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Astrocyte diversity and subtypes: aligning
transcriptomics with multimodal perspectives
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Abstract

Astrocytes are considered a diverse cell population, carrying out
many functions essential for supporting neuronal activity. The
surge of sc/snRNA-sequencing data greatly expands our under-
standing of heterogeneous astrocyte gene expression, but also
leads to confusion about the multitude of described astrocyte
subtypes and substates in the mammalian brain. Here we discuss
and review the definition of distinct subtypes and the evidence for
this amongst astrocytes. Determining whether an astrocyte sub-
type represents a stable identity or a dynamic substate requires
generalization of findings across datasets, incorporation of vali-
dation, and ideally, functional analyses. How to best achieve this is
the focus of this review, including considerations about the dif-
ferent transcriptomic approaches. We further discuss the align-
ment of astrocyte subtype transcriptomes with other hallmarks,
such as their position. These considerations are embedded in an
overview of the current astrocyte heterogeneity knowledge as a
basis for subtype definitions using different analysis techniques.
Following technical and biological considerations of transcriptome
analyses, we advocate for multimodal alignment to identify stable
astrocyte subtypes.

Preamble

In the central nervous system, the classical cell type distinction is
between neurons and glia. Within a cell type group, subtype defi-
nitions have been largely conceptualized by the criteria used for
neuronal subtypes, while astrocytes have been considered rather
homogenous for a long time. For example, astrocyte-blood vessel
contact was presumed common to all, yet this remains unclear.
However, in recent years, astrocyte heterogeneity has been
observed in various aspects, prompting the question of how to
define their subtypes. Single-cell/nuclei transcriptomics has
brought further new dynamics to the definition of subtypes or
substates by retrieving clusters of astrocytes with heterogeneous
gene expression. These studies however vary in methods and cri-
teria for identifying astrocyte subtypes and often lack functional
validation. It is therefore timely to provide an overview and con-
sider the evidence for astrocyte heterogeneity. With this review,
we aim to critically assess subtype and substate definitions and
integrate existing transcriptomic findings within the framework of
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how to define astrocyte subtypes and to which extent neuronal
subtype criteria may also be applicable to astrocyte subtype
definitions.
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Introduction
The evolving concept of astrocyte heterogeneity

Astrocytes are one of the most abundant cell types in the central
nervous system (CNS), responding to various stimuli through
morphological, molecular, and functional adaptations (Schiweck
et al, 2018; Barres, 2008; Wahis et al, 2021). Even though their
importance for maintaining adequate brain functioning was long
underestimated, astrocytes are now well recognized as being
indispensable players in ensuring CNS homeostasis in health and
disease (Barres, 2008; Verkhratsky et al, 2021, 2023). They fulfill a
multitude of significant tasks to preserve the CNS equilibrium such
as providing metabolic, antioxidant and trophic support, regulating
the potassium balance, maintaining the blood-brain barrier (BBB)
and securing synaptic homeostasis (Allen, 2014; Chung et al, 2015;
Allen and Eroglu, 2017; McBean, 2018; Verkhratsky and Neder-
gaard, 2017; Weber and Barros, 2015). Astrocytes also exhibit
remarkable plasticity, allowing them to tailor these tasks to
physiological or pathological changes in their environment (Patani
et al, 2023; Pestana et al, 2020; Zhang and Barres, 2010). However,
it is unclear to which extent all astrocytes perform all of these
functions, and how heterogeneous and diverse astrocytes really are.
Therefore, this review starts with a brief historical overview about
astrocytes, the initial evidence for their heterogeneity, and how they
align with the available criteria for subtype definition (as depicted
in Fig. 1).

Drawing inspiration from the neuronal field, morphology and
location are amongst the first criteria for defining subtypes, also
because methodologies to study this have been available for some
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Figure 1. Extending subtype paradigms from neurons to astrocytes.

Classification of astrocyte subtypes can benefit from comparison to the
neuronal field, where subtype definition is more straightforward. Some neuronal
subtype criteria—such as morphology and location—can be readily extrapolated
to astrocytes, while others (gray, italic) remain subject to debate. Created in
BioRender. Hennes M (2025). https://BioRender.com/1jfaq2g.

time. Already, Cajal showed in his histological preparations and
drawings a clear morphological difference between the “proto-
plasmic” astrocytes in the gray matter (GM) and “fibrous”
astrocytes in the white matter (WM) (Garcia-Lopez et al, 2010).
Fibrous astrocytes display straight and long processes, whereas
protoplasmic astrocytes have highly branched processes that
penetrate the neuropil and typically ensheath synapses and
blood vessels (Barres, 2008; Khakh and Deneen, 2019). In the
human neocortex, protoplasmic astrocytes are even more complex
and can be further divided into morphological subclasses, such as
the interlaminar and the varicose projection astrocytes (Oberheim
et al, 2009).

Given that neurons can be classified by their projection patterns,
astrocytes might similarly be distinguished by their ability to
contact blood vessels or synapses. As part of the neurovascular unit,
astrocyte endfeet can contact blood vessels and contribute to the
maintenance of the BBB. Interestingly, astrocyte-vessel contact has
been shown to be variable with, for example, astrocytes in deeper
cortical layers contacting more vessels (Hosli et al, 2022). How
astrocyte-vessel contact changes across regions, however, remains
rather unexplored. In addition, an astrocyte subtype with particularly
close contact to the blood vessels has been identified as juxtavascular
astrocytes (Gotz et al, 2021). These astrocytes reside with their somata
at the blood vessels and have a clonal origin, i.e,, are derived from a
common progenitor cell as opposed to the non-juxtavascular
astrocytes (Gotz et al, 2021). Their channel composition suggests that
they also may differ in their function with a bias to resume
proliferation after brain injury (Gotz et al, 2021; Sirko et al, 2013;
Bardehle et al, 2013). On the other hand, astrocytes also exhibit
variability in the proximity of their processes to neuronal synapses and
in the extent of their synaptic coverage (Chai et al, 2017;
Lanjakornsiripan et al, 2018). While regions such as the cortex
contain a high proportion of tripartite synapses—where astrocytes
interact with pre- and postsynaptic neurons—their prevalence is
markedly reduced in the spinal cord (Broadhead et al, 2020; Oberheim
et al, 2012; Farhy-Tselnicker and Allen, 2018).
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Neurotransmitter identity serves as another clear and widely
used criterion for classifying neuronal subtypes. Likewise, during
the process known as gliotransmission, astrocytes can release a
variety of small molecules—referred to as gliotransmitters—that are
capable of modulating synaptic activity (Araque et al, 2014;
Savtchouk and Volterra, 2018; Covelo and Araque, 2018). Whether
different astrocyte subtypes release distinct gliotransmitters is still
under investigation. However, recently De Ceglia et al provided
evidence for a subpopulation of highly specialized hippocampal
astrocytes that are functionally competent for vesicular glutamate
transporter-dependent glutamate release (de Ceglia et al, 2023).

Compared to neurons, astrocyte activity cannot be measured in
Na-channel mediated action potentials; instead, they respond to
environmental stimuli by producing intracellular Ca*" signals
(Bindocci et al, 2017; Semyanov et al, 2020). Heterogeneous
astrocyte activity, as measured by Ca®" signaling, has been
demonstrated in regions such as the hippocampus and striatum.
Astrocytes in these areas show differences in both spontaneous and
evoked Ca®' events, indicating the existence of neural circuit-
specialized astrocytes (Chai et al, 2017). Ca®" activity in astrocytes
varies not only across brain regions but also between distinct
cortical layers within the somatosensory cortex (Takata and Hirase,
2008). Despite the conceptual parallels with neurons, the classifica-
tion of astrocyte subtypes based on their activity is still not fully
resolved.

