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Tissue makeup depends on the local cellular microenvironment. Spatial
single-cell genomics enables scalable and unbiased interrogation of

these interactions. Here we introduce Nicheformer, a transformer-based
foundation model trained on both human and mouse dissociated single-cell
and targeted spatial transcriptomics data. Pretrained on SpatialCorpus-110M,
acurated collection of over 57 million dissociated and 53 million spatially
resolved cells across 73 tissues on cellular reconstruction, Nicheformer
learns cell representations that capture spatial context. It excelsin
linear-probing and fine-tuning scenarios for a newly designed set of
downstream tasks, in particular spatial composition prediction and spatial
label prediction. Critically, we show that models trained only on dissociated
datafail torecover the complexity of spatial microenvironments,
underscoring the need for multiscale integration. Nicheformer enables the
prediction of the spatial context of dissociated cells, allowing the transfer
of rich spatialinformation to scRNA-seq datasets. Overall, Nicheformer

sets the stage for the next generation of machine-learning models in spatial

single-cell analysis.

Single-cell genomics technologies have advanced our understanding
of cellular heterogeneity in tissues, organs and organisms. Large-scale
datageneration efforts have charted cellular atlases of specific tissues
and organs, such as the lung' and heart?, as well as broader cross-tissue
atlases®. However, single-cell RNA sequencing (scRNA-seq) requires
cell dissociation, losing information about the cellular microenviron-
mentand hindering acomplete understanding of molecular variation®.
Recentadvances inimage-based spatial transcriptomics enable in situ
scRNA-seq, profiling hundreds of genes in hundreds of thousands of
cellsacross various tissues*”. In situ spatial omics has revealed spatial
components of cellular variations such as cell-cell communication®and

spatial gradients as well as emergent properties of tissue niches’, for
example, in the mouse and human brain®’ and liver'®. We hypothesize
that spatial omics data are becoming rich enough to learn a spatially
aware, foundational’ representation of cellular variation at scale.

A foundation model is a deep learning model trained on broad
data that can be adapted to a wide range of downstream tasks. These
models have revolutionized fields such as natural language process-
ing" and computer vision'. Foundation models increasingly account
for multimodal data, by leveraging not only one data modality, for
example text, but also images, video and audio®. By utilizing mas-
sive datasets, powerful architectures and large compute resources,
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foundation models learn general representations of language, vision
or domain-specific data like DNA™ and protein sequences®, outper-
forming classical methods. Commonly based ontransformer architec-
tures, they are pretrained on vast, unlabeled data via self-supervision,
learning powerful representations by identifying patterns without
human-annotated labels. These learned representations then serve as
astrong base for downstream tasks, while fine-tuning on labeled data
further enhances performance on specific applications.

The field of single-cell biology has taken up deep learning-based
representation learning for some time, leveraging autoencoders'®"”
foranalysis tasks like data integration'®, atlas mapping" and perturba-
tion prediction®’. Recently, foundation models explicitly designed for
single-cell genomics have emerged? . These models differ in tokeniza-
tionand learning strategies, yet most of them leverage the transformer
architecture with self-attention. They rely onlarge datasets, usually in
the order of tens of millions of cells, for pretraining. The gene and cell
representations learned by these models are derived from implicitly
modeling the complex interplay between gene expression patterns
withinasingle cell viathe flexible transformer architecture. Single-cell
foundation models are evaluated on diverse downstream tasks, such
as cell-type classification”>”, gene regulatory network inference*-** or
prediction of cellular responses to perturbations?. The diversity and
complexity of these tasks thoroughly probe model performance and
evaluate therobustness of the learned representation and generaliza-
tion ability. Current results are promising but not entirely replicated in
independent benchmarks® 2%, Notably, these models do not account
for spatial relationships of cells during training, with the exception
of CellPLM?, which, however, is trained on a limited dataset of 9 mil-
lion dissociated and 2 million spatial transcriptomics cells and not
fine-tuned on spatial tasks beyond gene imputation.

We propose Nicheformer, a foundation model pretrained on
large-scale, single-cell and spatial transcriptomics data to enable pre-
dictions for spatially dependent tasks that are constrained by limited
training data. Tolearn spatial cellular representation at scale, we com-
piled SpatialCorpus-110M, alarge curated collection of single-cell and
spatial transcriptomics datasets, spanning over 110 million cells, includ-
ing 53.83 million cells that were measured using image-based spatial
technologies, from both human and mouse from 73 different organs
andtissues. By incorporating contextual information through modal-
ity, organism and assay tokens, Nicheformer is able to learn a joint
representation of single-cell and spatial genomics. We designed a set
of novel downstream tasks showing that both fine-tuned Nicheformer
and alinear-probing model trained on the Nicheformer embedding
systematically outperform existing foundation models, specifically
Geneformer?, scGPT? and UCE* pretrained on dissociated dataalone,
foundation models trained in spatial data, specifically CellPLM*, and
embedding models like scVI” and principal-component analysis (PCA)
for these tasks. We demonstrate that Nicheformer accurately transfers
the spatial context identified in spatial transcriptomics onto dissoci-
ated single-cell data, allowing users to enrich nonspatial sScRNA-seq
datawith spatial context. This work paves the way for anew generation
of foundation models for learning robust representations of cellular
variation in tissues.

Results

A transformer-based foundation model for combined spatial
and disassociated single-cell data

Overview. Nicheformer is a transformer-based model pretrained
on SpatialCorpus-110M, a curated collection of over 110 million cells
from dissociated and spatially resolved single-cell assays (Fig. 1a).
Nicheformer generalizes prior tokenization strategies* by encoding
sample covariates across technology modalities, enabling a unified
framework for multimodal learning, opening up new possibilities
for downstream tasks. We additionally enable learning multispecies
embeddings with Nicheformer by defining orthologous genes across

humans and mice (Methods), which was shown to work beneficially for
cross-species biological investigations and enhanced the discovery of
universal gene regulatory mechanisms*’. We evaluated Nicheformer on
new downstream tasks to demonstrate its ability to transfer spatially
inferred cellular variation to single-cell dissociated data (Fig. 1b).
The Nicheformer pretraining corpus comprises transcriptomics
data from both humans and mice (Fig. 1a). Only expression data were
used during pretraining to train the model to integrate data from
dissociated and targeted spatial technologies, both of which show
substantial batch effects (Fig. 1a). A limiting factor for image-based
spatial transcriptomics datais the targeted feature space, measuring
only hundreds to afew thousands of genes, depending on technology
and panel’. Nicheformer is pretrained across both modalities jointly
to capture cross-tissue, cross-technology and cross-disease variations.
For evaluation of the downstream tasks, we focused on large-scale
spatial datasets from four different solid organs profiled with three
image-based technologies (Fig. 1b). We fine-tuned Nicheformer or
appliedlinear probing, extracting embeddings from the frozen model
and passing them through a task-specific linear layer for classifica-
tion or regression (Methods). The embedding is obtained via forward
passing aspecific dataset through the pretraining model to generate a
lower-dimensional representation, the so-called Nicheformer embed-
ding. The organ-specific spatial context learned by Nicheformer can
thenbe used to evaluate the model’s ability to generalize information
learned from spatial transcriptomics data, without directly accounting
for the available spatial context, and transfer it to dissociated data.

Cell representation. We define a cell as a sequence of gene expres-
sion tokens ordered by expression level relative to the mean in
SpatialCorpus-110M (Fig. 1c). As the corpus includes human and
mouse data, we constructed a shared vocabulary by concatenating
orthologous protein-coding genes and species-specific ones, totaling
20,310 gene tokens (Fig. 1c and Methods). Each single-cell expression
vector is converted into a ranked sequence of gene tokens (Fig. 1d
and Methods), a strategy shown to yield embeddings robust to batch
effects while preserving gene-gene relationships. We combined all
technology-specific datasets and pad missing genes. Previous works™
have demonstrably shown technology-dependent biases between
spatial and dissociated transcriptomics data, with spatial data often
yielding higher gene counts due to preprocessing steps®. To account
for this, we computed technology-specific nonzero mean vectors—
rather than a global one—by averaging nonzero gene expression val-
ues within each assay type. Dissociated assays are grouped as one
technology, whereas spatial datasets are divided into multiplexed
error-robust fluorescence in situ hybridization (MERFISH), Xenium,
CosMxand insitusequencing (ISS) technologies. Finally, we introduced
contextual tokens for species, modality and technology, enabling the
modeltolearntheir distinct characteristics. Asrank-based encoding is
central to our approach, we confirmed that Nicheformer embeddings
remain stable under perturbations, simulatingincomplete gene panels
(Extended DataFig.1a,b and Methods).

Model design and training. Nicheformer uses a1,500-token context
length as input to an architecture with 12 transformer encoder units
with 16 attention heads per layer and a feed-forward network size of
1,024, generating a 512-dimensional embedding, resulting in a total of
49.3 million parameters. This architecture performed best compared
to smaller models (Extended Data Fig. 2c) and other hyperparameter
configurations (Supplementary Table 1).

We confirmed technology-dependent biases between spatial
and dissociated transcriptomics data through extensive pretrain-
ing experiments across different data splits (Methods). Specifically,
training on dissociated data alone (even three times the amount of
spatial data) resulted in lower performance across downstream tasks
(Extended DataFig.2a,b), indicating that dissociated data alone cannot
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Fig. 1| Nicheformer, afoundation model for spatial transcriptomics.

a, Nicheformer is pretrained on the SpatialCorpus-110M, a large data collection
of over 110 million cells measured with dissociated and image-based spatial
transcriptomics technologies. The SpatialCorpus-110M collection comprises
single-cell data from Homo Sapiens and Mus Musculus across 17 distinct organs
and 18 cell lines, and additional single-cell data from other anatomical systems
andjunctions. Shown is an exemplary uniform manifold approximation and
projection (UMAP) visualization of arandom 1% subset of the entire pretraining
dataset (n=1,108,759 cells) of the non-integrated loglp-transformed normalized
SpatialCorpus-110M colored by modality. b, Nicheformer includes a novel set
of downstream tasks, ranging from spatial cell-type, niche and region label
prediction to neighborhood cell density and neighborhood composition
prediction. We test our approach on large-scale, high-quality spatial
transcriptomics data from the brain (mouse, MERFISH), liver

Spatial label prediction

CosMx
human liver

MERFISH
mouse brain

@ Celltype
° y Niche
’ Region

Spatial composition

[*)
@ « @ Celldensity [9]
) ) )
“ > Neighborhood 0.22 0.33 0.1
Y composition
{ ® L 4
X
CosMx Xenium Xenium
human lung human lung human colon
s . e ™
AR g s
Y Y

e Nicheformer embedding

Modality
® Dissociated
Spatial

Aggregate

(CosMx, human), lung (CosMx, human; Xenium, human) and colon (Xenium,
human). Visualized are example slices of the respective datasets colored by
niche labels (brain, liver and lung) and cell density (lung and colon). ¢, The
SpatialCorpus-110M is harmonized and mapped to orthologous gene names,
as wellas human and mouse-specific genes, to create the input for Nicheformer
pretraining. We harmonized metadata information across all datasets, capturing
species, modality and assay. d, Each cell’s gene expression profile and metadata
are fed into a gene-rank tokenizer to obtain a tokenized representation for each
cell. The tokenized cells serve as input for the Nicheformer transformer block
to predict masked tokens. Finally, the Nicheformer embedding is generated

by aggregating the gene tokens (Methods). e, The pretrained Nicheformer
embedding is visualized as UMAP colored by modality. The UMAP shows a
random 5% subsample of the entire Nicheformer embedding (n =4,903,086).
NA, notapplicable.
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capture spatial variation. Similarly, we evaluated training with only
human or only mouse data. Models trained on one organism performed
poorly onthe missing organism but outperformed those trained on the
opposite organism (Extended Data Fig. 2c). Importantly, this result is
notinfluenced by the sheer number of cells since allmodels are trained
withthe same number of cells; the only difference is the diversity of the
data. These findings are statistically significant (analysis of variance,
adjusted for false discovery rate (FDR); Extended Data Fig. 2a,c) and
highlight theimportance of datadiversity inmodel training for optimal
performance across context®.

Model evaluation and downstream tasks. Current transformer-
based single-cell models are used for either gene-level tasks (for
example, gene regulatory networks inference, perturbation effects)
or cell-level tasks (for example, cell-type annotation, batch integra-
tion)* >, By incorporating dissociated and spatial scale into a single
model, Nicheformer enables a new class of spatially aware tasks,
where previous models primarily only focused on disassociated ones
(Supplementary Table 2). These include predicting human-annotated
niches, tissue regions and spatial compositions—biologically mean-
ingful and nontrivial problems (Fig. 1b and Methods). For the spatial
label prediction tasks, we also evaluated the model’s uncertainty
regarding the predicted labels (Methods). For spatial composi-
tion tasks, we defined a distance-based spatially homogeneous
niche around each cell and asked the model to predict local den-
sity or cell-type composition. The tasks are formulated as predic-
tion problems operating on Nicheformer’s pretrained embedding
(Fig. 1e), which differ from typical integrated spaces by capturing a
cross-modality, cross-tissue and cross-species representation suited
for downstream inference.

