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Abstract

Motivation: Recent pandemics have revealed significant gaps in our understanding of viral pathogenesis, exposing an urgent need for methods
to identify and prioritize key host proteins (host factors) as potential targets for antiviral treatments. De novo generation of experimental data-
sets is limited by their heterogeneity, and for looming future pandemics, may not be feasible due to limitations of experimental approaches.

Results: Here, we present TransFactor, a computational framework for predicting and prioritizing candidate host factors using only protein se-
guence data. It leverages the pre-trained ESM-2 protein language model, fine-tuned on a limited set of experimentally determined host factors
aggregated from 33 independent SARS-CoV-2 studies. TransFactor outperforms machine and deep learning baselines and its predictions align
with Gene Ontology enrichments of known host factors, but also provide interpretability through a computational alanine scan, enabling the
identification of pro-viral protein domains such as COMM, PX, and RRM, that may be used to direct experimental investigations of virus biology
and guide rational design of antiviral therapies. Our findings demonstrate the potential of transformer-based models to advance host factor pre-
diction, providing a framework extendable to orthogonal input modalities and other infectious diseases, enhancing our preparedness for current
and future viral threats.

Availability and implementation: Source code is available at https://github.com/marsico-lab/TransFactor. A full reproducibility package, includ-

ing code, trained models, and data, is archived on Zenodo (https://doi.org/10.5281/zenodo.16793684).

1 Introduction

Recent pandemics and epidemics, including 2016 Zika,
COVID-19, and 2022/23 Mpox, underscore the need to ex-
pand our understanding of molecular events governing viral
infections. This gap continues to hinder the development of
effective antiviral treatments, exposing critical vulnerabilities
in our preparedness and responses to both current and emerg-
ing viral threats.

Modern molecular biology allows us to study the biochem-
ical basis of viral infections and diseases (Scaturro et al.
2018, Stukalov et al. 2021, Huang et al. 2024), and tackle
the three key questions in the field: (i) what are the mecha-
nisms driving disease pathogenicity, (ii) how can disease se-
verity be predicted across a broad spectrum of patients, and
(i) how can disease progression be pharmacologically tar-
geted? Due to their limited protein-coding capacity, viruses
rely on the activity of distinct sets of host proteins, termed
host factors, to drive aspects of their life cycle, such as up-
take, replication, and egress. While most antivirals directly

engage viral targets (De Clercq and Li 2016), pharmaceutical
inhibition of host factors represents an attractive and under-
researched opportunity (Kaufmann et al. 2018). However,
host factors, and in particular key motifs driving their pro-
viral activity, remain largely unknown for most viruses.

Virus host factor identification is dominated by small inter-
fering RNA knock-down, and CRISPR-Cas9 knock-out
screens. However, these high-throughput assays suffer from se-
vere drawbacks, such as poor correlation between independent
screens, limited availability of suitable cell lines, and variability
among them, leading to substantial false-positive and false-
negative rates (Baggen et al. 2021, Rebendenne et al. 2022).
Integration and prioritization of findings from high-throughput
approaches, augmented with orthogonal information, may be
an attractive approach to increase the identification of host tar-
gets for antiviral purposes and disease research in general. We
envision that such methodologies would systematically increase
the utility of high-throughput approaches by guiding experi-
mental validation and drug target assessment efforts.
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Computational methods are an emerging field with im-
mense potential to accelerate virus research, including the
identification of viral strains that harbor the risk of becoming
dominant in the future (Li et al. 2024, Rancati et al. 2024)
and prediction of host proteins crucially involved in viral dis-
ease pathogenesis. The latter employ diverse strategies, rang-
ing from the analysis of transcriptomic data comparing
control and infected samples, followed by differential gene
and isoform expression analysis (Ferrarini et al. 2021,
Mosharaf et al. 2022), to approaches leveraging protein
structure to predict host proteins that may physically interact
with viral proteins (Tiwari et al. 2022). Network-based tech-
niques include computational interrogation of the virus—host
protein interaction network to identify key hubs or function-
ally connected subnetworks (Ravindran et al. 2022, Samy
et al. 2022). Another class focuses on predicting subtypes,
such as RNA-binding proteins that interact with viral RNA.
These predictions utilize bioinformatics pipelines or machine
learning models (Vandelli et al. 2020, Horlacher et al. 2023).
Finally, we and others in the past successfully used graph-
based approaches to integrate knowledge on host biology
with multi-omics profilings to prioritize functional follow-up
of hot spots of cellular signaling perturbations upon virus
infections, as well as to repurpose existing drugs toward po-
tential SARS-CoV-2 drug targets (Morselli Gysi et al. 2021,
Ruiz et al. 2021, Stukalov et al. 2021, Bergant et al. 2022,
Huang et al. 2024). Many of these methodologies rely on
graph-based assemblies of the host protein functional interac-
tion landscape, such as STRING (Szklarczyk et al. 2023),
which are often based on data mining and can therefore be
prone to noise. These graphs are often highly connected, de-
spite only distinct interactions being functional and impactful
in any given biological state. Their undirected nature further
introduces erroneous information aggregation as the causal
direction of the interaction is not accounted for. Random
walk with restart is then commonly applied, which assumes a
linear combination of individual mechanisms, neglecting syn-
ergistic or antagonistic effects. Moreover, they are heavily reli-
ant on omics measurements of iz vitro virus infection systems,
which are challenging to characterize, especially for emerging
viruses, and show a high degree of variability between them.
Collectively, assessment of alternative data modalities and
suitable models is urgently needed to improve host factor
identification in real-world scenarios and to consolidate our
preparedness for existing and future viral threats.

