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The field of computational pathology has been transformed with 
recent advances in foundation models that encode histopathology 
region-of-interests (ROIs) into versatile and transferable feature 
representations via self-supervised learning. However, translating these 
advancements to address complex clinical challenges at the patient and slide 
level remains constrained by limited clinical data in disease-specific cohorts, 
especially for rare clinical conditions. We propose Transformer-based 
pathology Image and Text Alignment Network (TITAN), a multimodal 
whole-slide foundation model pretrained using 335,645 whole-slide images 
via visual self-supervised learning and vision-language alignment with 
corresponding pathology reports and 423,122 synthetic captions generated 
from a multimodal generative AI copilot for pathology. Without any 
fine-tuning or requiring clinical labels, TITAN can extract general-purpose 
slide representations and generate pathology reports that generalize to 
resource-limited clinical scenarios such as rare disease retrieval and cancer 
prognosis. We evaluate TITAN on diverse clinical tasks and find that it 
outperforms both ROI and slide foundation models across machine learning 
settings, including linear probing, few-shot and zero-shot classification, rare 
cancer retrieval, cross-modal retrieval and pathology report generation.

Foundation models are transforming computational pathology by 
accelerating the development of AI tools for diagnosis, prognosis and 
biomarker prediction from digitized tissue sections1. Developed using 
self-supervised learning (SSL) on millions of histology image patches 
(or regions of interests), these models capture morphological pat-
terns in histology patch embeddings, such as tissue organization and 
cellular structure2–17. These representations serve as a ‘foundation’ 
for models that predict clinical endpoints from whole-slide images 

(WSIs), such as diagnosis or biomarker status18–38. However, translating 
the capabilities of current patch-based foundation models to address 
patient- and slide-level clinical challenges still remains complex due 
to the immense scale of gigapixel WSIs, compounded by the small 
size of patient cohorts in real-world evidence39–42, especially for rare 
diseases with limited training data43–45. Similarly, given a diagnosti-
cally challenging WSI, retrieving a similar WSI via slide search5,46–53 or 
pathology reports through cross-modal report search10,54–56 typically 
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levels of performance compared to existing slide foundation models, 
particularly in low-data regimes, language-guided zero-shot clas-
sification and rare cancer retrieval. Additionally, we demonstrate 
the utility of pretraining with synthetic fine-grained morphological 
descriptions, suggesting the scaling potential of TITAN pretraining 
with synthetic data89–91. Through comprehensive evaluation across a 
large range of clinical tasks, including the application to rare cancer 
retrieval, we demonstrate the efficacy of our vision-language pretrain-
ing approach, showcasing the general-purpose capability of our slide 
foundation model.

Results
Scaling SSL from histology patches to whole-slide  
images (WSIs)
TITAN is a Vision Transformer (ViT)92 that creates a general-purpose 
slide representation readily deployable in diverse clinical settings. It 
is pretrained on an internal dataset (termed Mass-340K) consisting 
of 335,645 WSIs and 182,862 medical reports (Fig. 1a). To ensure the 
diversity of the pretraining dataset, which has proven to be a key fac-
tor in successful patch encoders21, Mass-340K is distributed across 20 
organs, different stains, diverse tissue types and scanned with various 
scanner types (Fig. 1a and Supplementary Table 1). The pretraining 
strategy consists of three distinct stages to ensure that the resulting 
slide-level representations capture histomorphological semantics both 
at the ROI-level (4 × 4 mm2) and at the WSI-level with the help of visual 
and language supervisory signals—stage 1, vision-only unimodal pre-
training with Mass-340K on ROI crops (Fig. 1b,c), stage 2, cross-modal 
alignment of generated morphological descriptions at ROI-level (423k 
pairs of 8k × 8k ROIs and captions) and stage 3, cross-modal alignment 
at WSI-level (183k pairs of WSIs and clinical reports; Fig. 1d; see Methods 
for more details). For ease of notation, we refer to the model pretrained 
with vision-only in stage 1 as TITANV and to the full model after all three 
stages of pretraining as TITAN.

The cornerstone of our approach is emulating the patch encoder 
designed for input patch images at the slide level. Instead of using 
tokens from a partitioned image patch, the slide encoder takes a 
sequence of patch features encoded by powerful histology patch 
encoders4,7–14,58. Consequently, all of TITAN pretraining stages occur 
in the embedding space based on pre-extracted patch features, with 
the patch encoder assuming the role of the ‘patch embedding layer’ 
in a conventional ViT (Fig. 1b). To preserve the spatial context of each 
patch and consequently enable the use of positional encoding in 
the embedding space, the patch features are spatially arranged in a 
two-dimansional (2D) feature grid replicating the positions of the 
corresponding patches within the tissue (Fig. 1c). Following the suc-
cess of masked image modeling and knowledge distillation in patch 
encoders21, we apply the iBOT86 framework for vision-only pretraining 
of TITAN on the 2D feature grid.

While the conceptual transition to slide-level is simple, this pre-
sents a new set of model design and pretraining challenges as follows: 
(1) handling long and variable input sequences (>104 tokens at slide-level 
versus 196 to 256 tokens at the patch-level), (2) creating multiple views of 
one sample for SSL and (3) ambiguity over positional encoding schemes 
that capture local and global context in the tissue microenvironment. 
First, to tame the computational complexity caused by long input 
sequences, we construct the input embedding space by dividing each 
WSI into nonoverlapping patches of 512 × 512 pixels (instead of widely 
used 256 × 256 pixels) at ×20 magnification, followed by the extrac-
tion of 768-dimensional features for each patch with CONCHv1.5, the 
extended version of CONCH10. To address the issue of large and irregu-
larly shaped WSIs, we create views of a WSI by randomly cropping the 
2D feature grid (Fig. 1c). Specifically, a region crop of 16 × 16 features 
covering a region of 8,192 × 8,192 pixels is randomly sampled from the 
WSI feature grid. From this region crop, two random global (14 × 14) 
and ten local (6 × 6) crops are sampled for iBOT pretraining. We further 

requires specialized algorithms to bridge the gap between fine-grained 
patch embeddings and slide-level information, introducing hurdles 
to clinical adoption.

To overcome these limitations, new types of foundation models 
have recently been proposed for encoding entire WSIs into slide-level 
general-purpose feature representations57–72. Instead of training an 
additional model on top of patch embeddings from scratch34,73–80, 
these whole-slide representation models can be pretrained to distill 
pathology-specific knowledge from large WSI collections, simplifying 
clinical endpoint prediction with their off-the-shelf application. The 
outstanding challenge then becomes developing whole-slide founda-
tion models that faithfully encode the tissue microenvironment based 
on a set of patch embeddings while also handling arbitrarily large WSIs. 
Although relatively underexplored, slide-level self-supervision can 
be performed with vision-only pretraining, either through masked 
image reconstruction58 or intraslide contrastive learning59,60,81, or in a 
multimodal fashion involving pathology reports, bulk transcriptomics, 
or immunohistochemistry (IHC)61–64,66,67,82. Furthermore, long-range 
context modeling can either be neglected, essentially treating a WSI 
as a bag of independent features59,62–64,72,83, or explicitly modeled using 
Transformers57,58,60,61. With efforts to learn general-purpose slide repre-
sentations intensifying, we believe that adapting successful patch-level 
recipes to the entire WSI would lead to powerful general-purpose 
slide representations.

Despite their widespread application potential, previous works 
on pretraining slide foundation models have several shortcomings. 
First, these models are predominantly pretrained using vision-only 
modeling57,59,60, which neglects not only rich supervisory signals 
found in pathology reports but also precludes multimodal capabili-
ties such as zero-shot visual-language understanding and cross-model 
retrieval—a fundamental hallmark in foundation models84,85. Second, 
whereas current patch foundation models are trained with millions 
of histology image patches, slide foundation models are developed 
with orders of magnitude fewer samples and limited optimization 
of SSL recipes, leading to slide representations with restricted gen-
eralization capability58,62,82,83. Even with multimodal techniques such 
as vision-language pretraining that augment the pretraining data-
set with pathology reports, current slide foundation models still 
require end-to-end training or fine-tuning and lack the capability of 
learning transferable slide representations for challenging clinical 
scenarios58,82,83. Finally, the current models are nascent in transform-
ing pathology AI model development due to their limited evalua-
tions in diagnostically relevant settings, such as few-shot learning or 
slide retrieval.