Model transfer learning. We evaluate Nicheformer in both linear-
probing and fine-tuning settings. Inboth cases, alinear headis trained
for the specific prediction task, with fine-tuning additionally updat-
ing the transformer’s parameters. Linear probing—due to its simplic-
ity—highlights the intrinsic biological signal captured by the learned
Nicheformer embedding (Fig. 1e).

SpatialCorpus-110M, alarge-scale, cross-organ and
cross-species pretraining dataset for single-cell and spatially
resolved transcriptomics

To pretrain Nicheformer, we assembled SpatialCorpus-110M—a large
harmonized corpus of single-cell and spatially resolved transcriptomics
datatodate.Itincludes 57.06 milliondissociated cells and 53.8 million
spatial cells across human and mouse tissues.

Thedissociated portion builds uponthe CellXGene CENSUS data-
base (33.47 million cells; Methods), which we extended by an additional
180 datasets across 73 different tissues, containing 17 solid organs, 18
cell lines and various additional tissue junctions in human and mice,
with harmonized ontologies and metadata (Fig. 2a). These additional
dissociated datasets have been collected through the Gene Expres-
sion Omnibus (GEO)*, sfaira® and the Human Cell Atlas (HCA) data
explorer®® (Supplementary Table 3 and Methods). Altogether, the
dissociated collection of SpatialCorpus-110M comprises cells from
over 6,000 different donors and technical or biological replicates.

For spatial transcriptomics, we curated image-based spatial
datasets, specifically MERFISH* (Vizgen MERSCOPE), 10x Genomics
Xenium, Nanostring CosMx*® and ISS* data (Fig. 2b and Supplementary
Table 4), sourced from publications as well as via the Vizgen data
release*” (18.8%) and the 10x Genomics data resource* (13.7%). It cov-
ers 15 tissues from 158 individuals or animals and over 10,600 tissue
sections. Most cells originated from the brain (60.46%, n = 32,146,779
cells) and the lung (9.95%, n = 3,199,548 cells). A large proportion of
the publicly available spatial omics datasets we collected are not anno-
tated (55.23%). We included both healthy samples (64.07%) and cancer

samples (31.98%) to enable Nicheformer to learn tumor-immune
microenvironment contexts.

For all datasetsin the SpatialCorpus-110M, we curated metadata,
such as assay, sex, organism and tissue, based on the original publica-
tions by using official ontology termidentifiers (Fig. 2c and Methods).
To harmonize features across species, tissues and assays, we first con-
verted all gene symbols to ENSEMBL gene IDs using pyEnsemble*.
Then we used BioMart* through the official Ensembl releases** to
match orthologous genes between species, yielding 20,310 unique
gene tokens: 16,981 orthologous, 151 mouse-specific and 3,178
human-specific genes.

Importantly, we did not integrate datasets into a unified latent
space. Our goal was to preserve biological and technical variability
while offering alarge-scale resource for model training. Like CellXGene,
SpatialCorpus-110M provides curated raw inputs, allowing researchers
to choose their own normalization and integration strategies.

Nicheformer learns sex-related differences in gene-gene
dependencies in MERFISH mouse brain data

Understanding theinternal mechanisms of transformer models helps
uncover whether their attention patterns reflect biologically meaning-
fulfeatures. Weinvestigated Nicheformer’s attention matrices with two
objectives: (1) to examineifits layers develop generalizable structures
across tissues and modalities, and (2) to test whether attention reflects
biological variation.

To assess general layer organization, we analyzed attention
across all heads and layers for 2,000 cells from multiple datasets in
SpatialCorpus-110M: male and female MERFISH mouse brain samples®,
theliverand lung CosMx datasets®® used for downstream tasks (Meth-
ods) and ascRNA-seq measured brain dissociated dataset’ (Methods).
Our analysis suggests a hierarchical division across Nicheformer’s
layers: early layers distribute their attention more broadly, with no
clear prioritization of individual tokens; middle layers exhibit a sharp
attention toward specific genes (Fig. 3b), likely capturing biologically
relevant relationships; and final layers consistently focus on contex-
tual tokens (Fig. 3a and Extended Data Fig. 3a,b). This structured pat-
tern of attention is robust across all analyzed tissues and modalities,
indicating that Nicheformer learns a hierarchical representation that
generalizes beyond a single dataset. We confirmed significance with
aMann-Whitney U-test comparing attention distributions (corrected
with Benjamini-Hochberg FDR; Extended Data Fig. 3¢,d).

At head level, some attention heads maintain consistent func-
tional roles across tissues and modalities, such as prioritizing highly
expressed genes, regardless of whether the dataset originates from
brain, liver, lung or dissociated cells (Extended Data Fig. 4a). Oth-
ers varied by modality, suggesting modality-specific specializa-
tion (Extended Data Fig. 4b). We also observed heads with strong
self-attention patterns (visualize as strong diagonal attention scores),
while some show off-diagonal patterns, likely reflecting coexpression
(Extended Data Fig. 4c). These findings highlight the diverse range
of attention behaviors that Nicheformer develops when processing
complex biological data. These observations echo findings in large
language models, where specific attention heads acquire well-defined
functions, such as induction heads that detect repeated patterns in
sequences® orsuccessor heads that track sequential dependencies*.
While mechanisticinterpretability in biological foundation modelsis
still in its early stages, our results suggest that Nicheformer exhibits
a similar specialization, with certain heads consistently attending to
biologically relevant features across datasets.

Understanding biological variation across conditions is central to
single-cell analysis. We assessed whether Nicheformer captures mean-
ingful biological variations—inthis case, sex-specific patterns—in these
attention mechanisms by analyzing attention patterns in male and
female MERFISH mouse brain datasets from the Spatial Corpus110-M®
(Fig. 3c-e). Both datasets share common coordinate framework
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Nicheformer. a, The dissociated single-cell genomics data collection contains
57.06 million human and mouse cells. The collection includes cells from 17
different organs, 18 different cell lines, blood, bone elements, tissue junctions
and other anatomical entities, grouped by primary solid organs to simplify
visualization and analysis. b, The spatial transcriptomics data collection contains
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53.83 million targeted spatially resolved cells obtained from humans and mice.
The collection comprises four different profiling technologies across 15 different
solid organs. ¢, The SpatialCollection-110M was collected with harmonized
metadata defined in the Nicheformer data collection schema (Methods).
Metadata were harmonized both on the gene level and on the cell level depending
on modality.

(CCFv3)*annotations, allowing for tagged analysis of the anteroventral
periventricular nucleus (AVPV), known for sex-dependent morphology
and gene expression*s,

We analyzed all attention matrices from 2,000 AVPV cells per sex,
focusing on ten genes previously reported as sexually dimorphic*,
and comparing the attention paid to the predefined set of genes against
the attention paid to100 randomly selected genes. We do the analysis
bothforall cellsinthe AVPV section and for just HY GABA cells, a small
population of cells in the AVPV that modulate the firing of the differ-
ent glutamatergic neuronsinthe AVPV that stimulate the synthesis of
gonadotropins®. We identify key differences between the male and
female cells (Fig. 3f,g). The first eight layers had the greatest average
attention differences for both sexually dimorphic genes (SDGs) and

100 random genes not directly linked to sex-specific differences in
the brain (Extended Data Fig. 4d,e). In contrast, layers nine and ten
show high maximal attention value differences for SDGs, when per-
forming differential testing on the attention weights between those
two groups, especially for HY GABA cells (Fig. 3h,i). This suggests that
specific attention heads in these layers capture subtle sex-specific
cues. The contrast between the average and the maximum attention
difference indicates that the sex differences are captured by a sub-
set of the attention heads, with at least one of the 16 attention heads
showing a stronger focus. This contrast between the average and the
maximum difference in attention also holds for genes in the random
set (Extended DataFig. 4f,g). Furthermore, six of the ten genes with the
highest attention differences between sexes (Adgrf5, Nfib, Pou6f2, Rgs4,
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Fig. 3| Nicheformer identifies gene-gene dependencies between male and
female MERFISH mouse brainsections. a, Analysis of layer-wise attention
patterns reveals that Nicheformer’s later layers consistently pay more attention

to contextual tokens across all tissues and modalities, demonstrating a clear and
robust hierarchical processing pattern. b, Maximum layer-wise attention paid to
gene tokens. For all tissues and modalities, Nicheformer’s middle layers pay the
most attention to the gene tokens. ¢, Single cells resolved in space on an example
slice (n = 2,292 cells) of the MERFISH female mouse brain dataset with cell-type
label superimposed. d,e, Single cells resolved in space on an example slice
(n=2,269 cells) of the MERFISH male mouse brain dataset with the cell-type label
(b) and CCF acronym label (c) superimposed. ADP, anterodorsal preoptic nucleus;
AVP, anteroventral preoptic nucleus; HY, hypothalamus; MB, midbrain; MEPO,
median preoptic nucleus; MPO, medial preoptic nucleus; NA, nucleus accumbens;

log(fold change)

IIn, second cranial nerve; OV, organum vasculosum laminae terminalis.

f.g, Absolute difference of layer-wise attention scores between male and

female MERFISH mouse brain sections show per transformer block of the SDGs
consideringjust the HY GABA cells (d) and the entire AVPV section (e). h, Maximum
layer-wise attention difference across layers between male and female HY GABA
cells. The attention paid to random genes and SDGs is equal across all layers except
inlayers 9 and 10, where there is an increment in the maximum attention paid to
the SDGs in comparison to the attention paid to the random set of genes. i, Volcano
plot showing the differentially expressed genes (DEGs) highlighting the genes
with highest attention difference between sexes (red), and highlighting the SDGs
(blue). The genes found with highest attention differences are not among the most
differentially expressed. Pvalues were obtained from two-sided Wald tests and
adjusted for multiple comparisons using the Benjamini-Hochberg procedure.
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Serpine2, Spock3) have not previously been reported to have sexually
dimorphic expression in the brain and some were not differentially
expressed between the male and female brain section (Fig. 3i), yet
they play roles in development, G-protein-coupled receptor regula-
tion or the extracellular matrix—functions relevant to AVPV biology
in which we expect to see sex differences. These effects are likely due
to interaction patterns with both known dimorphic genes and others
not included in the panel (for example, Kiss1, Gnrh, Esr). Notably,
Nicheformer’s ranked tokenization and attention mechanisms enable
robust differentiation without requiring matching expression depth,
highlighting a key strength of the model.

Nicheformer allows transferring spatially resolved cell-type,
niche and region labels onto unseen data

Dissociated single-cell atlases excel at mapping cell-type diversity,
typically defined by stable molecular states across tissues. However,
celltypesare defined ignoring the spatial context, which provides addi-
tional value for understanding cellular microenvironments®. Spatially
resolved single-cell genomics allows us to augment cell-type definitions
byincorporating neighborhood gene expression and histological struc-
ture, defining cell niches. These are spatially dependent, local tissue
structures (for example,immune or tumor niches), often nested within
broadertissue regions, whichreflect higher-order spatial organization.

Transferring labels between dissociated and spatial data is chal-
lenging due to limited gene overlap®*, and modality-specific methods
are not designed to learn from reference atlases at the scale of hun-
dreds of million of cells. Nicheformer addresses this by leveraging the
SpatialCorpus-110M to enable scalable annotation transfer.

We evaluated Nicheformer on a large MERFISH mouse brain
dataset®, where 17 different brain regions and 8 distinct tissue
niches (Fig. 3a) are labeled (Extended Data Fig. 5a—-c). We tested lin-
ear probing—linear head over the frozen Nicheformer embeddings
(Extended DataFig. Se,f)—and fine-tuning approaches for both labels
for unseen, held-out tissue sections from the MERFISH mouse brain
dataset, measuring one male mouse brain (Extended Data Fig. 5a-d).
Compared to embeddings from PCA and scVI (trained on either
the brain dataset or subsets of SpatialCorpus-110M; Methods),
and to foundation models (Geneformer, scGPT, UCE, CellPLM),
Nicheformer achieved the highest macro F1 scores (Fig. 4b and
Extended Data Fig. 6a,b). While PCA with alarge number of components
offersagood performance, practically on par with using alinear probe
on top of Nicheformer’s representations, or even surpassing it in the
case of region prediction, it still fell short of the fine-tuned Nicheformer
model (Extended DataFig.7a,b). The differences between Nicheformer
and competitors were statistically significant as derived from t-tests
between Nicheformer and the best-performing comparison method
(Extended DataFig. 6a,b).

We performed a similar analysis on arandomly held-out test set of
the CosMx human liver dataset defining tissue niches as different zona-
tions between the central and portal veins (Extended Data Fig. 8a-c).
Again, fine-tuned Nicheformer led in terms of macro F1score. However,
linear probing underperformed compared toscVland PCA trained onthe
training set of the liver dataset (Extended DataFig. 8f). We hypothesized
that thisis related to the insufficient model capacity due to limitations
regardingarelatively low overall abundance inthe SpatialCorpus-110M
(Fig. 2a,b). Extended pretraining on liver dataimproved performance,
suggesting undertrained tissues can benefit fromadditional fine-tuning
(Extended DataFig. 8f). Surprisingly, we observed thatin Nicheformer
models trained with just ~1% data, there was no such a drop in perfor-
mance. Additionally, we observed that the model trained on a smaller
dissociated subset (1%) performed slightly better than one trained on
alarger subset (3%), which also supports the hypothesis that ‘compute
per sample’isimportant (Supplementary Note 1).

