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Abstract
Motivation: Recent pandemics have revealed significant gaps in our understanding of viral pathogenesis, exposing an urgent need for methods 
to identify and prioritize key host proteins (host factors) as potential targets for antiviral treatments. De novo generation of experimental data
sets is limited by their heterogeneity, and for looming future pandemics, may not be feasible due to limitations of experimental approaches.
Results: Here, we present TransFactor, a computational framework for predicting and prioritizing candidate host factors using only protein se
quence data. It leverages the pre-trained ESM-2 protein language model, fine-tuned on a limited set of experimentally determined host factors 
aggregated from 33 independent SARS-CoV-2 studies. TransFactor outperforms machine and deep learning baselines and its predictions align 
with Gene Ontology enrichments of known host factors, but also provide interpretability through a computational alanine scan, enabling the 
identification of pro-viral protein domains such as COMM, PX, and RRM, that may be used to direct experimental investigations of virus biology 
and guide rational design of antiviral therapies. Our findings demonstrate the potential of transformer-based models to advance host factor pre
diction, providing a framework extendable to orthogonal input modalities and other infectious diseases, enhancing our preparedness for current 
and future viral threats.
Availability and implementation: Source code is available at https://github.com/marsico-lab/TransFactor. A full reproducibility package, includ
ing code, trained models, and data, is archived on Zenodo (https://doi.org/10.5281/zenodo.16793684).

1 Introduction
Recent pandemics and epidemics, including 2016 Zika, 
COVID-19, and 2022/23 Mpox, underscore the need to ex
pand our understanding of molecular events governing viral 
infections. This gap continues to hinder the development of 
effective antiviral treatments, exposing critical vulnerabilities 
in our preparedness and responses to both current and emerg
ing viral threats.

Modern molecular biology allows us to study the biochem
ical basis of viral infections and diseases (Scaturro et al. 
2018, Stukalov et al. 2021, Huang et al. 2024), and tackle 
the three key questions in the field: (i) what are the mecha
nisms driving disease pathogenicity, (ii) how can disease se
verity be predicted across a broad spectrum of patients, and 
(iii) how can disease progression be pharmacologically tar
geted? Due to their limited protein-coding capacity, viruses 
rely on the activity of distinct sets of host proteins, termed 
host factors, to drive aspects of their life cycle, such as up
take, replication, and egress. While most antivirals directly 

engage viral targets (De Clercq and Li 2016), pharmaceutical 
inhibition of host factors represents an attractive and under- 
researched opportunity (Kaufmann et al. 2018). However, 
host factors, and in particular key motifs driving their pro- 
viral activity, remain largely unknown for most viruses.

Virus host factor identification is dominated by small inter
fering RNA knock-down, and CRISPR-Cas9 knock-out 
screens. However, these high-throughput assays suffer from se
vere drawbacks, such as poor correlation between independent 
screens, limited availability of suitable cell lines, and variability 
among them, leading to substantial false-positive and false- 
negative rates (Baggen et al. 2021, Rebendenne et al. 2022). 
Integration and prioritization of findings from high-throughput 
approaches, augmented with orthogonal information, may be 
an attractive approach to increase the identification of host tar
gets for antiviral purposes and disease research in general. We 
envision that such methodologies would systematically increase 
the utility of high-throughput approaches by guiding experi
mental validation and drug target assessment efforts.
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Computational methods are an emerging field with im
mense potential to accelerate virus research, including the 
identification of viral strains that harbor the risk of becoming 
dominant in the future (Li et al. 2024, Rancati et al. 2024) 
and prediction of host proteins crucially involved in viral dis
ease pathogenesis. The latter employ diverse strategies, rang
ing from the analysis of transcriptomic data comparing 
control and infected samples, followed by differential gene 
and isoform expression analysis (Ferrarini et al. 2021, 
Mosharaf et al. 2022), to approaches leveraging protein 
structure to predict host proteins that may physically interact 
with viral proteins (Tiwari et al. 2022). Network-based tech
niques include computational interrogation of the virus–host 
protein interaction network to identify key hubs or function
ally connected subnetworks (Ravindran et al. 2022, Samy 
et al. 2022). Another class focuses on predicting subtypes, 
such as RNA-binding proteins that interact with viral RNA. 
These predictions utilize bioinformatics pipelines or machine 
learning models (Vandelli et al. 2020, Horlacher et al. 2023). 
Finally, we and others in the past successfully used graph- 
based approaches to integrate knowledge on host biology 
with multi-omics profilings to prioritize functional follow-up 
of hot spots of cellular signaling perturbations upon virus 
infections, as well as to repurpose existing drugs toward po
tential SARS-CoV-2 drug targets (Morselli Gysi et al. 2021, 
Ruiz et al. 2021, Stukalov et al. 2021, Bergant et al. 2022, 
Huang et al. 2024). Many of these methodologies rely on 
graph-based assemblies of the host protein functional interac
tion landscape, such as STRING (Szklarczyk et al. 2023), 
which are often based on data mining and can therefore be 
prone to noise. These graphs are often highly connected, de
spite only distinct interactions being functional and impactful 
in any given biological state. Their undirected nature further 
introduces erroneous information aggregation as the causal 
direction of the interaction is not accounted for. Random 
walk with restart is then commonly applied, which assumes a 
linear combination of individual mechanisms, neglecting syn
ergistic or antagonistic effects. Moreover, they are heavily reli
ant on omics measurements of in vitro virus infection systems, 
which are challenging to characterize, especially for emerging 
viruses, and show a high degree of variability between them. 
Collectively, assessment of alternative data modalities and 
suitable models is urgently needed to improve host factor 
identification in real-world scenarios and to consolidate our 
preparedness for existing and future viral threats.