Here, we introduce Transformer-based pathology Image and Text 
Alignment Network (TITAN), a multimodal whole-slide vision-language 
model designed for general-purpose slide representation learning in 
histopathology. Building on the success of knowledge distillation and 
masked image modeling86,87 for patch encoder pretraining21,22, TITAN 
introduces a large-scale pretraining paradigm that leverages millions 
of high-resolution region-of-interests (ROIs; at 8,192 × 8,192 pixels at 
20× magnification) for scalable WSI encoding. Trained using 336k WSIs 
across 20 organ types, vision-only TITAN produces general-purpose 
slide representations that can readily be applied to slide-level tasks 
such as cancer subtyping, biomarker prediction, outcome prognosis 
and slide retrieval tasks, outperforming supervised baselines and 
existing multimodal slide foundation models. To augment TITAN with 
language capabilities, we further fine-tune it by contrasting with 423k 
synthetic fine-grained ROI captions generated using PathChat88, a 
multimodal generative AI copilot for pathology and with 183k pathol-
ogy reports at the slide level. By leveraging free-text morphological 
descriptions, TITAN gains the ability to generate pathology reports, 
perform zero-shot classification and enable cross-modal retrieval 
between histology slides and clinical reports. Pretraining TITAN on 
an extensive repository of multimodal pathology data unlocks higher 
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Fig. 1 | Overview of TITAN. a, Tissue site distribution of Mass-340K used for 
TITANV pretraining (stage 1). Mass-340K includes 335,645 WSIs across 20 organs 
with a mix of tissue sections stained with H&E (89.7%), IHC (7.9%), special stains 
(2.3%) and others (0.1%) or a mix of neoplastic (70.0%), tissue damage response 
(8.4%), normal (4.7%), inflammatory (3.4%) and others (13.5%) scanned with 
diverse scanner types. TITAN pretraining (stages 2 and 3) uses a subset of Mass-
340K with paired captions and medical reports. b–d, Block diagram of TITANV 

pretraining. b, TITAN uses a ViT to encode a WSI into a slide embedding. c, TITANV 
(stage 1) is pretrained using SSL with student–teacher knowledge distillation. 
d, TITAN (stage 2 and 3) is pretrained using vision-language modeling, first by 
aligning the slide embedding with synthetic captions (stage 2) and then with 
medical reports (stage 3). e, UMAP visualization of TCGA slide embeddings 
obtained with TITAN, color-coded by organ. UMAP, uniform manifold 
approximation and projection; px, pixel.
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augment these feature crops with vertical and horizontal flipping, 
followed by posterization feature augmentation93. Finally, to ensure 
that the limited context pretraining translates to slide-level tasks, we 
use attention with linear bias (ALiBi) for long-context extrapolation of 
TITAN at inference time94. Originally proposed for long-context infer-
ence in large language models, we extended ALiBi to 2D, where the linear 
bias is based on the relative Euclidean distance between features in the 
feature grid, which reflects the actual distances between patches in the 
tissue (Supplementary Tables 2 and 3; see Methods for more details).

To equip our model with language capabilities, we implement two 
additional multimodal and multiscale pretraining strategies (stages 
2 and 3) using a subset of Mass-340K (Fig. 1d). These stages leverage 
language descriptions that exist at multiple morphological scales, 
from fine-grained descriptions in pathologist annotations or text-
books at the patch- or region-level (stage 2) to high-level descriptions 
in pathology reports at the slide-level (stage 3). For both stages, we use 
contrastive captioners (CoCa)95 as the pretraining strategy that aligns 
ROI and slide representations with the corresponding captions and 
reports, while generating accurate descriptions at ROI-level or reports 
at slide level, respectively. The slide encoder (weights initialized with 
TITANV), the text encoder and the multimodal decoder are all finetuned 
as part of the pretraining. In stage 2, we pretrain TITANV with 423,122 
pairs of 8,192 × 8,192 pixels ROIs and synthetic captions generated by 
the vision-language copilot PathChat88. In stage 3, we further pretrain 
the model with 182,862 pairs of WSIs and corresponding pathology 
reports, resulting in our final model TITAN (see Methods for more 
details; Supplementary Tables 4–10).

TITAN improves region and slide-level diagnostic capabilities
We evaluate TITAN, TITANV and existing slide encoders on a large set of 
diverse slide-level tasks, including morphological subtyping and molec-
ular classification by linear probing on the frozen slide embeddings. 
For tasks with multiple cohorts available, we perform cross-validation 
on one cohort, for example, from The Cancer Genome Atlas (TCGA)96,97, 
and use the remaining cohorts, for example, from Clinical Proteomic 
Tumor Analysis Consortium (CPTAC)98,99 or Dartmouth-Hitchcock 
Medical Center (DHMC)100,101, as an external test cohort. As baselines, we 
compare to recent publicly available slide foundation models, PRISM62, 
GigaPath63 and CHIEF83. These models employ different slide-level 
pretraining strategies (PRISM, WSI-report contrastive pretraining; 
GigaPath, masked image reconstruction pretraining; CHIEF, super-
vised contrastive learning of cancerous versus noncancerous WSIs), 
different patch-level encoders (PRISM and GigaPath, 256 × 256 pixels at 
×20 magnification; CHIEF, 256 × 256 pixels at ×10 magnification) and a 
varying number of WSIs for pretraining (PRISM, 1.7×; GigaPath, 0.49×; 
CHIEF, 0.18× the WSIs used for TITAN pretraining). Except for CHIEF, the 
pretraining datasets of TITAN (Mass-340K), PRISM and GigaPath do not 
include TCGA and PANDA, which allows us to use these two datasets as 
benchmarking tasks without concern for data leakage102. Additionally,  
we compare our approach with mean pooling using the same  
CONCHv1.5 patch encoder as TITAN, a simple yet powerful unsuper-
vised slide representation framework65,66,103.

Furthermore, for a comprehensive evaluation of the baselines, we 
introduce two tumor classification tasks based on the publicly avail-
able repository TCGA with the following two different context lengths:  
(1) main cancer type classification on ROIs (TCGA-Uniform-Tumor-8K 
or TCGA-UT-8K), a ROI-level cancer subtyping task with 32 classes, 
where we manually curated 25,495 tumor-containing regions of 
8,192 × 8,192 pixels at ×20 magnification (~4 × 4 mm2) across TCGA, 
covering the same tissue context as the region crops in TITANV pre-
training (Extended Data Fig. 1 and Supplementary Table 11) and (2) a 
slide-level pan-cancer classification (TCGA-OncoTree or TCGA-OT) task 
of OncoTree codes104 with 46 classes, consisting of 11,186 formalin-fixed 
paraffin-embedded (FFPE) WSIs from TCGA (Supplementary Table 12; 
see Methods for more details).

We first assess how the pretraining data scale affects the down-
stream performance of TITANV, focusing on the four subtyping tasks—
TCGA-UT-8K, TCGA-OT, OT108 and EBRAINS. The purpose of these 
multiclass classification tasks is to assess the generalizability and 
richness of feature representations across diverse diagnostic classes. 
We observe that the performance increases on all four tasks as more 
pretraining data is used, where TITANV with full Mass-340K exhibits an 
average increase of 3.65%, 3.21% and 1.21%, compared to 12.5%, 25% and 
50%, respectively, of Mass-340K, where the same distribution across 
the organs was maintained (Fig. 2a and Supplementary Tables 13–16). 
Despite the difference in pretraining recipes, we observe the same gen-
eral trend for the three other slide encoders, where PRISM outperforms 
GigaPath and CHIEF by 9.01% and 20.1% on average, having 3.4 times and 
9.7 times the number of pretraining WSIs, respectively. Furthermore, 
we observe that TITAN and TITANV, with 48.5 million and 42.1 million 
parameters, outperform heavier slide encoders PRISM and GigaPath, 
with 99.0 million and 86.3 million parameters, demonstrating superior 
parameter efficiency of our model (Fig. 2b).

We next evaluate TITAN on a range of clinically relevant tasks 
that span morphological classification (14 tasks), grading (3 tasks), 
molecular classification (39 tasks) and survival prediction (6 tasks; 
Supplementary Tables 17–21). On average, we observe that TITAN 
and TITANV outperform other slide encoders (Fig. 2c), demonstrat-
ing the superior slide representation quality of our models. In par-
ticular, TITAN significantly outperforms all existing slide encoders 
in morphological subtyping tasks across the entire spectrum of 
diagnostic complexities, including fine-grade pan-cancer classifi-
cation (challenging morphological classification tasks, as shown in 
Fig. 2c) and noncancerous tasks, such as cardiac allograft assessment 
(cellular-mediated rejection) and renal allograft assessment (anti-
body and cellular-mediated rejection). TITAN and TITANV achieve 
an average of +8.4% and 6.7%, respectively, in performance on mul-
ticlass (balanced accuracy) and binary subtyping tasks (area under 
the receiver operator curve (AUROC)) over the next best-performing 
model, PRISM (Fig. 2c and Supplementary Tables 22–33). In particular, 
TITANV (and TITAN) not only outperforms others on TCGA-UT-8K 
with 8k × 8k context that the model was trained on (+6% and 7.5% 
over PRISM) but also on WSI-level tasks that involve the entire tissue 
context, where TITANV benefits from the long-context extrapolation 
via ALiBi, for example, TCGA-OT (+7% and 9.5% over PRISM), OT108 
(+10% and 16% over PRISM) and EBRAINS (+9% and 9.1% over PRISM). 
Even with other nonparametric evaluations with prototyping105,106 
and 20 nearest-neighbor evaluation, which predicts each WSI’s label 
based on the proximity to other WSI embeddings in the embedding 
space, we observe that TITAN and TITANV maintain superior per-
formance Supplementary Tables 22–33. On grading tasks, TITAN 
outperforms the next best models CHIEF on average by +3.2% and 
PRISM by +4% in quadratic-weighted Cohen’s κ, where the high 
performance of CHIEF can be attributed to including the dataset 
PANDA in pretraining (Supplementary Tables 34–36). To evaluate the 
molecular classification performance, we tested the model on tasks 
from public datasets (BCNB and MUT-HET) and internal–external 
paired public datasets (TCGA, CPTAC and EBRAINS), on IHC tasks, 
and MGB internal molecular tasks (Fig. 2c, Extended Data Fig. 2 and 
Supplementary Tables 37–63). Averaged across all molecular tasks, 
TITAN significantly outperforms its mean baseline on CONCHv1.5 
features, GigaPath and CHIEF (P < 0.0001).