We next assessed label transfer between spatial and dissoci-
ated data, using Nicheformer to map MERFISH-defined cell types to

scRNA-seq motor cortex cells (Fig. 4c¢,d)’. We find that Nicheformer
correctly selects the nine motor cortex-related cell types of the overall
33 celltypes present in the MERFISH mouse brain dataset (Fig. 4e and
Extended Data Fig. 81). When calculating classification uncertainty
based on the overall predicted distribution generated by the model
(Methods), the predicted cell-type labels show overall a high agreement
and low classification uncertainty (Fig. 4e,I) with the original cell-type
annotations. Mostly, all cell types were correctly matched, indepen-
dently of theirabundanceinthe cell dissociated dataset (Fig. 4h).Some
deep-layer glutamatergic neurons were misclassified as midbrain
glutamatergic, possibly due to transcriptional heterogeneity and
subtype imbalance in MERFISH data. For niche labels, Nicheformer
correctly predicted all expected assignments with low uncertainty
for non-neuronal and inhibitory neurons, but higher uncertainty for
excitatory subtypes (Fig. 4f,j and Extended Data Fig. 8j). Misclassifi-
cations likely stem from overlapping spatial structures. For region
labels, most cells were correctly predicted as isocortex (Fig. 4g,k and
Extended DataFig. 8k). Some spillover into adjacent regions (for exam-
ple, cortical subplate (CTXsp) and olfactory areas (OLF)) may reflect
tissue dissection artifacts. Region prediction was slightly worse for
non-neuronal cells, likely due to their lower transcriptional diversity.
For extended detailed analysis, consult Supplementary Note 2.

Altogether, this demonstrates Nicheformer’s ability to learn pow-
erful cell representations by capturing nuanced spatial information.
Linear probing already surpasses existing baselines, highlighting the
effectiveness of the representation. Fine-tuning further refines this
representation, emphasizing the importance of task-specific adapta-
tion for capturing subtle cellular variations. Notably, Nicheformer
enables the direct transfer of spatially aware annotations from spatial
todissociated single-cell data by using asimplelinear layer. This capa-
bility unlocks new possibilities for analyzing single-cell data across
different modalities.

Nicheformer predicts neighborhood compositions in spatial
and dissociated single-cell data

Tissue microenvironments consist of cellular neighborhoods with
a diverse composition of cell types. Differences in neighborhood
composition have been shown to have an important effect on gene
expression and can be associated with cell-cell communication events®.
Furthermore, the cellular composition of neighborhoods in the tumor
microenvironment may hold prognostic value, because immune cell
infiltration in the spatial context s a predictor for cancer survival®. Here
we show that we can leverage Nicheformer’s multimodal cell represen-
tation to accurately relate changes in gene expression to differences
in neighborhood compositions in spatial data and transfer them to
dissociated transcriptomes.

We define a cell’s ‘computational’ neighborhood as the set of cells
within a fixed radius (Fig. 5a and Methods). The total number of cells
composing the neighborhood defines the neighborhood density, and
the proportionof celltypesinthe neighborhood defines the neighbor-
hood composition. This notionis consistent with previous approaches
defining a cellular neighborhood*® and allows for an interpretable
evaluation of model results. Generally, the definition of a cell neigh-
borhood can be extended in the future to account for non-isotropic
cellneighborhoods that might varyin their cell-type composition and
are drivers of similar biological functions with varying sizes across
adataset.

To evaluate Nicheformer’s ability to predict neighborhood com-
position, we focused on three datasets measuring three organs with
two different technologies, namely MERFISH mouse brain, CosMx
human liver and CosMx human lung. We computed neighborhood
compositions at varying resolutions for each of the three datasets
separately. The radii were selected to contain, on average, 10, 20, 50
or 100 neighbors (Fig. 5b and Methods). We evaluated Nicheformer
both in linear-probing and fine-tuned settings for each dataset and
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eachneighborhoodsize individually and compared its performance to
linear probing on embeddings computed with scVI, PCA, Geneformer
and scGPT. We found that fine-tuned Nicheformer systematically out-
performed the linear-probing models trained on Nicheformer embed-
ding, Geneformer, scGPT,scVland PCA, independently of the number
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of principal components used, eventhough PCA’s performance notably
improves with more principal components (Extended Data Fig. 7a,c,d),
for this task on all three organs in terms of mean absolute error. Like-
wise, for UCE and CellPLM, which we evaluated by training a linear
layer on their embeddings, we also found that linear probing with
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Fig. 4 |Nicheformer accurately transfers cell-type, niche and region label

to unseen spatial and dissociated data in the brain. a, Single cells resolved
inspace on an example slice (n = 114,396 cells) of the MERFISH mouse brain
dataset with niche label superimposed. b, Test-set F1 macro of niche and brain
region label prediction of the fine-tuned Nicheformer model, the linear-probing
model and alinear-probing baseline computed based on embeddings generated
with Geneformer, scGPT, scVIand PCA, respectively. For scVland PCA, both
embeddings generated from arandom 1% subset of the SpatialCorpus as well
asembeddings generated from the training set of the original dataset are
evaluated. ¢, UMAP of dissociated scRNA-seq dataset with original author cell-
typelabel superimposed. ET, extratelencephalic neurons; IT, intratelencephalic
neurons; CT, corticothalamic neurons; NP, near-projecting neurons; OPC,
oligodendrocyte precursor cells. d, Nicheformer can transfer spatial niche

and region labels onto dissociated single-cell data. e, Nicheformer accurately
classifies cells from the dissociated motor cortex to relevant cell types (n =9 of 33
distinct ones in the classifier) trained on the whole mouse brain MERFISH dataset.
f.g, Nicheformer correctly projects dissociated single cells to niche

(f) and region (g) labels to provide spatially dependent labels. STRd, dorsal
striatum; STRv, ventral striatum; RHP, retrohippocampal region; HIP,
hippocampal formation; TH, thalamus. f, Nicheformer misclassified parts
oflayer 2/3 (L2/3) IT neurons as residing in the subpallium GABAergic niche
(highlighted in the red box). Additionally, the deep cortical excitatory neurons
L6b,L6 CT,L6IT,and L6 IT Car3 (highlighted in the red box) should be classified
as pallium glutamatergic niche instead of subpallium GABAergic by Nicheformer.
g, Most of the non-neuronal cells (84.7% of all non-neuronal cells, n =133) were
misclassified as not belonging to the isocortex or the adjacent brain regions
(highlighted in the red box). h, Cell-type abundances in the scRNA-seq dataset
measuring the primary motor cortex in the mouse. i-k, Classification uncertainty
of label transfer of the dissociated scRNA-seq dataset to the MERFISH mouse
brain data for cell-type label (i), niche label (j) and region label (k) with a value of
O representing a high uncertainty and 1 being a lower uncertainty, that s, high
certainty. k, Observed high uncertainty for parts of the Glut and GABA neurons
for the region prediction of the isocortex, CTXsp and OLF, which are neighboring
brainregions.

Nicheformer outperformed both methods across all three datasets
(Extended DataFig. 6a,c,d). Statistical tests (¢-test) to assess the statis-
tical significance of the results were performed, with positive results
(Extended DataFig. 6a,c,d). Notably, the linear-probing models trained
on Nicheformer embeddings also outperformed all other methods,
except for the fine-tuned Nicheformer (Fig. 5c). However, for bigger
radius sizes in the liver dataset, the scVI models trained in a subset of
SpatialCorpus-110M performed on par with fine-tuned Nicheformer.
We believe this to be related to the previous classification results in
the same dataset (Extended Data Fig. 8f). Interestingly, Nicheformer’s
performanceincreased with neighborhood size in the case of the brain
datasets. Inthe liver, we observed a stronger performance trend, which
mightberelated to transcriptional patterns of zonation and structural
componentsintheliver”’. For the CosMx liver dataset, we additionally
evaluated whether a multitask multilayer perceptron (MLP) would
allow the prediction of all neighborhood sizes jointly (Methods). We
observed that a multitask MLP did not outperform a neighborhood
size-specific linear-probing model or the fine-tuned Nicheformer
model, indicating that downstream tasks should be evaluated sepa-
rately (Extended Data Fig. 8g).

To understand the model’s behavior and performance in more
detail, we additionally assessed the fine-tuned Nicheformer perfor-
mance for each cell type separately inthe MERFISH mouse brain dataset
(Fig. 5d and Methods). We computed the absolute error between pre-
dicted and true neighborhood compositions across all four neighbor-
hood sizes and sorted the result based on the median values per cell
type. We found that the most accurately predicted cell typesin terms of
absolute error are also within the 8 (of 33) most abundant cell typesin
the MERFISH mouse brain dataset. In contrast, the 4 cell types for which
Nicheformer performed worse are in the 14 least abundant cell types
(Fig.5d). For example, highly abundant cell types predominantly from
corticallayers (IT-ET Glut, NP-CT-L6b Glut) are structurally organized

in the brain and have a quite homogeneous neighborhood composi-
tion. Those two factors help to explain the very accurate Nicheformer
predictions. Similarly, CB Glut cells are based inthe cerebellum, an area
withvery high cell density*® and high neighborhood homogeneity. Even
thoughthey havealower abundanceinthe overall dataset, Nicheformer
accurately predicted their neighborhood composition (Fig. 5d). On
the other hand, Nicheformer shows alower performance on cell types
predominantly found in the midbrain or hypothalamus (MB GABA, MB,
Dopa, HY Glut, Hy MM Glut). These cell types are relatively rare cell
typesinthegiven datasetand arelocated in more diverse and complex
tissue layouts and show a greater variety of neighboring cell types®.
This indicates that regionally diverse and less abundant cell types
in the pretraining corpus are harder to predict for the Nicheformer
model. The performance differences might be related to the structural
properties of the brain regions as well as their varying cell-type compo-
sitionsand abundancein the dataset. We further observed arelatively
good performance of Nicheformer for the neighborhood composition
prediction ofimmune cells, despite their relatively low abundance and
their lack of regional specificity in the brain. Immune cells are scat-
tered across the brainand accomplish very specific but differing tasks
ranging fromregulating synaptic plasticity, and immune surveillance,
to preventing excitotoxicity™. Interestingly, the Nicheformer embed-
ding of the immune cells in the MERFISH mouse brain data preserves
theregionalinformation of those cells and region-specific subclusters
canbeidentified (Fig. 5e).

To assess whether our results generalize across organs and
technologies, we performed a similar analysis for the CosMx human
liver dataset, evaluating the overall cell-type performance in the task
of predicting the neighborhood composition across resolutions
(Extended Data Fig. 8h). Again, we observed that Nicheformer’s per-
formance heavily depends on the cell-type abundance in the dataset
and the regional specificity of the individual cells, for example, we

Fig. 5| Nicheformer accurately predicts neighborhood compositions at
multiple niche resolutions for the brain, liver and lung. a, We define the
neighborhood of a cell as its local neighborhood given a radius and anindex
cell. The neighborhood cell density is then defined by the number of cells in the
neighborhood, and the neighborhood compositions are the proportions of
neighboring cell types. b, Neighborhoods are computed at multiple resolutions
resulting in different neighborhood size distributions. Each barplot shows

the distribution of the number of neighbors across the brain, liver and lung
datasets. We extract neighborhoods with the mean number of neighbors
10,20,50 and 100 for each dataset. Neighborh., neighborhood. ¢, The fine-
tuned and linear-probing Nicheformer models outperform for brain and

lung linear-probing models trained on Geneformer, scGPT, scVIand PCA
embeddings in terms of mean absolute error across all neighborhood sizes.
Still, it struggles to outperform all benchmarks in liver, where scVi models are

very competitive. This is anissue related to the previous liver performance
reported in the previous section (Extended Data Figs. 2a and 8f). d, Left, Fine-
tuned Nicheformer performance on the MERFISH mouse brain data grouped
byindex cell type. Shown are the absolute error values between predicted and
observed neighborhood composition vectors for held-out test cells. For each
boxind, the centerline defines the median, the height of the box is given by
theinterquartile range (IQR), the whiskers are given by 1.5 times the IQR, and
outliers are given as points beyond the minimum or maximum whisker. Center,
Index cell-type abundances in the entire MERFISH mouse brain dataset. Right,
UMAPs of MERFISH mouse brain Nicheformer embedding with the selected
index cell type as color superimposed. e, UMAP of the Nicheformer embedding
of allimmune cells in the MERFISH mouse brain dataset with region label as color
superimposed.
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saw a lower absolute error for hepatocytes compared to circulating
immune cells (Extended Data Fig. 8h). Hepatocytes are predominantly
found in highly structured cellular microenvironments and show
strong spatial patterns in their gene expression®, while liver-resident
immune cell populations were shown to be mobilized under certain

circumstances, hence their regional specificity might be lower com-
pared toother cell types®. This indicates that the Nicheformer embed-
dings can be useful to identify and understand region-specific and
niche-specific structures and differentiate cell types that show a higher
regional specificity.
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Fig. 6 | Nicheformer accurately predicts changes in cellular neighborhood
density in the lung and colon. a, Barplot of cellular neighborhood densities split
by condition for the Xenium human lung dataset. b, UMAP of the Nicheformer
embedding of the Xenium human lung dataset colored by condition. ¢, Mean
absolute error and R*for the cellular neighborhood density prediction task for
aNicheformer linear-probing model and linear-probing models trained on scVI
and PCA embeddings. Data are presented as mean values with error bars showing
the standard deviation, using three random seeds. d, Spatial allocation of cells
inthe Xenium human lung dataset colored by predicted cellular neighborhood
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density in the healthy and diseased lung. e, Predicted-versus-true cellular
neighborhood density for azoomed-in section of the Xenium lung cancer
section. f, Barplot of cellular neighborhood densities split by condition for the
Xenium human colon dataset. g, UMAP of the Nicheformer embedding of the
Xenium human colon dataset colored by condition. h, Mean absolute error and R?
for the cellular neighborhood density prediction task for aNicheformer linear-
probing model and linear-probing models trained on scVland PCA embeddings.
Data are presented as mean values with error bars showing the standard
deviation, using three random seeds.