Transformer-based protein language models (PLMs) have 
significantly advanced protein biology [comprehensive over
view in Wang et al. (2025) and Xiao et al. (2025)]. Trained 
on large protein datasets in a self-supervised manner, these 
models learn to extract meaningful contextual, local, and 
global sequence features. Fine-tuning these models has en
abled accurate predictions of various protein attributes, in
cluding function, fitness, family classification, and structure 
(Schmirler et al. 2024). Recently, PLMs have been fine-tuned 
or fully trained specifically on viral proteins to predict escape 
mutations, potentially arising strains, and to design prospec
tive vaccines (Hie et al. 2022, Dhodapkar 2023, Thadani 
et al. 2023, Rancati et al. 2025, Liu et al. 2025, Youssef 
et al. 2025).

In this study, we propose TransFactor, a PLM-based model 
for predicting pro-viral SARS-CoV-2 host factors using only 
the protein sequence information, without the need for 
acquiring additional omics measurements. TransFactor 

leverages the pre-trained PLM ESM-2 (Lin et al. 2023) and 
significantly outperformed baseline methods in terms of pre
diction performance, such as SVMs and deep learning mod
els. We further evaluated TransFactor’s ability to generate 
biologically relevant hypotheses by applying the model to 
prioritize candidate host factors (with limited experimental evi
dence in the literature). Our results demonstrated that high- 
ranking candidates were more enriched than low-ranking ones 
in molecular functions and processes of the known host factor 
set. By interpreting the model’s predictions using an alanine 
scan (Massova and Kollman 1999, Kortemme et al. 2004), we 
identified protein regions or domains most critical for predict
ing SARS-CoV-2 host factors.

We envision that TransFactor will support both basic and 
applied antiviral research by ranking and shortlisting candi
date proteins for experimental validation, accelerating the 
identification of host factors and their pro-viral domains, as 
well as assist in the design of novel antivirals.

2 Materials and methods
2.1 Data
2.1.1 Human protein sequences and domain information
The human proteome was assembled by collecting all 20 415 
canonical and reviewed protein sequences of organism ID 
9606 from UniProtKB/Swiss-Prot (accessed 2019.10.08) (uni 
2025). Protein domain annotations were retrieved from 
UniProtKB in December 2024, including the features “Signal 
peptide,” “Domain,” “Region,” “Zinc Finger,” “DNA bind
ing,” “Motif,” “Active site,” “Binding site,” and “Site.”