On survival prediction tasks, we observe that TITAN and TITANV 
are generally the best-performing baselines, outperforming the next 
best-performing model CHIEF by +3.62% and +2.90%, respectively, on 
concordance index for disease-specific survival97 although CHIEF was 
pretrained on TCGA slides (Supplementary Table 64). Interestingly, 
the mean pooling baseline shows competitive performance, suggest-
ing that the proportion of different morphological phenotypes is an 
important prognostic factor65,103.
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To further understand how the slide embedding space is organ-
ized and consequently affects the downstream performance, we visu-
alize UMAP embeddings of WSIs from TCGA-OT colored by organ 

type, showing that TITAN and TITANV form distinct organ clusters 
(for example, breast further separated from bladder, stomach and 
lung) better separated than with other slide encoders (Fig. 1e and 
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12.5%, 25%, 50% and 100% of Mass-340K. b, The average performance of the four 
tasks against the number of parameters. c, Linear probe evaluation of TITAN 
and baselines on morphological classification, molecular status and survival 
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is averaged across the four subtyping tasks. e, Change in performance of slide 
encoders averaged across the four subtyping tasks for different learning 
paradigms. For mean pooling and ABMIL, the respective patch encoder for each 
framework is used. PRISM fine-tuning is not evaluated as the fine-tuning recipes 
are not provided. f, Linear probe few-shot performance using K shots, K ∈ {1, 2, 
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effects model and two-sided Wald z test on the fitted model. Significance shown 
with respect to TITAN. P values for nonsignificant results are shown. **P ≤ 0.01, 
***P ≤ 0.001, ****P ≤ 0.0001. C, number of classes; Ft., fine-tune.
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Extended Data Fig. 3). To investigate the robustness of TITAN to 
nonmorphology-related effects (that is, batch effects), we evaluate 
how well slide representations from TCGA-OT cluster according to 
tumor type, organ and TCGA submission site. Both TITAN and TITANV 
mix submission sites well, while performing best in clustering them by 
biological factors, which suggests superior generalization capabilities 
(Extended Data Fig. 4). For interpretability analysis, we visualize atten-
tion heatmaps derived from the Transformer attention heads. The 
heatmaps indicate that different heads focus on distinct morphological 
regions such as dense tumor, tumor-adjacent stroma and nontumor 
regions, with majority of the heads focusing on dense tumor, consist-
ently across multiple inputs (Extended Data Fig. 5).

To assess the calibration and the confidence of predictions from 
TITAN, we implement the expected calibration error (ECE)107 and 
entropy-based confidence score, and average both metrics across 
the four challenging subtyping tasks. Again, we observe that TITAN 
and TITANV achieve the best calibration and the highest confidence 
prediction (Supplementary Table 65).

Finally, to better understand how our model choices affect the 
downstream performance, we perform ablation experiments on the 
following four design choices of TITAN: the positional encoding, the 
number of transformer layers in TITANV, the inclusion of vision pre-
training and the region size in vision-only pretraining (Fig. 2d and 
Supplementary Tables 66–77; see Methods for more details). Aver-
aged across the four challenging subtyping tasks, our results demon-
strate that ALiBi positional encoding outperforms original absolute 
positional encoding92 by +1.89%, six transformer layers provide best 
performance compared to 12 layers (+1.16%) and 4 layers (+1.74%), 
vision pretraining improves results by +2% over vision-language 
alignment alone, and a region size of 8,1922 achieves the best balance 
between performance (+3.6% over smaller regions of 4,0962) and 
computational efficiency.

Comparison with different learning paradigms for  
slide encoding
To further assess the quality of the slide embeddings and how applica-
tion settings affect downstream performance, we evaluate different 
learning paradigms by comparing the linear probe performance of each 
slide encoder against other MIL models comprised of mean pooling, 
that is, averaging the patch embeddings, attention-based MIL (ABMIL)73 
and task-specific fine-tuning of the slide encoder from random or pre-
trained weights. For mean pooling and ABMIL, we use respective patch 
encoders for each slide encoder. This allows us to gauge whether the 
pretrained slide encoders have learned meaningful slide representa-
tions and outperform the simple yet powerful unsupervised (mean 
pooling) and supervised (ABMIL) baselines, neither of which involves 
large-scale pretraining.

We observe several trends with TITAN (Fig. 2e, Extended Data Fig. 6 
and Supplementary Tables 78–81). First, ABMIL outperforms mean 
pooling, as expected, since ABMIL is supervised and equivalent to 
weighted averaging of the patch features. Next, the linear probe out-
performs ABMIL, demonstrating that multimodal self-supervised 
pretraining of TITAN and TITANV effectively captures the contextual 
and semantic morphological details of the slide. This further sug-
gests that our task-agnostic slide embeddings are better equipped for 
downstream tasks than task-specific supervised slide embeddings. 
Finally, we observe that task-specific fine-tuning of TITAN leads mostly 
to performance improvement over linear probe of TITAN and TITANV 
while fine-tuning the slide encoder from randomly initialized weights 
yields lower performance (-3.63% on average). This suggests that the 
pretrained weights of TITANV can serve as a good initialization for 
task-specific training, in line with previous works62,64. One exception 
is OT108, which could be attributed to the small number of samples 
for each class (ranging from 4 to 42), which may lead to overfitting. 
However, we observe that other slide encoders do not necessarily 

follow such important trends, possibly suggesting suboptimal model 
pretraining and lack of generalizability.

Few-shot learning for low-data regime
We also evaluate the data-constrained setting of few-shot learning, 
where only a few samples for each category are provided within the 
linear probe setting (Fig. 2f; see Methods for more details). We observe 
that TITAN significantly outperforms all other encoders across differ-
ent tasks and the number of shots (P < 0.0001), demonstrating strong 
generalizability. TITANV is the second-best-performing model, again 
underscoring that vision-language alignment benefits the downstream 
task performance. Notably, TITAN and TITANV exhibit especially high 
performance in one-shot learning, on par with other slide encoders 
trained on more shots (Supplementary Tables 82–85). Specifically, 
TITAN and TITANV outperform CHIEF by 22.4% and 13.5% (TCGA-UT-8K) 
and 18.7% and 6.8% (TCGA-OT), respectively, on 16 shots, although 
CHIEF has been pretrained on TCGA slides.

Interestingly, both TITAN and TITANV also outperform ABMIL with 
the same patch encoder across all settings, particularly in lower-shot 
settings. The largest gap for 1-shot is observed in the OT108 task, where 
TITAN outperforms ABMIL by 56.7%, with similar trends in prototyp-
ing evaluation (Supplementary Tables 86–89). Such superior data 
efficiency suggests that TITANV can excel in rare cancer settings with a 
limited number of samples, such as OT108 in our benchmark, without 
the need for task-specific fine-tuning.

Language-aligned TITAN enables cross-modal capabilities
We further assess the language capabilities of TITAN by aligning the slide 
representations of TITANV to language-based morphological descrip-
tions. Specifically with TITAN, we assess the cross-modal zero-shot 
classification55,56,108 and report-generation capabilities and study the 
effect of stage 2 pretraining for caption alignment with fine-grained 
morphological descriptions and stage 3 pretraining with coarse clinical 
reports of relevant microscopic findings.

