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Nicheformer: a foundation model for 
single-cell and spatial omics
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Leander Dony    2,4,5, Francesca Drummer2,6, Till Richter1,2, Mojtaba Bahrami    2,4 &  
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Tissue makeup depends on the local cellular microenvironment. Spatial 
single-cell genomics enables scalable and unbiased interrogation of 
these interactions. Here we introduce Nicheformer, a transformer-based 
foundation model trained on both human and mouse dissociated single-cell 
and targeted spatial transcriptomics data. Pretrained on SpatialCorpus-110M,  
a curated collection of over 57 million dissociated and 53 million spatially 
resolved cells across 73 tissues on cellular reconstruction, Nicheformer 
learns cell representations that capture spatial context. It excels in 
linear-probing and fine-tuning scenarios for a newly designed set of 
downstream tasks, in particular spatial composition prediction and spatial 
label prediction. Critically, we show that models trained only on dissociated 
data fail to recover the complexity of spatial microenvironments, 
underscoring the need for multiscale integration. Nicheformer enables the 
prediction of the spatial context of dissociated cells, allowing the transfer 
of rich spatial information to scRNA-seq datasets. Overall, Nicheformer 
sets the stage for the next generation of machine-learning models in spatial 
single-cell analysis.

Single-cell genomics technologies have advanced our understanding 
of cellular heterogeneity in tissues, organs and organisms. Large-scale 
data generation efforts have charted cellular atlases of specific tissues 
and organs, such as the lung1 and heart2, as well as broader cross-tissue 
atlases3. However, single-cell RNA sequencing (scRNA-seq) requires 
cell dissociation, losing information about the cellular microenviron-
ment and hindering a complete understanding of molecular variation4. 
Recent advances in image-based spatial transcriptomics enable in situ 
scRNA-seq, profiling hundreds of genes in hundreds of thousands of 
cells across various tissues4,5. In situ spatial omics has revealed spatial 
components of cellular variations such as cell–cell communication6 and 

spatial gradients as well as emergent properties of tissue niches7, for 
example, in the mouse and human brain8,9 and liver10. We hypothesize 
that spatial omics data are becoming rich enough to learn a spatially 
aware, ‘foundational’ representation of cellular variation at scale.

A foundation model is a deep learning model trained on broad 
data that can be adapted to a wide range of downstream tasks. These 
models have revolutionized fields such as natural language process-
ing11 and computer vision12. Foundation models increasingly account 
for multimodal data, by leveraging not only one data modality, for 
example text, but also images, video and audio13. By utilizing mas-
sive datasets, powerful architectures and large compute resources, 
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humans and mice (Methods), which was shown to work beneficially for 
cross-species biological investigations and enhanced the discovery of 
universal gene regulatory mechanisms30. We evaluated Nicheformer on 
new downstream tasks to demonstrate its ability to transfer spatially 
inferred cellular variation to single-cell dissociated data (Fig. 1b).

The Nicheformer pretraining corpus comprises transcriptomics 
data from both humans and mice (Fig. 1a). Only expression data were 
used during pretraining to train the model to integrate data from 
dissociated and targeted spatial technologies, both of which show 
substantial batch effects (Fig. 1a). A limiting factor for image-based 
spatial transcriptomics data is the targeted feature space, measuring 
only hundreds to a few thousands of genes, depending on technology 
and panel31. Nicheformer is pretrained across both modalities jointly 
to capture cross-tissue, cross-technology and cross-disease variations. 
For evaluation of the downstream tasks, we focused on large-scale 
spatial datasets from four different solid organs profiled with three 
image-based technologies (Fig. 1b). We fine-tuned Nicheformer or 
applied linear probing, extracting embeddings from the frozen model 
and passing them through a task-specific linear layer for classifica-
tion or regression (Methods). The embedding is obtained via forward 
passing a specific dataset through the pretraining model to generate a 
lower-dimensional representation, the so-called Nicheformer embed-
ding. The organ-specific spatial context learned by Nicheformer can 
then be used to evaluate the model’s ability to generalize information 
learned from spatial transcriptomics data, without directly accounting 
for the available spatial context, and transfer it to dissociated data.

Cell representation. We define a cell as a sequence of gene expres-
sion tokens ordered by expression level relative to the mean in 
SpatialCorpus-110M (Fig. 1c). As the corpus includes human and 
mouse data, we constructed a shared vocabulary by concatenating 
orthologous protein-coding genes and species-specific ones, totaling 
20,310 gene tokens (Fig. 1c and Methods). Each single-cell expression 
vector is converted into a ranked sequence of gene tokens (Fig. 1d 
and Methods), a strategy shown to yield embeddings robust to batch 
effects while preserving gene–gene relationships22. We combined all 
technology-specific datasets and pad missing genes. Previous works31 
have demonstrably shown technology-dependent biases between 
spatial and dissociated transcriptomics data, with spatial data often 
yielding higher gene counts due to preprocessing steps32. To account 
for this, we computed technology-specific nonzero mean vectors—
rather than a global one—by averaging nonzero gene expression val-
ues within each assay type. Dissociated assays are grouped as one 
technology, whereas spatial datasets are divided into multiplexed 
error-robust fluorescence in situ hybridization (MERFISH), Xenium, 
CosMx and in situ sequencing (ISS) technologies. Finally, we introduced 
contextual tokens for species, modality and technology, enabling the 
model to learn their distinct characteristics. As rank-based encoding is 
central to our approach, we confirmed that Nicheformer embeddings 
remain stable under perturbations, simulating incomplete gene panels 
(Extended Data Fig. 1a,b and Methods).

Model design and training. Nicheformer uses a 1,500-token context 
length as input to an architecture with 12 transformer encoder units 
with 16 attention heads per layer and a feed-forward network size of 
1,024, generating a 512-dimensional embedding, resulting in a total of 
49.3 million parameters. This architecture performed best compared 
to smaller models (Extended Data Fig. 2c) and other hyperparameter 
configurations (Supplementary Table 1).

We confirmed technology-dependent biases between spatial 
and dissociated transcriptomics data through extensive pretrain-
ing experiments across different data splits (Methods). Specifically, 
training on dissociated data alone (even three times the amount of 
spatial data) resulted in lower performance across downstream tasks 
(Extended Data Fig. 2a,b), indicating that dissociated data alone cannot 

foundation models learn general representations of language, vision 
or domain-specific data like DNA14 and protein sequences15, outper-
forming classical methods. Commonly based on transformer architec-
tures, they are pretrained on vast, unlabeled data via self-supervision, 
learning powerful representations by identifying patterns without 
human-annotated labels. These learned representations then serve as 
a strong base for downstream tasks, while fine-tuning on labeled data 
further enhances performance on specific applications.

The field of single-cell biology has taken up deep learning-based 
representation learning for some time, leveraging autoencoders16,17 
for analysis tasks like data integration18, atlas mapping19 and perturba-
tion prediction20. Recently, foundation models explicitly designed for 
single-cell genomics have emerged21–25. These models differ in tokeniza-
tion and learning strategies, yet most of them leverage the transformer 
architecture with self-attention. They rely on large datasets, usually in 
the order of tens of millions of cells, for pretraining. The gene and cell 
representations learned by these models are derived from implicitly 
modeling the complex interplay between gene expression patterns 
within a single cell via the flexible transformer architecture. Single-cell 
foundation models are evaluated on diverse downstream tasks, such 
as cell-type classification22,23, gene regulatory network inference21,22 or 
prediction of cellular responses to perturbations21. The diversity and 
complexity of these tasks thoroughly probe model performance and 
evaluate the robustness of the learned representation and generaliza-
tion ability. Current results are promising but not entirely replicated in 
independent benchmarks26–28. Notably, these models do not account 
for spatial relationships of cells during training, with the exception 
of CellPLM29, which, however, is trained on a limited dataset of 9 mil-
lion dissociated and 2 million spatial transcriptomics cells and not 
fine-tuned on spatial tasks beyond gene imputation.

We propose Nicheformer, a foundation model pretrained on 
large-scale, single-cell and spatial transcriptomics data to enable pre-
dictions for spatially dependent tasks that are constrained by limited 
training data. To learn spatial cellular representation at scale, we com-
piled SpatialCorpus-110M, a large curated collection of single-cell and 
spatial transcriptomics datasets, spanning over 110 million cells, includ-
ing 53.83 million cells that were measured using image-based spatial 
technologies, from both human and mouse from 73 different organs 
and tissues. By incorporating contextual information through modal-
ity, organism and assay tokens, Nicheformer is able to learn a joint 
representation of single-cell and spatial genomics. We designed a set 
of novel downstream tasks showing that both fine-tuned Nicheformer 
and a linear-probing model trained on the Nicheformer embedding 
systematically outperform existing foundation models, specifically 
Geneformer22, scGPT21 and UCE23 pretrained on dissociated data alone, 
foundation models trained in spatial data, specifically CellPLM29, and 
embedding models like scVI17 and principal-component analysis (PCA) 
for these tasks. We demonstrate that Nicheformer accurately transfers 
the spatial context identified in spatial transcriptomics onto dissoci-
ated single-cell data, allowing users to enrich nonspatial scRNA-seq 
data with spatial context. This work paves the way for a new generation 
of foundation models for learning robust representations of cellular 
variation in tissues.

Results
A transformer-based foundation model for combined spatial 
and disassociated single-cell data
Overview. Nicheformer is a transformer-based model pretrained 
on SpatialCorpus-110M, a curated collection of over 110 million cells 
from dissociated and spatially resolved single-cell assays (Fig. 1a). 
Nicheformer generalizes prior tokenization strategies22 by encoding 
sample covariates across technology modalities, enabling a unified 
framework for multimodal learning, opening up new possibilities 
for downstream tasks. We additionally enable learning multispecies 
embeddings with Nicheformer by defining orthologous genes across 
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Fig. 1 | Nicheformer, a foundation model for spatial transcriptomics.  
a, Nicheformer is pretrained on the SpatialCorpus-110M, a large data collection 
of over 110 million cells measured with dissociated and image-based spatial 
transcriptomics technologies. The SpatialCorpus-110M collection comprises 
single-cell data from Homo Sapiens and Mus Musculus across 17 distinct organs 
and 18 cell lines, and additional single-cell data from other anatomical systems 
and junctions. Shown is an exemplary uniform manifold approximation and 
projection (UMAP) visualization of a random 1% subset of the entire pretraining 
dataset (n = 1,108,759 cells) of the non-integrated log1p-transformed normalized 
SpatialCorpus-110M colored by modality. b, Nicheformer includes a novel set 
of downstream tasks, ranging from spatial cell-type, niche and region label 
prediction to neighborhood cell density and neighborhood composition 
prediction. We test our approach on large-scale, high-quality spatial 
transcriptomics data from the brain (mouse, MERFISH), liver  

(CosMx, human), lung (CosMx, human; Xenium, human) and colon (Xenium, 
human). Visualized are example slices of the respective datasets colored by 
niche labels (brain, liver and lung) and cell density (lung and colon). c, The 
SpatialCorpus-110M is harmonized and mapped to orthologous gene names, 
as well as human and mouse-specific genes, to create the input for Nicheformer 
pretraining. We harmonized metadata information across all datasets, capturing 
species, modality and assay. d, Each cell’s gene expression profile and metadata 
are fed into a gene-rank tokenizer to obtain a tokenized representation for each 
cell. The tokenized cells serve as input for the Nicheformer transformer block 
to predict masked tokens. Finally, the Nicheformer embedding is generated 
by aggregating the gene tokens (Methods). e, The pretrained Nicheformer 
embedding is visualized as UMAP colored by modality. The UMAP shows a 
random 5% subsample of the entire Nicheformer embedding (n = 4,903,086).  
NA, not applicable.
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capture spatial variation. Similarly, we evaluated training with only 
human or only mouse data. Models trained on one organism performed 
poorly on the missing organism but outperformed those trained on the 
opposite organism (Extended Data Fig. 2c). Importantly, this result is 
not influenced by the sheer number of cells since all models are trained 
with the same number of cells; the only difference is the diversity of the 
data. These findings are statistically significant (analysis of variance, 
adjusted for false discovery rate (FDR); Extended Data Fig. 2a,c) and 
highlight the importance of data diversity in model training for optimal 
performance across context33.

Model evaluation and downstream tasks. Current transformer- 
based single-cell models are used for either gene-level tasks (for 
example, gene regulatory networks inference, perturbation effects) 
or cell-level tasks (for example, cell-type annotation, batch integra-
tion)21–23. By incorporating dissociated and spatial scale into a single 
model, Nicheformer enables a new class of spatially aware tasks, 
where previous models primarily only focused on disassociated ones 
(Supplementary Table 2). These include predicting human-annotated 
niches, tissue regions and spatial compositions—biologically mean-
ingful and nontrivial problems (Fig. 1b and Methods). For the spatial 
label prediction tasks, we also evaluated the model’s uncertainty 
regarding the predicted labels (Methods). For spatial composi-
tion tasks, we defined a distance-based spatially homogeneous 
niche around each cell and asked the model to predict local den-
sity or cell-type composition. The tasks are formulated as predic-
tion problems operating on Nicheformer’s pretrained embedding 
(Fig. 1e), which differ from typical integrated spaces by capturing a 
cross-modality, cross-tissue and cross-species representation suited 
for downstream inference.