2.1.2 Host factor labels
We labeled the proteins by aggregating the results from 33 in
dependent SARS-CoV-2 assays, encompassing genome-wide, 
arrayed, and targeted functional screens, as well as interac
tomics studies, reviewed by Baggen et al. (2021) (Fig. 1a). 
Proteins with at least three corroborating high-throughput 
studies, or at least one low-throughput functional study, were 
considered as positives (N¼ 1045 host factors). Conversely, 
proteins absent in any study were considered as negatives 
(N¼ 15 434). Importantly, this way of classifying proteins 
was chosen due to the inherently noisy nature of high- 
throughput studies, which results in a minimal overlap be
tween significant hits originating from independent studies 
(Baggen et al. 2021). This is further compounded by the use 
of different experimental systems, i.e. cell lines, statistical 
tests, time points, and infection doses. Based on this and our 
prior experience with similar assays, we expected the data to 
contain a significant proportion of false positives and false neg
atives. Finally, proteins found to be potential host factors by 
one or two studies were considered as candidate host factors 
(N¼3936). These were not used during training or perfor
mance evaluation. One aim of this study was to rank the candi
date set according to their likelihood of playing a pro-viral role 
during SARS-CoV-2 infection, thereby generating hypotheses 
for validation in low-throughput functional assays.

2.2 Model architecture
In this work, we developed and trained a model M that takes 
in a protein sequence X and predicts a score indicating 
whether the sample is a host factor byðXÞ ¼MðXÞ. Let X¼
fx1;x2; . . . ;xLg be a sequence of length L, where each residue 
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xi 2 AA¼ fA;C; . . . ;Yg is from the set of the 20 canonical 
amino acids (AA) (Fig. 1a).

We used ESM-2 (Lin et al. 2023), an encoder-only trans
former (Vaswani 2017) PLM that has been pre-trained on 65 
million unique protein sequences using the masked language 
modeling task (Devlin 2019). The contextual residue features 
H ¼ ESM2ðXÞ 2 RL×D with a hidden dimension D after the 
last transformer layer were extracted. Due to quadratic mem
ory scaling, we used the first 1024 residues, which 90% of 
our input proteins do not exceed. The mean pooled fixed- 
length sequence-wise feature vector hp 2 RD was then fed 
into a linear layer with a consecutive sigmoid layer to gain a 
scalar host factor score by between 0 and 1.

The model was trained in a classification setting to distin
guish host factors (positives) from non-host factors (nega
tives), optimizing the binary cross-entropy loss. Due to class 
imbalance, we scaled the loss of positive samples by a factor 
λ, which was treated as a hyperparameter to be optimized 
during tuning.

2.3 Training procedure
The dataset was split into six folds; five were used for cross- 
validation, while the sixth fold was held out as a test set for 
final evaluation. To prevent data leakage, we used mmseqs2 
(Steinegger and S€oding 2017) to cluster similar sequences. 
Since the human proteome contains mostly dissimilar pro
teins, the parameters were chosen lower than the minimum 
sequence identity of 50% commonly used for the pre-training 

of PLMs. The following command and parameters were 
used:

mmseqs easy-cluster sequences.fasta cluster_dir tmp -c 0.1 
–min-seq-id 0.1 -e 0.001

Members of each cluster were grouped into a single fold. 
Almost half the proteins were assigned to clusters with sizes 
smaller than six, and 21% were singleton clusters. When tak
ing the most abundant Gene Ontology (GO)-term from each 
cluster, the resulting non-singleton clusters had an average 
GO-term purity of 82%, 90%, and 88% for biological pro
cess, cellular component, and molecular function, respec
tively. These results indicate that proteins were grouped into 
functionally similar clusters, therefore effectively reducing the 
risk of data leakage (Figs 2 and 3, available as supplementary 
data at Bioinformatics online). Additionally, the splits were 
stratified by their label to approximately balance the ratio of 
positives and negatives between the splits.

Hyperparameter optimization was conducted using 
Optuna (Akiba et al. 2019), maximizing AUROC as selection 
criterion. On each split, hyperparameter optimization was 
performed for 48 h on a machine with an Nvidia A100. Early 
stopping was done after 25 epochs without improvement on 
the criterion. The model from each split with the highest vali
dation AUROC was used for performance evaluation and 
downstream analysis. To aggregate the prediction values and 
improve the stability and performance, we further used the 
five resulting models in an ensemble mode by taking the aver
age prediction score. We opted for averaging as the models 
share the same base architecture, while differing in their 

