material 8). The three significant CpG sites 
in robust single mediator models were included in serial 
multiple mediation analysis.

In relation to maternal BMI-children’s z-birthweight 
association, we observed several significant indirect path-
ways as per serial multiple mediation, five robust path-
ways (cg19242268; cg26552621; BMI → cg19242268 → 
cg26552621 → z-birth weight; BMI → cg26552621 → 
cg04457572 → z-birth weight; BMI → cg19242268 → 
cg26552621 → cg04457572 → z-birth weight) (Table  4) 
and six OLS pathways (cg19242268; cg26552621; 
cg04457572; BMI → cg19242268 → cg26552621 → 
z-birth weight; BMI → cg26552621 → cg04457572 → 
z-birth weight; BMI → cg19242268 → cg26552621 → 
cg04457572 → z-birth weight) (Supplementary material 
7; Supplementary material 8).

In contrast, parallel robust multiple mediation 
revealed two significant indirect pathways (cg19242268; 
cg04457572) (Table 4) while OLS multiple parallel medi-
ation found three significant pathways (cg19242268; 
cg04457572; cg06457011) (Supplementary material 7; 
Supplementary material 8) for the association between 
maternal BMI and offspring’s standardized birthweight.

In total, eight CpG sites were selected as potential 
mediators of associations between GWG or pregnancy 
BMI and birth weight (Table 5). Previous studies on the 
association of candidate CpG sites with markers of obe-
sity found on the EWAS Catalog are summarized in 
Supplementary material 9. A single candidate CpG site, 
namely, cg19242268 was found to mediate both signifi-
cant overall associations, emerging significant in all sin-
gle- and multiple- mediator models.

We present findings on the direction of effects, correla-
tions, and associations as reported on EWAS Catalog and 
EWAS Atlas from previous studies in relation to methyla-
tion markers and exposures (GWG, BMI) or related traits 
and outcome (birthweight) in Supplementary material 
10.

Discussion
We identified eight potential CpG mediators that could 
be mapped to genes with obesogenic potential. Seven 
of these mediated associations between either GWG 
or pregnancy BMI and birth weight, whereas one, 
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cg19242268, stood out as a potential mediator in all mod-
els. Cg19242268 is positioned in a CpG island situated in 
the first exon of one isoform of the gene TCEA2 (Tran-
scription Elongation Factor A2), the protein of which 
is involved in transcriptional regulation and mainly 

expressed in the testis and brain. Interestingly, at least 
one previous study identified a differentially methyl-
ated region (DMR) in cord blood associated with birth-
weight that overlapped with the promoter of TCEA2 
and another gene (RP13-152O15.5) [34], lending further 

Table 3  Summary of results from high-dimensional mediation analysis including the candidate CpG sites selected as mediators

BMI body mass index, GWG​ gestational weight gain

High-dimensional 
mediation analytic 
approach

CpG sites selected by high-dimensional mediation approach 
after 2-step dimension reduction

Candidate CpG sites selected for classical causal 
mediation analysis (FDR-adjusted p < 0.05)

Number Composition Number Composition

Association between GWG and offspring’s z-birth weight

 HDMA (n = 21) cg04968127; cg14798382; cg21516291; 
cg27053299; cg10660916; cg14556683; 
cg10178960; cg16752400; cg09247736; 
cg18137450; cg07002832; cg02832224; 
cg05779272; cg19242268; cg16402875; 
cg15672022; cg13131501; cg04457572; 
cg01940139; cg08461903; cg00154986

(n = 4) cg19242268; cg08461903; cg14798382; 
cg21516291

 HIMA (n = 24) cg04968127; cg05349624; cg21516291; 
cg27053299; cg10660916; cg14556683; 
cg10178960; cg16752400; cg05304729; 
cg04751761; cg09247736; cg18137450; 
cg02832224; cg05779272; cg19242268; 
cg05560494; cg16402875; cg13131501; 
cg12804755; cg04457572; cg22247250; 
cg08461903; cg00154986; cg12145085

(n = 3) cg19242268; cg08461903; cg21516291

 HIMA2 (n = 24) cg04968127; cg05349624; cg21516291; 
cg27053299; cg10660916; cg14556683; 
cg10178960; cg16752400; cg05304729; 
cg04751761; cg09247736; cg18137450; 
cg02832224; cg05779272; cg19242268; 
cg05560494; cg16402875; cg13131501; 
cg12804755; cg04457572; cg22247250; 
cg08461903; cg00154986; cg12145085