Model transfer learning. We evaluate Nicheformer in both linear- 
probing and fine-tuning settings. In both cases, a linear head is trained 
for the specific prediction task, with fine-tuning additionally updat-
ing the transformer’s parameters. Linear probing—due to its simplic-
ity—highlights the intrinsic biological signal captured by the learned 
Nicheformer embedding (Fig. 1e).

SpatialCorpus-110M, a large-scale, cross-organ and 
cross-species pretraining dataset for single-cell and spatially 
resolved transcriptomics
To pretrain Nicheformer, we assembled SpatialCorpus-110M—a large 
harmonized corpus of single-cell and spatially resolved transcriptomics 
data to date. It includes 57.06 million dissociated cells and 53.8 million 
spatial cells across human and mouse tissues.

The dissociated portion builds upon the CellXGene CENSUS data-
base (33.47 million cells; Methods), which we extended by an additional 
180 datasets across 73 different tissues, containing 17 solid organs, 18 
cell lines and various additional tissue junctions in human and mice, 
with harmonized ontologies and metadata (Fig. 2a). These additional 
dissociated datasets have been collected through the Gene Expres-
sion Omnibus (GEO)34, sfaira35 and the Human Cell Atlas (HCA) data 
explorer36 (Supplementary Table 3 and Methods). Altogether, the 
dissociated collection of SpatialCorpus-110M comprises cells from 
over 6,000 different donors and technical or biological replicates.

For spatial transcriptomics, we curated image-based spatial  
datasets, specifically MERFISH37 (Vizgen MERSCOPE), 10x Genomics  
Xenium, Nanostring CosMx38 and ISS39 data (Fig. 2b and Supplementary  
Table 4), sourced from publications as well as via the Vizgen data 
release40 (18.8%) and the 10x Genomics data resource41 (13.7%). It cov-
ers 15 tissues from 158 individuals or animals and over 10,600 tissue 
sections. Most cells originated from the brain (60.46%, n = 32,146,779 
cells) and the lung (9.95%, n = 3,199,548 cells). A large proportion of 
the publicly available spatial omics datasets we collected are not anno-
tated (55.23%). We included both healthy samples (64.07%) and cancer 

samples (31.98%) to enable Nicheformer to learn tumor–immune 
microenvironment contexts.

For all datasets in the SpatialCorpus-110M, we curated metadata, 
such as assay, sex, organism and tissue, based on the original publica-
tions by using official ontology term identifiers (Fig. 2c and Methods). 
To harmonize features across species, tissues and assays, we first con-
verted all gene symbols to ENSEMBL gene IDs using pyEnsemble42. 
Then we used BioMart43 through the official Ensembl releases44 to 
match orthologous genes between species, yielding 20,310 unique 
gene tokens: 16,981 orthologous, 151 mouse-specific and 3,178 
human-specific genes.

Importantly, we did not integrate datasets into a unified latent 
space. Our goal was to preserve biological and technical variability 
while offering a large-scale resource for model training. Like CellXGene, 
SpatialCorpus-110M provides curated raw inputs, allowing researchers 
to choose their own normalization and integration strategies.

Nicheformer learns sex-related differences in gene–gene 
dependencies in MERFISH mouse brain data
Understanding the internal mechanisms of transformer models helps 
uncover whether their attention patterns reflect biologically meaning-
ful features. We investigated Nicheformer’s attention matrices with two 
objectives: (1) to examine if its layers develop generalizable structures 
across tissues and modalities, and (2) to test whether attention reflects 
biological variation.

To assess general layer organization, we analyzed attention 
across all heads and layers for 2,000 cells from multiple datasets in 
SpatialCorpus-110M: male and female MERFISH mouse brain samples8, 
the liver and lung CosMx datasets38 used for downstream tasks (Meth-
ods) and a scRNA-seq measured brain dissociated dataset9 (Methods). 
Our analysis suggests a hierarchical division across Nicheformer’s 
layers: early layers distribute their attention more broadly, with no 
clear prioritization of individual tokens; middle layers exhibit a sharp 
attention toward specific genes (Fig. 3b), likely capturing biologically 
relevant relationships; and final layers consistently focus on contex-
tual tokens (Fig. 3a and Extended Data Fig. 3a,b). This structured pat-
tern of attention is robust across all analyzed tissues and modalities, 
indicating that Nicheformer learns a hierarchical representation that 
generalizes beyond a single dataset. We confirmed significance with 
a Mann–Whitney U-test comparing attention distributions (corrected 
with Benjamini–Hochberg FDR; Extended Data Fig. 3c,d).

At head level, some attention heads maintain consistent func-
tional roles across tissues and modalities, such as prioritizing highly 
expressed genes, regardless of whether the dataset originates from 
brain, liver, lung or dissociated cells (Extended Data Fig. 4a). Oth-
ers varied by modality, suggesting modality-specific specializa-
tion (Extended Data Fig. 4b). We also observed heads with strong 
self-attention patterns (visualize as strong diagonal attention scores), 
while some show off-diagonal patterns, likely reflecting coexpression 
(Extended Data Fig. 4c). These findings highlight the diverse range 
of attention behaviors that Nicheformer develops when processing 
complex biological data. These observations echo findings in large 
language models, where specific attention heads acquire well-defined 
functions, such as induction heads that detect repeated patterns in 
sequences45 or successor heads that track sequential dependencies46. 
While mechanistic interpretability in biological foundation models is 
still in its early stages, our results suggest that Nicheformer exhibits 
a similar specialization, with certain heads consistently attending to 
biologically relevant features across datasets.

Understanding biological variation across conditions is central to 
single-cell analysis. We assessed whether Nicheformer captures mean-
ingful biological variations—in this case, sex-specific patterns—in these 
attention mechanisms by analyzing attention patterns in male and 
female MERFISH mouse brain datasets from the SpatialCorpus110-M8 
(Fig. 3c–e). Both datasets share common coordinate framework 
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(CCFv3)47 annotations, allowing for tagged analysis of the anteroventral 
periventricular nucleus (AVPV), known for sex-dependent morphology 
and gene expression48.

We analyzed all attention matrices from 2,000 AVPV cells per sex, 
focusing on ten genes previously reported as sexually dimorphic49–51, 
and comparing the attention paid to the predefined set of genes against 
the attention paid to 100 randomly selected genes. We do the analysis 
both for all cells in the AVPV section and for just HY GABA cells, a small 
population of cells in the AVPV that modulate the firing of the differ-
ent glutamatergic neurons in the AVPV that stimulate the synthesis of 
gonadotropins52. We identify key differences between the male and 
female cells (Fig. 3f,g). The first eight layers had the greatest average 
attention differences for both sexually dimorphic genes (SDGs) and 

100 random genes not directly linked to sex-specific differences in 
the brain (Extended Data Fig. 4d,e). In contrast, layers nine and ten 
show high maximal attention value differences for SDGs, when per-
forming differential testing on the attention weights between those 
two groups, especially for HY GABA cells (Fig. 3h,i). This suggests that 
specific attention heads in these layers capture subtle sex-specific 
cues. The contrast between the average and the maximum attention 
difference indicates that the sex differences are captured by a sub-
set of the attention heads, with at least one of the 16 attention heads 
showing a stronger focus. This contrast between the average and the 
maximum difference in attention also holds for genes in the random 
set (Extended Data Fig. 4f,g). Furthermore, six of the ten genes with the 
highest attention differences between sexes (Adgrf5, Nfib, Pou6f2, Rgs4, 
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Fig. 3 | Nicheformer identifies gene–gene dependencies between male and 
female MERFISH mouse brain sections. a, Analysis of layer-wise attention 
patterns reveals that Nicheformer’s later layers consistently pay more attention 
to contextual tokens across all tissues and modalities, demonstrating a clear and 
robust hierarchical processing pattern. b, Maximum layer-wise attention paid to 
gene tokens. For all tissues and modalities, Nicheformer’s middle layers pay the 
most attention to the gene tokens. c, Single cells resolved in space on an example 
slice (n = 2,292 cells) of the MERFISH female mouse brain dataset with cell-type 
label superimposed. d,e, Single cells resolved in space on an example slice 
(n = 2,269 cells) of the MERFISH male mouse brain dataset with the cell-type label 
(b) and CCF acronym label (c) superimposed. ADP, anterodorsal preoptic nucleus; 
AVP, anteroventral preoptic nucleus; HY, hypothalamus; MB, midbrain; MEPO, 
median preoptic nucleus; MPO, medial preoptic nucleus; NA, nucleus accumbens; 

IIn, second cranial nerve; OV, organum vasculosum laminae terminalis.  
f,g, Absolute difference of layer-wise attention scores between male and 
female MERFISH mouse brain sections show per transformer block of the SDGs 
considering just the HY GABA cells (d) and the entire AVPV section (e). h, Maximum 
layer-wise attention difference across layers between male and female HY GABA 
cells. The attention paid to random genes and SDGs is equal across all layers except 
in layers 9 and 10, where there is an increment in the maximum attention paid to 
the SDGs in comparison to the attention paid to the random set of genes. i, Volcano 
plot showing the differentially expressed genes (DEGs) highlighting the genes 
with highest attention difference between sexes (red), and highlighting the SDGs 
(blue). The genes found with highest attention differences are not among the most 
differentially expressed. P values were obtained from two-sided Wald tests and 
adjusted for multiple comparisons using the Benjamini–Hochberg procedure.
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Serpine2, Spock3) have not previously been reported to have sexually 
dimorphic expression in the brain and some were not differentially 
expressed between the male and female brain section (Fig. 3i), yet 
they play roles in development, G-protein-coupled receptor regula-
tion or the extracellular matrix—functions relevant to AVPV biology 
in which we expect to see sex differences. These effects are likely due 
to interaction patterns with both known dimorphic genes and others 
not included in the panel (for example, Kiss1, Gnrh, Esr1). Notably, 
Nicheformer’s ranked tokenization and attention mechanisms enable 
robust differentiation without requiring matching expression depth, 
highlighting a key strength of the model.

Nicheformer allows transferring spatially resolved cell-type, 
niche and region labels onto unseen data
Dissociated single-cell atlases excel at mapping cell-type diversity, 
typically defined by stable molecular states across tissues. However, 
cell types are defined ignoring the spatial context, which provides addi-
tional value for understanding cellular microenvironments53. Spatially 
resolved single-cell genomics allows us to augment cell-type definitions 
by incorporating neighborhood gene expression and histological struc-
ture, defining cell niches. These are spatially dependent, local tissue 
structures (for example, immune or tumor niches), often nested within 
broader tissue regions, which reflect higher-order spatial organization.

Transferring labels between dissociated and spatial data is chal-
lenging due to limited gene overlap54, and modality-specific methods 
are not designed to learn from reference atlases at the scale of hun-
dreds of million of cells. Nicheformer addresses this by leveraging the 
SpatialCorpus-110M to enable scalable annotation transfer.

We evaluated Nicheformer on a large MERFISH mouse brain 
dataset8, where 17 different brain regions and 8 distinct tissue 
niches (Fig. 3a) are labeled (Extended Data Fig. 5a–c). We tested lin-
ear probing—linear head over the frozen Nicheformer embeddings 
(Extended Data Fig. 5e,f)—and fine-tuning approaches for both labels 
for unseen, held-out tissue sections from the MERFISH mouse brain 
dataset, measuring one male mouse brain (Extended Data Fig. 5a–d).  
Compared to embeddings from PCA and scVI (trained on either 
the brain dataset or subsets of SpatialCorpus-110M; Methods), 
and to foundation models (Geneformer, scGPT, UCE, CellPLM), 
Nicheformer achieved the highest macro F1 scores (Fig. 4b and 
Extended Data Fig. 6a,b). While PCA with a large number of components 
offers a good performance, practically on par with using a linear probe 
on top of Nicheformer’s representations, or even surpassing it in the 
case of region prediction, it still fell short of the fine-tuned Nicheformer 
model (Extended Data Fig. 7a,b). The differences between Nicheformer 
and competitors were statistically significant as derived from t-tests 
between Nicheformer and the best-performing comparison method 
(Extended Data Fig. 6a,b).

We performed a similar analysis on a randomly held-out test set of 
the CosMx human liver dataset defining tissue niches as different zona-
tions between the central and portal veins (Extended Data Fig. 8a–c). 
Again, fine-tuned Nicheformer led in terms of macro F1 score. However, 
linear probing underperformed compared to scVI and PCA trained on the 
training set of the liver dataset (Extended Data Fig. 8f). We hypothesized 
that this is related to the insufficient model capacity due to limitations 
regarding a relatively low overall abundance in the SpatialCorpus-110M 
(Fig. 2a,b). Extended pretraining on liver data improved performance, 
suggesting undertrained tissues can benefit from additional fine-tuning 
(Extended Data Fig. 8f). Surprisingly, we observed that in Nicheformer 
models trained with just ~1% data, there was no such a drop in perfor-
mance. Additionally, we observed that the model trained on a smaller 
dissociated subset (1%) performed slightly better than one trained on 
a larger subset (3%), which also supports the hypothesis that ‘compute 
per sample’ is important (Supplementary Note 1).