To evaluate the quality of vision-language alignment, we first 
perform cross-modal zero-shot experimentation on 13 subtyping 
tasks of varying difficulties comparing with PRISM, also equipped with 
cross-modal capabilities (Fig. 3a). In zero-shot classification, the diag-
nostic labels expressed as text prompts (Supplementary Tables 90–96)  
are encoded with the text encoder. The diagnostic prediction of 
the query slide is decided by the closest label embedding to the 
TITAN-encoded slide embedding, based on ℓ2 distance in the embed-
ding space. We observe that TITAN performs the best across these 
tasks, significantly outperforming PRISM by a large margin on mul-
ticlass classification tasks (balanced accuracy +56.52%) and binary 
subtyping tasks (AUROC +13.8%), for both cancer subtyping tasks 
and noncancerous tasks (Fig. 3b and Supplementary Tables 97–109). 
The performance gap between TITAN and PRISM is the widest on 
the 30-class EBRAINS subtyping task, where the balanced accuracy 
of TITAN is more than double that of PRISM (balanced accuracy 
of +121.9%).

To understand how different design considerations affect the 
zero-shot performance, we ablate over pretraining stages and the slide 
encoder architecture (Fig. 3c). In total, we experiment with four vari-
ations of TITAN and present the average performance over four chal-
lenging subtyping tasks, TCGA-UT-8K, TCGA-OT, OT108 and EBRAINS 
(individual results can be found in Supplementary Tables 110–113). 
We observe that TITAN maintains the best overall zero-shot perfor-
mance. Of the three pretraining stages, stage 1 vision pretraining 
contributes the least (balanced accuracy of −0.4% against TITAN), 
followed by stage 2 ROI caption alignment (−3.6% against TITAN) 
and stage 3 slide-report alignment (−7.3% against TITAN). This 
underscores the importance of aligning vision and language at both 
fine-grained and global levels, thereby combining the insights inde-
pendently derived at patch-level7,10 and slide-level58,62,72, which is 
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lacking in report-only aligned baselines such as PRISM and GigaPath. 
Finally, a multiheaded ABMIL (MH-ABMIL) network, serving as the 
vision backbone with vision-language alignment pretraining, lags 
behind TITAN with and without vision pretraining by 1.94% and 1.54%, 
respectively. This indicates that the ViT architecture, incorporating 
self-attention and ALiBi, provides better downstream performance 
than attention-based alternatives.

Finally, we assess TITAN’s capabilities of generating pathologi-
cal reports, using the text decoder trained during CoCa pretrain-
ing. To this end, we introduce a report-generation task on TCGA, 

TCGA-Slide-Reports, consisting of 10,108 FFPE WSIs with paired 
slide-level reports parsed from 9,523 patient-level TCGA reports 
released by a previous study109 (see Methods for more details). We 
evaluate the models using three metrics METEOR110, ROUGE111 and 
BLEU112. We observe that TITAN outperforms PRISM by a large margin, 
on average by 161% across the three metrics (Fig. 3d). Examples of the 
generated reports for TITAN considered high-quality by the patholo-
gists are shown in Fig. 3e, often capable of correctly capturing key 
attributes such as tissue site, diagnosis and tumor grade as well as key 
representative morphology (Extended Data Fig. 7).
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Fig. 3 | Visual-language evaluation of TITAN. a, A schematic for zero-shot 
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different pretraining strategies, and assessed with zero-shot performance 
averaged across TCGA-UT-8K, TCGA-OT, OT108 and EBRAINS. Evaluations are 

based on the percentage changes of balanced accuracy from the reference zero-
shot performance of TITAN. d, Report-generation evaluation on TCGA-Slide-
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TITAN enables rare cancer retrieval and cross-modal retrieval
Consulting cases with similar morphological features and diagnoses is 
essential for pathologists to make informed decisions, especially when 
dealing with complex or rare cases5,17,47,48,50,51,53,113,114. Retrieving similar 
histology slides or pathology reports facilitates the identification of rel-
evant cases from large archival databases, and has become an essential 
clinical decision support in digital pathology workflows. This is espe-
cially beneficial for rare cancers that affect fewer than 15 individuals per 
100,000 annually43–45, for which pathologists can identify nonspecific 
malignancies based on similar WSIs and their corresponding pathology 
reports. Slide foundation models readily provide WSI representations 
for vector database indexing, fundamentally simplifying the task of 
histology slide retrieval.

Given a query slide and a set of support slides with diagnostic 
labels (indexed by a slide foundation model), histology slide search is 
evaluated by assessing the accuracy in retrieving identically labeled 
slides from the support set. Specifically, we test whether the K-closest 
neighbors of a query slide in the embedding space, determined using 
Euclidean distance with K = {1, 3, 5}, include slides of the same diagnos-
tic label as the query (see Methods for more details).

We design three variations of the rare cancer retrieval task, 
Rare-Cancer, Rare-Cancer-Public and Rare-Cancer-External, to assess 
generalization in different scenarios (see Methods for more details). 
For Rare-Cancer, we curate a large database of 186 cancer types with 
19,626 WSIs by combining a ‘rare cancer set’ of 43 cancer types (3,039 
WSIs) with the ‘common cancer set’ of 143 more common cancer types 
(16,587 WSIs) from TCGA, EBRAINS and MGB internal data (Fig. 4a and 
Supplementary Table 114). This emulates the real-world setting of 
clinicians interacting with an extensive cancer database encompass-
ing a diverse mix of rare and common cancer types. A query set is the 
subset of the ‘rare cancer set’, ensuring representation of all 43 rare 
cancer types, and a support set contains all remaining WSIs of the 
‘rare cancer set and the common cancer set’, ensuring representation 
of all 186 cancer types. For Rare-Cancer-Public, we curate a public 
version with 127 cancer types and 14,062 WSIs using the data from 
TCGA and EBRAINS, resulting in 29 rare cancer types (1,982 WSIs) 
and 98 common cancer types with lower diversity (12,080 WSIs; 
Supplementary Table 115). Finally, we curate Rare-Cancer-External for 
external validation, comprised of 39 WSIs covering 12 challenging rare 
ovary and soft tissue cancers from Kanagawa Cancer Center Hospital, 
Japan (Supplementary Table 116).

We observe that TITAN significantly outperforms other slide 
encoders on average with +14.8% in Accuracy@K and +18.1% in 
MVAcc@K to the next best model PRISM (Supplementary Table 117). 
On Rare-Cancer-External, we observe that our slide encoder is sig-
nificantly more robust to the domain shift to the external institution 
than other slide encoders with +30.8% and +41.5% in Accuracy@K and 
+31.2% and +26.7% in MVAcc@K for TITAN and TITANV to the next best 
model GigaPath (P < 0.0001; Supplementary Table 118). The trends 
in performance are preserved on Rare-Cancer-Public with slightly 
higher performance levels as the task is easier with a support set con-
taining fewer cancer types (Supplementary Table 119). An example 
of rare cancer retrieval is demonstrated in Fig. 4b, where the closest 
slide to the paraganglioma query is also of paraganglioma with a high 
similarity of 0.794 and less similar slides are of different cancer types 
(haemangioma from brain, similarity of 0.341). One of the retrieved 
slides is pheochromocytoma with a high similarity of 0.651, agreeing 
with the clinical understanding that both are morphologically tightly 
connected as rare neuroendocrine tumors115 (additional examples 
in Extended Data Fig. 8). With multiclass cancer subtyping tasks of 
varying difficulties, we also observe that both TITAN and TITANV sig-
nificantly outperform other slide encoders (P < 0.0001; Fig. 4c and 
Supplementary Tables 120–124).

We further investigate the cross-modal retrieval performance of 
TITAN, as the slide and report embedding spaces are already aligned 

(see Methods for more details). We perform the cross-modal experi-
ments on TCGA-Slide-Reports, our proposed dataset for report gen-
eration with 10,108 slide-report pairs (Supplementary Table 125). 
We observe that TITAN significantly outperforms PRISM on both 
retrieval tasks across all K retrievals, as measured with Recall@K for 
K = {1, 3, 5, 10}, with +10.5% and +20.5% on average for report-to-slide 
and slide-to-report retrieval tasks, respectively (Fig. 4d and 
Supplementary Tables 126–127). The strong performance of TITAN 
even with a single report (0.75) hints at the clinical potential. For a diag-
nostically challenging query slide, clinicians can benefit from sifting 
through retrieved past reports with similar diagnoses.

Discussion
We introduce TITAN, a multimodal whole-slide foundation model for 
pathology, which combines and elevates successful SSL recipes from 
the patch level to the slide level. Methodologically, TITAN employs 
histology knowledge distillation in the feature space (vision-only) and 
contrastive learning by aligning ROIs with synthetic captions and WSIs 
with reports (vision-language). Pretrained on 336k WSIs, TITAN, a ViT 
architecture equipped with ALiBi positional encoding for long-context 
extrapolation, produces powerful general-purpose slide representa-
tions for a large variety of downstream tasks even without task-specific 
fine-tuning. From cancer subtyping to molecular classification, TITAN 
consistently outperforms other state-of-the-art slide encoders, such 
as PRISM62, GigaPath58 and CHIEF83. This superiority is maintained in 
data-constrained settings such as rare disease classification and histol-
ogy slide retrieval, which underscores the representation quality of 
TITAN. Further aligning the vision-pretrained TITAN with 423k ROI-level 
captions generated by PathChat and 183k pathology reports equips 
the model with multimodal capabilities such as zero-shot diagnosis, 
slide-report retrieval and report generation. We observe that aligning 
the slide embedding with both the fine-grained (ROI captions) and 
coarse-level (pathology reports) descriptions is crucial for handling 
the multiscale information inherent in tissue slides.