(n = 2) cg19242268; cg08461903

Association between maternal BMI and offspring’s z-birth weight

 HDMA (n = 25) cg04968127; cg21516291; cg23260105; 
cg00376553; cg17040807; cg21649604; 
cg16752400; cg25494075; cg08289567; 
cg18137450; cg02832224; cg05779272; 
cg19242268; cg26552621; cg18034719; 
cg09171931; cg13131501; cg03688987; 
cg04457572; cg06457011; cg14787880; 
cg01940139; cg08461903; cg00154986; 
cg12145085

(n = 5) cg17040807; cg19242268; cg26552621; 
cg04457572; cg06457011

 HIMA (n = 24) cg04968127; cg14798382; cg21516291; 
cg23260105; cg00376553; cg17040807; 
cg16752400; cg05304729; cg15482893; 
cg18137450; cg02832224; cg05779272; 
cg19242268; cg26552621; cg18034719; 
cg13131501; cg03688987; cg04457572; 
cg06457011; cg14787880; cg01940139, 
cg08461903; cg00154986; cg05632420

(n = 5) cg17040807; cg19242268; cg26552621; 
cg04457572; cg06457011

 HIMA2 (n = 24) cg04968127; cg14798382; cg21516291; 
cg23260105; cg00376553; cg17040807; 
cg16752400; cg05304729; cg15482893; 
cg18137450; cg02832224; cg05779272; 
cg19242268; cg26552621; cg18034719; 
cg13131501; cg03688987; cg04457572; 
cg06457011; cg14787880; cg01940139; 
cg08461903; cg00154986; cg05632420

– –
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Table 4  Summary of results from robust mediation analysis with candidate CpG sites selected by high-dimensional mediation analysis

Epigenetic mediation of the association between gestational weight gain and offspring’s standardized birth weight

Single mediator models—robust bootstrap approach

CpG Indirect effect Direct effect Total effect

Estimate 95% CI Estimate SE p-value Estimate SE p-value

cg19242268 0.0026 0.0003, 0.0066 0.0267 0.007 0.0001 0.0293 0.007 0.00002

cg08461903 0.0019 − 0.0006, 0.0051 0.0260 0.007 0.0001 0.0279 0.007 0.00004

cg14798382 0.0042 0.0012, 0.0082 0.0240 0.007 0.0003 0.0282 0.007 0.00004

cg21516291 0.0019 − 0.0008, 0.0054 0.0248 0.007 0.0002 0.0267 0.007 0.00009

Serial multiple mediator model—robust bootstrap approach

Pathway Indirect effects Direct effect Total effect

Estimate 95% CI Estimate SE p-value Estimate SE p-value

Total indirect 0.00703 0.00267, 0.01218 0.01898 0.007 0.005 0.02601 0.007 0.0002

Indirect1 0.00223 0.00025, 0.00578 (Indirect1: GWG—> cg19242268—> z-birth weight)
Indirect2 0.00167 − 0.00065, 0.00462 (Indirect2: GWG—> cg08461903—> z-birth weight)

Indirect3 0.00267 0.00017, 0.00624 (Indirect3: GWG—> cg14798382—> z-birth weight)
Indirect4 0.00010 − 0.00006, 0.00055 (Indirect4: GWG—> cg19242268—> cg08461903—> z-birth weight)

Indirect5 0.00014 − 0.00002, 0.00062 (Indirect5: GWG—> cg19242268—> cg14798382—> z-birth weight)

Indirect6 0.00021 − 0.00005, 0.00071 (Indirect6: GWG—> cg08461903—> cg14798382—> z-birth weight)

Indirect7 0.00001 − 0.00001, 0.00009 (Indirect7: GWG—> cg19242268—> cg08461903—> cg14798382—> z-birth 
weight)

Parallel multiple mediator model—robust bootstrap approach

Pathway Indirect effects Direct effect Total effect

Estimate 95% CI Estimate SE p-value Estimate SE p-value

Total indirect 0.0075 0.0032, 0.0127 0.0190 0.007 0.005 0.0265 0.007 0.0001

cg19242268 0.0022 0.0002, 0.0058

cg08461903 0.0018 − 0.0005, 0.0048

cg14798382 0.0035 0.0010, 0.0071

Epigenetic mediation of the association between BMI at the beginning of pregnancy and offspring’s standardized birth weight