Transformer-based protein language models (PLMs) have
significantly advanced protein biology [comprehensive over-
view in Wang et al. (2025) and Xiao et al. (2025)]. Trained
on large protein datasets in a self-supervised manner, these
models learn to extract meaningful contextual, local, and
global sequence features. Fine-tuning these models has en-
abled accurate predictions of various protein attributes, in-
cluding function, fitness, family classification, and structure
(Schmirler et al. 2024). Recently, PLMs have been fine-tuned
or fully trained specifically on viral proteins to predict escape
mutations, potentially arising strains, and to design prospec-
tive vaccines (Hie ef al. 2022, Dhodapkar 2023, Thadani
et al. 2023, Rancati et al. 2025, Liu et al. 2025, Youssef
etal.2025).

In this study, we propose TransFactor, a PLM-based model
for predicting pro-viral SARS-CoV-2 host factors using only
the protein sequence information, without the need for
acquiring additional omics measurements. TransFactor
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leverages the pre-trained PLM ESM-2 (Lin et al. 2023) and
significantly outperformed baseline methods in terms of pre-
diction performance, such as SVMs and deep learning mod-
els. We further evaluated TransFactor’s ability to generate
biologically relevant hypotheses by applying the model to
prioritize candidate host factors (with limited experimental evi-
dence in the literature). Our results demonstrated that high-
ranking candidates were more enriched than low-ranking ones
in molecular functions and processes of the known host factor
set. By interpreting the model’s predictions using an alanine
scan (Massova and Kollman 1999, Kortemme et al. 2004), we
identified protein regions or domains most critical for predict-
ing SARS-CoV-2 host factors.

We envision that TransFactor will support both basic and
applied antiviral research by ranking and shortlisting candi-
date proteins for experimental validation, accelerating the
identification of host factors and their pro-viral domains, as
well as assist in the design of novel antivirals.

2 Materials and methods
2.1 Data

2.1.1 Human protein sequences and domain information

The human proteome was assembled by collecting all 20415
canonical and reviewed protein sequences of organism ID
9606 from UniProtKB/Swiss-Prot (accessed 2019.10.08) (uni
2025). Protein domain annotations were retrieved from
UniProtKB in December 2024, including the features “Signal
peptide,” “Domain,” “Region,” “Zinc Finger,” “DNA bind-
ing,” “Motif,” “Active site,” “Binding site,” and “Site.”