Figure 1. TransFactor framework and performance. (a) A protein sequence from the human proteome is fed into the pre-trained ESM-2 backbone to 
extract contextual features for each residue. These feature vectors are mean pooled along the sequence length dimension and passed through a linear 
layer and consecutive sigmoid activation to create a score between 0 and 1. Proteins were labeled based on outcomes from 33 independent studies 
reviewed by Baggen et al. (2021). LoRA (Hu et al. 2022) was adapted on the weights within the attention module of ESM-2, while the other parts of the 
backbone were frozen. (b) Schematics of the computational alanine scan. The wild-type protein sequence is mutated to alanine in a window w, and the 
difference Δby Ala in prediction between the mutated and wild-type sequence is taken as attribution score of the mutated positions. (c) Performance of 
individual models on the test set. Each model was tuned and trained on five distinct data splits, and for each split, the hyperparameter configuration 
yielding the highest AUROC was selected for further evaluation. As baselines, SVMs similar to Bressin et al. (2019) with linear and radial basis function 
kernel, a CNN-LSTM hybrid model similar to Wu and Guo, (2024), and TransFactor (TF) with backbone randomly initialized (init BB) and frozen (frozen BB) 
were used. (d) Precision@K on the Top-K predicted proteins by each model. (e) Violin plot of prediction values for positive and negative test samples as 
well as candidate samples using TransFactor ensemble with ESM-2 backbone.

TransFactor                                                                                                                                                                                                                                     3 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/41/9/btaf491/8250707 by G
SF H

aem
atologikum

 user on 04 N
ovem

ber 2025

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf491#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf491#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf491#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf491#supplementary-data


training data splits. Hence, we assume that applying the same 
weighting provides a stable consensus.

To prevent catastrophic forgetting and improve the train
ing speed and memory requirements, we used Low-Rank 
Adaptation (LoRA) (Hu et al. 2022) to fine-tune the ESM-2 
backbone. Following the original paper, we only adapted the 
attention weights WQ;WK;WV ;WO, while freezing all other 
parameters of the ESM-2 backbone.

2.4 Baselines and ablation
We evaluated TransFactor against two baselines and two ab
lation variants. First, we re-implemented TriPepSVM (Bressin 
et al. 2019)—a linear and RBF-kernel SVM that classifies 
proteins based on overlapping 3-mer counts. Second, we 
adapted a CNN-LSTM hybrid similar to Wu and Guo 
(2024), which uses the protein sequence as input and passes 
the last hidden features of the LSTM as input into a linear 
classification head. Finally, to assess transfer learning, we 
trained two ablated versions of TransFactor, one with frozen 
ESM-2 weights (TF frozen BB), and one with a randomly 
initialized backbone rather than pre-trained (TF init BB). 
For details of baselines and hyperparameters, refer to 
Text A.1 and Tables 2–6, available as supplementary data at 
Bioinformatics online.

2.5 GO enrichment
GO enrichment analysis was conducted using the Database 
for Annotation, Visualization, and Integrated Discovery 
(DAVID) tool (DAVID Knowledgebase v2024q4, released on 
22 December 2024; available at https://davidbioinformatics. 
nih.gov/summary.jsp) (Sherman et al. 2022). The analysis 
was performed separately for the candidate proteins with a 
prediction score above and below the ideal threshold τ, which 
was determined on the validation set as reaching the highest 
F1-score. The entire candidate protein set was used as the 
background. Similarly, for the positive protein set, the entire 
protein dataset was used as the background. Enrichment was 
assessed across the three main GO categories: biological pro
cess (BP), molecular function (MF), and cellular component 
(CC). Default parameters in DAVID were applied for statisti
cal testing and multiple testing correction.

2.6 Model’s interpretation through computational 
alanine scan
To understand the attribution of amino acid motifs to the 
overall prediction, we performed a computational alanine 
scan (Massova and Kollman 1999, Kortemme et al. 2004) 
(Fig. 1b). For the selected protein sequence X, we substituted 
the amino acids in a contiguous window with alanine. 
Alanine has a small methyl side chain and, therefore, is the 
most functionally inert amino acid, commonly used in single- 
point-mutagenesis-based experiments to interrogate the func
tional relevance of distinct protein regions (Morrison and 
Weiss 2001). We utilized window sizes w of 1, as well as val
ues ranging from 5 to 40 in increments of 5. The wild-type se
quence was mutated to Xxi:iþw!A ¼ fx1; . . . ;xi− 1;A; . . . ;

A;xiþw; . . . ;xLg. We then used the trained model to predict 
the host factor score byðXxi:iþw!AÞ of the mutated sequence. 
The difference in prediction score ΔbyAla ¼ byðXxi:iþw!AÞ− 
byðXwtÞ between the mutated and wild-type sequence was 
used as the attribution score for residues within the substitu
tion window. For samples from the test set, we used the en
semble model prediction scores, while for samples from the 

cross-validation splits, the model corresponding to the valida
tion set was used.