Single mediator models—robust bootstrap approach

CpG Indirect effect Direct effect Total effect

Estimate 95% CI Estimate SE p-value Estimate SE p-value

cg17040807 0.0033 − 0.0001, 0.0085 0.0308 0.009 0.001 0.0341 0.009 0.0003

cg19242268 0.0037 0.0004, 0.0084 0.0310 0.009 0.0006 0.0347 0.009 0.0001

cg26552621 0.0051 0.0012, 0.0107 0.0313 0.009 0.001 0.0364 0.009 0.0001

cg04457572 0.0041 0.0006, 0.0097 0.0327 0.009 0.0002 0.0368 0.009 0.00007

cg06457011 0.0030 − 0.0006, 0.0078 0.0318 0.009 0.0006 0.0348 0.009 0.0002

Serial multiple mediator model—robust bootstrap approach

Pathway Indirect effects Direct effect Total effect

Estimate 95% CI Estimate SE p-value Estimate SE p-value

Total indirect 0.009124 0.003671, 0.016250 0.026174 0.009 0.003 0.035298 0.009 0.0001

Indirect1 0.002940 0.000405, 0.007337 (Indirect1: BMI—> cg19242268—> z-birth weight)
Indirect2 0.002378 0.000245, 0.006358 (Indirect2: BMI—> cg26552621—> z-birth weight)
Indirect3 0.002302 − 0.000221, 0.006550 (Indirect3: BMI—> cg04457572—> z-birth weight)

Indirect4 0.000439 0.000047, 0.001313 (Indirect4: BMI—> cg19242268—> cg26552621—> z-birth weight)
Indirect5 − 0.000005 − 0.000317, 0.000271 (Indirect5: BMI—> cg19242268—> cg04457572—> z-birth weight)
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support for its involvement as an important epigenetic 
mediator of weight.

Another CpG of interest was cg14798382 which 
mapped to the CHERP (calcium homeostasis ER pro-
tein) gene, previously shown to be involved in cellu-
lar growth and proliferation through the regulation 

of calcium homeostasis [35]. In another study which 
aimed to identify genes associated with nonalcoholic 
fatty liver disease, CHERP was shown to be strongly 
downregulated in afflicted individuals [36], but not 
much is known about its potential involvement in dis-
ease development so far.

Table 4  (continued)

Serial multiple mediator model—robust bootstrap approach

Pathway Indirect effects Direct effect Total effect

Estimate 95% CI Estimate SE p-value Estimate SE p-value

Indirect6 0.000903 0.000146, 0.002294 (Indirect6: BMI—> cg26552621—> cg04457572—> z-birth weight)
Indirect7 0.000167 0.000024, 0.000482 (Indirect7: BMI—> cg19242268—> cg26552621—> cg04457572—> z-birth 

weight)

Parallel multiple mediator model—robust bootstrap approach

Pathway Indirect effects Direct effect Total effect

Estimate 95% CI Estimate SE p-value Estimate SE p-value

Total indirect 0.0102 0.0041, 0.0177 0.0232 0.009 0.009 0.0334 0.009 0.0002

cg17040807 0.0015 − 0.00009, 0.0051

cg19242268 0.0027 0.0004, 0.0068

cg26552621 0.0015 − 0.0003, 0.0052

cg04457572 0.0026 0.0004, 0.0072

cg06457011 0.0019 − 0.0001, 0.0061

Fig. 2  Single mediator models as per the robust bootstrapped approach with candidate CpG sites as mediators of the association between GWG 
and offspring’s z-birth weight. Significant pathways are drawn in orange while non-significant pathways are drawn in blue. Red text indicates 
coefficients of significant pathways, their standard errors, p-values, and 95% confidence intervals. Black text indicates those values in non-significant 
pathways. DE direct effects, IE indirect effects, TE total effects
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Fig. 3  Serial multiple mediator model as per the robust bootstrapped approach with candidate CpG sites as mediators of the association 
between GWG and offspring’s z-birth weight. Significant pathways are drawn in orange while non-significant pathways are drawn in blue. Red 
text indicates coefficients of significant pathways, their standard errors, p-values, and 95% confidence intervals. Black text indicates those values 
in non-significant pathways. DE direct effects, IE indirect effects, TE total effects