2.1.2 Host factor labels

We labeled the proteins by aggregating the results from 33 in-
dependent SARS-CoV-2 assays, encompassing genome-wide,
arrayed, and targeted functional screens, as well as interac-
tomics studies, reviewed by Baggen et al. (2021) (Fig. 1a).
Proteins with at least three corroborating high-throughput
studies, or at least one low-throughput functional study, were
considered as positives (N =1045 host factors). Conversely,
proteins absent in any study were considered as negatives
(N=15 434). Importantly, this way of classifying proteins
was chosen due to the inherently noisy nature of high-
throughput studies, which results in a minimal overlap be-
tween significant hits originating from independent studies
(Baggen et al. 2021). This is further compounded by the use
of different experimental systems, i.e. cell lines, statistical
tests, time points, and infection doses. Based on this and our
prior experience with similar assays, we expected the data to
contain a significant proportion of false positives and false neg-
atives. Finally, proteins found to be potential host factors by
one or two studies were considered as candidate host factors
(N=3936). These were not used during training or perfor-
mance evaluation. One aim of this study was to rank the candi-
date set according to their likelihood of playing a pro-viral role
during SARS-CoV-2 infection, thereby generating hypotheses
for validation in low-throughput functional assays.

2.2 Model architecture

In this work, we developed and trained a model M that takes
in a protein sequence X and predicts a score indicating
whether the sample is a host factor ¥(X) = M(X). Let X =
{x1,x2,...,x1.} be a sequence of length L, where each residue
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Figure 1. TransFactor framework and performance. (a) A protein sequence from the human proteome is fed into the pre-trained ESM-2 backbone to
extract contextual features for each residue. These feature vectors are mean pooled along the sequence length dimension and passed through a linear
layer and consecutive sigmoid activation to create a score between 0 and 1. Proteins were labeled based on outcomes from 33 independent studies
reviewed by Baggen et al. (2021). LoRA (Hu et al. 2022) was adapted on the weights within the attention module of ESM-2, while the other parts of the
backbone were frozen. (b) Schematics of the computational alanine scan. The wild-type protein sequence is mutated to alanine in a window w, and the
difference Ay 4, in prediction between the mutated and wild-type sequence is taken as attribution score of the mutated positions. (c) Performance of
individual models on the test set. Each model was tuned and trained on five distinct data splits, and for each split, the hyperparameter configuration
yielding the highest AUROC was selected for further evaluation. As baselines, SVMs similar to Bressin et al. (2019) with linear and radial basis function
kernel, a CNN-LSTM hybrid model similar to Wu and Guo, (2024), and TransFactor (TF) with backbone randomly initialized (init BB) and frozen (frozen BB)
were used. (d) Precision@K on the Top-K predicted proteins by each model. (e) Violin plot of prediction values for positive and negative test samples as

well as candidate samples using TransFactor ensemble with ESM-2 backbone.

x;€ AA={A,C,...,Y} is from the set of the 20 canonical
amino acids (AA) (Fig. 1a).

We used ESM-2 (Lin et al. 2023), an encoder-only trans-
former (Vaswani 2017) PLM that has been pre-trained on 65
million unique protein sequences using the masked language
modeling task (Devlin 2019). The contextual residue features
H = ESM2(X) € RF*P with a hidden dimension D after the
last transformer layer were extracted. Due to quadratic mem-
ory scaling, we used the first 1024 residues, which 90% of
our input proteins do not exceed. The mean pooled fixed-
length sequence-wise feature vector h, € R” was then fed
into a linear layer with a consecutive sigmoid layer to gain a
scalar host factor score y between 0 and 1.

The model was trained in a classification setting to distin-
guish host factors (positives) from non-host factors (nega-
tives), optimizing the binary cross-entropy loss. Due to class
imbalance, we scaled the loss of positive samples by a factor
A, which was treated as a hyperparameter to be optimized
during tuning.

2.3 Training procedure

The dataset was split into six folds; five were used for cross-
validation, while the sixth fold was held out as a test set for
final evaluation. To prevent data leakage, we used mmseqs2
(Steinegger and Soding 2017) to cluster similar sequences.
Since the human proteome contains mostly dissimilar pro-
teins, the parameters were chosen lower than the minimum
sequence identity of 50% commonly used for the pre-training

of PLMs. The following command and parameters were
used:

mmseqs easy-cluster sequences.fasta cluster_dir tmp -c 0.1
—min-seq-id 0.1 -e 0.001

Members of each cluster were grouped into a single fold.
Almost half the proteins were assigned to clusters with sizes
smaller than six, and 21% were singleton clusters. When tak-
ing the most abundant Gene Ontology (GO)-term from each
cluster, the resulting non-singleton clusters had an average
GO-term purity of 82%, 90%, and 88% for biological pro-
cess, cellular component, and molecular function, respec-
tively. These results indicate that proteins were grouped into
functionally similar clusters, therefore effectively reducing the
risk of data leakage (Figs 2 and 3, available as supplementary
data at Bioinformatics online). Additionally, the splits were
stratified by their label to approximately balance the ratio of
positives and negatives between the splits.