For domain-wise statistical testing of significant deviations of 
ΔbyAla (Fig. 4, available as supplementary data at Bioinformatics 
online), we used the one-sided Wilcoxon rank-sum test and 
compared ΔbyAla values within domains to all values across all 
proteins for any given alanine scan window. The thus obtained 
P-values were further FDR-adjusted.

3 Results
3.1 TransFactor outperforms baseline models in 
predicting SARS-CoV-2 host factors
First, we evaluated the performance of our proposed method 
on the held-out test set. Due to the high imbalance of 4% 
positive test samples, we chose the area under the receiver op
erating characteristics curve (AUROC), average precision 
score (APS) as a conservative estimation method for the area 
under the precision–recall curve, and F1-score, further bro
ken down into precision and recall as metrics. We determined 
the ideal thresholds τ based on the highest F1-score on the 
validation set for each model, respectively. For the ensembles, 
we optimized the threshold on the whole training dataset 
(τ¼ 0:571). The benchmark results of the best model trained 
on each of the five folds are shown in Fig. 1c and Table 1
(first row within each method), available as supplementary 
data at Bioinformatics online.

The simplest model, an SVM with a linear kernel, consis
tently showed the lowest performance across all metrics. 
Replacing the linear kernel with an RBF kernel led to moder
ate improvements. Both sequential deep learning models, the 
CNN-LSTM hybrid and TransFactor with a randomly initial
ized backbone, performed similarly to SVM with RBF kernel. 
However, using a frozen pre-trained ESM-2 backbone greatly 
increased AUROC (0.78–0.86), APS (0.14–0.24), and F1- 
score (0.19–0.30) in comparison to the best other model. 
Using LoRA fine-tuning on the weights of the backbone, we 
could further improve the performance in three out of 
five metrics.

These results highlight the need for pre-trained language 
models for these data. The sequential deep learning models 
failed to outperform the traditional machine learning base
line. This indicates that the sequential models could not iden
tify and extract functional information from the raw 
sequences. One possible explanation lies in the diversity of 
the human proteome. Sequences originated from diverse sets 
of protein families with very high dissimilarities to each 
other. Specifically, the 20 415 sequences were distributed in 
6961 clusters despite a minimum sequence identity of 10% 
and coverage of 10%. Forty-eight of all sequences were in 
clusters of size five or smaller. These properties make it chal
lenging for the model to rely solely on sequence information. 
Through pre-training, the model learns to extract meaningful 
features and capture functional information from evolution
ary conservation patterns, where distant sequences may still 
result in related function and structure.

Next, the prediction scores of the five individual models 
were aggregated and averaged. The resulting ensemble mod
els consistently improved upon the mean performance for all 
individual models of each underlying architecture (Table S1, 
second row within each method, available as supplementary 
data at Bioinformatics online). For TransFactor with fine- 
tuned backbone, we observed increases in AUROC from 0.87 
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to 0.89, APS from 0.27 to 0.30, and F1-score from 0.23 to 
0.38 through the aggregation of prediction scores. To gain 
an estimate of the expected hit rate during validation, we 
calculated the Precision of the Top-K predicted samples 
(Precision@K) (Fig. 1d). Except for the noisy lower K range, 
TransFactor consistently reached higher Precision@K values 
than the baseline methods. At typical experimental capacities 
of 50, 100, and 200, TransFactor had a precision of 0.44, 
0.37, and 0.28, respectively. Due to the condensed score and 
higher performance, we used the ensemble model for further 
analyses, unless otherwise indicated.

To further contextualize the performance of our computa
tional method, we evaluated the predictive power of experi
mental screens by using each one (excluding functional 
validation screens) from the review by Baggen et al. (2021) to 
correctly identify host factors from the full human proteome. 
We applied our labeling scheme, with a minor modification: 
the screen under evaluation was excluded from the labeling 
process. On average, experimental screens achieved an F1- 
score of 0.13 ± 0.11 (mean ± standard deviation), with a pre
cision of 0.60 ± 0.25 and a recall of 0.11 ± 0.13 (details in 
Table S7, available as supplementary data at Bioinformatics 
online).