Fig. 4  Parallel multiple mediator model as per the robust bootstrapped approach with candidate CpG sites as mediators of the association 
between GWG and offspring’s z-birth weight. Significant pathways are drawn in orange while non-significant pathways are drawn in blue. Red 
text indicates coefficients of significant pathways, their standard errors, p-values, and 95% confidence intervals. Black text indicates those values 
in non-significant pathways. DE direct effects, IE indirect effects, TE total effects
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Other CpGs of interest were situated in the genes 
SLC35C2 (cg21516291), CYGB (cg17040807), CIRBP 
(cg26552621) and PCLG1 (cg06457011). The SCL35C2 
gene regulates glycosylation—an essential post-transla-
tional modification process important for multiple bio-
logical processes, including embryonic development [37]. 
CYGB is essential for regulation of adipogenesis, inflam-
mation, blood pressure, and oxidative stress response [38, 
39], CIRBP is involved in regulation of glucose metabo-
lism, adipose tissue function, and inflammation [40, 41] 
and finally, PLCG1 is involved in insulin signaling, leptin 
signaling, and the regulation of adipose tissue functions 
[42]. Taken together, mediatory CpG sites found by the 
present study are situated close to multiple genes capa-
ble of elevating an individual’s obesogenic risk through 
diverse functional pathways.

Furthermore, consistent findings from existing lit-
erature on the EWAS Catalog [31] add to the biologi-
cally plausibility. A multi-ancestry meta-analysis of 
epigenome-wide association studies revealed that three 
mediators identified by the present study (cg19242268 
in TCEA2, cg21516291 in SLC35C2, and cg17040807 
in CYGB) are all previously identified DNA methyla-
tion markers of birth weight [43]. Meanwhile, a previous 
EWAS reported that seven of the methylation mediators 
revealed by the current study (cg19242268, cg21516291, 
cg26552621, cg04457572, cg06457011, cg14798382, 
cg08461903) associate with childhood growth trajec-
tories from birth to late adolescence [44]. Moreover, 
two mediators in the present study (cg21516291 and 
cg04457572) were identified as epigenetic markers of 
incident type 2 diabetes by another EWAS [45]. These 
findings from previous EWAS studies bolster the credible 
link between the CpG mediators identified through the 
present analysis and obesity phenotypes.

Interestingly, an integrated methylome- and phenome-
wide assessment of the circulating proteome revealed 
the associations of cg26552621 in CIRB2 (identified as 

an epigenetic mediator in the present study) with obe-
sogenic NOG protein levels and cg04457572 in CDH23 
(another epigenetic mediator in the present study) with 
ADIPOQ protein/adiponectin levels which regulate fat 
metabolism and insulin sensitivity [46]. Moreover, an 
integrative cross-omics analysis of DNA methylation sites 
of glucose and insulin homeostasis found that a third 
epigenetic mediator of the current study, cg06457011 in 
PLCG1 was associated with fasting insulin while differ-
ential methylation explained at least 16.9% of the asso-
ciation between obesity and insulin [47]. Some of these 
obesity-associated methylation signatures have been 
robustly replicated across cohorts [43]. The discovery of 
cg19242268 as a mediator with respect to both maternal 
BMI and GWG is intriguing. Notably, cg19242268 is also 
associated with birthweight as per previous EWASs [34]. 
Our findings may allude to an important epigenetic sig-
nal and further investigations are warranted.

As per EWAS Atlas [32], two of the CpG mediators 
(cg19242268 in the TCEA2 gene and cg21516291 in the 
SLC35C2 gene) are hypermethylated in relation to birth-
weight. In tandem, EWAS Catalog [31] revealed both are 
positively associated with birthweight (Supplementary 
material 10). As revealed by high-dimensional media-
tion analyses, mediation pathways of cg14798382 (GWG 
→ cg14798382 and cg14798382 → z-birthweight) were 
positive (Supplementary material 6), indicating potential 
hypermethylation and downregulation of CHERP/C19 
orf44. However, we note the presence of inconsistencies 
in the direction and correlation/association of methyla-
tion for the same phenotype reported by different EWAS 
studies. Therefore, caution is warranted when interpret-
ing findings related to hypermethylation or hypometh-
ylation, and further research is needed to confirm their 
effects and their directional impact.