Detailed ablation analyses reveal further insights into TITAN. We 
observe that stage 1 unimodal pretraining of TITANV captures morpho-
logical concepts already with much less data than existing slide encod-
ers. In particular, TITANV consistently outperforms its mean pooling 
and task-specific attention-based pooling baselines that use the same 
patch encoder as TITANV, proving that unimodal pretraining effectively 
captures the context of patch features in contrast to existing unimodal 
slide encoders. Next, in addition to unlocking language-related capabil-
ities, we observe that the vision-language alignment further enhances 
the representation quality of our vision-only model. Specifically, TITAN 
outperforms TITANV for slide-level tasks, with the strongest improve-
ments observed in nonparametric evaluation settings. While slide 
embeddings from pretrained TITAN are already promising, especially 
in the low-data regime, task-specific fine-tuning of the pretrained 
model can further enhance the downstream performance for tasks 
with a large enough patient cohort, pointing to the flexibility of TITAN 
when applied to diverse clinical and data settings. We conjecture that 
some of these insights can be readily translated into other domains of 
pathology foundation models, such as hematopathology116, spatial 
transcriptomics117, 3D pathology118 and multiplex imaging119.

Providing multimodal slide embedding off-the-shelf presents 
immediate clinical potential to assist clinicians in their routine diag-
nostic workflows85. Presented with diagnostically challenging tissue 
slides, pathologists and oncologists can greatly benefit from being 
able to retrieve and analyze diagnostically similar slides or clinical 
reports51. This would lead to a reduction in patient misdiagnosis and 
interobserver variability. TITAN can accurately retrieve similar diag-
nostic slides and reports for challenging scenarios from a large number 
of cancer types (>100), as well as rare cancer types45 where the cor-
responding slides have scarce representation in the database. That all 
of these tasks could be performed off-the-shelf with TITAN without a 
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dedicated algorithm for each underscores both the generalizability of 
TITAN slide embeddings and the simplicity of slide-level tasks with the 
pretrained slide encoders.

Despite the encouraging performance of TITAN, our framework 
has a few shortcomings. First, pretraining on 8k × 8k region crops and 
extrapolating with ALiBi to the entire WSI may still not capture the full 
contextual information. Other positional encodings for extrapola-
tion could address this limitation. Next, despite our best efforts to 

curate a diverse pretraining dataset, patch foundation models and, 
consequently, slide foundation models are susceptible to encoding 
nonbiological features, such as tissue processing sites and scanners, 
which may compromise their translational impact120–123. We believe 
that systematic investigations similar to our robustness analysis and 
insights discovered124,125, combined with ongoing efforts to curate 
larger and multi-institutional pretraining datasets can mitigate the 
issue. Next, clinical reports processing still poses a challenge for 
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vision-language alignment. Incorporating comprehensive clinical 
information conducive to contrastive learning, while ensuring that it 
is linked to morphology to some degree, involves substantial manual 
tuning even with the automated processing pipelines. Restructur-
ing the reports into distinctive morphology and molecular charac-
teristics could facilitate more effective learning. Finally, Mass-340K 
contains fewer slides compared to other pretraining datasets used 
for patch encoders12,13,126 and slide encoders62,72. We believe that the 
already strong performance of TITAN, merged with efforts to expand 
Mass-340K, will further improve performance.

Promisingly, TITAN can be scaled up in terms of data and archi-
tecture. WSIs and corresponding medical reports are routinely avail-
able and stored. The synthetic region-level captions can easily be 
generated with the generative AI model to provide a wealth of text 
guidance88,127. Combining the additional data and a heavier architecture 
can potentially improve the performance, as demonstrated with patch 
encoders12,13,126. Additionally, improved patch representation quality is 
likely to enhance the quality of the downstream slide encoder.

In conclusion, we envision TITAN and its future iterations being 
incorporated into practitioners’ everyday toolkits for routine appli-
cation and comparison with other task-specific supervised frame-
works, together reaching higher levels of performance in clinically 
important tasks.
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Methods
Ethics statement
The retrospective analysis of internal pathology images and asso-
ciated reports used in this study received approval from the Mass 
General Brigham Institutional Review Board. Before the computa-
tional analysis and model development, all internal digital data, includ-
ing WSIs, pathology reports and electronic medical records, were 
anonymized. Since the study did not involve direct patient participa-
tion or recruitment, informed consent was waived for the analysis of 
archival pathology slides.

Pretraining dataset
For large-scale visual pretraining, we curated Mass-340K, a diverse 
dataset consisting of 335,645 WSIs across 20 organs, with 89.7% hema-
toxylin and eosin (H&E), 7.9% IHC, 2.3% special stains and 0.1% others, 
across different tissue types (neoplastic 70.0%, tissue damage response 
8.4%, normal 4.7%, inflammatory 3.4% and others 13.5%), sourced from 
the combination of in-house histology slides at Mass General Brigham 
(MGB), consult slides sent to MGB and the GTEx consortium128,129. 
Sourced from several sites, Mass-340K covers a wide range of tissue 
preprocessing protocols with diverse scanners and stainers.

Scanner type. Setting aside the publicly available GTEx cohort for 
which the scanner type information is not available, we confirm that 
Mass-340K uses 16 different scanners from seven different manufac-
turers. Detailed data breakdown along scanner types can be found in 
Supplementary Table 1.

Stainer type. For the internally-curated cohort at MGB, the following 
stainers were used: Leica HistoCore Spectra (H&E), Agilent DAKO Cov-
erStainer (H&E), Leica Bond III (molecular), Leica BOND PRIME (IHC), 
Agilent Dako AutoStainer Link 48 (IHC) and Agilent Dako Artisan Link 
Pro (special stain).

Stains. The 27k IHC slides in Mass-340K span 100+ unique stains, 
without focus on particular biomarkers. The goal of IHC curation was 
to ensure that TITAN is exposed to a large set of slides with diverse tis-
sue appearances during the pretraining process. For example, these 
stains include proliferation markers (Ki-67), lymphoid and hemat-
opoietic markers (CD4, CD20) and oncogenes and tumor markers 
(MYC, BRAF, human epidermal growth factor receptor 2 (HER2)). In 
addition, Mass-340K contains 50+ unique special stains, such as Mas-
son’s trichrome and Congo red.

To explore the effects of data scale at the pretraining stage, we 
formed three additional partitions of Mass-340K, containing 12.5%, 25% 
and 50% of the original dataset. These partitions were sampled to main-
tain the ratio of different data sources and preserve organ distribution.

Synthetic caption generation using PathChat. For the initial stage of 
vision-language alignment (stage 2 of TITAN), we used synthetic cap-
tions generated by PathChat, a state-of-the-art multimodal large lan-
guage model designed for pathology88. To go beyond the typically brief 
clinical reports focused on the final diagnosis, we prompted PathChat 
to generate detailed morphological descriptions of ROIs, providing 
important training data for models to capture complex pathological 
features. Using PathChat, we generated synthetic captions for 423,122 
diverse ROIs of 8,192 × 8,192 pixels sampled from Mass-340K. Since 
PathChat cannot process inputs of size 8,192 × 8,192 pixels directly, we 
divide each ROI into 64 patches of size 1,024 × 1,024 pixels. To retain 
the most representative morphological features, we applied K-means 
clustering with K = 16 to the 64 patches and then randomly sampled one 
patch from each cluster. The resulting 16 morphologically representa-
tive 1,024 × 1,024 patches were subsequently fed to PathChat. To further 
enhance the diversity of these captions, we used Qwen2-7B-Instruct130 
to rewrite the generated captions, ensuring varied language structures 

and expressions. Detailed prompts for both PathChat and Qwen2, along 
with examples of generated and diversified captions, are provided in 
Supplementary Tables 4 and 5.

Curation of slide-report dataset. For the second stage of vision- 
language alignment (stage 3 of TITAN), we curated a dataset of 182,862 
slide-report pairs from a combination of in-house clinical reports 
and pathology notes from the GTEx consortium129. However, clinical 
reports are often noisy and are typically organized at the patient level, 
hence contain information on multiple slides from the same patient, 
complicating the slide-report alignment. To address this, we used a 
locally served Qwen2-7B-Instruct130 model to extract slide-specific 
descriptions and remove sensitive information unrelated to patho-
logical diagnosis, such as gross descriptions, hospital and doctor 
names and patient clinical history. Additionally, we applied the same 
rewriting strategy used for synthetic captions to diversify the report 
text. Example prompts used for report cleaning and rewriting can be 
found in Supplementary Tables 6–8.