We next assessed label transfer between spatial and dissoci-
ated data, using Nicheformer to map MERFISH-defined cell types to 

scRNA-seq motor cortex cells (Fig. 4c,d)9. We find that Nicheformer 
correctly selects the nine motor cortex-related cell types of the overall 
33 cell types present in the MERFISH mouse brain dataset (Fig. 4e and 
Extended Data Fig. 8I). When calculating classification uncertainty 
based on the overall predicted distribution generated by the model 
(Methods), the predicted cell-type labels show overall a high agreement 
and low classification uncertainty (Fig. 4e,I) with the original cell-type 
annotations. Mostly, all cell types were correctly matched, indepen-
dently of their abundance in the cell dissociated dataset (Fig. 4h). Some 
deep-layer glutamatergic neurons were misclassified as midbrain 
glutamatergic, possibly due to transcriptional heterogeneity and 
subtype imbalance in MERFISH data. For niche labels, Nicheformer 
correctly predicted all expected assignments with low uncertainty 
for non-neuronal and inhibitory neurons, but higher uncertainty for 
excitatory subtypes (Fig. 4f,j and Extended Data Fig. 8j). Misclassifi-
cations likely stem from overlapping spatial structures. For region 
labels, most cells were correctly predicted as isocortex (Fig. 4g,k and 
Extended Data Fig. 8k). Some spillover into adjacent regions (for exam-
ple, cortical subplate (CTXsp) and olfactory areas (OLF)) may reflect 
tissue dissection artifacts. Region prediction was slightly worse for 
non-neuronal cells, likely due to their lower transcriptional diversity. 
For extended detailed analysis, consult Supplementary Note 2.

Altogether, this demonstrates Nicheformer’s ability to learn pow-
erful cell representations by capturing nuanced spatial information. 
Linear probing already surpasses existing baselines, highlighting the 
effectiveness of the representation. Fine-tuning further refines this 
representation, emphasizing the importance of task-specific adapta-
tion for capturing subtle cellular variations. Notably, Nicheformer 
enables the direct transfer of spatially aware annotations from spatial 
to dissociated single-cell data by using a simple linear layer. This capa-
bility unlocks new possibilities for analyzing single-cell data across 
different modalities.

Nicheformer predicts neighborhood compositions in spatial 
and dissociated single-cell data
Tissue microenvironments consist of cellular neighborhoods with 
a diverse composition of cell types. Differences in neighborhood 
composition have been shown to have an important effect on gene 
expression and can be associated with cell–cell communication events6. 
Furthermore, the cellular composition of neighborhoods in the tumor 
microenvironment may hold prognostic value, because immune cell 
infiltration in the spatial context is a predictor for cancer survival55. Here 
we show that we can leverage Nicheformer’s multimodal cell represen-
tation to accurately relate changes in gene expression to differences 
in neighborhood compositions in spatial data and transfer them to 
dissociated transcriptomes.

We define a cell’s ‘computational’ neighborhood as the set of cells 
within a fixed radius (Fig. 5a and Methods). The total number of cells 
composing the neighborhood defines the neighborhood density, and 
the proportion of cell types in the neighborhood defines the neighbor-
hood composition. This notion is consistent with previous approaches 
defining a cellular neighborhood56 and allows for an interpretable 
evaluation of model results. Generally, the definition of a cell neigh-
borhood can be extended in the future to account for non-isotropic 
cell neighborhoods that might vary in their cell-type composition and 
are drivers of similar biological functions with varying sizes across 
a dataset.

To evaluate Nicheformer’s ability to predict neighborhood com-
position, we focused on three datasets measuring three organs with 
two different technologies, namely MERFISH mouse brain, CosMx 
human liver and CosMx human lung. We computed neighborhood 
compositions at varying resolutions for each of the three datasets 
separately. The radii were selected to contain, on average, 10, 20, 50 
or 100 neighbors (Fig. 5b and Methods). We evaluated Nicheformer 
both in linear-probing and fine-tuned settings for each dataset and 
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each neighborhood size individually and compared its performance to 
linear probing on embeddings computed with scVI, PCA, Geneformer 
and scGPT. We found that fine-tuned Nicheformer systematically out-
performed the linear-probing models trained on Nicheformer embed-
ding, Geneformer, scGPT, scVI and PCA, independently of the number 

of principal components used, even though PCA’s performance notably 
improves with more principal components (Extended Data Fig. 7a,c,d), 
for this task on all three organs in terms of mean absolute error. Like-
wise, for UCE and CellPLM, which we evaluated by training a linear 
layer on their embeddings, we also found that linear probing with 
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Nicheformer outperformed both methods across all three datasets 
(Extended Data Fig. 6a,c,d). Statistical tests (t-test) to assess the statis-
tical significance of the results were performed, with positive results 
(Extended Data Fig. 6a,c,d). Notably, the linear-probing models trained 
on Nicheformer embeddings also outperformed all other methods, 
except for the fine-tuned Nicheformer (Fig. 5c). However, for bigger 
radius sizes in the liver dataset, the scVI models trained in a subset of 
SpatialCorpus-110M performed on par with fine-tuned Nicheformer. 
We believe this to be related to the previous classification results in 
the same dataset (Extended Data Fig. 8f). Interestingly, Nicheformer’s 
performance increased with neighborhood size in the case of the brain 
datasets. In the liver, we observed a stronger performance trend, which 
might be related to transcriptional patterns of zonation and structural 
components in the liver57. For the CosMx liver dataset, we additionally 
evaluated whether a multitask multilayer perceptron (MLP) would 
allow the prediction of all neighborhood sizes jointly (Methods). We 
observed that a multitask MLP did not outperform a neighborhood 
size-specific linear-probing model or the fine-tuned Nicheformer 
model, indicating that downstream tasks should be evaluated sepa-
rately (Extended Data Fig. 8g).

To understand the model’s behavior and performance in more 
detail, we additionally assessed the fine-tuned Nicheformer perfor-
mance for each cell type separately in the MERFISH mouse brain dataset 
(Fig. 5d and Methods). We computed the absolute error between pre-
dicted and true neighborhood compositions across all four neighbor-
hood sizes and sorted the result based on the median values per cell 
type. We found that the most accurately predicted cell types in terms of 
absolute error are also within the 8 (of 33) most abundant cell types in 
the MERFISH mouse brain dataset. In contrast, the 4 cell types for which 
Nicheformer performed worse are in the 14 least abundant cell types 
(Fig. 5d). For example, highly abundant cell types predominantly from 
cortical layers (IT-ET Glut, NP-CT-L6b Glut) are structurally organized 

in the brain and have a quite homogeneous neighborhood composi-
tion. Those two factors help to explain the very accurate Nicheformer 
predictions. Similarly, CB Glut cells are based in the cerebellum, an area 
with very high cell density58 and high neighborhood homogeneity. Even 
though they have a lower abundance in the overall dataset, Nicheformer 
accurately predicted their neighborhood composition (Fig. 5d). On 
the other hand, Nicheformer shows a lower performance on cell types 
predominantly found in the midbrain or hypothalamus (MB GABA, MB, 
Dopa, HY Glut, Hy MM Glut). These cell types are relatively rare cell 
types in the given dataset and are located in more diverse and complex 
tissue layouts and show a greater variety of neighboring cell types8. 
This indicates that regionally diverse and less abundant cell types 
in the pretraining corpus are harder to predict for the Nicheformer 
model. The performance differences might be related to the structural 
properties of the brain regions as well as their varying cell-type compo-
sitions and abundance in the dataset. We further observed a relatively 
good performance of Nicheformer for the neighborhood composition 
prediction of immune cells, despite their relatively low abundance and 
their lack of regional specificity in the brain. Immune cells are scat-
tered across the brain and accomplish very specific but differing tasks 
ranging from regulating synaptic plasticity, and immune surveillance, 
to preventing excitotoxicity59. Interestingly, the Nicheformer embed-
ding of the immune cells in the MERFISH mouse brain data preserves 
the regional information of those cells and region-specific subclusters 
can be identified (Fig. 5e).

To assess whether our results generalize across organs and 
technologies, we performed a similar analysis for the CosMx human 
liver dataset, evaluating the overall cell-type performance in the task 
of predicting the neighborhood composition across resolutions 
(Extended Data Fig. 8h). Again, we observed that Nicheformer’s per-
formance heavily depends on the cell-type abundance in the dataset 
and the regional specificity of the individual cells, for example, we 

Fig. 4 | Nicheformer accurately transfers cell-type, niche and region label 
to unseen spatial and dissociated data in the brain. a, Single cells resolved 
in space on an example slice (n = 114,396 cells) of the MERFISH mouse brain 
dataset with niche label superimposed. b, Test-set F1 macro of niche and brain 
region label prediction of the fine-tuned Nicheformer model, the linear-probing 
model and a linear-probing baseline computed based on embeddings generated 
with Geneformer, scGPT, scVI and PCA, respectively. For scVI and PCA, both 
embeddings generated from a random 1% subset of the SpatialCorpus as well 
as embeddings generated from the training set of the original dataset are 
evaluated. c, UMAP of dissociated scRNA-seq dataset with original author cell-
type label superimposed. ET, extratelencephalic neurons; IT, intratelencephalic 
neurons; CT, corticothalamic neurons; NP, near-projecting neurons; OPC, 
oligodendrocyte precursor cells. d, Nicheformer can transfer spatial niche 
and region labels onto dissociated single-cell data. e, Nicheformer accurately 
classifies cells from the dissociated motor cortex to relevant cell types (n = 9 of 33 
distinct ones in the classifier) trained on the whole mouse brain MERFISH dataset. 
f,g, Nicheformer correctly projects dissociated single cells to niche  

(f) and region (g) labels to provide spatially dependent labels. STRd, dorsal 
striatum; STRv, ventral striatum; RHP, retrohippocampal region; HIP, 
hippocampal formation; TH, thalamus. f, Nicheformer misclassified parts 
of layer 2/3 (L2/3) IT neurons as residing in the subpallium GABAergic niche 
(highlighted in the red box). Additionally, the deep cortical excitatory neurons 
L6b, L6 CT, L6 IT, and L6 IT Car3 (highlighted in the red box) should be classified 
as pallium glutamatergic niche instead of subpallium GABAergic by Nicheformer. 
g, Most of the non-neuronal cells (84.7% of all non-neuronal cells, n = 133) were 
misclassified as not belonging to the isocortex or the adjacent brain regions 
(highlighted in the red box). h, Cell-type abundances in the scRNA-seq dataset 
measuring the primary motor cortex in the mouse. i–k, Classification uncertainty 
of label transfer of the dissociated scRNA-seq dataset to the MERFISH mouse 
brain data for cell-type label (i), niche label (j) and region label (k) with a value of 
0 representing a high uncertainty and 1 being a lower uncertainty, that is, high 
certainty. k, Observed high uncertainty for parts of the Glut and GABA neurons 
for the region prediction of the isocortex, CTXsp and OLF, which are neighboring 
brain regions.

Fig. 5 | Nicheformer accurately predicts neighborhood compositions at 
multiple niche resolutions for the brain, liver and lung. a, We define the 
neighborhood of a cell as its local neighborhood given a radius and an index 
cell. The neighborhood cell density is then defined by the number of cells in the 
neighborhood, and the neighborhood compositions are the proportions of 
neighboring cell types. b, Neighborhoods are computed at multiple resolutions 
resulting in different neighborhood size distributions. Each barplot shows  
the distribution of the number of neighbors across the brain, liver and lung 
datasets. We extract neighborhoods with the mean number of neighbors  
10, 20, 50 and 100 for each dataset. Neighborh., neighborhood. c, The fine-
tuned and linear-probing Nicheformer models outperform for brain and 
lung linear-probing models trained on Geneformer, scGPT, scVI and PCA 
embeddings in terms of mean absolute error across all neighborhood sizes. 
Still, it struggles to outperform all benchmarks in liver, where scVI models are 

very competitive. This is an issue related to the previous liver performance 
reported in the previous section (Extended Data Figs. 2a and 8f). d, Left, Fine-
tuned Nicheformer performance on the MERFISH mouse brain data grouped 
by index cell type. Shown are the absolute error values between predicted and 
observed neighborhood composition vectors for held-out test cells. For each 
box in d, the centerline defines the median, the height of the box is given by 
the interquartile range (IQR), the whiskers are given by 1.5 times the IQR, and 
outliers are given as points beyond the minimum or maximum whisker. Center, 
Index cell-type abundances in the entire MERFISH mouse brain dataset. Right, 
UMAPs of MERFISH mouse brain Nicheformer embedding with the selected 
index cell type as color superimposed. e, UMAP of the Nicheformer embedding 
of all immune cells in the MERFISH mouse brain dataset with region label as color 
superimposed.
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saw a lower absolute error for hepatocytes compared to circulating 
immune cells (Extended Data Fig. 8h). Hepatocytes are predominantly 
found in highly structured cellular microenvironments and show 
strong spatial patterns in their gene expression60, while liver-resident 
immune cell populations were shown to be mobilized under certain 

circumstances, hence their regional specificity might be lower com-
pared to other cell types61. This indicates that the Nicheformer embed-
dings can be useful to identify and understand region-specific and 
niche-specific structures and differentiate cell types that show a higher 
regional specificity.
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Nicheformer infers cellular niche density in unseen data
Beyond cellular niche labels and neighborhood composition, we asked 
whether local cell density is encoded in a cell’s expression profile. It 
is long known that cell density can strongly affect growth behavior 
in vivo and in culture; also, increased cell density is a key feature of the 
formation of the tumor microenvironment, which leads to the crea-
tion of a hypoxic environment and depletion of infiltrating immune 
cell populations62. For example, in colon cancer, it was shown that the 
immune cell density is associated with patient survival and can be used 
for tumor–immune patient stratification for improved anticancer 
therapy63. In non-small-cell lung cancer64, immune cell density and 
neighborhood compositions were used to stratify specimens into 
groups associated with clinical outcomes.