Previous large-scale observational epidemiological 
studies have linked maternal obesity with large-for-ges-
tational-age offspring [48, 49] and suggested a potential 

Table 5  Annotated details of the CpG sites selected as mediators of the association between gestational weight gain/maternal BMI at 
the beginning of pregnancy and offspring’s standardized birth weight

BMI body mass index, GWG​ gestational weight gain, CHR chromosome

CpG site Exposure(s) CHR Position Gene Gene region Relation to island

cg14798382 GWG​ chr19 16,629,806 CHERP; C19orf44 3’UTR​ N_Shore

cg19242268 GWG & BMI chr20 62,688,573 TCEA2 1st Exon; 5’UTR​ Island

cg21516291 GWG​ chr20 44,979,100 SLC35C2 Body OpenSea

cg08461903 GWG​ chr21 45,884,825 – – S_Shore

cg17040807 BMI chr17 74,533,282 CYGB Body Island

cg26552621 BMI chr19 1,271,019 C19orf23; CIRBP TSS 1500; Body S_Shore

cg04457572 BMI chr10 73,303,234 CDH23 Body OpenSea

cg06457011 BMI chr20 39,767,490 PLCG1 Body S_Shore
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causal relationship [50] and several of the methylation 
sites identified in our study have been connected to birth 
weight, obesity, and diabetes. For instance, as per EWAS 
Catalog [31], a previous EWAS revealed that cg19242268 
and cg21516291 are positively associated with birth-
weight whereas cg17040807 is negatively associated with 
birthweight [42] (Supplementary material 10). However, 
information on mediatory pathways have been lacking. 
Using both robust regression-based and OLS regression-
based multiple mediation analyses we have been able 
to unravel potentially causally linked and causally inde-
pendent mediatory pathways involving multiple methyla-
tion sites. We thus provide suggestive evidence that the 
methylation sites may exert their mediatory effects indi-
vidually as well as concomitantly via complex pathways. 
These statistically intuitive findings together with exist-
ing literature shed light on the complex nature of epige-
netic mediation that may underlie later health effects in 
the offspring highlighting epigenetic mediation as a likely 
mechanism contributing to intergenerational obesity.

The present study adopted a comprehensive analytic 
pipeline. It comprised the application of multiple topical 
high-dimensional mediation methods followed by both 
OLS- and robust classical mediation analyses and the 
evaluation of single as well as multiple mediatory mod-
els. High-dimensional mediation methods are especially 
amenable to DNA methylation data as revealed by previ-
ous birth cohort studies yielding novel findings [28, 29, 
51].

According to our knowledge, this is the first and the 
largest prospective birth cohort study in a Northern 
European setting to unravel the epigenetically mediated 
association of two obesogenic maternal lifestyle mark-
ers in pregnancy with children’s birth weight. A previous 
birth cohort study provided some evidence of epigenet-
ics being involved in the intergenerational risk of obesity, 
however, their study population consisted of a predomi-
nantly urban, low-income ethnic minority and results 
might therefore be difficult to generalize for other popu-
lations [52].

Our study also has imitations. Although, our sample is 
of considerable size compared to most epigenetic studies 
reported earlier, larger cohorts may be required to gain 
more robust findings with higher statistical power. The 
sample size in this study is noticeably large compared to 
contemporary epigenetic mediation studies [53]. Sample 
size or statistical power estimation methods for epige-
netic mediation assessment are sparse, still nascent with 
no wide acceptance, and there is a lack of consensus on 
a single, standard strategy. A recent study revealed that 
for achieving a statistical power of 80% in causal media-
tion studies with small effect sizes, 413 samples would be 
required to determine total indirect effects, when both 

mediator and outcome are continuous [54]. Notewor-
thily, most contemporary epigenetic mediation studies 
have not performed formal sample size/statistical power 
calculations [53].

The presence of residual confounding may have influ-
enced effect estimates, despite the inclusion of an array 
of DAG-based covariates. The genetic heritability com-
ponent including the effect of maternal genetics on chil-
dren’s obesity is non-trivial [55] and could confound, 
modulate, or interact with epigenetic effects or indepen-
dently associate with birthweight. Therefore, epigenetic 
mediation is unlikely to fully explain the association 
between maternal obesogenic traits and children’s birth-
weight, and other mediatory mechanisms are worthy 
of being explored. For example, several CpG loci in our 
study (cg19242268; cg08461903; cg06457011) associate 
with SNPs, alluding to the possible influence of genetic 
effects on DNA methylation (Supplementary material 
10).

Since some of the identified CpGs are associated with 
smoking, we reconducted all analyses omitting the two 
smokers in the cohort, which did not change the findings. 
We also note that all reported analyses were adjusted for 
maternal smoking in pregnancy. Still, we acknowledge 
that the cohort is homogeneous in terms of smoking, 
as there were only two self-reported smokers, making 
it impossible to assess the potential impact of smoking. 
Since non-responders to the questionnaire on smoking 
could be smokers or non-smokers, we did not exclude 
them in our re-analyses, but a “sensitivity analysis” omit-
ting non-responders as well could have been informa-
tive. Exposure to secondhand smoking and thirdhand 
smoking in non-smoking pregnant women could further 
confound the associations. Therefore, confounding of 
the effects by maternal exposure to smoking cannot be 
entirely ruled out in the present study.