3.2 GO-term enrichment reveals biological 
consistency in high-scoring uncertain proteins
To assess the potential of our model in guiding the selection 
of protein candidates from high-throughput screens with 
lower precision, we scored each protein from the candidate 
set with TransFactor. The resulting score distribution fell be
tween those of the positive and negative test samples 
(Fig. 1e). Eight hundred eighty-three of the 3936 candidates 
were predicted as potential host factors. High-throughput 
screenings are expected to yield many false positives, consis
tent with our prediction’s distribution. This indicates 
TransFactor’s potential to help distinguish prospective novel 
host factors from experimental noise, proposing a shortlist of 
candidates for further investigation.

Next, we evaluated TransFactor’s predictions using GO 
enrichment analysis to determine whether the model captures 
biological relevance and stratifies candidate proteins into 
promising and less promising ones. Enriched GO-term of pre
dicted host factors closely mirrored those of known positives, 
showing strong overlap across BP, MF, and CC categories 
[Fig. 2; Fisher’s exact test: BP (OR¼15.0, P-value¼ .0001), 
MF (OR¼ 9.23, P-value¼ .0395), and CC (OR¼ 4.67, 
P-value¼ .0663)]. By contrast, negatively predicted 
candidates exhibited little overlap [BP (OR¼ 0.16, 
P-value¼ .0780), MF (OR¼ 0.44, P-value¼ .4582), and CC 
(OR¼0.32, P-value¼ .6323)).

These results indicate that the model successfully captures 
the structural and functional organization of host factor pro
teins. This predictive capability could provide a valuable 
framework for prioritizing putative candidates for targeted 
experimental validation.

3.3 Computational alanine scan identifies domains 
important for the model’s prediction
To identify motifs and domains that were affecting the pre
dictions, we performed a computational alanine scan on the 
positive subset of proteins (Massova and Kollman 1999, 
Kortemme et al. 2004). We employed a broad range of win
dow sizes to introduce varying degrees of perturbations to 

protein sequences, enabling us to assess the impact of both 
small- and large-scale changes on prediction scores. This ap
proach allowed us to find a balance between the amplitude 
and resolution of the explanations.

First, we evaluated whether the model accurately captured 
the well-established principle that substituting amino acids 
with alanine often reduces protein functionality. Consistent 
with this concept, our results revealed a clear trend of de
creased prediction scores following alanine substitutions. 
Notably, this effect became more pronounced with increasing 
sizes of the alanine scan windows (Fig. 3a).

Furthermore, we mapped the alanine scan attribution 
scores to protein domains to assess if the model learned to 
specifically penalize the alanine substitutions in regions of 
proteins known to be functionally relevant. Notably, we ob
served a decrease in median attribution scores within protein 
domains enriched in the positive subset (Fig. 3b and Fig. 4a, 
available as supplementary data at Bioinformatics online). In 
contrast, domains less represented in positively labeled pro
teins showed almost no decrease in median attribution scores 
(Fig. 3c and Fig. 4a, available as supplementary data at 
Bioinformatics online). These findings strongly indicate that 
the model can distinguish protein sequences and regions that 
are more important for host factor classification and can 
learn from given exemplary sequences containing simi
lar regions.

After showcasing the general prevalence of the model to 
recognize the functionally important features of proteins, we 
took a detailed look at some domain types. Importantly, not 
all domains exhibited statistically significant decreases in 
their attribution scores in comparison to values across all 
scanned proteins (Fig. 4b, available as supplementary data at 
Bioinformatics online). While we observed the strongest de
crease upon introduction of alanine substitutions in copper 
metabolism gene MURR1 (COMM) domains (Fig. 3d), phox 
homology (PX) domains (Fig. 3e), and RNA recognition 
motifs (RRM) (Fig. 3f), we did not observe this for many 
other domains such as Helicase C-terminal domains (Fig. 3g). 
Particularly striking was the strong decrease in attribution 
scores for the COMM domains of COMMD proteins. In 
humans, there are 10 COMMD proteins, which encode a 
COMM domain. Seven of them were previously shown to 
play a role in SARS-CoV-2 infection (Zhu et al. 2021) and 
thereby were contained in our positive set (COMMD2/3/4/5/ 
7/8/10) (Baggen et al. 2021). COMMD proteins, together 
with CCDC22 and CCDC93, form the CCC complex, which, 
together with the retriever complex (VPS35L, VPS26C, 
VPS29), forms the commander complex, involved in the 
endosomal cargo trafficking and recycling (Healy et al. 
2023). COMMD proteins, as well as proteins and assemblies 
related to these processes, were previously shown to be 
SARS-CoV-2 host factors (Baggen et al. 2021), but to the 
best of our knowledge, no specific parts of these proteins are 
so far known to be critical for this functionality. COMMD 
proteins, except COMMD6, were among the top predicted 
host factors by TransFactor and had prediction scores be
tween 0.75 and 0.98. Interestingly, our alanine scan results, 
in particular evident for the lower range of alanine scan win
dow sizes, suggested that the relatively poorly conserved C- 
terminal part of the COMM domain in COMMD4 (Fig. 3h) 
and other COMMD proteins (Fig. 3i–j and Fig. 5, available 
as supplementary data at Bioinformatics online) may play a 
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central role in their ability to support SARS-CoV-2 replica
tion as host factors.