Technological advances in RNA sequencing (RNA-seq), such as
single-cell/nuclei (sc/sn)RNA-seq, have opened new avenues to
study the molecular diversity of astrocytes in greater depth. Initial
studies implementing bulk RNA-seq described molecular differ-
ences between astrocytes from different CNS regions (Chai et al,
2017; Boisvert et al, 2018; Clarke et al, 2018; John Lin et al, 2017;
Karpf et al, 2022; Morel et al, 2017). Likewise, the use of Mlc1-eGFP
mice aimed to characterize the molecular profile of astrocytes in
contact with blood vessels (Yosef et al, 2020). The next step was to
explore the extent to which astrocytes from the same region differ
from one another, potentially revealing additional layers of
heterogeneity.

This question could be addressed using sc/snRNA-seq: based on
the gene expression profile, astrocytes can be grouped into clusters,
differing between as well as within brain regions (Batiuk et al, 2020;
Bayraktar et al, 2020; Bocchi et al, 2025; Ohlig et al, 2021;
Lanjakornsiripan et al, 2018) (Table 1). Heterogeneity at the
transcriptome level also greatly enriched our understanding of
astrocytes in pathological conditions such as neurological disorders,
inflammation, and brain injury. Interestingly, these injury/disease-
induced changes could be either protective or detrimental for
disease progression (Schober et al, 2022; Sofroniew, 2020; Endo
et al, 2022; Patani et al, 2023; Sadick et al, 2022).

However, how coherent are these data—both in the intact and in
the diseased CNS? Are there common signatures and how well are
they aligned?

For example, not all the described gene expression clusters can
be identified across different datasets. Moreover, it is also not clear
to which extent astrocytes clustered by their gene expression indeed
correspond to functional or morphological subtypes. Considering
how dynamic astrocytes can be, we aim here to discuss to which
extent the heterogeneity found by single readouts—morphology,
position, expression—may align with function and how best to
define a subtype versus a “substate”—a transient state of a cell.
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This review summarizes research characterizing transcriptomic
astrocyte heterogeneity, and aims to critically evaluate the strengths
and limitations of various sequencing and analytical approaches,
with a call to better align these methodologies to validate—or
challenge—transcriptional findings. Further, this review extends the
discussion about the astrocyte multistate concept (Escartin et al,
2021), highlighting the importance of multi-omic and longitudinal
analyses.

Insights into astrocyte diversity from
transcriptome analysis

Exploring homeostatic astrocyte heterogeneity in the sc/
snRNA-seq era

As mentioned above, astrocyte heterogeneity has been demonstrated at
the molecular level showing a broad spectrum of molecular and regional
diversity in astrocytes, changing the idea that they represent a uniform
cell type (Table 1). One of the first single-cell studies using murine brain
tissue analyzed the somatosensory cortex and hippocampal CA1 region,
capturing all cell types but retrieving only a relatively small number of
astrocytes. This limitation led to the identification of only two astrocyte
clusters: one representing astrocytes from cortical layer 1 and the other
uniformly distributed across the cortex (Zeisel et al, 2015). In 2018, a
comprehensive study analyzing the cellular diversity of the mouse
nervous system utilized scRNA-seq data from 19 different regions
generated with the 10x Genomics platform (Zeisel et al, 2018). This
study identified seven molecularly distinct astrocyte clusters, each
exhibiting a clear region-specific distribution. Molecularly distinct
astrocytes were identified in the olfactory bulb, cerebellum, telencepha-
lon, midbrain, and other non-telencephalic regions. The genes Agt
(Angiotensinogen) and Mfge8 were identified as the primary markers
distinguishing astrocytes in the telencephalon from those in the
diencephalon. Interestingly, astrocytes from the telencephalic and non-
telencephalic regions were the only ones to separate into two distinct
clusters, with differences observed, for example, in glial fibrillary acidic
protein (Gfap) expression. The authors suggest that the Gfap-high-
expressing cluster in the telencephalon may correspond to fibrous
astrocytes in the WM and at the glia limitans beneath the pial surface.
At the same time, Saunders and colleagues published a study analyzing
nine murine brain regions using the Drop-seq method to explore shared
and region-specific patterns in cellular composition and gene expression
identifying eight different astrocyte clusters, which were not further
characterized (Saunders et al, 2018).

Refining astrocyte diversity through enrichment-based profiling

Early single-cell studies primarily described different molecular
clusters of astrocytes. To gain deeper insights into astrocyte
heterogeneity, subsequent sc/snRNA-seq studies focused on specific
brain regions or employed techniques designed to enrich for
astrocytes. Batiuk and colleagues utilized the ACSA-2 antibody to
enrich astrocytes from two distinct murine forebrain regions
(cortex and hippocampus) of adult mice, identifying five distinct
astrocyte clusters (Batiuk et al, 2020). Within these astrocyte
clusters, they identified subclusters that were specific to either the
cortex (1 cluster) or hippocampus (2 clusters), as well as two others
that shared gene expression profiles and spatial distribution across
both regions. The same approach was applied to analyze the
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heterogeneity of diencephalic astrocytes, leading to the identifica-
tion of seven distinct clusters (Ohlig et al, 2021). Many astrocytic
functions, such as ion regulation, sodium transport, and fatty acid
or glutamate metabolism, were found to be enriched in distinct
clusters. This suggests that these functions may be either transiently
distributed among astrocytes in different transcriptional states or
stably associated with specific astrocyte subtypes. Furthermore, the
authors identified clusters with highly specific spatial localization to
a single brain region (diencephalon) and others with broader
distribution throughout the forebrain. Thus, only some astrocytes
differ profoundly between regions, while others share some pan-
astrocyte tasks, such as ion homeostasis (Ohlig et al, 2021). This
discovery of shared expression profiles between brain regions,
highlighted in these two studies, emerged from the analysis of a
larger number of astrocytes per brain region (Ohlig et al, 2021;
Batiuk et al, 2020). Moreover, the identification of 7 clusters of
diencephalic astrocytes underscores the importance of collecting a
large number of astrocytes from a single region, to achieve the
resolution necessary for detecting subtle differences in gene
expression. Importantly, novel tools to analyze scRNA-seq data,
such as velocity analysis based on differences between spliced and
unspliced transcripts, led to the discovery of a new function of
astrocytes in the diencephalon, namely adult astrogenesis. This was
confirmed by incorporation of the DNA-base analog 5-EdU in
adult astrocytes and genetic fate mapping demonstrating 2-3 cell
clones of astrocytes very close to each other (Ohlig et al, 2021).
Finally, the authors showed that adult astrogenesis was Smad4-
dependent. This shows how transcriptome analysis inspired the
discovery of a novel astrocyte hallmark and function. Notably,
however, expression of proliferation genes was not limited to a
specific cluster of astrocytes, but spread through all astrocyte
clusters in the diencephalon, suggesting that it is a widespread
characteristic of astrocytes in this region.