Socioeconomic status of participants was proxied 
via their education level and the country of birth. We 
acknowledge that these two covariates may not have fully 
accounted for socioeconomic-driven confounding and 
additional information such as income may have been 
useful. Another limitation is that mothers participat-
ing in these studies are more often highly educated and 
have higher incomes than mothers in the general popula-
tion, raising generalizability issues [56]. Our cohort was 
relatively homogeneous with only 11 participants hav-
ing education lower than upper secondary level and a 
majority born in Sweden. However, the NorthPop cohort 
covers a large catchment area representing the whole 
Västerbotten region and selective participation is unlikely 
to have been a major issue.

Maternal BMI and GWG were only weakly correlated, 
and revealed independent associations with children’s 
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birthweight in our cohort, except in pregnant women 
with obesity. While we did not conduct sub-analyses 
among pregnant women with obesity, due to the smaller 
sub-cohort size (N = 90), future studies in this direction 
may provide valuable insight. As methods for multiple 
exposure-multiple mediator-single outcome models are 
not widely available, and tend to be overly complex and 
less intuitive, we did not conduct mediation analyses that 
simultaneously incorporated both maternal exposures.

Significant results of our study pertain to maternal BMI 
and GWG only, although ten maternal lifestyle factors 
were assessed initially. Lack of statistical power to reveal 
associations may be a possible explanation that other 
maternal lifestyle factors did not achieve significance. 
This warrants future analyses on larger samples. The 
U-shaped relationship of birthweight with health out-
comes reported in previous literature [57, 58] might not 
be apparent in our cohort given the likely under-sampling 
of underweight pregnant women in the maternal cohort 
and offsprings at the lower end of the birthweight spec-
trum. Of note, there were only 5 underweight (< 18  kg/
m2) participants in the maternal cohort. Hence, associa-
tions of the present analysis could have been driven by an 
overrepresentation of pregnant women with overweight/
obesity.

It should be noted that besides maternal genetics and 
maternal lifestyle, there is mounting evidence that other 
modifiable and non-modifiable factors also contribute 
to intergenerational obesity. For example, a recent study 
provided epidemiologic and functional evidence of pater-
nal contribution to offspring obesity and metabolic risk 
mediated through changes in sperm, including epigenetic 
modifications [59]. Modifiable factors such as paternal 
diet and paternal smoking are also associated with off-
spring’s birthweight [59–61].

At present, genes associated with CpG mediators in 
this study are not directly linked to obesity in the same 
way as genes like MC4R or FTO. However, epigenetic 
modifications affecting these genes can play a role in obe-
sity development by influencing how genes are turned on 
or off in response to environmental factors like maternal 
obesogenic lifestyle. Our findings highlight the neces-
sity for conducting future studies to unravel their role in 
intergenerational obesity.

Causal inference cannot be drawn from observational 
designs and future studies are recommended to validate 
our findings. Furthermore, despite there being poten-
tial connections between birthweight and early child-
hood BMI trajectories the follow-up time in the current 
study was too short to study such associations. However, 
NorthPop aims to follow the included children until 
at least 7  years of age, with data being collected at the 
ages of 18 months, 3 years, and 7 years. With these data, 

weight trajectories of the offspring cohort will be ana-
lyzed in future studies. Since the temporal patterns of the 
association might be complex and change as the offspring 
grows, we will also investigate the potential epigenetic 
mediation of BMI at different ages of the child.

Conclusions
We present new insights suggesting epigenetic factors 
as mediators of associations between maternal lifestyle 
and birthweight in this predominantly Northern Euro-
pean population. Our top findings include identification 
of eight CpG sites that appear to mediate associations 
between maternal characteristics (GWG and pregnancy 
BMI) and children’s birth weight. The most notable meth-
ylation site was cg19242268 in TCEA2, as DNA meth-
ylation of this site was involved in mediation between 
both characteristics and birth weight. Cord blood DNA 
methylation surrounding this gene has also previously 
been implicated as a marker of birth weight [34]. How-
ever, most importantly, we believe that our results may 
increase the general understanding of intergenerational 
inheritance of obesity and highlights the importance of 
adhering to healthy lifestyle throughout the life span, 
which could benefit potentially transcending generations. 
Future studies are warranted to validate and elucidate the 
functional mechanisms.
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