Unimodal visual pretraining
Preprocessing. Similar to previous studies9,10,74, WSIs were preproc-
essed by tissue segmentation, tiling, and feature extraction using 
a pretrained patch encoder. We used the CLAM toolbox74 for tissue 
segmentation and tiling. Tissues were segmented by binary threshold-
ing of the saturation channel in HSV color space at a low resolution. 
Following this, we applied median blurring, morphological closing and 
filtering of contours below a minimum area to smooth tissue contours 
and eliminate artifacts. Nonoverlapping 512 × 512 pixel patches were 
then extracted from the segmented tissue regions of each WSI at ×20 
magnification. For feature extraction, we used CONCHv1.5, an extended 
version of CONCH10, which was trained with 1.26 million image-caption 
pairs using the CoCa training objective for 20 epochs. The choice of 
CONCHv1.5 for feature extraction was due to the fact that the model 
was pretrained on histology regions with diverse stains and tissue 
types, including FFPE, frozen tissue and IHC, thereby yielding region 
features that are robust against diverse tissue processing protocols. 
By increasing the patch size from the widely used 256 × 256 pixels, we 
effectively reduce the sequence length by four without impacting the 
representation quality due to higher resolution patch input, leveraging 
the robustness of the patch-level foundation models in generalizing to 
higher resolutions9,10,87.

Refer to Supplementary Table 2 for detailed hyperparameters of 
the patch encoder.

To enhance the effectiveness of the ROI sampling strategy dur-
ing stage 1 training of TITANV, an additional preprocessing step was 
performed to group the segmented tissue contours based on their 
spatial proximity within the slide. This addresses the challenging cases 
where multiple tissue regions are interspersed with background areas, 
particularly for biopsy samples where tissue fragments are often widely 
dispersed and for samples with multiple slices placed on the same 
slide. Specifically, we grouped tissue contours into clusters based 
on their coordinates, resulting in tissue groups that contain densely 
packed tissue regions with minimal background regions between them. 
Furthermore, tissue groups that contained fewer than 16 patches were 
filtered out. This grouping operation produced a total of 345,782 tissue 
groups from Mass-340K.

Pretraining protocol. For training TITANV on Mass-340K, we use iBOT, 
a state-of-the-art SSL method that combines student–teacher knowl-
edge distillation and masked image modeling86. As iBOT is applied in 
the patch embedding space, instead of the typical use case of the raw 
image space, we adapt the pretraining recipes as follows.

View generation. During training, we create region crops randomly 
sampled from the tissue groups, each of which corresponds to a feature 

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-025-03982-3

grid of size 16 × 16, corresponding to a field of view of 8,192 × 8,192 
pixels at ×20 magnification (Fig. 1b). The random sampling of region 
crops, instead of precomputing fixed regions, increases the diversity 
of the training set and effectively acts as an additional data augmenta-
tion, as the model encounters different parts of the same WSI at each 
training epoch. A region crop contains 256 features, which is equivalent 
in length to training on images of 256 × 256 pixels with a token size of 
16 × 16 in the typical natural image setting. From this region crop, two 
global views (14 × 14 crops) and ten local views (6 × 6 crops) are gener-
ated by cropping within the region crop without scaling or interpola-
tion and subsequently fed to iBOT training. The 2D feature grid setup 
allows us to directly apply student–teacher knowledge distillation 
approaches, which typically require square crop inputs.

To achieve realistic augmentations in the embedding space, exist-
ing methods have employed offline image augmentations in the pixel 
space34,59 by extracting multiple patch features from different views 
of a given patch. While effective, this approach limits the number of 
additional views and becomes computationally infeasible for large 
training datasets. Additionally, choosing color space augmentations 
tailored to histopathology that go beyond standard color transforma-
tions introduces additional computational overhead. A few recent 
approaches addressed the difficulty with training generative networks 
on the feature space to transform the features131,132, but also introduced 
additional computational cost for training. Instead, we apply frozen 
feature augmentations, which have been shown to work well for a 
few-shot classification task in the feature space of pretrained ViTs93.

Positional encoding. Traditional multiple instance learning methods 
consider the patches to be permutation-invariant within the slide. 
Despite the promising results, this approach ignores the tissue context, 
which can be essential for capturing the interaction in the tumor micro-
environments and can thus affect the model’s performance133. In this 
context, for TITAN, we employ positional encodings in the patch 
embedding space to break permutation invariance and encode tissue 
context. Furthermore, TITAN adopts the strategy of ‘train short, test 
long’ to ease the computational burden, which also requires positional 
information via positional encodings. Trained at the region crops 
(ROIs) of 8,192 × 8,192 pixels (train short), we directly apply TITAN on 
the whole slide during inference (test long). We used ALiBi, a method 
originally proposed for 1D sequence in large language models94. Abso-
lute positional encoding, another popular alternative that works well 
for images at training sizes, was shown to have weak extrapolation 
abilities94. Unlike other positional encodings applied to the input fea-
tures, ALiBi adds a bias to the query-key dot product during the com-
putation of attention scores. ALiBi effectively penalizes the attention 
score for tokens that are further apart from each other. Formally, let 
qi ∈ ℝd  and k j ∈ ℝd  represent the i-th query and j-th key, respectively. 
The attention score, which is typically computed as softmax (qikT

j ), is 
modified with 1D ALiBi as softmax (qikTj −m|i − j|), where m is a prede-
fined slope specific to each attention head. Since the feature grids and 
the resulting views are of 2D grid structure, we extend ALiBi to 2D by 
incorporating the Euclidean distance between the patches i and j. The 
2D ALiBi can be written as

softmax (qikT
j −m√(ix − jx)

2 + (iy − jy)
2) , (1)

where ix, iy and jx, jy are the 2D grid coordinates of patches i and j. The x 
and y coordinates are defined as the 2D patch coordinates (at magni-
fication ×20) divided by the patch size of 512.

Network architecture and training details. For the slide encoder, we use 
a ViT92 with six transformer layers, 12 attention heads of dimension 64, 
resulting in an embedding dimension of 768 and a hidden dimension 
of 3,072. This smaller architecture, compared to typical ViTs used in 

patch encoders, is chosen based on previous studies57, which suggest 
that a compact network suffices for slide representation learning in 
the embedding space, especially given the limited data scale of WSIs 
compared to histology patch datasets, which are on the scale of bil-
lions. The patch embedding layer is replaced by an MLP to process 
the feature inputs. We train the model for 270 epochs (equivalent to 
91,260 iterations), distributed across four NVIDIA A100 80GB graphics 
processing units (GPUs) with a local batch size of 256 per GPU. For all 
training hyperparameters, refer to Supplementary Table 3.

Vision-language continual pretraining
To enhance the unimodal capabilities of TITANV, we further explored 
the multimodal vision-language alignment of TITANV with clinical 
text. Training a multimodal foundation model, however, faces several 
limitations related to data and compute. First, paired slide-report data 
are scarce compared to the scale of millions of image-caption pairs 
for patches. Additionally, real-world clinical reports typically contain 
only brief diagnostic information, unlike the detailed morphological 
descriptions in educational captions for histology ROI images. Finally, 
contrastive learning-based cross-modal training typically requires a 
large batch size, which is computationally infeasible for WSIs.

To address these issues, we propose a two-stage continual pre-
training approach (referred to as stage 2 and stage 3 for TITAN) that 
progressively aligns the model with increasing context. We first align 
synthetic captions for ROIs of 8,192 × 8,192 pixels, followed by real 
clinical reports for WSIs. With emphasis on detailed morphological 
descriptions, the first vision-language alignment stage allows the 
model to learn fine-grained pathological concepts using a large batch 
size. In the next stage, we further augment the model’s understand-
ing of diagnostic terminology and reasoning, targeted to enhance its 
zero-shot understanding in downstream tasks. The second stage also 
serves as a ‘high-resolution fine-tuning’ phase, adapting the model 
from the local contexts of ROIs to the full-scale global context of WSIs. 
Altogether, these two stages are designed to gradually build the model’s 
ability to comprehend and generate meaningful vision-language rep-
resentations for WSIs.