Astrocyte subtypes in focus: gray versus white matter

A key question in the field of astrocyte heterogeneity is the
molecular distinction between GM and WM astrocytes. Further-
more, would WM astrocytes differ between brain regions as GM
astrocytes do? Answering this question has proven challenging, as
isolating cells from WM brain tissue is complicated by its high
myelin content. A recent study developed a new protocol to isolate
all cell types from the WM of the corpus callosum (CC) and
cerebellum by using a mild dissociation and hence an unbiased
approach, avoiding any selection. This was important, primarily
because little was known about WM astrocyte markers, and
secondly to ensure no subtypes were overlooked (Bocchi et al,
2025). Combining scRNA-seq analysis with spatial transcriptomics
of astrocytes from the cerebral cortex GM and WM identified four
clusters of GM and two clusters of WM astrocytes. Consistent with
previous data (Batiuk et al, 2020; Bayraktar et al, 2020), GM
clusters showed layer-specific localization. As in the diencephalon,
some astrocyte clusters in this study showed more widespread
patterns of gene expression as determined by spatial transcrip-
tomics overlay, suggesting shared molecular characteristics of some
astrocyte subsets between different brain regions. WM astrocytes
exhibited enriched Gene Ontology (GO) terms related to glycogen
metabolism, glycogen breakdown, and the regulation of amide
metabolic processes. In addition, genes associated with cholesterol
metabolism and cytoskeleton regulation were differentially
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expressed between GM and WM. Interestingly, this study also
identified a cluster of WM astrocytes in the CC capable of cell
division and hence ongoing astrogenesis, a finding that was
validated using various methods, including live in vivo imaging.
Thus, adult astrogenesis in the intact brain was discovered for
astrocytes with distinct molecular identities, i.e., clustered in
scRNA-seq data analysis as in the CC WM, or more widespread,
as found in the diencephalon. Notably, CC WM astrocytes divide
much faster than diencephalic astrocytes with the later resembling
more the slow-dividing oligodendrocyte progenitors in the adult
brain (Simon et al, 2011). Importantly, this and another study
(Seeker et al, 2023) identified subsets of WM astrocytes with
region-specific differences. CC WM astrocytes differed significantly
from those in the cerebellum, where astrocyte gene expression fell
into a cluster similar to CC WM astrocytes and one very different.
These findings indicate the existence of region-specific molecular
signatures of WM astrocytes in the brain, each potentially serving
unique functional roles (Seeker et al, 2023; Bocchi et al, 2025).

Notably, the above-described combination of scRNA-seq data with
spatial transcriptomics or multiplexed single-molecule fluorescence
in situ hybridization (smFISH) facilitates the discovery of new insights
into astrocyte heterogeneity. This has been shown in (Bayraktar et al,
2020) with astrocytes grouped into three spatial bins—superficial, mid,
and deep laminae—with genes such as Chrld1, Eogt, Spryl, Paqr6, and
1133 showing distinct layer-specific expression patterns, as well as in
(Bocchi et al, 2025) with spatial mapping of scRNA-seq data revealing
three GM astrocyte clusters associated with layer 1, the upper layers,
and the deep layers, respectively. Altogether, the integration of spatial
datasets revealed both layer-independent and layer-dependent hetero-
geneity, as well as differences across functionally distinct cortical areas
(Bocchi et al, 2025; Bayraktar et al, 2020).

Astrocyte heterogeneity in the human brain

Similar to the mouse brain, human astrocytes can primarily be
classified into two major clusters based on snRNA-seq data
telencephalic
telencephalic astrocytes. These clusters can be further distinguished
by populations with high or low GFAP expression, along with
additional clusters, e.g., for striatal astrocytes (Zeisel et al, 2018;
Siletti et al, 2023). However, so far the morphological subtypes of
astrocytes, e.g., human cortical intralaminar and varicose projec-
tion astrocytes, that display a very distinct morphological
phenotype (Oberheim et al, 2009), could not be aligned with
clusters based on transcription. To achieve this, patch-seq
technology may be better suited as discussed below. As previously
noted, Seeker et al demonstrated pronounced astrocyte hetero-
geneity in human white matter, with distinct subsets exhibiting
region-specific molecular signatures (Seeker et al, 2023).

However, a detailed molecular characterization of human astrocyte
heterogeneity across different brain regions is still lacking, despite various
snRNA-seq studies employing cluster analyses and examining differen-
tially expressed genes (DEGs). As these studies are highly influenced by
sample quality, number of cells obtained and various analysis parameters
affecting resolution, more detailed analyses of human astrocyte subtypes
and states in the healthy brain are needed (Colonna et al, 2024).

obtained from the entire brain: and non-

Pan-astrocyte functions and the division of labor among subtypes
Another relevant question for understanding astrocyte heteroge-
neity is how these subtypes resemble one another and to what

© The Author(s)
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extent they share common pan-astrocytic functions. For example,
while GM astrocytes contribute to BBB maintenance, this function
is less evident for WM astrocytes (Hosli et al, 2022). Similarly, the
degree of astrocytic coverage at synapses seems to vary across
different brain regions (Farhy-Tselnicker and Allen, 2018). Ohlig
et al identified distinct astrocyte clusters exhibiting similar
enrichment for gene ontology terms associated with ion transport
and ion homeostasis, underscoring core astrocytic functions that
may be conserved across brain regions (Ohlig et al, 2021).

Using the Ribotag approach, astrocyte bulk RNA-seq revealed
around 20% shared gene expression across astrocytes from 13
different brain regions. Half of these genes were related to
enzymatic and transporter activity or transcriptional regulation
and involved in pathways associated with neurotransmitter home-
ostasis, cholesterol biosynthesis, and glucose metabolism (Endo
et al, 2022). Notably, little is known about one-third of the top
genes shared between astrocytes, suggesting that fundamental
aspects of core astrocyte functions are still not fully understood
(Endo et al, 2022). An alternative strategy to assess shared functions
across astrocyte subtypes was employed by Mathys et al, who
applied a novel approach (single-cell decorrelated module networks
or scdemon) to identify gene expression modules composed of
highly correlated genes within a snRNA-seq dataset, thereby
uncovering an astrocyte-wide functional program associated with
cognitive resilience in Alzheimer’s Disease (AD) (Mathys et al,
2024). This gene module analysis offers the advantage of
uncovering co-expressed gene networks that define core functional
programs, enabling the identification of common versus subtype-
specific astrocyte roles.

To explore this theory, we used the scdemon approach to
reanalyze the above-mentioned GM and WM scRNA-seq dataset
(Bocchi et al, 2025) (Fig. 2), and identified 16 different gene
modules, with some showing clear region- and cluster-specific
enrichment (GM: module 6; WM: module 2), whilst other modules
were more generally expressed (module 4 or 9). GO term analysis
[STRING; simona; (Gu, 2024)] of pan-astrocyte module 4 revealed
typical astrocyte functions such as signal transduction and
metabolic processes. Whereas examination of the region-specific
modules revealed enrichment of only certain common astrocytic
GO terms (Fig. 2). This could indicate that astrocyte subtypes are
not performing all pan-astrocytic functions to the same extent and
might be more specialized for some of them, as also suggested in
Ohlig et al, 2021. Applying this analytical strategy to additional
datasets could provide valuable insight into core astrocyte functions
and how they diversify between different subtypes.