We tested whether Nicheformer accurately predicts the neigh-
borhood density in a Xenium lung dataset measuring an adult 

human healthy lung section and a section with invasive adenocar-
cinoma from a second patient65, and in a Xenium formalin-fixed 
paraffin-embedded-preserved healthy and diseased colon with stage 
2A adenocarcinoma from two different patients65. Consistent with lit-
erature observations63,64, we observed a higher average cellular density 
in the cancer sections (colon, 12.3 cells; lung, 12.1 cells) compared to 
healthy tissue (colon, 10.7 cells; lung, 10.7 cells) when extracting cellular 
neighborhoods at the same radius (Fig. 6a,f and Methods).

We first computed Nicheformer embeddings for both datasets by 
generating a forward pass through the Nicheformer pretrained model 
(Fig. 6b,g). Additionally, we embedded the two datasets with scVI, and 
PCA (Methods). The three resulting embeddings for the datasets were 
then used as input for a linear-probing regression model to predict 
the cellular neighborhood density for each cell. The linear-probing 
models trained on the scVI and PCA embeddings failed to correctly 
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Fig. 6 | Nicheformer accurately predicts changes in cellular neighborhood 
density in the lung and colon. a, Barplot of cellular neighborhood densities split 
by condition for the Xenium human lung dataset. b, UMAP of the Nicheformer 
embedding of the Xenium human lung dataset colored by condition. c, Mean 
absolute error and R2 for the cellular neighborhood density prediction task for 
a Nicheformer linear-probing model and linear-probing models trained on scVI 
and PCA embeddings. Data are presented as mean values with error bars showing 
the standard deviation, using three random seeds. d, Spatial allocation of cells 
in the Xenium human lung dataset colored by predicted cellular neighborhood 

density in the healthy and diseased lung. e, Predicted-versus-true cellular 
neighborhood density for a zoomed-in section of the Xenium lung cancer 
section. f, Barplot of cellular neighborhood densities split by condition for the 
Xenium human colon dataset. g, UMAP of the Nicheformer embedding of the 
Xenium human colon dataset colored by condition. h, Mean absolute error and R2  
for the cellular neighborhood density prediction task for a Nicheformer linear-
probing model and linear-probing models trained on scVI and PCA embeddings. 
Data are presented as mean values with error bars showing the standard 
deviation, using three random seeds.
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predict the mean density and performed worse than random predic-
tion, resulting in negative R2 values for both tissues. Interestingly, the 
linear-probing model trained on the Nicheformer embedding outper-
formed the other two models in terms of mean absolute error and R2 
(Fig. 6c,h) and was able to accurately predict a higher cellular density 
in the tumor regions and denser tissue structures in the Xenium lung 
dataset (Fig. 6d). This demonstrates that the Nicheformer embeddings 
are able to capture neighborhood density variation solely on transcrip-
tome information better than the baselines. Nicheformer’s ability to 
infer cellular neighborhood density in healthy tissue and cancer tissue 
can be useful to inject spatial relationship information in dissociated 
data to further characterize cell-state variation in systems such as the 
tumor microenvironment.

Discussion
Nicheformer demonstrates the potential of multiscale foundation 
models for dissociated single-cell and spatial transcriptomics data. 
By leveraging the SpatialCorpus-110M and evaluating the model in 
different spatially informed downstream tasks and assessing the 
model’s prediction uncertainty, we demonstrate that Nicheformer 
captures complex relationships between gene expression and spa-
tial context. We introduce a newly designed set of downstream tasks 
designed explicitly for spatial data analysis, in which Nicheformer 
consistently outperforms baseline models, including foundational 
models trained only on scRNA-seq data such as GeneFormer, UCE and 
scGPT, and also models trained on spatial data such as CellPLM, high-
lighting its effectiveness in learning a cell representation that is able to 
predict spatial features and the need to train on multiscale and diverse 
datasets to capture the intricate spatial relationships present in tissue 
organization. These results strongly suggest that spatial context can 
be effectively inferred from transcriptomics data using Nicheformer. 
To further understand how Nicheformer processes information, we 
analyzed its attention mechanism, finding that different layers attend 
to distinct features. We identified specific attention heads that remain 
robust across modalities and tissues, as well as others that adapt to 
these variations. We also explored how Nicheformer captures biological 
conditions through its attention patterns. Additionally, we conducted 
an analysis of the performance of models pretrained on different data 
subsets to evaluate the impact of various modalities and organisms on 
its performance. Our results highlight that broad coverage in train-
ing data is essential for achieving robust performance across diverse 
contexts. Further, Nicheformer paves the way for transferring spatial 
information to large collections of dissociated single-cell data, which 
opens the door for more nuanced analyses of cellular function in the 
tissue environment in silico.

A cell integrates its spatial context, that is, its cellular neighbor-
hood by cell interaction and communication, which is reflected in the 
cell’s transcriptomic profile. This property has been used successfully 
to learn cell-type communication profiles from coexpressed recep-
tor–ligand interactions66, to reconstruct spatial gene expression from 
spatial context and anchor points using optimal transport67,68 and to 
determine cell interactions beyond known receptor–ligands via graph 
neural networks56. With Nicheformer, we build upon these results and 
show that we can predict spatial context from a cell’s gene expression 
profiles alone with consistent accuracy. We found that, for example, 
immune cell neighborhoods in the brain are most likely encoded in the 
gene expression profiles, making it easier for Nicheformer to under-
stand these differences and relate them to neighborhood composition 
changes. Extending this analysis to additional tissues has the potential 
to characterize recurrent immune niches across tissues and organs.

A long-term vision in systems biology has been to create multi
scale models, from molecules and cells up to tissue, organs and even-
tually the whole organism. Nicheformer represents a step toward 
creating a generalizable multiscale model for single-cell and spatial 
biology, bridging the gap from the single-cell to the tissue modality. 

More generally, it will be necessary to operate on multimodal data to 
generate a true representation of the cellular state. While spatial tran-
scriptomics captures the cellular microenvironment in tissues well, 
integrating additional data modalities, such as protein abundance 
or epigenetic modifications, will provide a more complete picture of 
the cellular state. The development of multimodal foundation mod-
els faces multiple challenges. One key hurdle is the lack of sufficient 
paired data measured across multiple or even all cellular modali-
ties. However, with the development of new assays and sequencing 
technologies, we expect the number of multimodal datasets to grow, 
enabling the development of architectures to model them. Incorpo-
rating additional modalities will remain a challenge in the future as, 
for example, epigenetic modifications, protein abundance and gene 
expression all have unique characteristics, and effectively combin-
ing them in a way that leverages their strengths remains an ongoing 
research area.

While Nicheformer represents a process for learning general rep-
resentations for single-cell biology, we acknowledge some limitations 
of this approach. Firstly, Nicheformer performance depends on the 
data abundance and transcriptional diversity of the cells under study. 
Indeed, we showed that Nicheformer’s performance for predicting 
spatial labels and spatial compositions is impacted by cell-type and 
tissue-type abundance in a spatial transcriptomics dataset. With the 
ongoing growth in spatial transcriptomics data availability as well as 
improved throughput thanks to technological advances, we expect 
that the prediction performance will improve across evaluated tissues. 
Secondly, Nicheformer does not explicitly incorporate the physical 
location of a cell during pretraining, limiting its capability to fully 
leverage the available information on spatial context. We deliberately 
chose not to include spatial coordinates during pretraining because we 
wanted to learn a general representation of gene expression variation 
across both modalities, fully supervised by gene expression alone. 
Nevertheless, we anticipate that future iterations of Nicheformer will 
account for spatial relationships of cells by encoding spatial neighbor 
graphs, for example, and potentially leveraging graph transformer 
architectures69 for the pretraining stage on spatial transcriptomics 
data. Graph transformers excel at modeling relationships between 
nodes in graphs, making them ideal for capturing nearest-neighbor 
effects on a cell’s transcriptome. Thirdly, the interpretability of the 
Nicheformer model has not been fully explored. In future iterations, 
it would be interesting to inspect the learned architecture in order 
to understand interactions between genes within cells and niches to 
extract biological mechanistic knowledge, for example, by assessing 
how gene relationships are associated with cell state across the two 
modalities under consideration. Additionally, the current strategy 
excludes metadata tokens from the final cell representation to avoid 
bias from their high norm (Methods), which can impede label transfer. 
However, this may limit model expressivity by discarding these tokens 
entirely. More refined strategies, such as selective integration, could 
retain relevant context without allowing it to dominate the embed-
ding. We additionally see a need to scale Nicheformer in the number of 
parameters, pretraining time and dataset size. Characterizing scaling 
laws for foundation models in genomics has the potential to identify 
bottlenecks in learning schemes and datasets, thus informing design 
and pretraining choices for the next generation of models. Finally, we 
want to highlight the need for more comprehensive benchmarks than 
the set of spatial tasks presented here, which will help judge exten-
sions and future alternative models. The field of biological foundation 
models is a novel area brimming with potential. However, unlike more 
established AI domains, there’s a crucial gap in the form of standardized 
benchmarks for evaluating these models. Establishing robust bench-
marks is a critical next step to compare and improve performance, 
rigorously assess methodological progress and guide future model 
development to unleash the full potential of foundation models for 
single-cell biology.
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Overall, Nicheformer demonstrates the feasibility of learning a 
foundational representation able to effectively transfer information 
from single-cell to spatial genomics and its reverse, paving the way for 
the next generation of foundation models trained on large heterogene-
ous collections of dissociated and spatial single-cell data. We describe 
a set of newly designed evaluations that are explicitly for probing 
the model’s ability to encode spatial context and its transferability 
to a different modality that can be leveraged as a new benchmark for 
multimodal foundation models for single-cell and spatial genomics. 
We believe Nicheformer represents an important progress toward 
building a general and robust representation of cellular biology phe-
notypes advancing our understanding of the heterogeneous effects of 
cellular niches in development and disease. We envision Nicheformer 
and similar models to actively assist in experimental design through 
hypothesis generation and experiment selection, ultimately accelerat-
ing the pace of scientific progress by helping to choose the next set of 
most informative experiments. Nicheformer will thus help to guide 
and design spatial experiments based on scRNA-seq measurements, 
supporting the upcoming transition from cell to tissue atlases.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-025-02814-z.
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Methods
Collection of the SpatialCorpus-110M
Dissociated data collection. We collected and combined dissociated 
single-cell and single-nucleus data from the latest patch of CellXGene70, 
50 additional curated studies available through the sfaira data zoo35, 
150 datasets acquired through the GEO data repository34,71 and 4 data-
sets from the HCA data explorer72.

For the data originating from CellXGene, we used the CZ CellXGene 
Discover Census70 v.2023-07-15 and its Python API to download the lat-
est batch of all data available on the census. The CZ CellXGene Discover 
Census only contains cells from human or mouse, as well as only gene 
expression measurements obtained via RNA-seq. We additionally 
only downloaded primary data that were marked with the respective 
identifier in the Census to ensure that cells are not represented multiple 
times in our collection. Subsequently, we downloaded the entire cell 
and gene metadata as well as the raw counts and stored them as H5AD 
on disk. For additional data acquisition, firstly, we selected human 
and mouse 10x Genomics technology datasets not present in the lat-
est CellXGene patch from the sfaira data zoo35 and excluded datasets 
without publicly available raw count matrices. We then downloaded 
the selected data through the sfaira interface, removed any cells with 
less than 200 expressed genes, streamlined the feature space of each 
dataset to Ensembl release 104 (GRCh38) protein-coding genes, applied 
sfaira metadata streamlining, and applied the Nicheformer metadata 
scheme. We stored the data for each study from sfaira as individual 
H5AD objects on disk.

Secondly, for the acquisition from the GEO data repository, we 
focused on GEO IDs previously included in the recent scsimilarity25 
preprint publication. After cross-checking this list with the other used 
data sources to avoid duplicated data, we acquired the necessary meta-
data from the GEO website and the corresponding publications. We 
downloaded the count matrices, converted the various data formats 
into AnnData format and combined them with the collected metadata 
to save them as individual H5AD objects on disk. We curated ontology 
term identifiers for species based on the ontology representation of 
the NCBI organismal taxonomy (NCBITaxon)73, tissue based on the 
Uber-anatomy ontology (Uberon)74,75, sex based on the ontology of 
phenotypic qualities (PATO)76,77 and assay based on the Experimental 
Factor Ontology (EFO)78. All ontology terms were obtained through 
the Ontology Lookup Service (OLS)79.

Lastly, we followed the same approach for the four HCA data 
explorer36 datasets as for the GEO datasets. To make the dataset acqui-
sition process reproducible and available to the community, we have 
shared scripts for downloading and standardizing all datasets. All data 
collection-related code can be found at https://github.com/theislab/
nicheformer-data/. We additionally implemented a validator to stream-
line the verification process, ensuring alignment between metadata 
formats and the data collection schema. A detailed list and overview 
table of all datasets containing GEO ID, DOI, the number of cells, tissue, 
assay and author information can be found in Supplementary Table 3.