4 Discussion
The COVID-19 pandemic has resulted in unprecedented so
cioeconomic disruptions and more than 6 million lost lives. 
Despite the need for effective antiviral therapies, we still do 
not fully understand the molecular basis of SARS-CoV-2 in
fection. Virology relies on experimental studies of virus–host 
interactions, but dataset heterogeneity and practical chal
lenges, such as high virulence or hard-to-culture viruses, limit 
comprehensive characterization of host factors and their role 
in infection etiology and progression. High-throughput meth
ods are often infeasible for some viruses or poorly followed 
up due to resource constraints, underscoring the need for 
computational models to predict and prioritize key interac
tions from limited and noisy data. Emerging AI technologies, 
such as sequence-based deep learning models, offer signifi
cant potential to uncover critical host factors that facilitate 
viral infections. Inspired by the success of PLMs, we devel
oped TransFactor—a transformer-based method for predict
ing virus host factors based on protein sequence information 
and a limited set of experimentally determined host factors. 
By leveraging pre-trained PLM’s feature extraction capabili
ties and fine-tuning on the classification task of distinguishing 
SARS-CoV-2 host factors from non-host factors, TransFactor 
outperformed machine and deep learning baseline methods. 
Candidate host factors prioritized by TransFactor showed 
similar GO-term enrichments as known host factors, giving 
more confidence in the model’s capability to rank and priori
tize proteins. Through a computational alanine scan, 
TransFactor could identify domains important for the predic
tion, helping to understand the molecular basis underlying 
host factors.

However, TransFactor faces limitations that present op
portunities for improvement in future work. Currently, 

TransFactor’s input is truncated to 1024 amino acids for 
efficient training and inference of the model, which may omit 
important C-terminal regions relevant for host–virus interac
tions. To assess this, we reevaluated our trained models on 
the test proteins truncated at 2048, increasing the coverage 
from 90% to 98%. This yielded a slight improvement in five 
out of eight performance metrics (Table S8, available as sup
plementary data at Bioinformatics online). Nevertheless, as 
computational resources grow drastically with sequence 
length, and practical implications for large proteins (longer 
than 1000), including reduced sequencing fidelity, expression 
strength, and detection by Western blot, we adopted the 
shorter length for this work. To further mitigate these 
aspects, we plan to explore random cropping during training, 
memory-efficient methods like FlashAttention (Dao et al. 
2022), and fine-tuning on longer sequences in the future.

To effectively train and employ deep learning models, an 
extensive amount of labeled data, i.e. known host factors, is 
needed. Such data is not universally available for many vi
ruses, originates from a variety of strains, and was acquired 
in different infection models. However, transfer learning and 
domain adaptation techniques could leverage data from 
closely related viruses to make predictions for those with lim
ited or no known host factors. Transferability depends pri
marily on the similarity of pathways and biochemical 
processes the viruses need for their life cycles and the result
ing set of host factors. The overlap and divergence of essen
tial host processes could give an estimate for the success of 
the transfer. Yet, for most viruses, these factors are not 
known in sufficient depth. Instead, the genetic similarity and 
evolutionary proximity can serve as a proxy. To demonstrate 
this, we used our TransFactor model trained on SARS-CoV-2 
host factors to predict host proteins interacting with SARS- 
CoV viral proteins as a proxy for its host factors (N¼612, 
Stukalov et al. 2021) without fine-tuning. While the perfor
mance declined as expected, we were able to recall 42% of 
SARS-CoV, indicating the potential to prioritize host factors 