Hyperparameter optimization was conducted using
Optuna (Akiba et al. 2019), maximizing AUROC as selection
criterion. On each split, hyperparameter optimization was
performed for 48 h on a machine with an Nvidia A100. Early
stopping was done after 25 epochs without improvement on
the criterion. The model from each split with the highest vali-
dation AUROC was used for performance evaluation and
downstream analysis. To aggregate the prediction values and
improve the stability and performance, we further used the
five resulting models in an ensemble mode by taking the aver-
age prediction score. We opted for averaging as the models
share the same base architecture, while differing in their
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training data splits. Hence, we assume that applying the same
weighting provides a stable consensus.

To prevent catastrophic forgetting and improve the train-
ing speed and memory requirements, we used Low-Rank
Adaptation (LoRA) (Hu et al. 2022) to fine-tune the ESM-2
backbone. Following the original paper, we only adapted the
attention weights Wo, Wi, Wy, Wo, while freezing all other
parameters of the ESM-2 backbone.

2.4 Baselines and ablation

We evaluated TransFactor against two baselines and two ab-
lation variants. First, we re-implemented TriPepSVM (Bressin
et al. 2019)—a linear and RBF-kernel SVM that classifies
proteins based on overlapping 3-mer counts. Second, we
adapted a CNN-LSTM hybrid similar to Wu and Guo
(2024), which uses the protein sequence as input and passes
the last hidden features of the LSTM as input into a linear
classification head. Finally, to assess transfer learning, we
trained two ablated versions of TransFactor, one with frozen
ESM-2 weights (TF frozen BB), and one with a randomly
initialized backbone rather than pre-trained (TF init BB).
For details of baselines and hyperparameters, refer to
Text A.1 and Tables 2-6, available as supplementary data at
Bioinformatics online.

2.5 GO enrichment

GO enrichment analysis was conducted using the Database
for Annotation, Visualization, and Integrated Discovery
(DAVID) tool (DAVID Knowledgebase v2024q4, released on
22 December 2024; available at https://davidbioinformatics.
nih.gov/summary.jsp) (Sherman et al. 2022). The analysis
was performed separately for the candidate proteins with a
prediction score above and below the ideal threshold z, which
was determined on the validation set as reaching the highest
Fl-score. The entire candidate protein set was used as the
background. Similarly, for the positive protein set, the entire
protein dataset was used as the background. Enrichment was
assessed across the three main GO categories: biological pro-
cess (BP), molecular function (MF), and cellular component
(CC). Default parameters in DAVID were applied for statisti-
cal testing and multiple testing correction.

2.6 Model's interpretation through computational
alanine scan

To understand the attribution of amino acid motifs to the
overall prediction, we performed a computational alanine
scan (Massova and Kollman 1999, Kortemme et al. 2004)
(Fig. 1b). For the selected protein sequence X, we substituted
the amino acids in a contiguous window with alanine.
Alanine has a small methyl side chain and, therefore, is the
most functionally inert amino acid, commonly used in single-
point-mutagenesis-based experiments to interrogate the func-
tional relevance of distinct protein regions (Morrison and
Weiss 2001). We utilized window sizes w of 1, as well as val-
ues ranging from 5 to 40 in increments of 5. The wild-type se-
quence was mutated to Xy, ,—a={x1,...,Xi-1,4,...,
A,Xiw,...,x1}. We then used the trained model to predict
the host factor score y(Xy,,,,—4) of the mutated sequence.
The difference in prediction score Ay ., =V (X, —A4) —
Y(Xy:) between the mutated and wild-type sequence was
used as the attribution score for residues within the substitu-
tion window. For samples from the test set, we used the en-
semble model prediction scores, while for samples from the
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cross-validation splits, the model corresponding to the valida-
tion set was used.