Nicheformer infers cellular niche density in unseen data
Beyond cellular niche labels and neighborhood composition, we asked
whether local cell density is encoded in a cell’s expression profile. It
is long known that cell density can strongly affect growth behavior
invivoandin culture; also, increased cell density is akey feature of the
formation of the tumor microenvironment, which leads to the crea-
tion of a hypoxic environment and depletion of infiltrating immune
cell populations®. For example, in colon cancer, it was shown that the
immune cell density is associated with patient survivaland can be used
for tumor-immune patient stratification for improved anticancer
therapy®. In non-small-cell lung cancer®, immune cell density and
neighborhood compositions were used to stratify specimens into
groups associated with clinical outcomes.

We tested whether Nicheformer accurately predicts the neigh-
borhood density in a Xenium lung dataset measuring an adult

human healthy lung section and a section with invasive adenocar-
cinoma from a second patient®, and in a Xenium formalin-fixed
paraffin-embedded-preserved healthy and diseased colon with stage
2A adenocarcinoma from two different patients®. Consistent with lit-
erature observations®***, we observed a higher average cellular density
in the cancer sections (colon, 12.3 cells; lung, 12.1 cells) compared to
healthy tissue (colon, 10.7 cells; lung,10.7 cells) when extracting cellular
neighborhoods at the same radius (Fig. 6a,f and Methods).

We first computed Nicheformer embeddings for both datasets by
generating aforward pass through the Nicheformer pretrained model
(Fig. 6b,g). Additionally, we embedded the two datasets with scVI, and
PCA (Methods). The threeresultingembeddings for the datasets were
then used as input for a linear-probing regression model to predict
the cellular neighborhood density for each cell. The linear-probing
models trained on the scVl and PCA embeddings failed to correctly

Nature Methods


http://www.nature.com/naturemethods

Article

https://doi.org/10.1038/s41592-025-02814-z

predict the mean density and performed worse than random predic-
tion, resulting in negative R*values for both tissues. Interestingly, the
linear-probing model trained on the Nicheformer embedding outper-
formed the other two models in terms of mean absolute error and R?
(Fig. 6¢,h) and was able to accurately predict a higher cellular density
in the tumor regions and denser tissue structures in the Xenium lung
dataset (Fig. 6d). This demonstrates that the Nicheformer embeddings
areableto capture neighborhood density variation solely on transcrip-
tome information better than the baselines. Nicheformer’s ability to
infer cellular neighborhood density in healthy tissue and cancer tissue
can be useful to inject spatial relationship information in dissociated
datato further characterize cell-state variationin systems such as the
tumor microenvironment.

Discussion

Nicheformer demonstrates the potential of multiscale foundation
models for dissociated single-cell and spatial transcriptomics data.
By leveraging the SpatialCorpus-110M and evaluating the model in
different spatially informed downstream tasks and assessing the
model’s prediction uncertainty, we demonstrate that Nicheformer
captures complex relationships between gene expression and spa-
tial context. We introduce a newly designed set of downstream tasks
designed explicitly for spatial data analysis, in which Nicheformer
consistently outperforms baseline models, including foundational
models trained only on scRNA-seq data such as GeneFormer, UCE and
scGPT, and also models trained on spatial data such as CellPLM, high-
lightingits effectivenessinlearninga cell representation thatis able to
predict spatial features and the need to train on multiscale and diverse
datasets to capture the intricate spatial relationships presentin tissue
organization. These results strongly suggest that spatial context can
be effectively inferred from transcriptomics data using Nicheformer.
To further understand how Nicheformer processes information, we
analyzed its attention mechanism, finding that different layers attend
todistinct features. We identified specific attention heads that remain
robust across modalities and tissues, as well as others that adapt to
these variations. We also explored how Nicheformer captures biological
conditions throughits attention patterns. Additionally, we conducted
ananalysis of the performance of models pretrained on different data
subsets to evaluate the impact of various modalities and organisms on
its performance. Our results highlight that broad coverage in train-
ing data is essential for achieving robust performance across diverse
contexts. Further, Nicheformer paves the way for transferring spatial
information tolarge collections of dissociated single-cell data, which
opens the door for more nuanced analyses of cellular function in the
tissue environmentin silico.

A cellintegrates its spatial context, that is, its cellular neighbor-
hood by cellinteraction and communication, whichisreflected in the
cell’stranscriptomic profile. This property has been used successfully
to learn cell-type communication profiles from coexpressed recep-
tor-ligand interactions®, to reconstruct spatial gene expression from
spatial context and anchor points using optimal transport®”*® and to
determine cellinteractions beyond knownreceptor-ligands viagraph
neural networks*®. With Nicheformer, we build upon these results and
show that we can predict spatial context froma cell’s gene expression
profiles alone with consistent accuracy. We found that, for example,
immune cell neighborhoods inthe brain are most likely encoded inthe
gene expression profiles, making it easier for Nicheformer to under-
stand these differences and relate them to neighborhood composition
changes. Extending this analysis to additional tissues has the potential
to characterize recurrentimmune niches across tissues and organs.

A long-term vision in systems biology has been to create multi-
scale models, from molecules and cells up to tissue, organs and even-
tually the whole organism. Nicheformer represents a step toward
creating a generalizable multiscale model for single-cell and spatial
biology, bridging the gap from the single-cell to the tissue modality.

More generally, it will be necessary to operate on multimodal data to
generate atrue representation of the cellular state. While spatial tran-
scriptomics captures the cellular microenvironment in tissues well,
integrating additional data modalities, such as protein abundance
or epigenetic modifications, will provide amore complete picture of
the cellular state. The development of multimodal foundation mod-
els faces multiple challenges. One key hurdle is the lack of sufficient
paired data measured across multiple or even all cellular modali-
ties. However, with the development of new assays and sequencing
technologies, we expect the number of multimodal datasets to grow,
enabling the development of architectures to model them. Incorpo-
rating additional modalities will remain a challenge in the future as,
for example, epigenetic modifications, protein abundance and gene
expression all have unique characteristics, and effectively combin-
ing them in a way that leverages their strengths remains an ongoing
research area.

While Nicheformer represents a process for learning general rep-
resentations for single-cell biology, we acknowledge some limitations
of this approach. Firstly, Nicheformer performance depends on the
dataabundance and transcriptional diversity of the cells under study.
Indeed, we showed that Nicheformer’s performance for predicting
spatial labels and spatial compositions is impacted by cell-type and
tissue-type abundance in a spatial transcriptomics dataset. With the
ongoing growth in spatial transcriptomics data availability as well as
improved throughput thanks to technological advances, we expect
that the prediction performance willimprove across evaluated tissues.
Secondly, Nicheformer does not explicitly incorporate the physical
location of a cell during pretraining, limiting its capability to fully
leverage the available information on spatial context. We deliberately
chose nottoinclude spatial coordinates during pretraining because we
wanted to learn ageneral representation of gene expression variation
across both modalities, fully supervised by gene expression alone.
Nevertheless, we anticipate that future iterations of Nicheformer will
account for spatial relationships of cells by encoding spatial neighbor
graphs, for example, and potentially leveraging graph transformer
architectures® for the pretraining stage on spatial transcriptomics
data. Graph transformers excel at modeling relationships between
nodes in graphs, making them ideal for capturing nearest-neighbor
effects on a cell’s transcriptome. Thirdly, the interpretability of the
Nicheformer model has not been fully explored. In future iterations,
it would be interesting to inspect the learned architecture in order
to understand interactions between genes within cells and niches to
extract biological mechanistic knowledge, for example, by assessing
how gene relationships are associated with cell state across the two
modalities under consideration. Additionally, the current strategy
excludes metadata tokens from the final cell representation to avoid
bias fromtheir high norm (Methods), which canimpede label transfer.
However, this may limit model expressivity by discarding these tokens
entirely. More refined strategies, such as selective integration, could
retain relevant context without allowing it to dominate the embed-
ding. We additionally see aneed to scale Nicheformer in the number of
parameters, pretraining time and dataset size. Characterizing scaling
laws for foundation models in genomics has the potential to identify
bottlenecksin learning schemes and datasets, thus informing design
and pretraining choices for the next generation of models. Finally, we
want to highlight the need for more comprehensive benchmarks than
the set of spatial tasks presented here, which will help judge exten-
sions and future alternative models. The field of biological foundation
models is anovel area brimming with potential. However, unlike more
established Aldomains, there’sa crucialgap inthe form of standardized
benchmarks for evaluating these models. Establishing robust bench-
marks is a critical next step to compare and improve performance,
rigorously assess methodological progress and guide future model
development to unleash the full potential of foundation models for
single-cell biology.
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Overall, Nicheformer demonstrates the feasibility of learning a
foundational representation able to effectively transfer information
fromsingle-cell to spatial genomics and its reverse, paving the way for
the next generation of foundation models trained onlarge heterogene-
ouscollections of dissociated and spatial single-cell data. We describe
a set of newly designed evaluations that are explicitly for probing
the model’s ability to encode spatial context and its transferability
to a different modality that can be leveraged as a new benchmark for
multimodal foundation models for single-cell and spatial genomics.
We believe Nicheformer represents an important progress toward
building a general and robust representation of cellular biology phe-
notypes advancing our understanding of the heterogeneous effects of
cellular nichesin development and disease. We envision Nicheformer
and similar models to actively assist in experimental design through
hypothesis generation and experiment selection, ultimately accelerat-
ing the pace of scientific progress by helping to choose the next set of
most informative experiments. Nicheformer will thus help to guide
and design spatial experiments based on scRNA-seq measurements,
supporting the upcoming transition from cell to tissue atlases.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41592-025-02814-z.
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Methods

Collection of the SpatialCorpus-110M

Dissociated data collection. We collected and combined dissociated
single-celland single-nucleus data from the latest patch of CellXGene™,
50 additional curated studies available through the sfaira data zoo™,
150 datasets acquired through the GEO datarepository**” and 4 data-
sets from the HCA data explorer’.

Forthe dataoriginating from CellXGene, we used the CZ CellXGene
Discover Census’’v.2023-07-15and its Python APl to download the lat-
estbatchofall dataavailable on the census. The CZ CellXGene Discover
Census only contains cells from human or mouse, as well as only gene
expression measurements obtained via RNA-seq. We additionally
only downloaded primary data that were marked with the respective
identifierinthe Census toensure that cells are not represented multiple
times in our collection. Subsequently, we downloaded the entire cell
and gene metadataas well as the raw counts and stored them as HSAD
on disk. For additional data acquisition, firstly, we selected human
and mouse 10x Genomics technology datasets not present in the lat-
est CellXGene patch from the sfaira data zoo® and excluded datasets
without publicly available raw count matrices. We then downloaded
the selected data through the sfairainterface, removed any cells with
less than 200 expressed genes, streamlined the feature space of each
dataset to Ensembl release 104 (GRCh38) protein-coding genes, applied
sfairametadatastreamlining, and applied the Nicheformer metadata
scheme. We stored the data for each study from sfaira as individual
H5AD objects on disk.

Secondly, for the acquisition from the GEO data repository, we
focused on GEO IDs previously included in the recent scsimilarity®
preprint publication. After cross-checking this list with the other used
datasourcesto avoid duplicated data, we acquired the necessary meta-
data from the GEO website and the corresponding publications. We
downloaded the count matrices, converted the various data formats
into AnnData format and combined them with the collected metadata
tosave themasindividual HSAD objects on disk. We curated ontology
term identifiers for species based on the ontology representation of
the NCBI organismal taxonomy (NCBITaxon)”?, tissue based on the
Uber-anatomy ontology (Uberon)™”, sex based on the ontology of
phenotypic qualities (PATO)’*”” and assay based on the Experimental
Factor Ontology (EFO)’®. All ontology terms were obtained through
the Ontology Lookup Service (OLS)”.

Lastly, we followed the same approach for the four HCA data
explorer’ datasets as for the GEO datasets. To make the dataset acqui-
sition process reproducible and available to the community, we have
shared scripts for downloading and standardizing all datasets. All data
collection-related code can be found at https://github.com/theislab/
nicheformer-data/. We additionally implemented a validator to stream-
line the verification process, ensuring alignment between metadata
formats and the data collection schema. A detailed list and overview
table of all datasets containing GEO ID, DOI, the number of cells, tissue,
assay and author information can be found in Supplementary Table 3.