Expanding astrocyte heterogeneity: injury- and disease-
induced reactivity

The extensive astrocyte heterogeneity described in homeostatic
conditions diversifies even further in response to pathological
stimuli. During injury or disease, astrocytes undergo molecular,
morphological, and functional changes that are beneficial or
detrimental to disease progression and are referred to as “reactive”
astrocytes. Whether, how and to what extent astrocytes respond to
pathological conditions is depending on many factors such as type
-acute versus chronic- of injury/disease, the brain region, timing,
age and gender (Bardehle et al, 2013; Escartin et al, 2021; Habib
et al, 2020; Lange Canhos et al, 2021; Sirko et al, 2023). To date, it is
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Figure 2. Using a single-cell decorrelated module networks method to differentiate subtype-specific and pan-astrocyte functions in the data from Bocchi et al, 2025.

(A) Scdemon identification of 16 gene modules with different expression patterns across GM and WM astrocytes. (B). UMAP plots for astrocytes, colored by brain region,
astrocyte subclusters, or gene modules. (C-E) GO term enrichment analysis of pan-astrocyte (C), GM-enriched (D), and WM-cluster enriched (E) gene modules reveals
GO functions common across different astrocyte subclusters as well as functions enriched in certain clusters. Colors denote functional groups of GO terms, lines indicate
interconnectivity between terms and their hierarchical structure, starting from the middle of the chart, where black lines denote direct parent-child relation of the terms
and red lines (C, E) denote terms that are part of a network. GO analysis was done in STRING, selecting the top 15 biological process (BP) terms per module with FDR

<0.05. Grouping and visualization of GO terms were done using Simona.

still uncertain whether the reactive response to pathology is a pan-
astrocyte feature or if it is limited to a subset of astrocytes and
whether a common molecular signature for reactive astrocytes
exists across different conditions. The following section provides a
brief overview of studies investigating astrocyte heterogeneity in
pathological contexts.

Reactive astrocytes in acute injury conditions

Overall, reactive astrocytes across various pathologies can be
classified into two main distinct subclusters; proliferative and non-
proliferative astrocytes (Sirko et al, 2023, 2013; Bardehle et al,
2013). This differential response has been attributed to the type of
pathology, as mainly conditions where the BBB is disrupted lead to
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astrocyte proliferation (Sirko et al, 2023; Sofroniew, 2015). In
human pathologies including cerebral cavernoma (CCM), trau-
matic brain injury (TBI), and stroke, where intracerebral hemor-
rhage is the common denominator, LGALS3BP was identified as a
crucial regulator of this astrocytic response (Sirko et al, 2023).
Interestingly, this injury-induced astrocyte proliferation is partly
location-dependent. After a traumatic brain and ischemic injury in
mouse cerebral cortex, proliferating reactive astrocytes are
primarily found with their somata positioned at blood vessels, the
juxtavascular astrocytes introduced above (Sirko et al, 2013;
Bardehle et al, 2013). This serves two crucial functions: preventing
monocyte infiltration and facilitating the restoration of the BBB
(Bush et al, 1999; Frik et al, 2018). Following injury, the
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electrophysiological properties of juxtavascular astrocytes differ
significantly from those of non-juxtavascular astrocytes. This is
accompanied by a notable downregulation of K;4.1, a key
astrocytic ion channel, predominantly in juxtavascular astrocytes
(Gotz et al, 2021). These results suggest that in the cerebral cortex,
astrocyte subtypes exist with a different predisposition for a
reactive response according to their specific position.

Besides proliferation, another feature of some reactive astrocyte
states and even of other glial cell states is the activation of innate
immune processes after traumatic brain injury in a time-dependent
manner (Han et al, 2021; Koupourtidou et al, 2024). A
combinatorial approach of single-cell and spatial transcriptomics
after stab wound injury in mouse cortex, revealed injury-induced
reactive astrocyte states characterized by angiogenesis and immune
system processes. Moreover, the astrocytic response to this injury
was shown to be heterogeneous with different clusters accumulat-
ing at the injury site and displaying different transcriptomic
responses (Koupourtidou et al, 2024). Upregulation of genes
associated with innate immune processes can also be observed in
reactive astrocyte states following stroke models and LPS induction,
whereas milder injury models do not trigger such upregulation
(Koupourtidou et al, 2024; Arneson et al, 2022; Hasel et al, 2021;
Sirko et al, 2023; Zheng et al, 2022).

Astrocyte heterogeneity in chronic disease

Whereas hemorrhage-driven pathologies elicit localized astrocyte
proliferation, snRNA-seq studies in AD reveal a complex and
region-specific astrocyte response that reflects the chronic and
heterogeneous nature of neurodegeneration (Cain et al, 2023;
Green et al, 2024; Grubman et al, 2019; Lau et al, 2020; Mathys
et al, 2024; Serrano-Pozo et al, 2024). As mentioned above, a study
examining six distinct brain regions from AD patients and controls
investigated cellular diversity upon ageing and the responses of
various cell types to the disease, detecting region-specific astrocyte
clusters that were also present in other datasets, and discovering 32
gene modules in astrocytes (Mathys et al, 2024). The authors
identified a module of reactive astrocytes in response to plaque
burden and found that astrocytes exhibited a higher number of
plaque-associated DEGs—many of which were linked to metallos-
tasis, compared to other cell types. Notably, astrocytes were the
only cell type expressing genes associated with cognitive resilience.
These promote antioxidant functions, suggesting a unique con-
tribution of astrocytes to antioxidant defense mechanisms (Mathys
et al, 2024). On the other hand, in an AD mouse model, a novel
astrocyte subtype termed disease-associated astrocyte (DAA),
characterized by high Gfap expression, was discovered. These
DAA’s accumulate during disease progression and show a unique
expression of genes involved in endocytosis, complement cascade
and ageing (Habib et al, 2020). These studies underscore that
astrocyte responses are not uniform, even within the same disease
context.

Thus, the reactive response of astrocytes in injury/disease
conditions is highly heterogeneous and depending on many factors.
Unraveling astrocyte diversity in pathological conditions is critical
for the development of novel therapeutic strategies. As not all
astrocytes seem to respond in a similar fashion, this suggests a
potential difference in the underlying vulnerability of astrocyte
subtypes to environmental changes. Obtaining a better under-
standing the heterogeneity of reactive astrocytes will be aided by a
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comprehensive picture of astrocyte heterogeneity under healthy
conditions, including the influence of gender and the respective
changes that occur with aging. To address this, it is essential to
understand the underlying reasons for the limited consensus
among astrocyte heterogeneity studies, and to identify strategies for
improving consistency.

Key considerations for the interpretation of
astrocyte transcriptome data

The recent surge in astrocyte transcriptomic studies has provided
us with a deeper understanding of the complexity of molecular
astrocyte heterogeneity. However, it has also left us with many
hurdles to align the different findings and to comprehend the
dynamic nature of the many astrocyte subtypes. This necessitates
stepping back to reevaluate experimental set-ups and fundamental
aspects of astrocyte physiology, ensuring accurate interpretation of
this extensive body of information.

Experimental parameters and strategies: what
information are we extracting?

Single cell vs single nuclei

Discrepancy in the observed astrocyte subtypes is largely attributed
to differences in experimental parameters and strategies. Evidently,
inconsistencies appear between studies that analyze different
cellular compartments. SCRNA analysis captures and analyzes
RNA content largely from the cell soma, while snRNA studies will
only provide information about nuclear transcripts. A comparative
analysis between the two approaches showed that in pyramidal
neurons, the nuclear portion of total cellular mRNA varies from 20
to 50%. This led to a lower number of transcripts detected in
snRNA (~7000/nuclei) compared to scRNA analysis (~11,000/cell)
(Bakken et al, 2018). Including intronic sequences in the analysis
was shown to be imperative to distinguish similar neuronal
subtypes in the single-nuclei dataset (Bakken et al, 2018).
Retrieving similar astrocyte subtypes with snRNA analysis as with
scRNA analysis could be even more complicated as astrocytes have
smaller nuclei than neurons, which correlates with RNA transcript
levels (Mohammadi et al, 2023; Webster et al, 2009).