Figure 2. GO-term enrichment was performed on the positively labeled proteins (using all proteins as background), and on the candidate proteins (taking 
all candidate proteins as background) predicted as positive (by > τ) and negative (by ≤ τ). The enrichment analysis was performed separately for all three 
gene ontologies, and terms significant for at least one gene set are displayed. Venn diagrams show the overall and overlapping number of enriched terms 
in and between the three sets.
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for phylogenetically related viruses. In contrast, the model 
failed to identify putative host factors (N¼ 368, Montoya 
et al. 2023) of the phylogenetically distant HIV with a recall 
of 18% (details in Table S9, available as supplementary data
at Bioinformatics online).

Moreover, TransFactor currently relies exclusively on pri
mary sequence information, which makes classifying proteins 
with low homology to the training data particularly challeng
ing. Integrating orthogonal data, such as the tertiary struc
ture, may provide the model with additional valuable insights 
into protein functionality, alleviating the problem of low se
quence homology. Similarly, incorporating additional experi
mental information such as peptide-level abundances, 
phosphorylation, and ubiquitination events obtained by LC– 
MS/MS-based proteomics may allow the model to access sig
naling perturbations instigated by the invading pathogen, 
allowing it to consider cellular signaling state on one or more 
functional layers. As proteins rarely act in isolation, incorpo
rating protein–protein interaction network data could add a 
higher-order layer to the model, capturing complex biological 
processes. These additional data modalities could help ad
dress current challenges, such as low F1 scores, by identifying 

features not captured by sequence information alone and ex
pand the generalizability to related and potentially more dis
tant viruses. Addressing label noise and the high imbalance in 
existing host factor datasets through further low-throughput 
functional studies and explicit modeling of label uncertainty 
could also improve the model’s discriminative performance. 
Ultimately, experimental validation of TransFactor’s predic
tions through functional screens will be essential. The results 
of such experiments could further enhance the model in an 
active learning, lab-in-the-loop setting. While we presented a 
proof-of-concept on SARS-CoV-2 host factors, further evalu
ations on other diseases are necessary to assess the generaliz
ability of TransFactor.

In summary, we have shown that TransFactor can reliably 
identify and rank host factor proteins. Combined with a com
putational alanine scan, TransFactor enables the detailed 
analysis and interpretation of how specific amino acid motifs 
contribute to pro-viral pathogenesis. This approach provides 
valuable insights at a meaningful scale, offering a robust 
foundation for generating hypotheses that can be further 
tested in appropriate experimental models, facilitating the ad
vancement of our biological understanding of viral infectious 

Figure 3. Computational alanine scans were performed using indicated amino acid window sizes for all positives. (a) Density plot depicting Δby Ala 
attribution values. (b, c) Domains that were present more, (b) or less, or equal (c) than five times in the positive samples, were used for depicting the 
median Δby Ala with respect to amino acid positions relative to the domain start. (d–g) Similar to (b, c), but only the three domains with the highest absolute 
average Δby Ala attribution scores—COMM (d), PX (e), RRM (f)—and a domain with neutral Δby Ala—Helicase C-terminal (g)—were used. (h) Prediction 
scores for protein COMMD4 (protein structure PDB: 8F2R). Light orange—COMM domain; dark orange—amino acid positions, where prediction values 
are below 0.4 for all alanine scan window sizes. (i) Structure of the 10-protein complex consisting of COMMD1-10 (PDB: 8F2R)—regions where 
Δby Ala< − 0:5 for alanine scan window size of 40 are highlighted in pink; similarly, regions in which this condition is satisfied for alanine scan window size 
of 10 are further highlighted in red. (j) Bottom: amino acid sequences of proteins COMMD1–10 were aligned using ClustalOmega (Madeira et al. 2024). 
Top: alanine scan prediction values (by Ala) were corrected according to the depicted alignment and plotted for the indicated proteins (alanine scan window 
size of 10) alongside the 10-letter amino acid alphabet normalized entropy (0 indicates low conservation, 1 indicates high conservation). Amino acids 
corresponding to the COMMD4 positions 172–199 (panel h, dark orange) are shown. Unless otherwise specified, individual panels reuse color coding 
from panel (a).
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diseases, and providing a valuable resource to guide rational 
antiviral design.
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