For domain-wise statistical testing of significant deviations of
Ay, (Fig. 4, available as supplementary data at Bioinformatics
online), we used the one-sided Wilcoxon rank-sum test and
compared Ay ,,;, values within domains to all values across all
proteins for any given alanine scan window. The thus obtained
P-values were further FDR-adjusted.

3 Results
3.1 TransFactor outperforms baseline models in
predicting SARS-CoV-2 host factors

First, we evaluated the performance of our proposed method
on the held-out test set. Due to the high imbalance of 4%
positive test samples, we chose the area under the receiver op-
erating characteristics curve (AUROC), average precision
score (APS) as a conservative estimation method for the area
under the precision-recall curve, and Fl-score, further bro-
ken down into precision and recall as metrics. We determined
the ideal thresholds 7 based on the highest F1-score on the
validation set for each model, respectively. For the ensembles,
we optimized the threshold on the whole training dataset
(z=10.571). The benchmark results of the best model trained
on each of the five folds are shown in Fig. 1c and Table 1
(first row within each method), available as supplementary
data at Bioinformatics online.

The simplest model, an SVM with a linear kernel, consis-
tently showed the lowest performance across all metrics.
Replacing the linear kernel with an RBF kernel led to moder-
ate improvements. Both sequential deep learning models, the
CNN-LSTM hybrid and TransFactor with a randomly initial-
ized backbone, performed similarly to SVM with RBF kernel.
However, using a frozen pre-trained ESM-2 backbone greatly
increased AUROC (0.78-0.86), APS (0.14-0.24), and F1-
score (0.19-0.30) in comparison to the best other model.
Using LoRA fine-tuning on the weights of the backbone, we
could further improve the performance in three out of
five metrics.

These results highlight the need for pre-trained language
models for these data. The sequential deep learning models
failed to outperform the traditional machine learning base-
line. This indicates that the sequential models could not iden-
tify and extract functional information from the raw
sequences. One possible explanation lies in the diversity of
the human proteome. Sequences originated from diverse sets
of protein families with very high dissimilarities to each
other. Specifically, the 20415 sequences were distributed in
6961 clusters despite a minimum sequence identity of 10%
and coverage of 10%. Forty-eight of all sequences were in
clusters of size five or smaller. These properties make it chal-
lenging for the model to rely solely on sequence information.
Through pre-training, the model learns to extract meaningful
features and capture functional information from evolution-
ary conservation patterns, where distant sequences may still
result in related function and structure.

Next, the prediction scores of the five individual models
were aggregated and averaged. The resulting ensemble mod-
els consistently improved upon the mean performance for all
individual models of each underlying architecture (Table S1,
second row within each method, available as supplementary
data at Bioinformatics online). For TransFactor with fine-
tuned backbone, we observed increases in AUROC from 0.87
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TransFactor

to 0.89, APS from 0.27 to 0.30, and Fl-score from 0.23 to
0.38 through the aggregation of prediction scores. To gain
an estimate of the expected hit rate during validation, we
calculated the Precision of the Top-K predicted samples
(Precision@K) (Fig. 1d). Except for the noisy lower K range,
TransFactor consistently reached higher Precision@K values
than the baseline methods. At typical experimental capacities
of 50, 100, and 200, TransFactor had a precision of 0.44,
0.37, and 0.28, respectively. Due to the condensed score and
higher performance, we used the ensemble model for further
analyses, unless otherwise indicated.

To further contextualize the performance of our computa-
tional method, we evaluated the predictive power of experi-
mental screens by using each one (excluding functional
validation screens) from the review by Baggen ez al. (2021) to
correctly identify host factors from the full human proteome.
We applied our labeling scheme, with a minor modification:
the screen under evaluation was excluded from the labeling
process. On average, experimental screens achieved an F1-
score of 0.13+0.11 (mean = standard deviation), with a pre-
cision of 0.60+0.25 and a recall of 0.11+0.13 (details in
Table S7, available as supplementary data at Bioinformatics
online).