Both approaches have distinct advantages and limitations, when
interrogating astrocyte diversity. Most studies investigating astro-
cyte heterogeneity in the murine brain have implemented a single-
cell approach as it provides a higher amount of transcripts/cell and
has a cell capture rate biased towards glial cells. However, single-
cell methods often induce artificial transcriptomic perturbations as
cells are vulnerable to the dissociation protocols (Marsh et al, 2022;
Mattei et al, 2020). On the other hand, single-nuclei isolation
causes less cellular stress but is highly biased towards neuronal cell
capture, potentially due to their larger size. As single nuclei can be
isolated not only from fresh tissue but also from frozen and fixed
tissue, most human transcriptome studies investigating astrocyte
heterogeneity have implemented this method making cross-species
comparison very challenging.

Protocol improvements: sequencing workflows

Building on the pioneering single-cell study by the Linnarsson
group (Zeisel et al, 2015), numerous efforts were made over the past
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decade to refine sc/snRNA-seq workflows to enhance both the
quantity and quality of captured cells. First, scRNA-seq methods
differ in how they tag transcripts and generate sequencing libraries.
Low-throughput plate-based methods sort a cell into a well of a
multi-well plate and involve full-length cDNA amplification to
obtain high-quality deep-sequencing data from individual cells,
allowing detection of rare transcripts and isoforms. High-
throughput bead-based methods, on the other hand, are more
efficient for analyzing a large number of cells but at the expense of
sequencing depth. These methods distribute cell suspensions into
droplets or wells that contain reagents and barcoded beads. The
generated single droplets/wells will encompass one bead labeled
with oligonucleotides for capturing the transcripts present in each
cell. A systematic comparison between the different available
methods suggests that for low-throughput methods, Smartseq2
would be the method of choice, whereas for the high-throughput
methods, 10X Chromium was the top performer (Ding et al, 2020).
Many astrocyte heterogeneity studies have implemented high-
throughput methods to be able to analyze a large number of
astrocytes to retrieve subtypes. However, these could miss
important information, such as splice isoforms. For example,
astrocyte Gfap isoform transcript levels differ between brain
regions, developmental stages and disease states (Kamphuis et al,
2012). More recently, an enhanced single-cell long-read method
(ScISOr-Seq2) was developed allowing full-length isoform analysis
across thousands of individual cells, effectively combining the high
sensitivity of low-throughput methods with the cellular coverage of
high-throughput platforms. Using this strategy, astrocytes were
found to show complex isoform variability patterns along regions,
ages, and subtypes (Joglekar et al, 2024). Thalamic and cerebellar
astrocytes were shown to have a high degree of specialized isoform
expression compared to other regions. Given that the cerebellum
harbors a morphologically and functionally distinct astrocyte
subtype, the Bergmann glia, these findings hint towards a role for
alternative splicing in specialized astrocyte subtypes (Joglekar et al,
2024). By providing more comprehensive transcriptomic informa-
tion, this approach holds great potential to advance our under-
standing of astrocyte heterogeneity under both physiological and
pathological conditions.

Protocol improvements: dissociation workflows

Besides the development of new methods for cell capture and
sequencing, many improvements to the dissociation protocol have
been made to enhance the amount and the quality of the captured
cells. As previously mentioned, tissue dissociation can introduce
artificial transcriptomic perturbations, which may hinder the
accurate detection of baseline transcriptional profiles as well as
condition-induced acute transcriptome changes. In particular, a
dissociation-triggered upregulation of immediate early genes
(IEGs) is observed, causing an artificial activation signature in
isolated cells. By introducing a general transcription inhibitor,
actinomycin D, during the isolation process, a more faithful
detection of transcriptomic changes can be achieved (Liu et al,
2021; Wu et al, 2017; Safaiyan et al, 2021). In addition, dissociation
of brain tissue requires harsh conditions that evidently leads to a
certain degree of cell death. Dead cells can lyse easily, resulting in
the release of ambient RNA which potentially leads to background
noise and compromises single-cell data quality. Removal of dead
cells from single-cell suspensions can significantly improve the
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performance of 10x Genomics experiments. By introducing a
debris/dead cell removal step, samples showed increased cleanli-
ness, accuracy in target cell count, library complexity, and a
decreased mitochondrial contamination (Bocchi et al, 2025).

To collect a sufficient number of astrocytes, enrichment
strategies such as fluorescent or magnetic activated cell sorting
(FACS/MACS) can be used. Enriching astrocyte numbers has been
successfully achieved by FAC-sorting using astrocyte-specific
reporter mouse lines such as the Aldh111-eGFP mouse line (Hasel
et al, 2021; Kim et al, 2023). On the other hand, MACS isolation of
astrocytes can be achieved using the ACSA-2 magnetic beads
(Miltenyi Biotec) (Ohlig et al, 2021; Scott et al, 2024). The ACSA-2
epitope was identified as Atplb2, considered to show stable
astrocyte expression in multiple models of CNS injury and disease
(Batiuk et al, 2017). However, more recently it was shown that
ACSA-2 MACS isolation of astrocytes leads to a significant
contamination of ependymal cells (Ohlig et al, 2021). Direct
comparison of the two techniques revealed that MACS isolation
results in a lower percentage of cell loss (7-9%) compared to FACS
(70%) and can process samples 4-6 times faster and allows parallel
processing of samples. On the other hand, FACS has been shown to
produce samples with higher purity and supports multi-marker
analysis (Pan and Wan, 2020; Sutermaster and Darling, 2019). Even
though both protocols produce samples with high cell viability, they
significantly prolong the isolation process resulting in a certain
degree of cellular stress and artificial transcriptome changes.
Moreover, it is unclear if the markers used for astrocyte enrichment
might be differently expressed between distinct subtypes and thus
lead to the preferential targeting of certain subtypes. An unbiased
sampling approach is therefore the favored strategy to avoid
selecting or missing astrocyte subsets and to maximize cell survival
and quality. Conversely, when the objective is to isolate a specific
subtype, an adapted enrichment strategy is required. For example,
McCarty et al developed a Mlcl-eGFP transgenic mouse strain to
specifically label astrocytes in contact with blood vessels, enabling
the investigation of their role in regulating vascular function in
health and disease (Yosef et al, 2020; Morales et al, 2022;
Toutounchian and McCarty, 2017).