Spatial data collection. The spatial part of the SpatialCorpus-110M
consists of datasets measured with image-based spatial transcriptom-
ics technologies, namely CosMx, ISS, MERFISH and 10x Xenium. We
collected 60 different datasets across 15 different solid organs. Most of
the spatial data collection was collected via the Vizgen data release*’,
the 10x Genomics dataresource* and the CosMx dataresource®. The
remaining datasets were collected through the dataresources stated in
the original publications. Unpublished datasets were obtained before
publication via the original authors. Each dataset was downloaded
and stored as individual H5AD files. For each dataset, we collected
expression data and associated gene-level and cell-level metadata,
but high-resolution images and segmentation masks were not col-
lected and curated. We curated ontology term identifiers for spe-
cies based on the ontology representation of the NCBI organismal

taxonomy (NCBITaxon)”?, tissue based on the Uber-anatomy ontol-
ogy (Uberon)™7, sex based on the ontology of phenotypic qualities
(PATO)’®”” and assay based on the Experimental Factor Ontology
(EFO)”. All ontology terms were obtained through the Ontology
Lookup Service (OLS)”. For Xenium and CosMx assays, official ontol-
ogy termsare not yet defined, so we replaced them with placeholders.
For datasets that did not provide Ensembl gene identifiers, we used
pyEnsembl*with the Ensembl release 104 (GRCh38) to map gene names
to Ensembl gene identifiers and subsequently BioMart* through the
official Ensembl releases** for mapping mouse genes to orthologous
gene identifiers. Scripts for acquiring the spatial data are also shared
in our GitHub repository. We used the same validator as used for the
dissociated datasets to streamline the verification process of the col-
lected metadata. We applied no additional quality control, gene-level
or cell-level filtering for the spatial omics datasets beyond the filters
applied by the original authors of the publications or the filters auto-
matically applied by the individual spatial transcriptomics technolo-
gies. Adetailedlist and overview table containing the GEO ID, DOI, the
number of cells, tissue, assay and author information for the spatial
datasets can be found in Supplementary Table 4.

Datasets used for downstream tasks and evaluations. Publicly avail-
able datasets used for downstream tasks and evaluations were collected
inthe same way as the other spatial transcriptomics datasets present
in the SpatialCorpus-110M. As most of our downstream tasks require
cell-type, niche and region label annotations, we focused primarily on
annotated and large-scale spatial transcriptomics datasets. We provide
adetailed description of those datasets below.

MERFISH mouse brain

Yao et al.* measured 4.3 million cellsacross 59 tissue sections from one
whole male mouse brain using MERFISH with a 500-gene panel. This
dataset contains a hierarchical cell-type annotation structured into
four nested levels of annotation. We used the ‘class_label’ field with 33
distinct cell types as input for the Nicheformer niche regression task
(Extended Data Fig. 3c), the ‘division_id’ label, containing seven distinct
labels (CBX-MOB-other neuronal,immune, low quality (LQ), neuroglial,
PAL-sAMY-TH-HY-MB-HB neuronal, pallium glutamatergic, subpallium
GABAergic, vascular) as niche labels (Extended Data Fig. 5b), and the
‘clean_region_label field, containing 17 distinct labels (CB, CTXsp,
HB, HIP, HY, isocortex, LSX, MB, OLF, PAL, retrohippocampal region,
dorsal striatum, ventral striatum, TH, SAMY, ventricle, white_matter)
as the region label (Extended Data Fig. 5a) for the Nicheformer label
prediction tasks. The tissue niches represent the cellular organiza-
tioninthe brain, grouping together neurons by major brain structure
(pallium, subpallium, hypothalamus/extended amygdala, thalamus/
epiphysis and midbrain/hindbrain), as well as major neurotransmit-
ter type (glutamate and GABA)®. Non-neuronal cells are grouped into
neuroglial,immune and vascular niches. The train-test split defined
for this dataset is composed of a random image or tissue section
hold-out across all sections in the measured entire male mouse brain
(Extended DataFig. 5a-c).

CosMx human liver

We collected the CosMx human liver dataset from the publicly available
CosMx data resource’®. The dataset comprises cells fromboth anormal
healthy liver measuring 332,877 cells across 301 fields of view covering
one tissue section in a male 35-year-old patient, as well as cells from a
hepatocellular carcinoma measuring 460,441 cells across 383 fields
of view in one tissue section from a 65-year-old female patient. Both
samples were measured with the 1000-plex CosMx Human Universal
Cell Characterization Panel. The dataset includes both cell-type and
niche labels. For the niche label prediction task, we used the healthy
liver section, which provides six distinct labels defining structural
zones in the liver: portal vein (zone 1a), zone 1b, zone 2a, zone 2b,
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zone 3a and central vein (zone 3b; Extended Data Fig. 8b,d). We did
not use the cancer liver sample for the niche label prediction task
as it was primarily composed of cells annotated as a general tumor
niche without further substructures provided. For the niche com-
position prediction task, we used both the cancer and healthy liver
sections with the cell-type labels, which define 22 distinct cell types
(antibody-secreting B cells, CD3" alpha beta T cells, central venous
liver sinusoidal endothelial cells, cholangiocytes, erythroid cells, Hep,
Hep1,Hep3,Hep4, Hep 5,Hep 6, inflammatory macrophages, mature
B cells, natural killer (NK)-like cells, non-inflammatory macrophages,
periportal liver sinusoidal endothelial cells, portal endothelial cells,
stellate cells,gammadeltaT cells 1, tumor 1, tumor 2 and an undefined
type (NotDet; Extended Data Fig. 8e). The train-test split defined for
this datasetis composed of arandom field of view hold-out across both
tissue sections (Extended Data Fig. 8a,d).

CosMx human lung

We collected the CosMx human lung dataset from the publicly avail-
able CosMx data resource’®. This dataset contains samples from five
different donors (301,611, 89,975, 227,110, 71,304 and 81,236 cells,
respectively) across eight fields of view measured with the 1000-plex
CosMx Human Universal Cell Characterization Panel. All donors have
justonefield of view, except for the first donor, which has three fields
of view, and the third donor, which has two fields of view. The train-test
split defined for this dataset is composed of a random field of view
hold-out (Extended Data Fig. 9a,b). CosMx provides both cell-type
and niche labels. We use the 22 distinct cell-type labels defined in this
dataset for the niche composition prediction task. These labels are
B cell, NK, T CD4 memory, T CD4 naive, T CD8 memory, T CD8 naive,
regulatory T, endothelial, epithelial, fibroblast, myeloid dendritic cell,
macrophage, mast, monocyte, neutrophil, plasmacytoid dendritic
cell, plasmablast, tumor 12, tumor 13, tumor 5, tumor 6 and tumor 9
(Extended DataFig. 9c¢).

Xenium human lung

We collected the Xenium human lung dataset from the 10x Genom-
ics dataresource (https://www.10xgenomics.com/datasets/). This
dataset measures two different lung sections, an adult human healthy
lung (295,883 cells) and an adult human lung with invasive adenocar-
cinoma (531,165 cells). Both sections are measured with the 289-plex
Xenium Human Lung Gene Expression Panel and an additional 100 lung
cell-type-specificgenes. As this datasetis not annotated, we only use it
for the neighborhood density prediction task. We computed a spatial
graph of cells with a radius of 25 um? to calculate the cellular niche
densities. The train-test split defined for this dataset is arandom cell
hold-out across all cells from both sections.

Xenium human colon

We collected the Xenium human colon dataset from the 10x
Genomics data resource (https://www.10xgenomics.com/data-
sets/). This dataset measures two different colon formalin-fixed
paraffin-embedded-preserved tissue sections: a non-diseased colon
(275,822 cells) and a cancer stage 2A adenocarcinoma (587,115 cells).
Both sections are measured with the 325-plex Xenium Human Colon
Gene Expression Panel and an additional 100 genes specifically selected
to cover signaling and chemokine genes, and markers for stromal cells.
As again this dataset is not annotated, we only use it for the neighbor-
hood density prediction task. We computed a spatial graph of cells
with aradius of 17 um?2 in both sections to calculate the cellular niche
densities. The train-test split defined for this dataset is arandom cell
hold-outacross all cells from both sections.

Dissociated dataset used for label transfer. sScRNA-seq of the primary
motor cortex. Yao et al. generated a large-scale transcriptomic and
epigenetic atlas of the mouse primary motor cortex’. We subsetted

this large-scale dataset to cells measured with 10x v3 scRNA-seq. The
subset captures 21,884 genes in 7,416 cells and annotates 19 different
cell types (Astro, Endo, LSET, L5IT, L6 CT, L6 IT, L6 IT Car3, Lé6b, L2/3
IT, L5/6 NP, Lamp5, microglia, OPC, oligo, Pvalb, Sncg, Sst, CLMC and
Vip; Fig. 3c). We manually transferred cell types present in this dataset
to the cell types measured in the MERFISH mouse brain dataset. We
mapped Astro to Astro-Epen; Endo and VLMC to vascular; microglia
to immune; oligo and OPC to oligo; L6 IT, L6 IT Car3, L5IT,L2/3 1T, L5
ETtoIT-ET Glut; L5/6 NP, L6b and L6 CT to NP-CT-L6b Glut; and Lamp5,
Sncg, Vip Pvalb and Sst to CGE/MGE GABA, respectively.

Nicheformer tokenization, architecture and pretraining
Nicheformer tokenization. The Nicheformer training corpus encom-
passes over 110 million cellsin total, measured in more than 350 datasets
using eight different sequencing technologies and two species: human
and mouse. The total number of genes considered is 20,310, comprising
16,981 orthologous, 3,178 human-specific and 151 mouse-specific genes.
For Nicheformer, we use a tokenization strategy similar to the one in
Geneformer®?with the difference that the cell transcripts are normalized
according to the technology-specific nonzero mean to account for
differencesin the sequencing protocol.First, all cells are normalized so
that each of them has 10,000 counts. To account for technological
variations, we then compute a technology-specific gene expression
nonzero mean vector, that is, the mean expression value of each gene,
without considering the zero counts. We computed a single dissociated
mean expression vector for the dissociated datasets because the dif-
ferences between sequencing protocolsinthe dissociated cells are not
as large as in the spatial assays. We then normalize the expression of
each cellusing the corresponding technology-specific mean expression
vector to obtain the expression of each gene in each cell relative to the
whole training corpus. Finally, the genes are ranked in descending order,
from most toleast expressed, excluding all non-expressed genes, creat-
inganordered set T of genes as given by equation (1):

T = {idx(gex,), idx(gex,), ... ,idx(gex,)) : £X,orm = EXnorm,..; € Xnorm, # O}
@

where idx(gex;) is a function that returns the index of gene i in a previ-
ously defined vocabulary of genes and gex; is the gene expression of
gene i of a cell. To incorporate the influence of biological context on
gene expression, we prepend contextual tokens for <ASSAY>, <MODAL-
ITY>and <ORGANISM>to the set T toincorporate metadatainforma-
tion to the input data. These tokens encode metadata information,
suchasassay type (for example, MERFISH, CosMx and 10x 5’ v2), modal-
ity (dissociated or spatial) and organism (mouse or human). Recogniz-
ing the important impact biological context can have on gene
expression, we augment the input sequences for our transformer
model with modality, organism and assay tokens. This approach allows
the model to explicitly learn representations that account for
context-driven variations, leading to more robust and generalizable
downstream analyses. Therefore, for a cell i, with a specific assay,
organism and modality, the ordered set of tokens 7* is shown in
equation (2):

7= {assay",organismi, modalityi, idx(gexi), idx(gex)), ..., idx(gexﬁl)} )

Asalast step, the length of the set T is truncated to N =1,500. As
notall cells have the same number of expressed genes, there might be
setswhose total lengthis lower than1,500. In those cases, <PAD>tokens
are appended such that the final length is N =1,500. <PAD> tokens
ensure thatallinputs have the same length by filling empty spaces with
no semantic meaning. This is an important element when handling
cellsbelonging toboth RNA-seq and spatial assays because gene panels
areusually smallerinthelatter, whichleads toalarger amount of <PAD>
tokensin the set.
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Nicheformer architecture. Given an initial input set x € R¥" com-
posed of N tokens of dimensionality D, Nicheformer encodes the posi-
tion within the set by adding positional embeddings. Instead of
modeling as sinusoidal embeddings, we use learnable embeddings for
each position®.

Nicheformer is composed of 12 stacked transformer blocks such
that the output of one blockisintheinput of the following block. Given
aninputsequence x' € RV, accordingto equations (3) and (4):

X =xi ®)
x‘['+I = transformer_block,(xf) vlie[0,n-1] 4)

Eachtransformer block consists of two main modules: amultihead
self-attention mechanism and a feed-forward neural network. The
multihead self-attention mechanism enables the model to weigh the
relevance of differentinput elementsin theinput set when generating
output representations. In our case, we use 16 attention heads, token
dimensionality D =512 and dimensionality of the hidden layer of the
feed-forward network of 1,024. The <PAD> tokens are masked for the
attention mechanism so that no token can pay attention to them.