3.2 GO-term enrichment reveals biological
consistency in high-scoring uncertain proteins

To assess the potential of our model in guiding the selection
of protein candidates from high-throughput screens with
lower precision, we scored each protein from the candidate
set with TransFactor. The resulting score distribution fell be-
tween those of the positive and negative test samples
(Fig. 1e). Eight hundred eighty-three of the 3936 candidates
were predicted as potential host factors. High-throughput
screenings are expected to yield many false positives, consis-
tent with our prediction’s distribution. This indicates
TransFactor’s potential to help distinguish prospective novel
host factors from experimental noise, proposing a shortlist of
candidates for further investigation.

Next, we evaluated TransFactor’s predictions using GO
enrichment analysis to determine whether the model captures
biological relevance and stratifies candidate proteins into
promising and less promising ones. Enriched GO-term of pre-
dicted host factors closely mirrored those of known positives,
showing strong overlap across BP, MF, and CC categories
[Fig. 2; Fisher’s exact test: BP (OR =15.0, P-value=.0001),
MF (OR=9.23, P-value=.0395), and CC (OR=4.67,
P-value=.0663)]. By contrast, negatively predicted
candidates exhibited little overlap [BP (OR=0.16,
P-value =.0780), MF (OR =0.44, P-value=.4582), and CC
(OR=0.32, P-value =.6323)).

These results indicate that the model successfully captures
the structural and functional organization of host factor pro-
teins. This predictive capability could provide a valuable
framework for prioritizing putative candidates for targeted
experimental validation.

3.3 Computational alanine scan identifies domains
important for the model’s prediction

To identify motifs and domains that were affecting the pre-
dictions, we performed a computational alanine scan on the
positive subset of proteins (Massova and Kollman 1999,
Kortemme et al. 2004). We employed a broad range of win-
dow sizes to introduce varying degrees of perturbations to

protein sequences, enabling us to assess the impact of both
small- and large-scale changes on prediction scores. This ap-
proach allowed us to find a balance between the amplitude
and resolution of the explanations.

First, we evaluated whether the model accurately captured
the well-established principle that substituting amino acids
with alanine often reduces protein functionality. Consistent
with this concept, our results revealed a clear trend of de-
creased prediction scores following alanine substitutions.
Notably, this effect became more pronounced with increasing
sizes of the alanine scan windows (Fig. 3a).

Furthermore, we mapped the alanine scan attribution
scores to protein domains to assess if the model learned to
specifically penalize the alanine substitutions in regions of
proteins known to be functionally relevant. Notably, we ob-
served a decrease in median attribution scores within protein
domains enriched in the positive subset (Fig. 3b and Fig. 4a,
available as supplementary data at Bioinformatics online). In
contrast, domains less represented in positively labeled pro-
teins showed almost no decrease in median attribution scores
(Fig. 3¢ and Fig. 4a, available as supplementary data at
Bioinformatics online). These findings strongly indicate that
the model can distinguish protein sequences and regions that
are more important for host factor classification and can
learn from given exemplary sequences containing simi-
lar regions.

After showcasing the general prevalence of the model to
recognize the functionally important features of proteins, we
took a detailed look at some domain types. Importantly, not
all domains exhibited statistically significant decreases in
their attribution scores in comparison to values across all
scanned proteins (Fig. 4b, available as supplementary data at
Bioinformatics online). While we observed the strongest de-
crease upon introduction of alanine substitutions in copper
metabolism gene MURR1 (COMM) domains (Fig. 3d), phox
homology (PX) domains (Fig. 3e), and RNA recognition
motifs (RRM) (Fig. 3f), we did not observe this for many
other domains such as Helicase C-terminal domains (Fig. 3g).
Particularly striking was the strong decrease in attribution
scores for the COMM domains of COMMD proteins. In
humans, there are 10 COMMD proteins, which encode a
COMM domain. Seven of them were previously shown to
play a role in SARS-CoV-2 infection (Zhu et al. 2021) and
thereby were contained in our positive set (COMMD?2/3/4/5/
7/8/10) (Baggen et al. 2021). COMMD proteins, together
with CCDC22 and CCDC93, form the CCC complex, which,
together with the retriever complex (VPS35L, VPS26C,
VPS29), forms the commander complex, involved in the
endosomal cargo trafficking and recycling (Healy ez al.
2023). COMMD proteins, as well as proteins and assemblies
related to these processes, were previously shown to be
SARS-CoV-2 host factors (Baggen et al. 2021), but to the
best of our knowledge, no specific parts of these proteins are
so far known to be critical for this functionality. COMMD
proteins, except COMMD6, were among the top predicted
host factors by TransFactor and had prediction scores be-
tween 0.75 and 0.98. Interestingly, our alanine scan results,
in particular evident for the lower range of alanine scan win-
dow sizes, suggested that the relatively poorly conserved C-
terminal part of the COMM domain in COMMD4 (Fig. 3h)
and other COMMD proteins (Fig. 3i—j and Fig. 5, available
as supplementary data at Bioinformatics online) may play a
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Figure 2. GO-term enrichment was performed on the positively labeled proteins (using all proteins as background), and on the candidate proteins (taking
all candidate proteins as background) predicted as positive (y > ) and negative (y <7). The enrichment analysis was performed separately for all three
gene ontologies, and terms significant for at least one gene set are displayed. Venn diagrams show the overall and overlapping number of enriched terms