Bioinformatics analysis

In addition to the diversity in the technical and practical aspects of
sc/snRNA analysis, a wide range of approaches is also available for
bioinformatic data analysis. Many different streamlined analysis
tools exist, such as Seurat (Hao et al, 2024) or Scanpy (Wolf et al,
2018), that are accompanied with a user-friendly tutorial, making
sc/snRNA data analysis accessible to everyone. One drawback of
these programs is that many parameters are user-defined, which
can significantly impact the degree of clustering. To learn effective
strategies for avoiding this type of bias in analysis, we recommend
consulting the recent review by Colonna et al (Colonna et al, 2024).
Apart from the classical analysis pipelines, recent advances in the
field led to the development of several cell-cell communication
algorithms. These methods can give insights into the interactions
between astrocytes and their surrounding cells and thereby provide
information about the impact of the respective niche. For instance,
Mathys et al recently reported shared cell-cell communication
across multiple brain regions, but region-specific neuronal signal-
ing in the thalamus (Mathys et al, 2024). For an overview of current
cell-cell communication algorithms for different omic layers, we
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recommend the review by Armingol et al (Armingol et al, 2021). To
facilitate more meaningful comparisons across datasets, bioinfor-
matic analyses should also be standardized.

Bypassing the caveats of tissue dissociation

Spatial transcriptomics

Despite numerous efforts to optimize quality and maximize output
in sc/snRNA-seq, tissue dissociation inevitably introduces bias into
the transcriptomic readout. Of note are techniques that bypass this
dissociation process and allow investigation of cellular hetero-
geneity in situ. Spatial transcriptomics enables a quantitative
readout of gene expression mapped to specific locations in a tissue
section. While sc/snRNA analysis aids us in identifying individual
cellular puzzle pieces, spatial transcriptomics can reveal their
spatial relationships and how they fit together within the tissue.
Considering that astrocytes have a positional identity, studying
them in their natural cellular surrounding holds great promise to
further unravel their heterogeneity.

Spatially resolved transcriptomics can be broadly divided into
sequencing-based and imaging-based technologies that differ in
capture area, sensitivity, number of genes profiled, and resolution.
Sequencing-based spatial methods are high-throughput and can
map the whole transcriptome to the tissue, but often lack sensitivity
and single-cell resolution (Bressan et al, 2023; Tian et al, 2023;
Valihrach et al, 2024). Imaging-based approaches, on the other
hand, reach subcellular resolution while they are limited by the
number of measured transcripts as well as the capture area size
(Valihrach et al, 2024; Bressan et al, 2023; Tian et al, 2023). These
limitations complicate the identification of astrocyte subtypes,
which are frequently defined by subtle transcriptomic changes.
Therefore, spatial transcriptomics is more commonly used as a
complementary approach to sc/snRNA analysis, enabling the
mapping of identified subtypes back to their spatial context within
the tissue. For example, this complementary strategy revealed
differences in the spatial distribution of GM and WM astrocyte
clusters, with some showing a more widespread, and others a more
localized distribution pattern (Bocchi et al, 2025). In the context of
reactive astrocyte heterogeneity, this approach offers insights into
the relationship between subclusters and their proximity to the
injury site (Koupourtidou et al, 2024). Importantly, many of the
spatial transcriptomics technologies can be combined with
measurement of epigenome, proteome or metabolome (Vander-
eyken et al, 2023). Such a multi-omics analysis could be highly
valuable in further elucidating astrocyte diversity (see below).

Patch-sequencing

Another strategy for studying astrocyte subtypes in situ is patch-
seq, which enables simultaneous measurement of whole-cell
electrophysiological recordings, scRNA transcriptome as well as
morphological parameters. Briefly, a Giga-Ohm seal is established
between the pipette and the cell as in patch-clamp electrophysiol-
ogy and can then be used to record (or not) and later extract the
cytoplasmic content via the recording pipette (Natarajan et al,
2024). The extracted material is further subjected to scRNA-seq to
obtain the cell’s gene expression profile. Lastly, a labeling strategy
or loading dye is used to visualize detailed cellular morphology
(Lipovsek et al, 2021; Shao et al, 2023; Cadwell et al, 2016). This
multimodal approach has generally been used to unravel neuronal
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heterogeneity across brain regions and species (Shao et al, 2023).
Although astrocytes do not generate action potentials, they are
electrically dynamic cells with a high degree of electrophysiological
heterogeneity (McNeill et al, 2021). Whole-cell patch recordings of
juxtavascular and non-juxtavascular astrocytes after injury revealed
differential electrophysiological properties potentially related to the
increased proliferation of the juxtavascular subtype (Gotz et al,
2021). Interestingly, patch-seq of morphologically distinct astrocyte
subtypes revealed molecular differences between ventricular zone-
derived cortical plate astrocytes and outer subventricular zone-
derived WM astrocytes (Allen et al, 2022). As this method has also
been successfully used to characterize astrocytes targeted via a viral
vector approach for labeling and/or genetic modification, it could
in addition be used to analyze astrocyte subtypes with a distinct
morphology, e.g., the human astrocytes using acute slices from
human brain tissue. The need for prior labeling is however also a
drawback of this technology as many subtypes are characterized by
subtle differences in gene expression and lack specific markers.
However, viral vector labeling of astrocytes using e.g., a GFAP-
driven promoter may be used in adult human brain slices, to
explore astrocytes with different morphologies. Indeed, it is still an
open question to which extent morphological differences between
astrocytes are reflected by molecular distinctions.

In summary, many different approaches exist to investigate
astrocyte heterogeneity that extract different information that
makes comparison between datasets extremely challenging. On top
of that, many protocols have been optimized over time to maximize
cell amount and cell quality, making correlations with earlier
studies tricky. The preferred strategy for investigating astrocyte
diversity will primarily depend on the scientific question. Overall,
shortening and optimizing workflow protocols will produce better
quality datasets and using an unbiased cell capture approach will
avoid potential subtype targeting.

Regardless of the analysis strategy used, it is essential to validate
the identified subtypes beyond their transcriptomic signatures.
Ideally, an astrocyte subtype should have distinct morphological,
molecular, and functional features. While multi-level validation of
identified subtypes would be ideal, it has proven to be technically
challenging. A comprehensive overview of all possible validation
experiments and their challenges/limitations can be found in
Colonna et al (Colonna et al, 2024).

Astrocyte biology: what information are we missing?

Local translation

A key point to consider is that the majority of these studies define
distinct subtypes solely based on RNA content differences in the
cell soma or nucleus, overlooking critical information from other
subcellular compartments of astrocytes. A unique feature of
astrocytes is their branched morphology that allows them to
contact and regulate blood vessels via their endfeet and synapses/
dendrites via their peripheral processes. These protrusions are
highly specialized structures, containing a variety of transporters,
channels and neuroactive substances equipping them to sense their
environment and coordinate local neuronal activity (Boulay et al,
2017; Murphy-Royal et al, 2017). Moreover, astrocyte processes
exhibit localized microdomain calcium transients that correlate
with changes in metabolic support and neurovascular coupling
(Agarwal et al, 2017; Gau et al, 2024; Otsu et al, 2015).
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Interestingly, Sakers et al discovered that these fine distant
astrocyte processes contain a local translation machinery allowing
astrocytes to locally translate proteins capable of affecting
surrounding synapses (Sakers et al, 2017). By using a translating
ribosome affinity purification (TRAP) strategy, they identified that
transcripts localized in these distant processes show an enrichment
for certain biological functions such as fatty acid synthesis, GABA/
Glutamate metabolism, and synapse refinement. Moreover, they
also locally translate cytoskeletal proteins possibly involved in
morphological remodeling of their processes (Sakers et al, 2017). A
similar observation was made for astrocyte perivascular processes,
where a select subset of mRNA’s is locally translated that primarily
encodes for secreted and membrane proteins which are involved in
vascular homeostasis (Boulay et al, 2017).