Nicheformer pretraining and performance optimization. Nicheformer
optimizes masked language modeling loss*® during pretraining. We
mask15% ofthe tokens, including contextual and gene tokens but exclud-
ing <PAD>tokens, during pretraining. The modelis thentrained to pre-
dictthe original tokens that have been masked, utilizing the unmasked
tokens as context. Specifically, following the BERT schema®’, if the i-th
tokenis chosen to be masked, 80% of the timeitis replaced by a<MASK>
token,10% of the time by another random gene or contextual tokenand
10% of the time it remains unchanged. Mathematically, the masked lan-
guage modeling loss is described as given by equation (5):

Lyim = ExoxEum Z [logp(xIxw,apn)] (5)
ieM

where M is the set of masked tokens, X is the entire dataset, x is a cell
ofthe datasetand x;is geneiof thecell x.

Nicheformer was pretrained for approximately 10 days using three
compute nodes, each with four NvidiaA100 40GB GPUs (total12 GPUs).
We train the model using bfloat16 mixed precision. We use the Adamw
optimizer® with g; = 0.9and g, = 0.999, weight decay of 0.1and drop-
out of 0.0. The batch size is nine and the gradients are accumulated
during ten batches before running the backward pass. The minimum
learning rateis1x 107, which increases until 1 x 10 with a linear war-
mup of 100,000 steps. After the warmup, a cosine decay regime®’ is
applied. Gradient clippingis set to 1.0 during the first epoch and then
decreased to 0.5. All weights are initialized using Xavier initialization®
with default parameters, while the bias terms are initialized to 0. Check-
points were taken every 10,000 steps.

Downstream tasks

Spatial cell-type, niche and region label prediction. For the spatial
cell-type, niche and region label classification task, we use the respec-
tive labels defined in the individual datasets (see ‘Datasets used for
downstream tasks and evaluations’). We extracted the unique labels
for each class, transferred them to 64-bit signed integer values and
one-hot encoded them as a matrix with n different classes, with n
being the number of cell types, niches or regions. We then used for
linear probing a linear layer optimized with a cross-entropy loss. We
trained on the training set of the respective dataset for one epoch ata
learning rate of 1 x 10~ and with a batch size of 256. The performance
metricsreported are calculated on aheld-out test set. We selected the
model-assigned class label by calculating the argmax over the output

vector of the linear layer. Classification uncertainties reported in this
work are the output of the linear layer rescaled to [0,1] such that the
sum equals1usingaSoftmax function. We use notechniquesto address
class imbalances for two reasons. First, to evaluate the robustness of
therepresentationslearntby Nicheformer.Secondly, ithasbeen shown
that using classimbalance techniques can even affect performancein
cases such as cell-type classification®*.

Neighborhood composition. For the neighborhood composition
regression tasks, we first define a spatial graph of cells by building an
adjacency matrix based on the Euclidean distance in the
two-dimensional coordinate space provided by the individual datasets.
The adjacency matrix of spatial cellsis ablock-diagonal matrix A € R,
with n equal to the number of cells present in the dataset calculated
based on the spatial proximity of cells where connectivities can only
occur withinafield of view. We use abinary adjacency matrix with a; = 1
if d(x;, x ;) < 6, where d(-,-) describes the Euclidean distance between
nodes i,j € nand 6, is the maximal distance between cells, and q; = 0
otherwise. We do not include self-connectivities for the adjacency
matrix to not confound the signal. We additionally define the matrix
of observed cell types X, € {0,1}™asaone-hot encodingof the [ distinct
cell types present in the dataset. The neighborhood composition for
agivenradiusis then given as equation (6):

N, = softmax(4 x X)) € [0,1]™. (6)

The resulting matrix reflects for each cell captured in the dataset
avector giving the proportions of cell types present in the neighbor-
hood of the cell. For the neighborhood prediction task, we used for
linear probing alinear layer followed by a Softmax function torescale
the prediction to liein the range [0,1] and sum to 1. We used the mean
square error loss for optimizing this linear layer, trained on the training
setof the respective dataset for one epoch at alearning rate of 1x 107
and with a batch size of 256. The performance metrics reported are
calculated onaheld-out test set.

Neighborhood cell density prediction. For the cellular niche density,
we again use the adjacency matrix of spatial cells A € R™" calculated
based on the Euclidean distance in the two-dimensional coordinate
space. The cellular neighborhood density is then simply given by the
row-wise sumofall connectivitiesinthe adjacency matrix (equation (7)),

D, =Y (A € N™ @)
J

for all cells present in the dataset with rasagivenradius, iis theindex
cellfor whichwe want to calculate the density, and jis the totalnumber
of potential neighboring cells present in the dataset. For the density
prediction task, we used for linear probing a linear layer with input
being the respective embedding of a cell (Nicheformer, scVl or PCA)
and outputascalar. We used the mean square error loss for optimizing
this linear layer, trained on the training set of the respective dataset
for oneepoch atalearning rate of 1 x 10 and with a batch size of 256.
The performance metrics reported are calculated onaheld-out test set.

Nicheformer evaluation, linear probing and fine-tuning

Nicheformer can be fine-tuned or used for linear probing. In both
settings, we only train on the previously defined training set of the
respective datasets used for downstream tasks (see ‘Datasets used
for downstream tasks and evaluation’). We use in both scenarios all
Nicheformer gene tokens extracted from the last layer and average
them to get a cell representation. Importantly, the contextual tokens
are not used in the aggregation. While we observed no difference
between using them and not using them in the downstream tasks
focused on one modality, for example density prediction and niche
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classification, we observed that transferring labels between spatial
and dissociated datasets did not work at all when using the contextual
tokens in the aggregation. Further investigation revealed that the
output normof the contextual token of modality was always the high-
estone, independently of the tissue (Extended Data Fig. 9d,e), hence
playing a big role in the cell representation and biasing it toward the
respective modality. This phenomenon has been reported in vision
transformers®’, where some features that contain background infor-
mation show higher norms as aconsequence of the model using them
to allocate internal computations. Literature® proposes the use of
registers that are discarded in the computation of the final representa-
tion. While excluding contextual tokens mitigates modality bias, it may
also discard useful information; future work could explore selective
integration strategies to retain relevant context.

In linear probing, the previously computed parameter weights
of the Nicheformer pretraining model are frozen, that is, not updated
further, and are subsequently used as input to a downstream task.
The cell’'s representation is then fed into a linear layer specific to each
downstreamtask, whichrepresents either aclassification task inthe case
of the niche and region label prediction or a regression for predicting
the neighborhood composition and cellular density. For the neighbor-
hood composition task, we additionally fitted an MLP that uses the
Nicheformer embedding as input and predicts the varying neighbor-
hood composition vectorsinadataset. The MLP is optimized using the
average mean squared error across allneighborhood sizes considered.
Fine-tuninggenerally describes using a pretrained model, and training
it to a specific downstream task of choice. We speak of a fine-tuned
Nicheformer version when we allow the model to change the previously
learned parameter space and the weights are updated for a specific task.
Importantly, each downstream task canalso be optimized with respect
to a new set of metrics. All runs are trained for a single epoch with a
maximum learningrate of 1 x 10™*and a cosine decay scheduler reaching
1x107at the end. The batch size is nine with gradients accumulated for
tenbatches (Supplementary Table 5). We highlight the respective tasks
and metrics used to compute them in ‘Downstream tasks’.

Nicheformer cell embedding stability analysis

We evaluated the robustness of Nicheformer’s gene-rank-based cell
embeddings to perturbations that mimic real-world scenarios such
as incomplete gene panels or measurement noise, common in spa-
tial transcriptomics. As the model operates on sequences of gene
tokens ordered by expressionrank, we assessed how alterations to this
sequence affect embedding stability.

We selected one dissociated brain dataset and one spatial brain
dataset from SpatialCorpus-110M, tokenized the cells, and applied
controlled perturbations before passing them through the pretrained
Nicheformer model. Perturbationsincluded (i) randomly shuffling 10%,
20%, 50% or 100% of the gene rankings in each cell’s token sequence
(Extended Data Fig. 1a) and (ii) randomly dropping 10%, 20%, 50% or
80% of the genes from the sequence (Extended Data Fig. 1b). We then
embedded the perturbed cells and evaluated the similarity between per-
turbed and original embeddings using integration metrics fromscIB'®.

To quantify embedding stability, we used the silhouette score,
leveraging cell-type annotations to define ground-truth clusters.
We observed that Nicheformer embeddings remained stableup to a
20% perturbation in both rank shuffling and gene dropout scenarios,
indicating robustness to input noise and incomplete gene measure-
ments (Extended Data Fig. 1). These results support the suitability of
rank-based encoding for learning generalizable cell representations
under varying input conditions.

Nicheformer modalities and organisms split performance
analysis

Toanalyze the need to trainamodel onadiverse train dataset, we con-
ducted controlled experiments in which we pretrained Nicheformer

models and tested them in different downstream tasks and tissues.
Specifically, we pretrained Nicheformer models of 49.3 million param-
eters using the same compute budget—3 days in an entire node con-
taining four A100 GPUs. Due to the large compute needed to retrain
Nicheformer models using the entire SpatialCorpus-110M, we subset it
for the experiments, so each modelis pretraining in 1% of that dataset
(-1.1million cells).

In particular, we pretrained models in the following data splits:
L1millionrandomly sampled spatial cells, 1.1 million randomly sampled
dissociated cells and 3.3 million randomly sampled dissociated cells (to
assess whether alarge number of dissociated cells can account for the
lack of spatial information). Additionally, we also pretrained a model
in 1.1 million dissociated cells sampled in such a way that there is the
same number of cells from blood, colon, intestine, lung, liver and brain,
to assess the effect of the tissue variability of the dataset. To assess the
importance of multispecies datasets, we also pretrained modelson1.1
million spatial cells sampled only from humans and 1.1 million spatial
cells sampled only from mice.

We evaluated the pretrained models on the following down-
stream tasks: niche prediction in the human liver and lung CosMX
datasets, and cell-type classification and niche regression in the mouse
brain MERFISH dataset. In all cases, the models were evaluated in the
linear-probing scenario running three seeds. All results were statisti-
cally assessed using analysis of variance, with Pvalues adjusted for mul-
tiple comparisons using the Benjamini-Hochberg procedure (FDR).

Nicheformer attention analysis

We conducted an attention analysis to explore the attention patterns
inNicheformer and how it differentiates between male and female cells
by focusing on sex-specific gene variations. We sample 2,000 CD8 and
2,000 CD4 cells from the lung; 2,000 healthy and 2,000 cancer cells
from the liver; 2,000 male and 2,000 female cells from the MERFISH
mouse brain datasetsand 2,000 random cells from the primary motor
cortex scCRNA-seq dataset to ensure sufficient diversity. In all cases,
except in the MERFISH mouse brain dataset, we study the attention
paid to the top 50 most expressed genes on average. For the MERFISH
mouse brain cells, we use two gene sets: a prior-knowledge set of SDGs,
known for exhibiting sex differences, and arandomly sampled control
set of 97 genes. We feed all cells into the model and extract attention
matrices fromall16 attention heads across the 12 transformer blocks.
Then, to assess general trends in attention distribution, we average the
attention scores to obtain an attention score per layer. In addition to
this, we extract the maximum attention value for each gene per layer,
isolating the highest level of focus from any single attention head.
Evaluating both average and maximum attention, allows us todiscern
whether certain genes consistently receive attention across multiple
heads or are sharply focused on by individual heads. Specifically, we
compare the attention scores according to equation (8):

QK"
Aj; = softmax (—\/_’) (8)
d

where A; represents the attention that token i pays to token j. As we
have 16 attention layers, we denote A,fj'. the attention that token i pays
totoken jinthelayer h.

InNicheformer, with12layers, the attention matrices for each layer
and head are represented as A", where [ € {12, ... .12} represents the
layer,and h € {1,2, ... ,16} denotes the head. To assess how much atten-
tion each token paysto atoken m, we focus on extracting the attention
scores A", which capture the attention that each token i allocates to
the minlayer /and head A.

Foreach observation, we compute both the maximumand average
attention that any token i pays to the token macross all heads in each
layer. Thisis done by first calculating the maximum and average atten-
tion for each layer as given by equations (9) and (10):
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where irefers to all other tokens in the sequence and H is the number
of heads (16). These values give us the highest attention score and the
average attention score that the token m receives from other tokens
for each layer, respectively, considering all heads. By averaging these
maximum and average attention values across multiple observations,
we can assess how attention is distributed across layers, identifying
thelayers where the token mreceives the most focus and how consist-
entlyitreceives attention across tokens and heads.

Ortholog genes analysis

We conducted an attention analysis to study deeper therole of ortholog
genesin Nicheformer and assess whether there were major differences
between using or not using them and how they are related. To do so,
we trained small Nicheformer models in a reduced gene space with
and without using orthologs. Specifically, we used a gene vocabulary
0f 9,026 genes, which when mapping orthologs is reduced to 7,407
(Extended DataFig. 9f). We compared the performance of both models
with three different downstream tasks: niche predictionin the CosMX
human lung and liver dataset and niche regression in the MERFISH
mouse brain dataset. We found that there were differences in the per-
formancein the latter only (Extended Data Fig. 9g).