in and between the three sets.

central role in their ability to support SARS-CoV-2 replica-
tion as host factors.

4 Discussion

The COVID-19 pandemic has resulted in unprecedented so-
cioeconomic disruptions and more than 6 million lost lives.
Despite the need for effective antiviral therapies, we still do
not fully understand the molecular basis of SARS-CoV-2 in-
fection. Virology relies on experimental studies of virus—host
interactions, but dataset heterogeneity and practical chal-
lenges, such as high virulence or hard-to-culture viruses, limit
comprehensive characterization of host factors and their role
in infection etiology and progression. High-throughput meth-
ods are often infeasible for some viruses or poorly followed
up due to resource constraints, underscoring the need for
computational models to predict and prioritize key interac-
tions from limited and noisy data. Emerging Al technologies,
such as sequence-based deep learning models, offer signifi-
cant potential to uncover critical host factors that facilitate
viral infections. Inspired by the success of PLMs, we devel-
oped TransFactor—a transformer-based method for predict-
ing virus host factors based on protein sequence information
and a limited set of experimentally determined host factors.
By leveraging pre-trained PLM’s feature extraction capabili-
ties and fine-tuning on the classification task of distinguishing
SARS-CoV-2 host factors from non-host factors, TransFactor
outperformed machine and deep learning baseline methods.
Candidate host factors prioritized by TransFactor showed
similar GO-term enrichments as known host factors, giving
more confidence in the model’s capability to rank and priori-
tize proteins. Through a computational alanine scan,
TransFactor could identify domains important for the predic-
tion, helping to understand the molecular basis underlying
host factors.

However, TransFactor faces limitations that present op-
portunities for improvement in future work. Currently,

TransFactor’s input is truncated to 1024 amino acids for
efficient training and inference of the model, which may omit
important C-terminal regions relevant for host-virus interac-
tions. To assess this, we reevaluated our trained models on
the test proteins truncated at 2048, increasing the coverage
from 90% to 98%. This yielded a slight improvement in five
out of eight performance metrics (Table S8, available as sup-
plementary data at Bioinformatics online). Nevertheless, as
computational resources grow drastically with sequence
length, and practical implications for large proteins (longer
than 1000), including reduced sequencing fidelity, expression
strength, and detection by Western blot, we adopted the
shorter length for this work. To further mitigate these
aspects, we plan to explore random cropping during training,
memory-efficient methods like FlashAttention (Dao et al.
2022), and fine-tuning on longer sequences in the future.

To effectively train and employ deep learning models, an
extensive amount of labeled data, i.e. known host factors, is
needed. Such data is not universally available for many vi-
ruses, originates from a variety of strains, and was acquired
in different infection models. However, transfer learning and
domain adaptation techniques could leverage data from
closely related viruses to make predictions for those with lim-
ited or no known host factors. Transferability depends pri-
marily on the similarity of pathways and biochemical
processes the viruses need for their life cycles and the result-
ing set of host factors. The overlap and divergence of essen-
tial host processes could give an estimate for the success of
the transfer. Yet, for most viruses, these factors are not
known in sufficient depth. Instead, the genetic similarity and
evolutionary proximity can serve as a proxy. To demonstrate
this, we used our TransFactor model trained on SARS-CoV-2
host factors to predict host proteins interacting with SARS-
CoV viral proteins as a proxy for its host factors (N=612,
Stukalov et al. 2021) without fine-tuning. While the perfor-
mance declined as expected, we were able to recall 42% of
SARS-CoV, indicating the potential to prioritize host factors
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Figure 3. Computational alanine scans were performed using indicated amino acid window sizes for all positives. (a) Density plot depicting AY 4,
attribution values. (b, ¢c) Domains that were present more, (b) or less, or equal (c) than five times in the positive samples, were used for depicting the