Network architecture and training details. Following the success of 
previous studies10, we use CoCa95, a state-of-the-art visual-language 
foundation model pretraining method, for both stages of 
vision-language alignment. The model consists of an image encoder, 
a text encoder and a multimodal text decoder. Using our unimodal 
TITANV as the image backbone, we add two attentional pooler com-
ponents on top. The first attentional pooler uses a single query (con-
trastive query) to pool a single global representation of the feature 
grids and enable cross-modal contrastive learning with text embed-
dings. This global WSI representation can then be used for zero-shot 
or unsupervised evaluation of TITAN on downstream tasks. The second 
attentional pooler uses n = 128 queries (reconstruction queries) to 
generate a set of 128 image tokens designed for interacting with the 
multimodal text decoder for caption generation. We use the pretrained 
text encoders and multimodal decoders of CONCHv1.5 (ref. 10), each 
consisting of 12 transformer layers with an embedding dimension of 
768 and a hidden dimension of 3,072.

For both stages, we used eight NVIDIA A100 80GB GPUs. During 
stage 2 vision-caption pretraining, we used a local batch size of 196 per 
GPU, with gradient accumulation of 2, resulting in an effective batch 
size of 3,136. For stage 3 vision-report pretraining, we randomly crop 
the WSIs to 64 × 64 feature grids, allowing for larger batch sizes while 
maintaining a large field of view, corresponding to 32,768 × 32,768 pix-
els, which already covers most slides in our pretraining dataset. We 
used a local batch size of 16 per GPU, with a gradient accumulation of 
2 to achieve an effective batch size of 256. To avoid deteriorating the 
quality of the pretrained vision encoder, we used a smaller learning 
rate and weight decay, as well as a slow warm-up strategy for the vision 
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backbone, following previous work134. For all hyperparameters, refer 
to Supplementary Tables 9 and 10.

Evaluation setting
Baselines. We compare TITANV against (1) unsupervised baselines with 
four other slide encoders, Prov-GigaPath (referred to as GigaPath)58, 
PRISM62, CHIEF83, and the mean pooling baselines with features from 
the respective patch encoders, (2) supervised baselines and (3) our 
vision-language model TITAN against zero-shot baseline PRISM.

Unsupervised baselines. GigaPath uses LongNet architecture as the 
slide encoder, a ViT92 in the ‘base configuration’, replacing the vanilla 
dense attention with dilated attention. It was trained on 171,189 
in-house WSIs from Providence via masked autoencoder135. As a patch 
encoder, GigaPath uses ViT-G/14 pretrained with DINOv2 (ref. 87) on 
the same in-house dataset. While GigaPath further performed con-
tinual vision-language pretraining, we only assess the unimodal model, 
as the multimodal model is not publicly available. For performance 
analysis, we use the output of the Transformer layer 11 as slide repre-
sentation, which yields the best results on downstream tasks and also 
agrees with the provided fine-tuning recipe. PRISM62 uses the Per-
ceiver architecture136 as the slide encoder, incorporating CoCa-based 
vision and language alignment95 on 195,344 specimen-report pairs, 
which comprise a total of 587,196 WSIs, each containing one or more 
WSIs. As for the patch encoder, PRISM uses Virchow11, a ViT-H/14 pre-
trained with DINOv2 (ref. 87) on an in-house dataset. CHIEF83 applies 
attention-based feature aggregation, trained via slide-level contrastive 
learning and anatomic site information. The patch encoder is based on 
CTransPath4, a self-supervised SwinTransformer137 trained on 15 million 
patches. In addition to the pretrained slide encoders, we evaluate mean 
pooling as a baseline, where the patch features are averaged within 
each slide, as it serves as a strong unsupervised baseline despite its 
simplicity64–66. While we mainly compare with mean pooling based on 
CONCHv1.5 patch features, we also provide results for mean pooling 
with the corresponding patch encoders of each slide encoder for a 
subset of analyses.

Supervised baselines. We compare TITAN against ABMIL73,74 and the 
fine-tuning of the pretrained slide encoders. For ABMIL, the model was 
trained with a batch size of 1 using the AdamW optimizer with weight 
decay 10−5 and a Cosine annealing learning rate scheduler with peak 
learning rate 10−4 over 20 epochs. The patch encoders were selected 
accordingly for each analysis. For GigaPath fine-tuning, we used the 
publicly available code, which uses a batch size of 1, AdamW optimizer 
with weight decay 0.05 and Cosine annealing learning rate scheduler 
with warm-up and base learning rate 2 × 10−3 over five epochs. For 
CHIEF fine-tuning, we also used the publicly available fine-tuning 
code. For tasks with a validation set, the best model is chosen based 
on the validation loss.

Cross-modal baselines. For cross-modal zero-shot retrieval and clinical 
report generation, we compare TITAN against PRISM62.

Linear and k-nearest neighbor (k-NN) probe evaluation. To evaluate 
the transfer capabilities and representation quality of slide encoders, 
we adopt recent work in representation learning with self-supervised 
frameworks and perform linear (logistic regression) and k-NN prob-
ing. For linear probing, we minimize cross-entropy loss using the 
scikit-learn L-BFGS solver with ℓ2 regularization, selecting ℓ2 from 45 
logarithmically spaced values between 10−6 and 105 based on the valida-
tion loss. The maximum number of L-BFGS iterations is set to 500. For 
datasets without a validation set, such as small datasets or few-shot 
experiments, we use the default values of ℓ2 = 1 with 1,000 iterations. We 
additionally evaluated with k-NN probing, a nonparametrized measure 
to quantify the representation quality of fixed embeddings. We apply 

it in the following two settings: first, we follow SimpleShot to create a 
prototypical class representation by averaging all slide embeddings 
per diagnostic class105; second, we use the scikit-learn implementa-
tion of k-NN with k = 20 following stability observations from SSL 
literature87,138. In both settings, Euclidean distance is used as the dis-
tance metric based on the centered and normalized slide embeddings.

Slide retrieval. To further evaluate the representation quality of dif-
ferent slide encoders, we perform content-based slide retrieval using 
slide-level classification datasets, where we retrieve slides with the 
same class label as a given query slide. Specifically, we extract slide 
features for all WSIs. The training and validation sets are combined 
to serve as the database of candidate slides (keys), and we treat each 
slide in the test set as a query slide. Before retrieval, we preprocess both 
keys and queries by centering the slide embeddings, which involves 
subtracting their Euclidean centroid, followed by ℓ2 normalization. 
The similarity between the query and each candidate in the database 
is computed using the ℓ2 distance metric, where a smaller distance 
indicates a higher similarity. The retrieved slides are then sorted based 
on their similarities to the query. The class labels are used to evaluate 
the retrieval performance using Acc@K for K ∈ {1, 3, 5}, which measures 
whether at least one of the top K retrieved slides shared the same class 
label as the query, and MVAcc@5, which considers the majority class 
label among the top five retrieved slides. Detailed descriptions of these 
metrics are provided in ‘Evaluation metrics’.

Cross-modal retrieval. Leveraging the vision-language aligned 
embedding space, we also evaluate cross-modal retrieval performance 
on TCGA-Slide-Reports. Specifically, we assess both slide-to-report and 
report-to-slide retrieval tasks. All slides and reports are embedded into 
a shared space using the vision and the text encoders, respectively, 
followed by ℓ2 normalization. Retrieval is performed by calculating 
pairwise cosine similarity between the slide and report embeddings. 
Our class-based approach mirrors the unimodal slide retrieval, where 
retrieval is successful if the retrieved slide or report belongs to the same 
diagnostic class as the query. Performance is quantified using Recall@K 
for K ∈ {1, 3, 5, 10} for the class-based approach, which measures the pro-
portion of queries for which the correct result appears among the top 
K retrieved items. Additionally, we report the mean recall, computed 
as the average of the Recall@K values across the four K levels. Further 
details on these metrics can be found in ‘Evaluation metrics’.

Few-shot slide classification. We evaluate few-shot classification by 
varying the number of shots K in {1, 2, 4, 8, 16, 32}. For each K, we select 
K shots per class or all samples per class if the class has less than K sam-
ples. We follow previous studies that used the SimpleShot105 framework 
for evaluation of the few-shot learning performance of self-supervised 
models9. SimpleShot computes a prototypical representation per 
class by averaging all samples within that class. The distances to the 
class prototypes are then computed on the test set. All embeddings 
are centered and normalized based on the few-shot samples. To make 
the evaluation more comparable to supervised baselines, such as 
ABMIL, we also assess few-shot classification with linear probing. As no 
validation set is available in few-shot experiments, we use the default 
scikit-learn recipe with regularization strength ℓ2 = 1 and up to 1,000 
iterations of the L-BFGS solver. To mitigate sampling bias, we aggregate 
the results across 50 different runs, using random samples for training 
while keeping the test set fixed.