Likewise, we studied, for the model without the ortholog map-
ping, whether genes with known cross-organismequivalents are more
similar to their ortholog equivalent than to any other random gene. To
analyze that, we extracted the gene embeddings after the pretraining
and analyzed their cosine similarity. The results indicated that genes
are less similar to their ortholog than to random genes, which can be
explained by the fact that they are never seen together in any cell and
that they might have different functions (Extended Data Fig. 9h).

Benchmarking against competing methods

Comparisons against Geneformer, scGPT, UCE and CellPLM. To get
the Geneformer embeddings, we used therelease v.0.0.1 of the official
Geneformer repository on Hugging Face and extracted the embeddings
using the pretrained weights of the larger 12-layer variant provided
at the time. We used the second to last layers to get a more general
representation as recommended by therepository. We also used mean
poolingas the only available option provided to aggregate the output
gene embeddings into a single-cell embedding.

For the comparison against scGPT, wefirst created scGPT embed-
dings using scGPT 0.2.1, pretrained on the whole human as recom-
mended in the original publication. The embeddings were generated
for three datasets, the MERFISH mouse brain, the CosMx human lung
and the CosMx human liver. For the MERFISH mouse dataset, we first
mapped the mouse genes to human genes using BioMart* through
the official Ensembl releases**. The fraction of overlapping genes
compared to the gene context used in scGPT was for the MERFISH
mouse brain dataset of 471/483 genes, for the CosMx human liver
dataset of 997/999 genes and for the CosMx human lung dataset of
958/960 genes.

Toget UCEembeddings, we used the latest version from the origi-
nalrepository and followed the tutorials to obtain the cellembeddings.
The fraction of overlapping genes compared to the gene context used
in scGPT was for the MERFISH mouse brain dataset of 472/483 genes,
for the CosMx human liver dataset 0of 990/999 genes and for the CosMx
human lung dataset of 954/960 genes.

For the comparison against CellPLM, we used the latest official ver-
sion of the repository. For the MERFISH mouse dataset, we first mapped
the mouse genes to human genes using BioMart* through the official

Ensembl releases*!. The fraction of overlapping genes compared to the
gene context used in scGPT was for the MERFISH mouse brain dataset of
473/483 genes, for the CosMx human liver dataset of 997/999 genes and
for the CosMx human lung dataset of 958/960 genes. The cell embed-
dings were obtained by following the notebook tutorials.

Theresulting Geneformer, scGPT, UCE and CellPLM embeddings
thenserved asinputtoalinear layer specific to each downstream task
(Supplementary Table 5).

Baseline comparisons to scVlI and PCA embeddings. We com-
pared the performance of the fine-tuned Nicheformer model and
the linear-probing scenario to embeddings generated with scVI” and
PCA.Wegenerated scVland PCA embeddings onjust the downstream
datasets themselves and additionally on an informed 1% subset of all
datasets presentin the SpatialCorpus-110M. We used this subset to train
two different scVImodels as specified in Supplementary Table 5 to gen-
erate latent representations with 512 and 10 dimensions, respectively.
The two models were then used to obtain latent representations for
the datasets that were used for downstream task evaluations. The PCA
embeddings were generated inasimilar way using the implementation
available in sklearn v.1.4.1 to obtain PCA embeddings of dimensions
512and 10, respectively.

We split the fine-tuning datasets (MERFISH mouse brain, CosMx
humanliver, CosMx human lung, Xenium human lung, Xenium human
colon) into a training and test set, using the same random splits as
applied for the Nicheformer fine-tuning. scVland PCA were computed
oneachfine-tuning datasetindividually. We used scvi-toolsv.1.1.2 witha
negative binomial distribution gene likelihood on the raw gene expres-
sion countsand trained scVlon the training set with abatch size of256
for10 epochsand used two hidden layers for the encoder and decoder
neural networks. The resulting embedding was chosen to have alatent
dimension of 256. After training, we returned the latent representation
foreachcellinboth the training set and the test set.

For generating PCA embeddings for each dataset, we used the
implementation available in sklearn v.1.4.1. We first normalized the
respective raw gene expression counts for each dataset so thateach cell
has atotal number of counts equal to the median of the total counts for
all cells with scanpy v.1.10.1. Next, we used scanpy to loglp-transform
the datamatrix to ensure the data are centered before usingitasinput
to the PCA implementation. We used the sklearn implementation
and evaluate the cumulative explained variance ratio in the train-
ing dataset (Extended Data Fig. 10). Finally, we evaluated the model
for a diverse set of principal components to have a fair comparison
(Extended DataFig. 7). Allother parameters are the defaults provided
by the sklearnimplementation. We fit the PCA on the training set and
afterwards applied the dimensionality reduction to both the training
set and test set. The resulting lower-dimensional representations,
X_scviand X_pca, then serve as input to a linear layer specific to each
downstream task (Supplementary Table 5).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The Allen brain atlas consortium generated the Allen Institute brain
atlasmouse p20, Allen Institute brain atlas mouse p28 and Allen Insti-
tute brain atlas mouse female datasets (Supplementary Table 4), which
were kindly provided to us before publication. As these spatial data-
sets are currently unpublished, they are not yet publicly available.
We will make them accessible to readers upon their official release by
the Allen Institute. All other datasets used in this study are publicly
available. The single-cell RNA-seq data can be accessed through the
Gene Expression Omnibus (GEO) under the following accession num-
bers: GSE117824 (ref. 86), GSE118068 (ref. 87), GSE119940 (ref. 88),
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GSE124952 (ref. 89), GSE126060 (ref. 90), GSE128423 (ref. 91),
GSE128761 (ref.92), GSE128987 (ref.93), GSE129826 (ref. 94), GSE130593
(ref. 95), GSE130822 (ref. 96), GSE130879 (ref. 97), GSE130888 (ref. 98),
GSE131339 (ref. 99), GSE131996 (ref. 100), GSE132355 (ref. 101),
GSE133531 (ref. 102), GSE134571 (ref. 103), GSE135310 (ref. 104),
GSE135326 (ref. 105), GSE135356 (ref. 106), GSE135414 (ref. 107),
GSE136394 (ref. 108), GSE136441 (ref. 109), GSE137026 (ref. 110),
GSE139168 (ref. 111), GSE140510 (ref. 112), GSE140628 (ref. 113),
GSE141471(ref.114), GSE141526 (ref.115), GSE141552 (ref.116), GSE141784
(ref.117), GSE142143 (ref.118), GSE142797 (ref. 119), GSE143293 (ref.120),
GSE145216 (ref. 121), GSE145251 (ref. 122), GSE145326 (ref. 123),
GSE145689 (ref. 124), GSE145866 (ref. 125), GSE146122 (ref. 126),
GSE146138 (ref. 127), GSE146194 (ref. 128), GSE146298 (ref. 129),
GSE146512 (ref. 130), GSE148339 (ref. 131), GSE148978 (ref. 132),
GSE149040 (ref. 133), GSE149201 (ref. 134), GSE149356 (ref. 135),
GSE149931 (ref. 136), GSE150708 (ref. 137), GSE150871 (ref. 138),
GSE150995 (ref. 139), GSE151186 (ref. 140), GSE152325 (ref. 141),
GSE152573 (ref. 142), GSE152988 (ref. 143), GSE152999 (ref. 144),
GSE153099 (ref. 145), GSE153117 (ref. 146), GSE153274 (ref. 147),
GSE153288 (ref. 148), GSE153762 (ref. 149), GSE153770 (ref. 150),
GSE153802, GSE154196 (ref. 151), GSE154359 (ref. 152), GSE154386
(ref. 153), GSE154567 (ref. 154), GSE154579 (ref. 155), GSE154932
(ref. 156), GSE155226 (ref. 157), GSE155340 (ref. 158), GSE155788
(ref. 159), GSE155850 (ref. 160), GSE156136 (ref. 161), GSE156183
(ref. 162), GSE156245 (ref. 163), GSE156285 (ref. 164), GSE156920
(ref. 165), GSE157244 (ref. 166), GSE157292 (ref. 167), GSE157362
(ref. 168), GSE157525 (ref. 169), GSE157771 (ref. 170), GSE157773,
GSE157977 (ref. 171), GSE158038 (ref. 172), GSE158192 (ref. 173),
GSE158356_mouse (ref.174), GSE158450 (ref.175), GSE159354 (ref.176),
GSE159519 (ref. 177), GSE159977 (ref. 178), GSE160061 (ref. 179),
GSE160097 (ref. 180), GSE160098 (ref. 181), GSE160664 (ref. 182),
GSE160729 (ref. 183), GSE160772 (ref. 184), GSE161066 (ref. 185),
GSE161227 (ref. 186), GSE161230, GSE161363 (ref. 187), GSE161685
(ref. 188), GSE161937 (ref. 189), GSE162073 (ref. 190), GSE162807
(ref. 191), GSE163018 (ref. 10), GSE163278 (ref. 192), GSE163650
(ref. 193), GSE163668 (ref. 194), GSE163701 (ref. 195), GSE163830,
GSE163919, GSE164044 (ref. 196), GSE164573 (ref. 197), GSE165551
(ref. 198), GSE165554 (ref. 198), GSE166218 (ref. 199), GSE166262
(ref. 200), GSE166525 (ref. 201), GSE166797 (ref. 202), GSE166992
(ref. 203), GSE167595 (ref. 204), GSE167992 (ref. 205), GSE168732
(ref.206), GSE168758 (ref.207), GSE169718 (ref.208), GSE172127 (ref.10),
GSE200218 (ref. 209), GSE225278 (ref. 210), GSE114687 (ref. 211),
GSE117176 (ref. 212), GSE117770 (ref. 213), GSE120508 (ref. 214),
GSE122342 (ref. 215), GSE122960 (ref. 216), GSE123722 (ref. 217),
GSE124691 (ref. 218), GSE128855 (ref. 219), GSE129519 (ref. 220),
GSE130238 (ref. 221), GSE131685 (ref. 222), GSE132672 (ref. 223),
GSE135893 (ref. 224), GSE136001 (ref. 225) and GSE136103 (ref. 226).
All datasets are available for download at https://huggingface.co/
datasets/theislab/SpatialCorpus-110M. More information about
the dissociated data collection and spatial data collection of the
SpatialCorpus-110M can be found in Supplementary Tables 3 and 4,
respectively. Source data are provided with this paper. Source data
are provided with this paper.

Code availability

All models described here are implemented in a Python package
available at https://github.com/theislab/nicheformer/. It contains
tutorial notebooks on how to use the model for downstream
tasks, including learning probing and fine-tuning scenarios. It also
includes a tutorial on continuing the pretraining in new datasets.
Downloading and preprocessing scripts for all public datasets used
in pretraining and fine-tuning the models are available at the ‘data’
directory of https://github.com/theislab/nicheformer. Additionally,
all public datasets can be downloaded directly from HuggingFace
at https://huggingface.co/datasets/theislab/SpatialCorpus-110M.
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Extended Data Fig. 1| Nicheformer’s cell representations are robust to input
noise and MLM loss as a function of the total number of tokens seen by the
model. A) We compute Nicheformer cell representations for a dissociated and
spatial brain dataset and use author cell type annotations as ground truth. We
randomly permute 10%, 20%, 50% and 100% of the genes in the input sequence
and obtain cell representations. Then, we compute the silhouette score to
evaluate how perturbed are the cell representations. B) We repeat the same
experiment but instead of permuting genes, we drop them off the input sequence
(which contains only non-zero genes). In particular, we drop 10%, 20%, 50% and
80% of the genes in the input sequence. In this case, the deterioration of the cell

embeddings happens faster than when permuting genes. Cell representations

of spatial cells deteriorate faster than dissociated cells (<0.2 silhouette score
against >0.6 silhouette score for 50% dropout level). We hypothesise that this
happens due to the shorter gene panels, thatis in large gene panels, Nicheformer
canleverage more information from the longer context length to correct
disturbancesin the data. C) Shown are the loss curves of three different models
with varying parameter size, 15.1 million parameters, 40.9 million parameters
and 49.3 million parameters, respectively. The larger the model, the lower is the
pretraining loss. All the losses are amoving average with awindow of 10. All the
models were evaluated in the same training set with fixed random seed.
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Extended Data Fig. 2| Downstream performance across different tissues

of Nicheformer models trained on different subsets of the data splitting

by modality. A) Shown are the F1scores for niche classification in the CosMx
human liver (top left) and lung (top right) datasets, cell type classification

in MERFISH mouse brain (bottom right) and the MSE for niche regression in
MERFISH mouse brain (bottom left) obtained by different models trained on
different data subsets. The results demonstrate a clear advantage of training
onspatial data compared to dissociated data. Amodel trained on just 1% of
spatial data significantly outperforms models trained on the same or even three
times the amount of dissociated data, reinforcing the fundamental difference
between these modalities. This suggests that no amount of dissociated data

can fully compensate for the spatial context when evaluated on spatial tasks.
Additionally, computational efficiency plays a crucial role: the model trained on
asmaller dissociated subset (1%) performs better than one trained on alarger
subset (3%) because both were trained for the same duration, leading to more
updates per sample in the smaller dataset. Furthermore, stratified training offers
advantages only in specific cases, such as the liver, which can be explained by the
distribution of tissue types in the random subset - since they are overly present in
SpatialCorpus-110M. For example, brain cells are more abundant in the random

subset than in the stratified one, potentially influencing performance. The
results are found statistically significant even after adjusting for FDR.