Spatial data collection. The spatial part of the SpatialCorpus-110M 
consists of datasets measured with image-based spatial transcriptom-
ics technologies, namely CosMx, ISS, MERFISH and 10x Xenium. We 
collected 60 different datasets across 15 different solid organs. Most of 
the spatial data collection was collected via the Vizgen data release40, 
the 10x Genomics data resource41 and the CosMx data resource38. The 
remaining datasets were collected through the data resources stated in 
the original publications. Unpublished datasets were obtained before 
publication via the original authors. Each dataset was downloaded 
and stored as individual H5AD files. For each dataset, we collected 
expression data and associated gene-level and cell-level metadata, 
but high-resolution images and segmentation masks were not col-
lected and curated. We curated ontology term identifiers for spe-
cies based on the ontology representation of the NCBI organismal 

taxonomy (NCBITaxon)73, tissue based on the Uber-anatomy ontol-
ogy (Uberon)74,75, sex based on the ontology of phenotypic qualities 
(PATO)76,77 and assay based on the Experimental Factor Ontology 
(EFO)78. All ontology terms were obtained through the Ontology 
Lookup Service (OLS)79. For Xenium and CosMx assays, official ontol-
ogy terms are not yet defined, so we replaced them with placeholders. 
For datasets that did not provide Ensembl gene identifiers, we used 
pyEnsembl42 with the Ensembl release 104 (GRCh38) to map gene names 
to Ensembl gene identifiers and subsequently BioMart43 through the 
official Ensembl releases44 for mapping mouse genes to orthologous 
gene identifiers. Scripts for acquiring the spatial data are also shared 
in our GitHub repository. We used the same validator as used for the 
dissociated datasets to streamline the verification process of the col-
lected metadata. We applied no additional quality control, gene-level 
or cell-level filtering for the spatial omics datasets beyond the filters 
applied by the original authors of the publications or the filters auto-
matically applied by the individual spatial transcriptomics technolo-
gies. A detailed list and overview table containing the GEO ID, DOI, the 
number of cells, tissue, assay and author information for the spatial 
datasets can be found in Supplementary Table 4.

Datasets used for downstream tasks and evaluations. Publicly avail-
able datasets used for downstream tasks and evaluations were collected 
in the same way as the other spatial transcriptomics datasets present 
in the SpatialCorpus-110M. As most of our downstream tasks require 
cell-type, niche and region label annotations, we focused primarily on 
annotated and large-scale spatial transcriptomics datasets. We provide 
a detailed description of those datasets below.

MERFISH mouse brain
Yao et al.8 measured 4.3 million cells across 59 tissue sections from one 
whole male mouse brain using MERFISH with a 500-gene panel. This 
dataset contains a hierarchical cell-type annotation structured into 
four nested levels of annotation. We used the ‘class_label’ field with 33 
distinct cell types as input for the Nicheformer niche regression task 
(Extended Data Fig. 3c), the ‘division_id’ label, containing seven distinct 
labels (CBX-MOB-other neuronal, immune, low quality (LQ), neuroglial, 
PAL-sAMY-TH-HY-MB-HB neuronal, pallium glutamatergic, subpallium 
GABAergic, vascular) as niche labels (Extended Data Fig. 5b), and the 
‘clean_region_label’ field, containing 17 distinct labels (CB, CTXsp, 
HB, HIP, HY, isocortex, LSX, MB, OLF, PAL, retrohippocampal region, 
dorsal striatum, ventral striatum, TH, sAMY, ventricle, white_matter) 
as the region label (Extended Data Fig. 5a) for the Nicheformer label 
prediction tasks. The tissue niches represent the cellular organiza-
tion in the brain, grouping together neurons by major brain structure 
(pallium, subpallium, hypothalamus/extended amygdala, thalamus/
epiphysis and midbrain/hindbrain), as well as major neurotransmit-
ter type (glutamate and GABA)8. Non-neuronal cells are grouped into 
neuroglial, immune and vascular niches. The train–test split defined 
for this dataset is composed of a random image or tissue section 
hold-out across all sections in the measured entire male mouse brain 
(Extended Data Fig. 5a–c).

CosMx human liver
We collected the CosMx human liver dataset from the publicly available 
CosMx data resource38. The dataset comprises cells from both a normal 
healthy liver measuring 332,877 cells across 301 fields of view covering 
one tissue section in a male 35-year-old patient, as well as cells from a 
hepatocellular carcinoma measuring 460,441 cells across 383 fields 
of view in one tissue section from a 65-year-old female patient. Both 
samples were measured with the 1000-plex CosMx Human Universal 
Cell Characterization Panel. The dataset includes both cell-type and 
niche labels. For the niche label prediction task, we used the healthy 
liver section, which provides six distinct labels defining structural 
zones in the liver: portal vein (zone 1a), zone 1b, zone 2a, zone 2b, 
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zone 3a and central vein (zone 3b; Extended Data Fig. 8b,d). We did 
not use the cancer liver sample for the niche label prediction task 
as it was primarily composed of cells annotated as a general tumor 
niche without further substructures provided. For the niche com-
position prediction task, we used both the cancer and healthy liver 
sections with the cell-type labels, which define 22 distinct cell types 
(antibody-secreting B cells, CD3+ alpha beta T cells, central venous 
liver sinusoidal endothelial cells, cholangiocytes, erythroid cells, Hep, 
Hep 1, Hep 3, Hep 4, Hep 5, Hep 6, inflammatory macrophages, mature 
B cells, natural killer (NK)-like cells, non-inflammatory macrophages, 
periportal liver sinusoidal endothelial cells, portal endothelial cells, 
stellate cells, gamma delta T cells 1, tumor 1, tumor 2 and an undefined 
type (NotDet; Extended Data Fig. 8e). The train–test split defined for 
this dataset is composed of a random field of view hold-out across both 
tissue sections (Extended Data Fig. 8a,d).

CosMx human lung
We collected the CosMx human lung dataset from the publicly avail-
able CosMx data resource38. This dataset contains samples from five 
different donors (301,611, 89,975, 227,110, 71,304 and 81,236 cells, 
respectively) across eight fields of view measured with the 1000-plex 
CosMx Human Universal Cell Characterization Panel. All donors have 
just one field of view, except for the first donor, which has three fields 
of view, and the third donor, which has two fields of view. The train–test 
split defined for this dataset is composed of a random field of view 
hold-out (Extended Data Fig. 9a,b). CosMx provides both cell-type 
and niche labels. We use the 22 distinct cell-type labels defined in this 
dataset for the niche composition prediction task. These labels are 
B cell, NK, T CD4 memory, T CD4 naive, T CD8 memory, T CD8 naive, 
regulatory T, endothelial, epithelial, fibroblast, myeloid dendritic cell, 
macrophage, mast, monocyte, neutrophil, plasmacytoid dendritic 
cell, plasmablast, tumor 12, tumor 13, tumor 5, tumor 6 and tumor 9 
(Extended Data Fig. 9c).

Xenium human lung
We collected the Xenium human lung dataset from the 10x Genom-
ics data resource (https://www.10xgenomics.com/datasets/). This 
dataset measures two different lung sections, an adult human healthy 
lung (295,883 cells) and an adult human lung with invasive adenocar-
cinoma (531,165 cells). Both sections are measured with the 289-plex 
Xenium Human Lung Gene Expression Panel and an additional 100 lung 
cell-type-specific genes. As this dataset is not annotated, we only use it 
for the neighborhood density prediction task. We computed a spatial 
graph of cells with a radius of 25 µm² to calculate the cellular niche 
densities. The train–test split defined for this dataset is a random cell 
hold-out across all cells from both sections.

Xenium human colon
We collected the Xenium human colon dataset from the 10x 
Genomics data resource (https://www.10xgenomics.com/data-
sets/). This dataset measures two different colon formalin-fixed 
paraffin-embedded-preserved tissue sections: a non-diseased colon 
(275,822 cells) and a cancer stage 2A adenocarcinoma (587,115 cells). 
Both sections are measured with the 325-plex Xenium Human Colon 
Gene Expression Panel and an additional 100 genes specifically selected 
to cover signaling and chemokine genes, and markers for stromal cells. 
As again this dataset is not annotated, we only use it for the neighbor-
hood density prediction task. We computed a spatial graph of cells 
with a radius of 17 µm² in both sections to calculate the cellular niche 
densities. The train–test split defined for this dataset is a random cell 
hold-out across all cells from both sections.

Dissociated dataset used for label transfer. scRNA-seq of the primary 
motor cortex. Yao et al. generated a large-scale transcriptomic and 
epigenetic atlas of the mouse primary motor cortex9. We subsetted 

this large-scale dataset to cells measured with 10x v3 scRNA-seq. The 
subset captures 21,884 genes in 7,416 cells and annotates 19 different 
cell types (Astro, Endo, L5 ET, L5 IT, L6 CT, L6 IT, L6 IT Car3, L6b, L2/3 
IT, L5/6 NP, Lamp5, microglia, OPC, oligo, Pvalb, Sncg, Sst, CLMC and 
Vip; Fig. 3c). We manually transferred cell types present in this dataset 
to the cell types measured in the MERFISH mouse brain dataset. We 
mapped Astro to Astro-Epen; Endo and VLMC to vascular; microglia 
to immune; oligo and OPC to oligo; L6 IT, L6 IT Car3, L5 IT, L2/3 IT, L5 
ET to IT-ET Glut; L5/6 NP, L6b and L6 CT to NP-CT-L6b Glut; and Lamp5, 
Sncg, Vip Pvalb and Sst to CGE/MGE GABA, respectively.

Nicheformer tokenization, architecture and pretraining
Nicheformer tokenization. The Nicheformer training corpus encom-
passes over 110 million cells in total, measured in more than 350 datasets 
using eight different sequencing technologies and two species: human 
and mouse. The total number of genes considered is 20,310, comprising 
16,981 orthologous, 3,178 human-specific and 151 mouse-specific genes. 
For Nicheformer, we use a tokenization strategy similar to the one in 
Geneformer22 with the difference that the cell transcripts are normalized 
according to the technology-specific nonzero mean to account for 
differences in the sequencing protocol. First, all cells are normalized so 
that each of them has 10,000 counts. To account for technological 
variations, we then compute a technology-specific gene expression 
nonzero mean vector, that is, the mean expression value of each gene, 
without considering the zero counts. We computed a single dissociated 
mean expression vector for the dissociated datasets because the dif-
ferences between sequencing protocols in the dissociated cells are not 
as large as in the spatial assays. We then normalize the expression of 
each cell using the corresponding technology-specific mean expression 
vector to obtain the expression of each gene in each cell relative to the 
whole training corpus. Finally, the genes are ranked in descending order, 
from most to least expressed, excluding all non-expressed genes, creat-
ing an ordered set T  of genes as given by equation (1):

T = {idx(gex0), idx(gex1),… , idx(gexn) ∶ gexnormi
≥ gexnormi+1

;gexnormi
≠ 0}
(1)

where idx(gexi) is a function that returns the index of gene i in a previ-
ously defined vocabulary of genes and gexi is the gene expression of 
gene i of a cell. To incorporate the influence of biological context on 
gene expression, we prepend contextual tokens for <ASSAY>, <MODAL-
ITY> and <ORGANISM> to the set T  to incorporate metadata informa-
tion to the input data. These tokens encode metadata information, 
such as assay type (for example, MERFISH, CosMx and 10x 5′ v2), modal-
ity (dissociated or spatial) and organism (mouse or human). Recogniz-
ing the important impact biological context can have on gene 
expression, we augment the input sequences for our transformer 
model with modality, organism and assay tokens. This approach allows 
the model to explicitly learn representations that account for 
context-driven variations, leading to more robust and generalizable 
downstream analyses. Therefore, for a cell i, with a specific assay, 
organism and modality, the ordered set of tokens Ti  is shown in 
equation (2):

Ti = {assayi,organismi,modalityi, idx(gexi0), idx(gexi1),… , idx(gexin)} (2)

As a last step, the length of the set Ti is truncated to N  = 1,500. As 
not all cells have the same number of expressed genes, there might be 
sets whose total length is lower than 1,500. In those cases, <PAD> tokens 
are appended such that the final length is N  = 1,500. <PAD> tokens 
ensure that all inputs have the same length by filling empty spaces with 
no semantic meaning. This is an important element when handling 
cells belonging to both RNA-seq and spatial assays because gene panels 
are usually smaller in the latter, which leads to a larger amount of <PAD> 
tokens in the set.
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Nicheformer architecture. Given an initial input set xi ∈ RN×D  com-
posed of N  tokens of dimensionality D, Nicheformer encodes the posi-
tion within the set by adding positional embeddings. Instead of 
modeling as sinusoidal embeddings, we use learnable embeddings for 
each position80.

Nicheformer is composed of 12 stacked transformer blocks such 
that the output of one block is in the input of the following block. Given 
an input sequence xi ∈ RN×D, according to equations (3) and (4):

xi0 = x
i (3)

xil+1 = transformer_blockl(xil) ∀l ∈ [0,n − 1] (4)

Each transformer block consists of two main modules: a multihead 
self-attention mechanism and a feed-forward neural network. The 
multihead self-attention mechanism enables the model to weigh the 
relevance of different input elements in the input set when generating 
output representations. In our case, we use 16 attention heads, token 
dimensionality D = 512 and dimensionality of the hidden layer of the 
feed-forward network of 1,024. The <PAD> tokens are masked for the 
attention mechanism so that no token can pay attention to them.