The use of astrocyte-ribotag mouse models allowed pulldown
and analysis of ribosome-associated mRNAs from all cell
compartments and revealed transcriptome differences between
astrocytes from different brain regions and across development
(Boisvert et al, 2018). In mouse hippocampus, it was shown that
ribosome-bound mRNAs in the astrocyte processes, compared with
the ones present in the whole astrocyte, are enriched in mRNAs
that encode proteins involved in iron homeostasis, translation, cell
cycle and cytoskeleton and the composition of these mRNAs are
subject to change in memory and learning conditions (Mazaré et al,
2020). In addition, local translation in processes is dynamically and
rapidly regulated by neuronal activity and affects astrocyte
contributions to tripartite synapses (Sapkota et al, 2022).

These studies highlight that crucial information is contained in
astrocyte processes and endfeet that is essentially overlooked in sc/
snRNA analyses due to dissociation-induced loss of processes. As
many astrocyte subtypes show distinct morphologies with different
numbers and complexities of protrusions that results in different
levels of synaptic coverage (Chai et al, 2017; Genoud et al, 2006;
Herde et al, 2020; Lanjakornsiripan et al, 2018) and perivascular
coupling (Hosli et al, 2022), this suggests that different subtypes
have different degrees of local translation. To what extent local
translation contributes to astrocyte heterogeneity is still largely
unexplored. Spatial transcriptomics, where transcriptome analysis
is conducted on intact tissue, bypasses the issue of dissociation-
induced loss of processes but lacks the resolution to investigate
astrocyte protrusions (Mohammadi et al, 2023; Williams et al,
2022). Interestingly, Zeng et al recently developed ribosome-bound
mRNA mapping (RIBOmap), a highly multiplexed method that
allows spatial characterization of protein translation at the single-
cell and subcellular level. They reveal that RIBOmap is capable of
distinguishing between transcripts present in the processes or the
soma of both neurons and astrocytes (Zeng et al, 2023). It would be
interesting to map previous sc/snRNA data to this RIBOmap to
reveal if additional transcripts are detected at the level of the
processes of the different astrocyte subtypes.

Discrepancy between RNA and protein levels

A major concern in astrocyte heterogeneity research is that many
discovered subtypes can only be identified based on RNA
transcripts and largely lack validation at the protein level. On one
hand, this is due to a lack of antibodies for the subtype-specific
marker, and on the other hand, this is related to a discrepancy
between RNA and protein levels. This discrepancy is well-
documented and attributed to many processes such as post-
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transcriptional regulation, translation control, and protein stability
and degradation (Buccitelli and Selbach, 2020). Interestingly, neural
stem cells show a particularly high correlation between mRNAs and
proteins, suggesting that they contribute to generating their own
niche (Kjell et al, 2020).

For astrocytes, the correlation between protein abundance and
RNA expression appears to be weak (Soto et al, 2023). This direct
comparison between proteome and transcriptome also revealed
previously unknown molecules and pathways in astrocyte sub-
compartment proteomes, emphasizing the relevance of exploring
protein levels in parallel to gene expression data (Soto et al, 2023).
Proteomic analysis of astrocytes could be instrumental to further
delineate the different subtypes, but is still scarce due to the
ongoing development and optimization of single-cell proteomics. A
comparison of the proteome between different CNS cell types
revealed that only a tenth of the cellular proteome detected is
actually cell-specific and that these proteins are mostly cell surface
proteins (Sharma et al, 2015). More recently, an in vivo cell-specific
biotinylation approach, using the biotin ligase TurboID, investi-
gated proteomic profiles for astrocytes in different brain regions,
showing differences between cortex and hippocampus, pons,
cerebellum, and spinal cord (Rayaprolu et al, 2022). Proteomic
analysis of CNS cell types has been almost exclusively performed on
the bulk/population level. However, recent advancements in the
field of single-cell proteomics, hold great promise to further unravel
cellular heterogeneity (Bennett et al, 2023).

Functional validation of molecularly identified astrocyte subtypes

Another limitation of sc/snRNA-seq astrocyte heterogeneity studies
is the insufficient functional validation, which is critical for
confirming the physiological relevance of the molecularly identified
astrocyte subtypes. Functional characteristics of astrocyte subtypes
have primarily been described between distinct brain regions. Chai
et al elegantly demonstrated that in the adult mouse brain,
transcriptionally and proteomically distinct hippocampal and
striatal astrocyte subtypes also exhibit divergent electrophysiologi-
cal characteristics, calcium signaling dynamics, and spatial relation-
ships to synapses (Chai et al, 2017). By using imaging sensors for
redox state or ATP generation to investigate metabolic specializa-
tion of astrocyte subtypes, differences in basal metabolism of WM
and GM astrocytes were revealed (Kohler et al, 2023). Also, in vitro
models have been implemented to demonstrate functional hetero-
geneity of regional astrocytes. Human induced pluripotent stem
cells (iPSCs), patterned to dorsal and ventral forebrain or spinal
cord progenitors prior to astrocyte differentiation, revealed not
only distinct regional transcriptomic profiles but also differential
physiological properties such as Ca*' signaling and effects on
neurite growth and blood-brain barrier formation (Bradley et al,
2019). Such an elaborate functional investigation is often not
possible for the identified subtypes within a certain region, as
immunological or genetic labeling cannot easily be achieved.
Nonetheless, some studies have succeeded in obtaining functional
insights, corresponding to transcriptomic profiles, for a subset, but
not all, of the identified astrocyte subtypes. Batiuk et al revealed
differential Ca®* signaling across cortical layers and CA1 hippo-
campus and could correlate this back to their previously identified
astrocyte subtypes by using their in situ hybridization (ISH) data
(Batiuk et al, 2020). In the hippocampus, an astrocyte subcluster
was discovered that selectively expressed synaptic-like glutamate-
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release machinery. By using GluSnFR (glutamate-sensing fluor-
escent reporter)-based glutamate imaging a corresponding astro-
cyte subtype could be revealed that responds to astrocyte-selective
stimulations with subsecond glutamate-release events (de Ceglia
et al, 2023). In Bocchi et al a WM astrocyte subtype with a
molecular signature indicative of ongoing proliferation was
identified, which was validated using 5-EdU incorporation, viral
labeling as well as live imaging (Bocchi et al, 2025).

All techniques mentioned above are valuable tools for advancing
astrocyte heterogeneity research by allowing for a functional
characterization of identified astrocyte subtypes. Another promis-
ing strategy to retrieve functional readouts of astrocyte subtypes is
CaMPARI, or Calcium-Modulated Photoactivatable Ratiometric
Integrator. This calcium-sensitive fluorescent reporter that irrever-
sibly changes color in active cells exposed to light, enables time-
locked labeling of cellular activity (Moeyaert et al, 2018). When
applied to astrocytes, CaMPARI enables spatially resolved mapping
of calcium activity, allowing functional responses to physiological
or pathological stimuli to be assessed across brain regions.
Coupling this approach with RNAscope or in situ hybridization
would permit the visualization of distinct functional profiles among
astrocyte subtypes within the same region.

Astrocyte heterogeneity: current
understanding and future directions

As became evident from the above-described transcriptomic
approaches, the astrocyte population is a lot more complex and
diverse than originally appreciated. However, due to the high
variety of experimental approaches used to analyze molecular
astrocyte diversity, alignment of the datasets and consensus about
the number/identity of astrocyte subtypes has proven challenging.
As a result, a clear and unified understanding of astrocyte
heterogeneity has yet to be established.