median Ay ;, with respect to amino acid positions relative to the domain start.

(d-g) Similar to (b, c), but only the three domains with the highest absolute

average Ay ,;, attribution scores—COMM (d), PX (e), RRM (f)—and a domain with neutral Ay ,,,—Helicase C-terminal (g)—were used. (h) Prediction
scores for protein COMMDA4 (protein structure PDB: 8F2R). Light orange—COMM domain; dark orange—amino acid positions, where prediction values

are below 0.4 for all alanine scan window sizes. (i) Structure of the 10-protein ¢

omplex consisting of COMMD1-10 (PDB: 8F2R)—regions where

AY a1. < — 0.5 for alanine scan window size of 40 are highlighted in pink; similarly, regions in which this condition is satisfied for alanine scan window size
of 10 are further highlighted in red. (j) Bottom: amino acid sequences of proteins COMMD1-10 were aligned using ClustalOmega (Madeira et al. 2024).
Top: alanine scan prediction values (y 4;,) were corrected according to the depicted alignment and plotted for the indicated proteins (alanine scan window
size of 10) alongside the 10-letter amino acid alphabet normalized entropy (0 indicates low conservation, 1 indicates high conservation). Amino acids
corresponding to the COMMDA4 positions 172-199 (panel h, dark orange) are shown. Unless otherwise specified, individual panels reuse color coding

from panel (a).

for phylogenetically related viruses. In contrast, the model
failed to identify putative host factors (N =368, Montoya
et al. 2023) of the phylogenetically distant HIV with a recall
of 18% (details in Table S9, available as supplementary data
at Bioinformatics online).

Moreover, TransFactor currently relies exclusively on pri-
mary sequence information, which makes classifying proteins
with low homology to the training data particularly challeng-
ing. Integrating orthogonal data, such as the tertiary struc-
ture, may provide the model with additional valuable insights
into protein functionality, alleviating the problem of low se-
quence homology. Similarly, incorporating additional experi-
mental information such as peptide-level abundances,
phosphorylation, and ubiquitination events obtained by LC~
MS/MS-based proteomics may allow the model to access sig-
naling perturbations instigated by the invading pathogen,
allowing it to consider cellular signaling state on one or more
functional layers. As proteins rarely act in isolation, incorpo-
rating protein—protein interaction network data could add a
higher-order layer to the model, capturing complex biological
processes. These additional data modalities could help ad-
dress current challenges, such as low F1 scores, by identifying

features not captured by sequence information alone and ex-
pand the generalizability to related and potentially more dis-
tant viruses. Addressing label noise and the high imbalance in
existing host factor datasets through further low-throughput
functional studies and explicit modeling of label uncertainty
could also improve the model’s discriminative performance.
Ultimately, experimental validation of TransFactor’s predic-
tions through functional screens will be essential. The results
of such experiments could further enhance the model in an
active learning, lab-in-the-loop setting. While we presented a
proof-of-concept on SARS-CoV-2 host factors, further evalu-
ations on other diseases are necessary to assess the generaliz-
ability of TransFactor.

In summary, we have shown that TransFactor can reliably
identify and rank host factor proteins. Combined with a com-
putational alanine scan, TransFactor enables the detailed
analysis and interpretation of how specific amino acid motifs
contribute to pro-viral pathogenesis. This approach provides
valuable insights at a meaningful scale, offering a robust
foundation for generating hypotheses that can be further
tested in appropriate experimental models, facilitating the ad-
vancement of our biological understanding of viral infectious
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diseases, and providing a valuable resource to guide rational
antiviral design.
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