Nicheformer pretraining and performance optimization. Nicheformer 
optimizes masked language modeling loss80 during pretraining. We 
mask 15% of the tokens, including contextual and gene tokens but exclud-
ing <PAD> tokens, during pretraining. The model is then trained to pre-
dict the original tokens that have been masked, utilizing the unmasked 
tokens as context. Specifically, following the BERT schema80, if the i-th 
token is chosen to be masked, 80% of the time it is replaced by a <MASK> 
token, 10% of the time by another random gene or contextual token and 
10% of the time it remains unchanged. Mathematically, the masked lan-
guage modeling loss is described as given by equation (5):

LMLM = Ex∼XEM ∑
i∈M

[−logp(xi|x[1,n]\M)] (5)

where M  is the set of masked tokens, X  is the entire dataset, x  is a cell 
of the dataset and xi is gene i of the cell x.

Nicheformer was pretrained for approximately 10 days using three 
compute nodes, each with four Nvidia A100 40GB GPUs (total 12 GPUs). 
We train the model using bfloat16 mixed precision. We use the AdamW 
optimizer81 with β1 = 0.9 and β2 = 0.999, weight decay of 0.1 and drop-
out of 0.0. The batch size is nine and the gradients are accumulated 
during ten batches before running the backward pass. The minimum 
learning rate is 1 × 10−5, which increases until 1 × 10−3 with a linear war-
mup of 100,000 steps. After the warmup, a cosine decay regime82 is 
applied. Gradient clipping is set to 1.0 during the first epoch and then 
decreased to 0.5. All weights are initialized using Xavier initialization83 
with default parameters, while the bias terms are initialized to 0. Check-
points were taken every 10,000 steps.

Downstream tasks
Spatial cell-type, niche and region label prediction. For the spatial 
cell-type, niche and region label classification task, we use the respec-
tive labels defined in the individual datasets (see ‘Datasets used for 
downstream tasks and evaluations’). We extracted the unique labels 
for each class, transferred them to 64-bit signed integer values and 
one-hot encoded them as a matrix with n different classes, with n 
being the number of cell types, niches or regions. We then used for 
linear probing a linear layer optimized with a cross-entropy loss. We 
trained on the training set of the respective dataset for one epoch at a 
learning rate of 1 × 10−3 and with a batch size of 256. The performance 
metrics reported are calculated on a held-out test set. We selected the 
model-assigned class label by calculating the argmax over the output 

vector of the linear layer. Classification uncertainties reported in this 
work are the output of the linear layer rescaled to [0,1] such that the 
sum equals 1 using a Softmax function. We use no techniques to address 
class imbalances for two reasons. First, to evaluate the robustness of 
the representations learnt by Nicheformer. Secondly, it has been shown 
that using class imbalance techniques can even affect performance in 
cases such as cell-type classification84.

Neighborhood composition. For the neighborhood composition 
regression tasks, we first define a spatial graph of cells by building an 
adjacency matrix based on the Euclidean distance in the 
two-dimensional coordinate space provided by the individual datasets. 
The adjacency matrix of spatial cells is a block-diagonal matrix A ∈ Rnxn, 
with n equal to the number of cells present in the dataset calculated 
based on the spatial proximity of cells where connectivities can only 
occur within a field of view. We use a binary adjacency matrix with aij = 1 
if d(xi, x j) ≤ δr  where d(⋅, ⋅) describes the Euclidean distance between 
nodes i, j ∈ n and δr  is the maximal distance between cells, and aij = 0 
otherwise. We do not include self-connectivities for the adjacency 
matrix to not confound the signal. We additionally define the matrix 
of observed cell types Xl ∈ {0, 1}nxl as a one-hot encoding of the l  distinct 
cell types present in the dataset. The neighborhood composition for 
a given radius is then given as equation (6):

Nr = softmax(A × Xl) ∈ [0, 1]nxl. (6)

The resulting matrix reflects for each cell captured in the dataset 
a vector giving the proportions of cell types present in the neighbor-
hood of the cell. For the neighborhood prediction task, we used for 
linear probing a linear layer followed by a Softmax function to rescale 
the prediction to lie in the range [0,1] and sum to 1. We used the mean 
square error loss for optimizing this linear layer, trained on the training 
set of the respective dataset for one epoch at a learning rate of 1 × 10−3 
and with a batch size of 256. The performance metrics reported are 
calculated on a held-out test set.

Neighborhood cell density prediction. For the cellular niche density, 
we again use the adjacency matrix of spatial cells A ∈ Rnxn calculated 
based on the Euclidean distance in the two-dimensional coordinate 
space. The cellular neighborhood density is then simply given by the 
row-wise sum of all connectivities in the adjacency matrix (equation (7)),

Dr = ∑
j
(Aij) ∈ Nnx1 (7)

for all cells present in the dataset with r  as a given radius, i is the index 
cell for which we want to calculate the density, and j is the total number 
of potential neighboring cells present in the dataset. For the density 
prediction task, we used for linear probing a linear layer with input 
being the respective embedding of a cell (Nicheformer, scVI or PCA) 
and output a scalar. We used the mean square error loss for optimizing 
this linear layer, trained on the training set of the respective dataset 
for one epoch at a learning rate of 1 × 10−3 and with a batch size of 256. 
The performance metrics reported are calculated on a held-out test set.

Nicheformer evaluation, linear probing and fine-tuning
Nicheformer can be fine-tuned or used for linear probing. In both 
settings, we only train on the previously defined training set of the 
respective datasets used for downstream tasks (see ‘Datasets used 
for downstream tasks and evaluation’). We use in both scenarios all 
Nicheformer gene tokens extracted from the last layer and average 
them to get a cell representation. Importantly, the contextual tokens 
are not used in the aggregation. While we observed no difference 
between using them and not using them in the downstream tasks 
focused on one modality, for example density prediction and niche 
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classification, we observed that transferring labels between spatial 
and dissociated datasets did not work at all when using the contextual 
tokens in the aggregation. Further investigation revealed that the 
output norm of the contextual token of modality was always the high-
est one, independently of the tissue (Extended Data Fig. 9d,e), hence 
playing a big role in the cell representation and biasing it toward the 
respective modality. This phenomenon has been reported in vision 
transformers85, where some features that contain background infor-
mation show higher norms as a consequence of the model using them 
to allocate internal computations. Literature85 proposes the use of 
registers that are discarded in the computation of the final representa-
tion. While excluding contextual tokens mitigates modality bias, it may 
also discard useful information; future work could explore selective 
integration strategies to retain relevant context.

In linear probing, the previously computed parameter weights 
of the Nicheformer pretraining model are frozen, that is, not updated 
further, and are subsequently used as input to a downstream task. 
The cell’s representation is then fed into a linear layer specific to each 
downstream task, which represents either a classification task in the case 
of the niche and region label prediction or a regression for predicting 
the neighborhood composition and cellular density. For the neighbor-
hood composition task, we additionally fitted an MLP that uses the 
Nicheformer embedding as input and predicts the varying neighbor-
hood composition vectors in a dataset. The MLP is optimized using the 
average mean squared error across all neighborhood sizes considered. 
Fine-tuning generally describes using a pretrained model, and training 
it to a specific downstream task of choice. We speak of a fine-tuned 
Nicheformer version when we allow the model to change the previously 
learned parameter space and the weights are updated for a specific task. 
Importantly, each downstream task can also be optimized with respect 
to a new set of metrics. All runs are trained for a single epoch with a 
maximum learning rate of 1 × 10−4 and a cosine decay scheduler reaching 
1 × 10−5 at the end. The batch size is nine with gradients accumulated for 
ten batches (Supplementary Table 5). We highlight the respective tasks 
and metrics used to compute them in ‘Downstream tasks’.

Nicheformer cell embedding stability analysis
We evaluated the robustness of Nicheformer’s gene-rank-based cell 
embeddings to perturbations that mimic real-world scenarios such 
as incomplete gene panels or measurement noise, common in spa-
tial transcriptomics. As the model operates on sequences of gene 
tokens ordered by expression rank, we assessed how alterations to this 
sequence affect embedding stability.

We selected one dissociated brain dataset and one spatial brain 
dataset from SpatialCorpus-110M, tokenized the cells, and applied 
controlled perturbations before passing them through the pretrained 
Nicheformer model. Perturbations included (i) randomly shuffling 10%, 
20%, 50% or 100% of the gene rankings in each cell’s token sequence 
(Extended Data Fig. 1a) and (ii) randomly dropping 10%, 20%, 50% or 
80% of the genes from the sequence (Extended Data Fig. 1b). We then 
embedded the perturbed cells and evaluated the similarity between per-
turbed and original embeddings using integration metrics from scIB18.

To quantify embedding stability, we used the silhouette score, 
leveraging cell-type annotations to define ground-truth clusters. 
We observed that Nicheformer embeddings remained stable up to a 
20% perturbation in both rank shuffling and gene dropout scenarios, 
indicating robustness to input noise and incomplete gene measure-
ments (Extended Data Fig. 1). These results support the suitability of 
rank-based encoding for learning generalizable cell representations 
under varying input conditions.

Nicheformer modalities and organisms split performance 
analysis
To analyze the need to train a model on a diverse train dataset, we con-
ducted controlled experiments in which we pretrained Nicheformer 

models and tested them in different downstream tasks and tissues. 
Specifically, we pretrained Nicheformer models of 49.3 million param-
eters using the same compute budget—3 days in an entire node con-
taining four A100 GPUs. Due to the large compute needed to retrain 
Nicheformer models using the entire SpatialCorpus-110M, we subset it 
for the experiments, so each model is pretraining in 1% of that dataset 
(~1.1 million cells).

In particular, we pretrained models in the following data splits:  
1.1 million randomly sampled spatial cells, 1.1 million randomly sampled 
dissociated cells and 3.3 million randomly sampled dissociated cells (to 
assess whether a large number of dissociated cells can account for the 
lack of spatial information). Additionally, we also pretrained a model 
in 1.1 million dissociated cells sampled in such a way that there is the 
same number of cells from blood, colon, intestine, lung, liver and brain, 
to assess the effect of the tissue variability of the dataset. To assess the 
importance of multispecies datasets, we also pretrained models on 1.1 
million spatial cells sampled only from humans and 1.1 million spatial 
cells sampled only from mice.

We evaluated the pretrained models on the following down-
stream tasks: niche prediction in the human liver and lung CosMX 
datasets, and cell-type classification and niche regression in the mouse 
brain MERFISH dataset. In all cases, the models were evaluated in the 
linear-probing scenario running three seeds. All results were statisti-
cally assessed using analysis of variance, with P values adjusted for mul-
tiple comparisons using the Benjamini–Hochberg procedure (FDR).

Nicheformer attention analysis
We conducted an attention analysis to explore the attention patterns 
in Nicheformer and how it differentiates between male and female cells 
by focusing on sex-specific gene variations. We sample 2,000 CD8 and 
2,000 CD4 cells from the lung; 2,000 healthy and 2,000 cancer cells 
from the liver; 2,000 male and 2,000 female cells from the MERFISH 
mouse brain datasets and 2,000 random cells from the primary motor 
cortex scRNA-seq dataset to ensure sufficient diversity. In all cases, 
except in the MERFISH mouse brain dataset, we study the attention 
paid to the top 50 most expressed genes on average. For the MERFISH 
mouse brain cells, we use two gene sets: a prior-knowledge set of SDGs, 
known for exhibiting sex differences, and a randomly sampled control 
set of 97 genes. We feed all cells into the model and extract attention 
matrices from all 16 attention heads across the 12 transformer blocks. 
Then, to assess general trends in attention distribution, we average the 
attention scores to obtain an attention score per layer. In addition to 
this, we extract the maximum attention value for each gene per layer, 
isolating the highest level of focus from any single attention head. 
Evaluating both average and maximum attention, allows us to discern 
whether certain genes consistently receive attention across multiple 
heads or are sharply focused on by individual heads. Specifically, we 
compare the attention scores according to equation (8):

Aij = softmax(
QiKTj
√d

) (8)

where Aij represents the attention that token i pays to token j. As we 
have 16 attention layers, we denote Ahij the attention that token i pays 
to token j  in the layer h.

In Nicheformer, with 12 layers, the attention matrices for each layer 
and head are represented as A(l,h)ij , where l ∈ {1, 2,… , 12} represents the 
layer, and h ∈ {1, 2,… , 16} denotes the head. To assess how much atten-
tion each token pays to a token m, we focus on extracting the attention 
scores A(l,h)im , which capture the attention that each token i allocates to 
the m in layer l  and head h.

For each observation, we compute both the maximum and average 
attention that any token i pays to the token m across all heads in each 
layer. This is done by first calculating the maximum and average atten-
tion for each layer as given by equations (9) and (10):
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maxAttentionl = maxi,lA(l,h)i,m (9)

averageAttentionl =
1
I
1
H

H
∑
h=1

I
∑
i=1
A(l,h)i,m (10)

where i refers to all other tokens in the sequence and H  is the number 
of heads (16). These values give us the highest attention score and the 
average attention score that the token m receives from other tokens 
for each layer, respectively, considering all heads. By averaging these 
maximum and average attention values across multiple observations, 
we can assess how attention is distributed across layers, identifying 
the layers where the token m receives the most focus and how consist-
ently it receives attention across tokens and heads.