Evidence supports the existence of distinct astrocyte subtypes
between brain regions, characterized by morphological, molecular,
and functional differences. For example, the distinction between
GM and WM astrocytes is now appreciated at multiple levels, with
the transcriptomes suggesting mechanisms for their distinct
morphologies and functions (Bocchi et al, 2025). On the other
hand, transcriptomic differences amongst astrocytes within the
same region are more nuanced and therefore even more strenuous
to validate. Should we revisit the classification of a subtype and
what should rather be considered a substate (Fig. 3)?

As outlined in the preamble, for the classification of subtypes,
we can draw from neuronal literature, where subtype classification
has proven more straightforward. Neuronal subtypes can differ by
morphology, neurotransmitter phenotype, physiological properties,
connectivity, and expression of specific markers (Molyneaux et al,
2007; Zeng and Sanes, 2017). Importantly, these hallmarks are
rather stable, with few changes occurring in the adult brain.
Although many aspects of neuronal subtypes are shared, such as
similar morphologies and neurotransmitters of cortical neurons,
they are distinguished by their unique and stable projection
patterns, which persist throughout life (Di Bella et al, 2024; Lodato
et al, 2015).

In this context, a key distinction is that subtypes should exhibit
stable characteristics, whereas substates reflect more transient
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Figure 3. Graphical representation of the current view of astrocyte diversity.

Astrocytes are a heterogenous cell type in the CNS, capable of performing a
wide range of important tasks (indicated in the figure) to maintain brain
homeostasis. Distinct astrocyte subtypes can exhibit unique morphologies and/
or functional profiles or demonstrate an enhanced capacity of specific pan-
astrocyte functions. Environmental changes or stimuli can trigger transcriptomic
alterations, leading to the emergence of a reversible astrocyte substate
potentially optimized for specific functional demands. Created in BioRender.
Hennes M (2025). https://BioRender.com/55vvjuf.

features. Interestingly, in the case of injury/disease-induced reactive
astrocyte subtypes, there is already evidence supporting astrocyte
substate transitions. Nearly a decade after the initial proposal of the
binary ‘A1’ neurotoxic and ‘A2’ neuroprotective astrocyte subtypes
induced by injury/disease (Clarke et al, 2018; Liddelow et al, 2017),
Zhang et al have now demonstrated—through time-series mon-
itoring combined with multi-omics analyses—that these neurotoxic
and neuroprotective phenotypes are in fact substates of the same
exact astrocyte and thus not independent subtypes (Zhang et al,
2025). These findings are in line with the multistate concept of
astrocytes that was previously introduced for reactive astrocytes
capable of adopting multiple states depending on the context
(Escartin et al, 2021). Whether astrocyte substates also exist under
homeostatic conditions, and how neuronal activity would influence
this, is still unresolved. However, as both subtypes and substates are
reflected in differential gene expression, their distinction cannot be
based solely on transcriptome differences. Ideally, longitudinal
studies should determine, how stable or dynamic a gene expression
or functional trait may be.

A further important criterion is function. An authentic astrocyte
subtype should be defined by their specific functional roles rather than
exclusively their transcriptome profiles, as previous efforts to delineate
astrocyte heterogeneity have struggled to validate these subtypes at the
functional level. Recently, Shainer et al revealed that in zebrafish
molecularly similar neurons can be functionally and morphologically
diverse (Shainer et al, 2025). They hypothesize that functional and
morphological diversity can manifest during differentiation due to
restrictions in the local environment, such as the availability of nearby
neurons, which might not be reflected in the cell’s gene expression
levels. This could provide an explanation as to why location-restricted
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Box 1. Questions to be further pursued in the field of astrocyte
heterogeneity

Suggested
Questions to be experimental
further pursued strategies References

How to identify a true Longitudinal multi- Zhang et al, 2025;

astrocyte subtype omic analysis (beyond Escartin et al, 2021;

versus an astrocyte  transcriptome), Shainer et al, 2025;

‘substate’? including a functional Bandler et al, 2022
characterization

Chai et al, 2017;
Bradley et al, 2019;
Batiuk et al, 2020; de
electrophysiology, Ceglia et al, 2023;
5-EdU analysis, Bocchi et al, 2025;
synaptic coverage, live Moeyaert et al, 2018
imaging, CaMPARI

How to functionally
characterize
astrocyte subtypes?

Depending on the
molecular findings;
Ca**-signaling,

What is the origin of Lineage tracing, Bandler et al, 2022
astrocyte TrackerSeq,
heterogeneity? environmental signals,

e.g., from neurons,

blood vessels,...

To what extent does Transplantation,

the local environment subtype validation in

define the subtypes? mouse models with
altered environment,
e.g., neuronal layers
(f.i. Reeler mice)

Bayraktar et al, 2020;
Farmer et al, 2016

What are the real
pan-astrocyte

Transcriptome
comparison between
functions, and is clusters, gene module
there a division of analysis (scdemon)
labor of these across across multiple

the subtypes? datasets

Ohlig et al, 2027;
Mathys et al, 2024

morphologically distinct astrocyte subtypes, such as the interlaminar
and varicose projection astrocytes, cannot be distinguished based on
their transcriptome. Another assumption would be that certain cellular
characteristics such as morphology are actually regulated at the
posttranslational level and/or by low-abundance transcripts that have
not yet been detected. Indeed, patch-seq analysis revealed a disconnect
between physiological function such as neuronal firing and expression
levels of channels or the remnants of astrocyte gene expression (Kempf
et al, 2021).

While implementing neuronal frameworks to better grasp
astrocyte subtypes can provide valuable insights, they do not
convey the full picture. Historically, drawing direct comparisons
between astrocytes and neurons has had limited success. The
expectation that astrocytes should mirror neuronal electrical
activity to be considered functionally relevant led to their
prolonged dismissal as passive structural cells. More recently, it
was shown that even conserved signaling pathways elicit different
functional outcomes as Gi protein-coupled receptor signaling
inhibits neuronal activity but activates astrocytes (Durkee et al,
2019). It is therefore important to recognize that given their distinct
biology, astrocytes often require alternative experimental strategies
for their investigation.

In light of this, future studies should be advised to implement a
longitudinal multi-omics analysis. TrackerSeq, allowing lineage
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tracing in combination with scRNA-seq, could be an interesting
strategy to investigate whether cells labeled in the adult brain shift
between clusters in a longitudinal study (Bandler et al, 2022).
However, this approach is best applied to fast-dividing cells, such as
the cluster observed in the WM, and more difficult to interpret
once astrocytes stop dividing. Besides studying astrocytes at
different omics levels, one should also consider important
information residing in different subcellular compartments, such
as the fine distant astrocyte processes. In addition, live imaging
approaches would allow observation of astrocyte subtype behavior
in their natural environment as well as real-time visualization of
potential substate transitions that could be accompanied by
changes in Ca’'-signaling, blood vessel association or synaptic
coverage (Bernardinelli et al, (2014); Bindocci et al, 2017; Mills
et al, (2022)).

Finally, it is important to emphasize that despite the many
unresolved questions (Box 1) regarding astrocyte diversity, the
emerging multi-omic era will be instrumental in unraveling the
remaining uncertainties and provide us with groundbreaking
insights into astrocyte biology. Given the critical roles astrocytes
play in maintaining brain function in both health and disease, a
comprehensive understanding of their biology could open the door
to novel and effective treatments for neurological disorders.
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