B) Shown are the F1score curves of two different models trained on different
modalities: spatial and dissociated respectively. Both models have the same
number of parameters and have been training for the same amount of time.
Thetaskis performed by linear probing. The model trained on MERFISH data
notably outperforms the model trained on RNA-seq, highlighting a significant
distribution shift between technologies. C) Shown are the F1scores for niche
classification in the CosMx human liver (top left) and lung (top right) datasets,
cell type classification in MERFISH mouse brain (bottom right) and the MSE for
niche regression in MERFISH mouse brain (bottom right) obtained by different
models trained on different data subsets. As in the previous data split test, a
broad coverage train distribution is necessary to achieve good performance
across a variety of scenarios. In this case, models trained uniquely in mouse data
underperformin downstream tasks based on human data (top row); and models
trained on only human data underperform in downstream tasks based on mouse
data (bottom row). Amodel trained on acombination of mouse and human data
performs on pair in both cases. Results were found statistically significant even
after FDR correction.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3| Analysis of Nicheformer attention to contextual and
gene tokens. A) Shown are different attention matrices extracted from the last
transformer block of Nicheformer. They present a similar pattern in which almost
allattention is paid to the metadata tokens. B) Average attention paid, per layer,
to the metadata tokens. It can be observed a clear trend: the last layers of the
model pay, by alarge margin, the most attention to the metadata tokens. The
analysis is done in both male and female brain mouse datasets to showcase that
the patternis consistent. C) Shown are box plots representing the distribution of
attention paid to contextual tokens (orange) and gene tokens (blue) in the latest
Nicheformer’s layers. The p-values are the result of performing Mann-Whitney

U tests to assess whether there is a significant difference between the distribution
of attention paid to contextual and gene tokens. To control the false discovery
rate (FDR), we applied the Benjamini-Hochberg procedure to adjust the p-values.
D) Shown are box plots representing the distribution of attention paid to gene
tokensin 3 groups of layers: early (from layer 1to layer 5), middle (layer 6 to layer 9)
and late (from layer 10 to layer 12). The p-values are the result of performing
Mann-Whitney U tests to assess whether there is a significant difference between
the distribution of attention paid to contextual and gene tokens. To control the
false discovery rate (FDR), we applied the Benjamini-Hochberg procedure to
adjust the p-values.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Analysis of Nicheformer attention heads and layer-wise
attention gender difference. Shown are the attention matrices obtained from
the head 5 of the Nicheformer layer 4 when processing lung spatial cells (top left),
brain spatial cells (top right), liver spatial cells (bottom left) and brain dissociated
cells (bottomright). It can be seen that this attention head uniquely focuses on
the most expressed genes, independently of the tissue or modality of the cell.

B) Shown are the attention matrices obtained from the head 3 of the Nicheformer
layer 6 when processing lung spatial cells (top left), brain spatial cells (top right),
liver spatial cells (bottom left) and brain dissociated cells (bottom right). It can be
seen that the attention pattern of this attention head changes when processing
dissociated cells or spatial cells. C) Shown are different attention matrices
obtained when feeding Nicheformer with cells from the AVPV section. Different
heads showcase different patterns, which reveal diverse attention behaviours,
including metadata token focus (Head 5, Layer 4), selective gene interactions

(Head 6, Layer 4), diffuse attention across genes (Head 10, Layer 6), strong self-
attention (Head 1, Layer 6), combined self and global attention (Head 12, Layer 6),
and concentrated attention on key genes (Head 3, Layer 7). D) The first layers of
Nicheformer show the highest attention differences between cell and female
cells, even though this is very small. E) The same pattern holds for the SDN genes.
F) Nicheformer’s middle layers show the maximum attention score differences
between the male and the female cells for the HY GABA cells within the AVPV
section. G) The same pattern occurs when examining the maximum differences
forall cells in the AVPV section. The contrast of the average attention difference
plotted here and the maximum attention differences (Fig. 3d-f) suggests that
the sex differences are captured by a subset of the attention heads. The average
attention difference is computed averaging all attention heads, whereas the
maximum attention difference attends to the maximum difference reportedin
any head.
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Extended Data Fig. 6 | Comparison between Nicheformer, UCE and CellPLM
in the MERFISH mouse brain, CosMX human liver and CosMX human lung
datasets. A) Downstream task metrics (MSE) for models trained in the MERFISH
mouse brain dataset using linear probing on Nicheformer, UCE and CellPLM
embeddings. The downstream tasks evaluated are niche regression for 4
different radius sizes. Inall cases, Nicheformer outperforms both CellPLM and
UCE, being the differences statistically significant. B) F1Score for region and
niche prediction in the MERFISH mouse brain dataset. Likewise, Nicheformer
outperforms CellPLM and UCE and the differences are statistically significant.
The arrows indicate which direction is the optimal one. For F1Score, the higher

the better; for MSE, the lower the better. C) Downstream task metrics (MSE)

for models trained in the CosMX human liver dataset using linear probing on
Nicheformer, UCE and CellPLM embeddings. The downstream tasks evaluated
are nicheregression for 4 different radius sizes. In all cases, Nicheformer
outperforms both CellPLM and UCE, being the differences statistically
significant. D) Downstream task metrics (MSE) for models trained in the CosMX
human liver dataset using linear probing on Nicheformer, UCE and CellPLM
embeddings. The downstream tasks evaluated are niche regression for 4
different radius sizes. In all cases, Nicheformer outperforms both CellPLM and
UCE, being the differences statistically significant.
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Extended DataFig. 7| Additional comparisons between Nicheformer and PCA
for the MERFISH mouse brain, CosMX human liver and CosMX human lung
datasets. A) Downstream task metrics (MSE) for models trained in the MERFISH
mouse brain using linear probing on Nicheformer and PCA embeddings with
increasingly more principal components. The downstream tasks evaluated

are nicheregression for 4 different radius sizes. In all cases, Nicheformer
outperforms PCA, even though the PCA substantially improves with the more
principal components employed. Differences are found statistically significant
between the best PCA performing model and Nicheformer. B) F1Score for region
and niche prediction. Interestingly, PCA ends up outperforming Nicheformer in
the case of linear probing for the region classification and performing as good

as Nicheformer for the niche classification. However, fine tuning Nicheformer is
still better. C) Downstream task metrics (MSE) for models trained in the CosMX

human liver dataset using linear probing on Nicheformer and PCA embeddings
withincreasingly more principal components. The downstream tasks evaluated
arenicheregression for 4 different radius sizes. In all cases, Nicheformer
outperforms PCA, even though the PCA substantially improves with the more
principal components employed. Differences are found statistically significant
between the best PCA performing model and Nicheformer. D) Downstream

task metrics (MSE) for models trained in the CosMX human lung dataset using
linear probing on Nicheformer and PCA embeddings with increasingly more
principal components. The downstream tasks evaluated are niche regression for
4 different radius sizes. In all cases, Nicheformer outperforms PCA, even though
the PCA substantially improves with the more principal components employed.
Differences are found statistically significant between the best PCA performing
model and Nicheformer.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Nicheformer fine-tuning datasets - CosMx human liver
and spatial to dissociated label transfer. A-B) Spatial allocation of cells in the
healthy CosMx liver section colored by training and test split used for training
Nicheformer (A) and niche label (B). C) Niche label distribution in the training
and test set for the healthy CosMx liver dataset. D) Spatial allocation of cellsin
the cancer CosMx liver section colored by training and test split used for training
Nicheformer in the cancer CosMx liver section. E) Distribution of cell type labels
inthe healthy and cancer CosMx liver data in both training and test set. F) Test-set
F1-macro of niche label prediction of the fine-tuned Nicheformer model, the
linear probing model, the linear probing model evaluated on a Nicheformer
modellonger trained in the liver training-set, and a linear probing baseline
computed based on embeddings generated with scVland PCA, respectively.

G) Thefine-tuned, a multi-task MLP on top of the Nicheformer embedding

and the linear probing Nicheformer models outperform zero-shot models
trained onscVland PCA embeddings in terms of mean absolute error across
allneighborhood sizes and all three organs, the brain, liver, and lung. H) Left:
Fine-tuned Nicheformer performance on the CosMx human liver data grouped

by index cell type. Shown are the absolute error values between predicted

and observed niche composition vectors for held-out test cells. For each box

in (H), the centerline defines the median, the height of the box is given by the
interquartile range (IQR), the whiskers are given by 1.5 x IQR and outliers are
given as points beyond the minimum or maximum whisker. Right: Index cell
type abundances in the entire CosMx human liver dataset. I-M) Nicheformer
label transfer classification uncertainty from spatial to dissociated assays in
the MERFISH mouse brain dataset. I-K) Cell type (I), niche (J), and region (K)
predicted label uncertainty across all cell types in the scRNA-seq mouse brain
data. Nicheformer assigns lower uncertainty to plausible labels given the nature
of the dataset and high uncertainty to labels not present in the primary motor
cortex. The highlighted boxes show cell types, niches and regions one would not
expect to find in the primary motor cortex. Nicheformer correctly shows a high
uncertainty in those. L-M) Spatial allocation of cells in an exemplary section of the
MERFISH mouse brain dataset colored by the pallium glutamatergic niche label
(L) and the subpallium GABAergic niche label (M), respectively.
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Extended DataFig. 9 | See next page for caption.
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Extended Data Fig. 9 | Nicheformer fine-tuning datasets - CosMx human lung;
output token norm analysis and orthologs comparison. A-B) Spatial allocation
of cellsin the training set (A) and test set (B) tissue sections colored by cell type.
C) Distribution of cell type labels in the training and test set in the CosMx human
lung dataset. D-C) Histogram of output token L2 norms for CosMx human
lung and liver cells. D-C) The histograms display the distribution of the average
L2 norm of output tokens for lung (D) and liver (E) cells. The modality token,
marked by an arrow, exhibits a notably higher norm compared to other tokens.
These norms reflect the representation magnitudes in the model’s output space.
Including contextual tokens in cell representation aggregation led to poor

label transfer performance. This is because aggregation is performed via mean

pooling, where tokens with higher norms disproportionately influence the result.

Additionally, contextual tokens appear in all cells, whereas the other tokens
shown here are present only in specific subsets. As a result, while contextual

tokens contribute to all cells, non-contextual tokens contribute only to the cells
inwhich they appear. F-H) Orthologs versus non orthologs comparison.

F) Venn diagram showing the number of genes of the non orthologs-trained
model (9026) and the orthologs-trained model (7407). The 1619 genes of
difference are genes that have a corresponding ortholog but we choose not to
use the mapping. G) Niche regression in the MERFISH mouse brain dataset is
the only downstream task - among the tested ones - in which there is a statistical
significant difference (t-test) between both models. No statistical significance
was found in the case of niche prediction for the CosMX human datasets. H)
Boxplots showing the distribution of similarities between tokens measured as
cosine similarity. We use the official Ensembl releases to map ortholog genes and
assessif they are more similar between them than to random genes and we find
that they are actually less similar.
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Extended Data Fig. 10 | Cumulative explained variance ratio for the MERFISH lung (bottom) datasets. Notice that this accounts for the explained variance
brain mouse, the CosMx liver human and the CosMx lung human. Shown are inthe train set, notin the test set (the PCA is computed in the train set and the
the cumulative explained variance ratios obtained after performing PCA. for the test data transformer using the principal components obtained). The red line
MERFISH brain mouse (top), CosMx human liver (middle) and CosMx human indicates the 90% of explained variance.
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Our web collection on statistics for biologists contains articles on many of the points above.
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The Allen brain atlas consortium generated the Allen Institute brain atlas mouse p20, Allen Institute brain atlas mouse p28, and Allen Institute brain atlas mouse
female datasets (Suppl. Table 4), which have kindly been provided to us prior to publication. The Xenium human spinal cord, the ISS human brain GBM, the ISS
human discover healthy lung, the ISS mouse EAE MS, and the Xenium mouse brain datasets have been generated by Mat Nillson lab and have been kindly provided




to us prior to publication.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No power analysis was performed to select sample size. However, we followed standard computational practices using at least 3 random
seeds for comparing models. For the statistical analysis performed in the attention analysis section, we sampled at least 2,000 cells from each
tissue and condition to have a sufficiently large sample size of attention scores to obtain robust results. For the rest of spatial predictive tasks
(e.g. niche composition prediction), entire spatial slices were held-out and the performance of the model evaluated in all the cells of those
spatial slices. For the label transfer tasks, we employed a dissociated data with more than 7,000 cells to ensure a sufficient sample size.

Data exclusions  No data was excluded from analyses.

Replication Replication of the results were done, running different random seeds for each analysis, including splits. Furthermore, since both data, model
weights and code are provided, all results can be reproduced using the official github repo.

Randomization Randomization was done through random seeding. Also, covariates were controlled to ensure no data leakage. For instance, in the case of the
spatial tasks (e.g. niche classification), it was controlled that no test data was leakage into training and validation sets. Furthermore, the
splitting was done at random, sampling spatial slices randomly. Likewise for the attention analyses, all cells were randomly sampled.

Blinding Blinding not relevant in the study. Train, validation, test splits were done at random. For attention analyses, all cells were also randomly
sampled.
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Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
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