Ortholog genes analysis
We conducted an attention analysis to study deeper the role of ortholog 
genes in Nicheformer and assess whether there were major differences 
between using or not using them and how they are related. To do so, 
we trained small Nicheformer models in a reduced gene space with 
and without using orthologs. Specifically, we used a gene vocabulary 
of 9,026 genes, which when mapping orthologs is reduced to 7,407 
(Extended Data Fig. 9f). We compared the performance of both models 
with three different downstream tasks: niche prediction in the CosMX 
human lung and liver dataset and niche regression in the MERFISH 
mouse brain dataset. We found that there were differences in the per-
formance in the latter only (Extended Data Fig. 9g).

Likewise, we studied, for the model without the ortholog map-
ping, whether genes with known cross-organism equivalents are more 
similar to their ortholog equivalent than to any other random gene. To 
analyze that, we extracted the gene embeddings after the pretraining 
and analyzed their cosine similarity. The results indicated that genes 
are less similar to their ortholog than to random genes, which can be 
explained by the fact that they are never seen together in any cell and 
that they might have different functions (Extended Data Fig. 9h).

Benchmarking against competing methods
Comparisons against Geneformer, scGPT, UCE and CellPLM. To get 
the Geneformer embeddings, we used the release v.0.0.1 of the official 
Geneformer repository on Hugging Face and extracted the embeddings 
using the pretrained weights of the larger 12-layer variant provided 
at the time. We used the second to last layers to get a more general 
representation as recommended by the repository. We also used mean 
pooling as the only available option provided to aggregate the output 
gene embeddings into a single-cell embedding.

For the comparison against scGPT, we first created scGPT embed-
dings using scGPT 0.2.1, pretrained on the whole human as recom-
mended in the original publication. The embeddings were generated 
for three datasets, the MERFISH mouse brain, the CosMx human lung 
and the CosMx human liver. For the MERFISH mouse dataset, we first 
mapped the mouse genes to human genes using BioMart43 through 
the official Ensembl releases44. The fraction of overlapping genes 
compared to the gene context used in scGPT was for the MERFISH 
mouse brain dataset of 471/483 genes, for the CosMx human liver 
dataset of 997/999 genes and for the CosMx human lung dataset of 
958/960 genes.

To get UCE embeddings, we used the latest version from the origi-
nal repository and followed the tutorials to obtain the cell embeddings. 
The fraction of overlapping genes compared to the gene context used 
in scGPT was for the MERFISH mouse brain dataset of 472/483 genes, 
for the CosMx human liver dataset of 990/999 genes and for the CosMx 
human lung dataset of 954/960 genes.

For the comparison against CellPLM, we used the latest official ver-
sion of the repository. For the MERFISH mouse dataset, we first mapped 
the mouse genes to human genes using BioMart43 through the official 

Ensembl releases44. The fraction of overlapping genes compared to the 
gene context used in scGPT was for the MERFISH mouse brain dataset of 
473/483 genes, for the CosMx human liver dataset of 997/999 genes and 
for the CosMx human lung dataset of 958/960 genes. The cell embed-
dings were obtained by following the notebook tutorials.

The resulting Geneformer, scGPT, UCE and CellPLM embeddings 
then served as input to a linear layer specific to each downstream task 
(Supplementary Table 5).

Baseline comparisons to scVI and PCA embeddings. We com-
pared the performance of the fine-tuned Nicheformer model and 
the linear-probing scenario to embeddings generated with scVI17 and 
PCA. We generated scVI and PCA embeddings on just the downstream 
datasets themselves and additionally on an informed 1% subset of all 
datasets present in the SpatialCorpus-110M. We used this subset to train 
two different scVI models as specified in Supplementary Table 5 to gen-
erate latent representations with 512 and 10 dimensions, respectively. 
The two models were then used to obtain latent representations for 
the datasets that were used for downstream task evaluations. The PCA 
embeddings were generated in a similar way using the implementation 
available in sklearn v.1.4.1 to obtain PCA embeddings of dimensions 
512 and 10, respectively.

We split the fine-tuning datasets (MERFISH mouse brain, CosMx 
human liver, CosMx human lung, Xenium human lung, Xenium human 
colon) into a training and test set, using the same random splits as 
applied for the Nicheformer fine-tuning. scVI and PCA were computed 
on each fine-tuning dataset individually. We used scvi-tools v.1.1.2 with a 
negative binomial distribution gene likelihood on the raw gene expres-
sion counts and trained scVI on the training set with a batch size of 256 
for 10 epochs and used two hidden layers for the encoder and decoder 
neural networks. The resulting embedding was chosen to have a latent 
dimension of 256. After training, we returned the latent representation 
for each cell in both the training set and the test set.

For generating PCA embeddings for each dataset, we used the 
implementation available in sklearn v.1.4.1. We first normalized the 
respective raw gene expression counts for each dataset so that each cell 
has a total number of counts equal to the median of the total counts for 
all cells with scanpy v.1.10.1. Next, we used scanpy to log1p-transform 
the data matrix to ensure the data are centered before using it as input 
to the PCA implementation. We used the sklearn implementation 
and evaluate the cumulative explained variance ratio in the train-
ing dataset (Extended Data Fig. 10). Finally, we evaluated the model 
for a diverse set of principal components to have a fair comparison 
(Extended Data Fig. 7). All other parameters are the defaults provided 
by the sklearn implementation. We fit the PCA on the training set and 
afterwards applied the dimensionality reduction to both the training 
set and test set. The resulting lower-dimensional representations, 
X_scvi and X_pca, then serve as input to a linear layer specific to each 
downstream task (Supplementary Table 5).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The Allen brain atlas consortium generated the Allen Institute brain 
atlas mouse p20, Allen Institute brain atlas mouse p28 and Allen Insti-
tute brain atlas mouse female datasets (Supplementary Table 4), which 
were kindly provided to us before publication. As these spatial data-
sets are currently unpublished, they are not yet publicly available. 
We will make them accessible to readers upon their official release by 
the Allen Institute. All other datasets used in this study are publicly 
available. The single-cell RNA-seq data can be accessed through the 
Gene Expression Omnibus (GEO) under the following accession num-
bers: GSE117824 (ref. 86), GSE118068 (ref. 87), GSE119940 (ref. 88),  

http://www.nature.com/naturemethods
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE117824
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE118068
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE119940
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GSE124952 (ref. 89), GSE126060 (ref. 90), GSE128423 (ref. 91), 
GSE128761 (ref. 92), GSE128987 (ref. 93), GSE129826 (ref. 94), GSE130593  
(ref. 95), GSE130822 (ref. 96), GSE130879 (ref. 97), GSE130888 (ref. 98),  
GSE131339 (ref. 99), GSE131996 (ref. 100), GSE132355 (ref. 101), 
GSE133531 (ref. 102), GSE134571 (ref. 103), GSE135310 (ref. 104), 
GSE135326 (ref. 105), GSE135356 (ref. 106), GSE135414 (ref. 107), 
GSE136394 (ref. 108), GSE136441 (ref. 109), GSE137026 (ref. 110), 
GSE139168 (ref. 111), GSE140510 (ref. 112), GSE140628 (ref. 113), 
GSE141471 (ref. 114), GSE141526 (ref. 115), GSE141552 (ref. 116), GSE141784 
(ref. 117), GSE142143 (ref. 118), GSE142797 (ref. 119), GSE143293 (ref. 120),  
GSE145216 (ref. 121), GSE145251 (ref. 122), GSE145326 (ref. 123), 
GSE145689 (ref. 124), GSE145866 (ref. 125), GSE146122 (ref. 126), 
GSE146138 (ref. 127), GSE146194 (ref. 128), GSE146298 (ref. 129), 
GSE146512 (ref. 130), GSE148339 (ref. 131), GSE148978 (ref. 132), 
GSE149040 (ref. 133), GSE149201 (ref. 134), GSE149356 (ref. 135), 
GSE149931 (ref. 136), GSE150708 (ref. 137), GSE150871 (ref. 138), 
GSE150995 (ref. 139), GSE151186 (ref. 140), GSE152325 (ref. 141), 
GSE152573 (ref. 142), GSE152988 (ref. 143), GSE152999 (ref. 144), 
GSE153099 (ref. 145), GSE153117 (ref. 146), GSE153274 (ref. 147), 
GSE153288 (ref. 148), GSE153762 (ref. 149), GSE153770 (ref. 150), 
GSE153802, GSE154196 (ref. 151), GSE154359 (ref. 152), GSE154386 
(ref. 153), GSE154567 (ref. 154), GSE154579 (ref. 155), GSE154932 
(ref. 156), GSE155226 (ref. 157), GSE155340 (ref. 158), GSE155788 
(ref. 159), GSE155850 (ref. 160), GSE156136 (ref. 161), GSE156183 
(ref. 162), GSE156245 (ref. 163), GSE156285 (ref. 164), GSE156920 
(ref. 165), GSE157244 (ref. 166), GSE157292 (ref. 167), GSE157362 
(ref. 168), GSE157525 (ref. 169), GSE157771 (ref. 170), GSE157773, 
GSE157977 (ref. 171), GSE158038 (ref. 172), GSE158192 (ref. 173),  
GSE158356_mouse (ref. 174), GSE158450 (ref. 175), GSE159354 (ref. 176),  
GSE159519 (ref. 177), GSE159977 (ref. 178), GSE160061 (ref. 179), 
GSE160097 (ref. 180), GSE160098 (ref. 181), GSE160664 (ref. 182), 
GSE160729 (ref. 183), GSE160772 (ref. 184), GSE161066 (ref. 185), 
GSE161227 (ref. 186), GSE161230, GSE161363 (ref. 187), GSE161685 
(ref. 188), GSE161937 (ref. 189), GSE162073 (ref. 190), GSE162807 
(ref. 191), GSE163018 (ref. 10), GSE163278 (ref. 192), GSE163650 
(ref. 193), GSE163668 (ref. 194), GSE163701 (ref. 195), GSE163830, 
GSE163919, GSE164044 (ref. 196), GSE164573 (ref. 197), GSE165551 
(ref. 198), GSE165554 (ref. 198), GSE166218 (ref. 199), GSE166262  
(ref. 200), GSE166525 (ref. 201), GSE166797 (ref. 202), GSE166992 
(ref. 203), GSE167595 (ref. 204), GSE167992 (ref. 205), GSE168732  
(ref. 206), GSE168758 (ref. 207), GSE169718 (ref. 208), GSE172127 (ref. 10),  
GSE200218 (ref. 209), GSE225278 (ref. 210), GSE114687 (ref. 211),  
GSE117176 (ref. 212), GSE117770 (ref. 213), GSE120508 (ref. 214),  
GSE122342 (ref. 215), GSE122960 (ref. 216), GSE123722 (ref. 217), 
GSE124691 (ref. 218), GSE128855 (ref. 219), GSE129519 (ref. 220), 
GSE130238 (ref. 221), GSE131685 (ref. 222), GSE132672 (ref. 223), 
GSE135893 (ref. 224), GSE136001 (ref. 225) and GSE136103 (ref. 226).  
All datasets are available for download at https://huggingface.co/
datasets/theislab/SpatialCorpus-110M. More information about 
the dissociated data collection and spatial data collection of the 
SpatialCorpus-110M can be found in Supplementary Tables 3 and 4, 
respectively. Source data are provided with this paper. Source data 
are provided with this paper.

Code availability
All models described here are implemented in a Python package  
available at https://github.com/theislab/nicheformer/. It contains  
tutorial notebooks on how to use the model for downstream 
tasks, including learning probing and fine-tuning scenarios. It also 
includes a tutorial on continuing the pretraining in new datasets. 
Downloading and preprocessing scripts for all public datasets used 
in pretraining and fine-tuning the models are available at the ‘data’ 
directory of https://github.com/theislab/nicheformer. Additionally, 
all public datasets can be downloaded directly from HuggingFace 
at https://huggingface.co/datasets/theislab/SpatialCorpus-110M.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Nicheformer’s cell representations are robust to input 
noise and MLM loss as a function of the total number of tokens seen by the 
model. A) We compute Nicheformer cell representations for a dissociated and 
spatial brain dataset and use author cell type annotations as ground truth. We 
randomly permute 10%, 20%, 50% and 100% of the genes in the input sequence 
and obtain cell representations. Then, we compute the silhouette score to 
evaluate how perturbed are the cell representations. B) We repeat the same 
experiment but instead of permuting genes, we drop them off the input sequence 
(which contains only non-zero genes). In particular, we drop 10%, 20%, 50% and 
80% of the genes in the input sequence. In this case, the deterioration of the cell 

embeddings happens faster than when permuting genes. Cell representations 
of spatial cells deteriorate faster than dissociated cells (<0.2 silhouette score 
against >0.6 silhouette score for 50% dropout level). We hypothesise that this 
happens due to the shorter gene panels, that is in large gene panels, Nicheformer 
can leverage more information from the longer context length to correct 
disturbances in the data. C) Shown are the loss curves of three different models 
with varying parameter size, 15.1 million parameters, 40.9 million parameters 
and 49.3 million parameters, respectively. The larger the model, the lower is the 
pretraining loss. All the losses are a moving average with a window of 10. All the 
models were evaluated in the same training set with fixed random seed.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Downstream performance across different tissues 
of Nicheformer models trained on different subsets of the data splitting 
by modality. A) Shown are the F1 scores for niche classification in the CosMx 
human liver (top left) and lung (top right) datasets, cell type classification 
in MERFISH mouse brain (bottom right) and the MSE for niche regression in 
MERFISH mouse brain (bottom left) obtained by different models trained on 
different data subsets. The results demonstrate a clear advantage of training 
on spatial data compared to dissociated data. A model trained on just 1% of 
spatial data significantly outperforms models trained on the same or even three 
times the amount of dissociated data, reinforcing the fundamental difference 
between these modalities. This suggests that no amount of dissociated data 
can fully compensate for the spatial context when evaluated on spatial tasks. 
Additionally, computational efficiency plays a crucial role: the model trained on 
a smaller dissociated subset (1%) performs better than one trained on a larger 
subset (3%) because both were trained for the same duration, leading to more 
updates per sample in the smaller dataset. Furthermore, stratified training offers 
advantages only in specific cases, such as the liver, which can be explained by the 
distribution of tissue types in the random subset - since they are overly present in 
SpatialCorpus-110M. For example, brain cells are more abundant in the random 

subset than in the stratified one, potentially influencing performance. The 
results are found statistically significant even after adjusting for FDR.  
B) Shown are the F1 score curves of two different models trained on different 
modalities: spatial and dissociated respectively. Both models have the same 
number of parameters and have been training for the same amount of time. 
The task is performed by linear probing. The model trained on MERFISH data 
notably outperforms the model trained on RNA-seq, highlighting a significant 
distribution shift between technologies. C) Shown are the F1 scores for niche 
classification in the CosMx human liver (top left) and lung (top right) datasets, 
cell type classification in MERFISH mouse brain (bottom right) and the MSE for 
niche regression in MERFISH mouse brain (bottom right) obtained by different 
models trained on different data subsets. As in the previous data split test, a 
broad coverage train distribution is necessary to achieve good performance 
across a variety of scenarios. In this case, models trained uniquely in mouse data 
underperform in downstream tasks based on human data (top row); and models 
trained on only human data underperform in downstream tasks based on mouse 
data (bottom row). A model trained on a combination of mouse and human data 
performs on pair in both cases. Results were found statistically significant even 
after FDR correction.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Analysis of Nicheformer attention to contextual and 
gene tokens. A) Shown are different attention matrices extracted from the last 
transformer block of Nicheformer. They present a similar pattern in which almost 
all attention is paid to the metadata tokens. B) Average attention paid, per layer, 
to the metadata tokens. It can be observed a clear trend: the last layers of the 
model pay, by a large margin, the most attention to the metadata tokens. The 
analysis is done in both male and female brain mouse datasets to showcase that 
the pattern is consistent. C) Shown are box plots representing the distribution of 
attention paid to contextual tokens (orange) and gene tokens (blue) in the latest 
Nicheformer’s layers. The p-values are the result of performing Mann-Whitney  

U tests to assess whether there is a significant difference between the distribution 
of attention paid to contextual and gene tokens. To control the false discovery 
rate (FDR), we applied the Benjamini-Hochberg procedure to adjust the p-values. 
D) Shown are box plots representing the distribution of attention paid to gene 
tokens in 3 groups of layers: early (from layer 1 to layer 5), middle (layer 6 to layer 9)  
and late (from layer 10 to layer 12). The p-values are the result of performing 
Mann-Whitney U tests to assess whether there is a significant difference between 
the distribution of attention paid to contextual and gene tokens. To control the 
false discovery rate (FDR), we applied the Benjamini-Hochberg procedure to 
adjust the p-values.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Analysis of Nicheformer attention heads and layer-wise 
attention gender difference. Shown are the attention matrices obtained from 
the head 5 of the Nicheformer layer 4 when processing lung spatial cells (top left), 
brain spatial cells (top right), liver spatial cells (bottom left) and brain dissociated 
cells (bottom right). It can be seen that this attention head uniquely focuses on 
the most expressed genes, independently of the tissue or modality of the cell.  
B) Shown are the attention matrices obtained from the head 3 of the Nicheformer 
layer 6 when processing lung spatial cells (top left), brain spatial cells (top right), 
liver spatial cells (bottom left) and brain dissociated cells (bottom right). It can be 
seen that the attention pattern of this attention head changes when processing 
dissociated cells or spatial cells. C) Shown are different attention matrices 
obtained when feeding Nicheformer with cells from the AVPV section. Different 
heads showcase different patterns, which reveal diverse attention behaviours, 
including metadata token focus (Head 5, Layer 4), selective gene interactions 

(Head 6, Layer 4), diffuse attention across genes (Head 10, Layer 6), strong self-
attention (Head 1, Layer 6), combined self and global attention (Head 12, Layer 6),  
and concentrated attention on key genes (Head 3, Layer 7). D) The first layers of 
Nicheformer show the highest attention differences between cell and female 
cells, even though this is very small. E) The same pattern holds for the SDN genes. 
F) Nicheformer’s middle layers show the maximum attention score differences 
between the male and the female cells for the HY GABA cells within the AVPV 
section. G) The same pattern occurs when examining the maximum differences 
for all cells in the AVPV section. The contrast of the average attention difference 
plotted here and the maximum attention differences (Fig. 3d-f) suggests that 
the sex differences are captured by a subset of the attention heads. The average 
attention difference is computed averaging all attention heads, whereas the 
maximum attention difference attends to the maximum difference reported in 
any head.
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Extended Data Fig. 5 | Nicheformer fine-tuning datasets - MERFISH mouse 
brain. A-C) Region (A), niche (B), and cell type (C) label distribution across all 
tissue sections in the MERFISH mouse brain data with the test set highlighted.  
D) Spatial allocation of cells in the five test tissue sections of the MERFISH mouse 

brain E) UMAP visualization of the Nicheformer embedding of the MERFISH 
mouse brain dataset colored by region label. F) Exemplary brain slice of the 
MERFISH mouse brain dataset colored by region label.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Comparison between Nicheformer, UCE and CellPLM 
in the MERFISH mouse brain, CosMX human liver and CosMX human lung 
datasets. A) Downstream task metrics (MSE) for models trained in the MERFISH 
mouse brain dataset using linear probing on Nicheformer, UCE and CellPLM 
embeddings. The downstream tasks evaluated are niche regression for 4 
different radius sizes. In all cases, Nicheformer outperforms both CellPLM and 
UCE, being the differences statistically significant. B) F1 Score for region and 
niche prediction in the MERFISH mouse brain dataset. Likewise, Nicheformer 
outperforms CellPLM and UCE and the differences are statistically significant. 
The arrows indicate which direction is the optimal one. For F1 Score, the higher 

the better; for MSE, the lower the better. C) Downstream task metrics (MSE) 
for models trained in the CosMX human liver dataset using linear probing on 
Nicheformer, UCE and CellPLM embeddings. The downstream tasks evaluated 
are niche regression for 4 different radius sizes. In all cases, Nicheformer 
outperforms both CellPLM and UCE, being the differences statistically 
significant. D) Downstream task metrics (MSE) for models trained in the CosMX 
human liver dataset using linear probing on Nicheformer, UCE and CellPLM 
embeddings. The downstream tasks evaluated are niche regression for 4 
different radius sizes. In all cases, Nicheformer outperforms both CellPLM and 
UCE, being the differences statistically significant.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Additional comparisons between Nicheformer and PCA 
for the MERFISH mouse brain, CosMX human liver and CosMX human lung 
datasets. A) Downstream task metrics (MSE) for models trained in the MERFISH 
mouse brain using linear probing on Nicheformer and PCA embeddings with 
increasingly more principal components. The downstream tasks evaluated 
are niche regression for 4 different radius sizes. In all cases, Nicheformer 
outperforms PCA, even though the PCA substantially improves with the more 
principal components employed. Differences are found statistically significant 
between the best PCA performing model and Nicheformer. B) F1 Score for region 
and niche prediction. Interestingly, PCA ends up outperforming Nicheformer in 
the case of linear probing for the region classification and performing as good 
as Nicheformer for the niche classification. However, fine tuning Nicheformer is 
still better. C) Downstream task metrics (MSE) for models trained in the CosMX 

human liver dataset using linear probing on Nicheformer and PCA embeddings 
with increasingly more principal components. The downstream tasks evaluated 
are niche regression for 4 different radius sizes. In all cases, Nicheformer 
outperforms PCA, even though the PCA substantially improves with the more 
principal components employed. Differences are found statistically significant 
between the best PCA performing model and Nicheformer. D) Downstream 
task metrics (MSE) for models trained in the CosMX human lung dataset using 
linear probing on Nicheformer and PCA embeddings with increasingly more 
principal components. The downstream tasks evaluated are niche regression for 
4 different radius sizes. In all cases, Nicheformer outperforms PCA, even though 
the PCA substantially improves with the more principal components employed. 
Differences are found statistically significant between the best PCA performing 
model and Nicheformer.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Nicheformer fine-tuning datasets - CosMx human liver 
and spatial to dissociated label transfer. A-B) Spatial allocation of cells in the 
healthy CosMx liver section colored by training and test split used for training 
Nicheformer (A) and niche label (B). C) Niche label distribution in the training 
and test set for the healthy CosMx liver dataset. D) Spatial allocation of cells in 
the cancer CosMx liver section colored by training and test split used for training 
Nicheformer in the cancer CosMx liver section. E) Distribution of cell type labels 
in the healthy and cancer CosMx liver data in both training and test set. F) Test-set 
F1-macro of niche label prediction of the fine-tuned Nicheformer model, the 
linear probing model, the linear probing model evaluated on a Nicheformer 
model longer trained in the liver training-set, and a linear probing baseline 
computed based on embeddings generated with scVI and PCA, respectively. 
G) The fine-tuned, a multi-task MLP on top of the Nicheformer embedding 
and the linear probing Nicheformer models outperform zero-shot models 
trained on scVI and PCA embeddings in terms of mean absolute error across 
all neighborhood sizes and all three organs, the brain, liver, and lung. H) Left: 
Fine-tuned Nicheformer performance on the CosMx human liver data grouped 

by index cell type. Shown are the absolute error values between predicted 
and observed niche composition vectors for held-out test cells. For each box 
in (H), the centerline defines the median, the height of the box is given by the 
interquartile range (IQR), the whiskers are given by 1.5 × IQR and outliers are 
given as points beyond the minimum or maximum whisker. Right: Index cell 
type abundances in the entire CosMx human liver dataset. I-M) Nicheformer 
label transfer classification uncertainty from spatial to dissociated assays in 
the MERFISH mouse brain dataset. I-K) Cell type (I), niche (J), and region (K) 
predicted label uncertainty across all cell types in the scRNA-seq mouse brain 
data. Nicheformer assigns lower uncertainty to plausible labels given the nature 
of the dataset and high uncertainty to labels not present in the primary motor 
cortex. The highlighted boxes show cell types, niches and regions one would not 
expect to find in the primary motor cortex. Nicheformer correctly shows a high 
uncertainty in those. L-M) Spatial allocation of cells in an exemplary section of the 
MERFISH mouse brain dataset colored by the pallium glutamatergic niche label 
(L) and the subpallium GABAergic niche label (M), respectively.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Nicheformer fine-tuning datasets - CosMx human lung; 
output token norm analysis and orthologs comparison. A-B) Spatial allocation 
of cells in the training set (A) and test set (B) tissue sections colored by cell type. 
C) Distribution of cell type labels in the training and test set in the CosMx human 
lung dataset. D-C) Histogram of output token L2 norms for CosMx human 
lung and liver cells. D-C) The histograms display the distribution of the average 
L2 norm of output tokens for lung (D) and liver (E) cells. The modality token, 
marked by an arrow, exhibits a notably higher norm compared to other tokens. 
These norms reflect the representation magnitudes in the model’s output space. 
Including contextual tokens in cell representation aggregation led to poor 
label transfer performance. This is because aggregation is performed via mean 
pooling, where tokens with higher norms disproportionately influence the result. 
Additionally, contextual tokens appear in all cells, whereas the other tokens 
shown here are present only in specific subsets. As a result, while contextual 

tokens contribute to all cells, non-contextual tokens contribute only to the cells 
in which they appear. F-H) Orthologs versus non orthologs comparison.  
F) Venn diagram showing the number of genes of the non orthologs-trained 
model (9026) and the orthologs-trained model (7407). The 1619 genes of 
difference are genes that have a corresponding ortholog but we choose not to 
use the mapping. G) Niche regression in the MERFISH mouse brain dataset is 
the only downstream task - among the tested ones - in which there is a statistical 
significant difference (t-test) between both models. No statistical significance 
was found in the case of niche prediction for the CosMX human datasets. H) 
Boxplots showing the distribution of similarities between tokens measured as 
cosine similarity. We use the official Ensembl releases to map ortholog genes and 
assess if they are more similar between them than to random genes and we find 
that they are actually less similar.
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Extended Data Fig. 10 | Cumulative explained variance ratio for the MERFISH 
brain mouse, the CosMx liver human and the CosMx lung human. Shown are 
the cumulative explained variance ratios obtained after performing PCA. for the 
MERFISH brain mouse (top), CosMx human liver (middle) and CosMx human 

lung (bottom) datasets. Notice that this accounts for the explained variance 
in the train set, not in the test set (the PCA is computed in the train set and the 
test data transformer using the principal components obtained). The red line 
indicates the 90% of explained variance.
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