Survival analysis. For survival analysis, we employed the linear 
Cox proportional hazards model on the disease-specific survival 
clinical endpoint. We note that this differs from typical MIL survival 
prediction with negative log likelihood65,139, as we deal with a single 
embedding for the slide (as opposed to a bag of patch embeddings), 
and patients can be batched (as opposed to the single patient per 
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batch due to memory usage). To reduce the impact of batch effects, 
we performed a five-fold site-preserved stratification140. Due to the 
small cohort size for reliable survival prediction modeling, we used 
four folds for training and the remaining fold for evaluation, without 
employing the validation fold. A hyperparameter α was searched 
over 25 logarithmically spaced values between 101 and 105, with the 
ℓ2 coefficient defined as C = α. For each combination of encoder and 
cancer type, we chose C that yielded the best average test metric 
across the five folds. For fitting and testing the Cox model, we used 
the scikit-surv package.

Zero-shot slide classification. For zero-shot slide classification, we 
adopted the method described in CLIP108 to use the similarities between 
a given slide and the text prompts of each class as its prediction logits. 
Specifically, for a class c ∈ {1, 2, …, C}, we first created the text prompts 
for each class, followed by extracting their ℓ2-normalized text embed-
dings vc using the text encoder. Since the model could be sensitive to 
the specific choice of text prompts, we created an ensemble of prompts 
for each class. The complete set of prompt ensembles are provided 
in Supplementary Table 103. For each WSI, we similarly computed a 
ℓ2-normalized embedding ui using the slide encoder. We then calculated 
the cosine similarity between the slide embedding and each class text 
embedding. The predicted class for a slide was the one with the highest 
cosine similarity score:

̂yi = argmax cui
Tvc (2)

Report generation. Slide captioning provides concise and interpret-
able summaries of visual findings in pathology, potentially enhancing 
clinical workflows. The generative objective of CoCa enabled the mod-
el’s capabilities of generating pathological reports, which we explored 
on 10,108 slide-report pairs from TCGA. We performed zero-shot cap-
tioning using TITAN and compared the quality of the generated report 
against PRISM62. Specifically, we use a beam search decoding strategy 
with 5 beams and 1 beam group, where the model explores five potential 
sequences at each step and retains only the most likely sequence within 
a single group to maximize quality while minimizing redundancy.

Evaluation metrics. We report balanced accuracy and weighted 
F1-score for all classification tasks with more than two classes. For 
ordinal multiclass classification tasks, we report balanced accuracy 
and quadratic-weighted Cohen’s κ. For binary classification tasks, we 
report balanced accuracy and AUROC. For survival tasks, we report the 
concordance index (c-index), which measures the agreement between 
the model’s predicted risks and the actual survival times. The expected 
calibration error (ECE)107 measures whether the model’s predicted 
probabilities match the actual frequencies of each diagnostic label, 
with the lower value indicating that the model’s confidence estimates 
are well-calibrated. We use a multiclass variant of the original ECE, with 
one-versus-all binarization of the labels with respect to a given diagnos-
tic label computed and averaged across all labels. The entropy score 
measures the uncertainty of predictions, with a lower value indicating 
that the model has higher confidence in its predictions. The entropy 
of the predicted probabilities was computed.

For slide retrieval tasks, we report Acc@K for K ∈ {1, 3, 5}, which 
measures if at least one slide among the top K retrieved slides has 
the same class label as the query. We also report MVAcc@5, which is 
a stricter metric that considers whether the majority vote of the top 
5 retrieved slides is in the same class as the query. For cross-modal 
retrieval tasks, we report Recall@K for K ∈ {1, 3, 5, 10}, which measures 
the proportion of queries for which the correct result appears in the 
top K retrieved items. We also report mean recall, which is calculated 
as the average of the four Recall@K values. For report generation, we 
compare the generated reports with the ground truth pathological 
reports using METEOR, ROUGE and BLEU. METEOR110 is a metric that 

evaluates text quality through unigram matching by considering both 
precision and recall while also accounting for synonyms, stemming and 
word order between the candidate and reference texts. ROUGE111 com-
pares the overlap of n-gram, word sequences and word pairs between 
the generated and reference texts, focusing on recall. We use ROUGE-1, 
which specifically measures the overlap of unigrams. BLEU112 measures 
the quality of generated text based on unigram overlap, focusing on 
precision. We use BLEU-1, which evaluates the extent of word-level 
matches between the generated and reference texts.

Statistical analysis. For the datasets with five-fold splits, where we 
employ five-fold cross-validation, we report the mean performance 
and the s.d. across all folds. For the datasets with a single split, we use 
nonparametric bootstrapping with 1,000 samples to calculate the 
mean and s.d.

To compare the performance of multiple methods across different 
datasets, we used a hierarchical generalized linear mixed-effects model 
(GLMM). A GLMM is a statistical model that enables analysis of the data 
with both fixed and random effects. Specifically, we are interested in 
estimating the effect of each method (fixed effects) while accounting for 
variability across datasets (random effects). The hierarchical structure 
captures the fact that datasets differ in their overall performance levels, 
while the mixed-effects framework ensures that method comparisons 
are made after adjusting for these dataset-specific effects. Since the 
performance metric is bounded between 0 and 1, we used a β distribu-
tion, parameterized in terms of a mean μij and a precision parameter ϕ. 
The expected value of the metric for method j on dataset i is modeled as:

yij ∼ β (μij,ϕ), logit (μij) = α + βj + bi,

where the mean μij was linked to the predictors using a logit 
transformation, with

•	 α is the overall intercept,
•	 βj is the fixed effect of method j,
•	 bi is a random intercept for dataset i modeled with Gaussian 

distribution, that is, bi ~ n(0, σ2).

This approach accounts for the possibility that some datasets may 
consistently produce higher or lower performance scores, preventing 
these systematic differences from being misattributed to the methods 
themselves. We assume that, while absolute performance scores vary 
across datasets, the relative ranking of methods remains approximately 
consistent (for example, if Method A tends to outperform Method B, it 
is likely to do so across most datasets). Parameters were fitted using the 
maximum likelihood estimation, and model fit was assessed through 
diagnostic checks of residual distributions and variance components. 
To compare methods, we compute estimated marginal means—the pre-
dicted average performance for each method adjusted for dataset-level 
variability. Pairwise comparisons of these means are conducted using 
two-sided Wald z tests, with the Tukey correction applied to control for 
multiple comparisons and ensure robust inference.

We also evaluate few-shot learning performance, where methods 
are compared with limited training examples (K = 1, 2, 4, 8, 16). For 
a given task (or dataset), to isolate the effect of method choice, we 
include the number of training examples as the random effect. We use 
a hierarchical GLMM with a β distribution and compute estimated mar-
ginal means, with correction for multiple hypothesis testing, to assess 
whether substantial performance differences exist between models. 
For the retrieval tasks, we follow a similar approach to the few-shot by 
treating different numbers of retrieved samples as the random effect.

Downstream evaluation datasets
For the evaluation of TITAN on a diverse set of downstream tasks 
(Supplementary Tables 18–21), we re-arrange the pre-extracted 
CONCHv1.5 features from patches of 512 × 512 pixels to feature grids 
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cropped around the tissue regions of the WSIs. Additionally, back-
ground masks are created to mask out features corresponding to 
background patches. Each WSI is then one single input image to 
TITAN. For downstream tasks with patient-level annotations, we cre-
ate patient embeddings by averaging all slide embeddings of TITAN 
corresponding to a single patient. In the following, we detail all data-
sets used in our downstream evaluations, including splits and tar-
gets. We first describe the six datasets that we introduce in our study, 
TCGA-UniformTumor-8K, TCGA-OncoTree, TCGA-Slide-Reports, 
Rare-Cancer, Rare-Cancer-Public and Rare-Cancer-External, followed 
by existing datasets in alphabetical order. To mitigate the impact of 
batch effects, all datasets based on TCGA are split into label-stratified 
and site-preserving folds such that slides from one clinical site only 
occur in one fold following140.

TCGA-UniformTumor-8K (TCGA-UT-8K). The TCGA-UT-8K dataset 
is a region-level pan-cancer subtyping resource comprising 25,495 
ROIs of 8,192 × 8,192 pixels. These regions were extracted from 9,662 
H&E-stained FFPE diagnostic histopathology WSIs sourced from TCGA. 
The tumor regions were manually annotated by two expert patholo-
gists, with slide exclusion due to poor staining, poor focus, lacking 
cancerous regions and incorrect cancer types. Approximately three 
representative tumor regions per WSI were annotated with pixel-level 
contours. For each contour, we center-cropped an image region of 
8,192 × 8,192 pixels to encompass both the dense tumor and its sur-
rounding tissue context. We split the regions into train-validation-test 
split (train-val-test; 13,853:3,434:8,208 slides), preserving the source 
site. Refer to Supplementary Table 11 for a detailed overview of all 
classes contained in this dataset.

TCGA-OncoTree (TCGA-OT). The TCGA-OT is a pan-cancer subtyp-
ing dataset of 11,186 H&E FFPE diagnostic histopathology WSIs from 
TCGA96. All WSIs are classified into 46 classes according to the OncoTree 
classification system, such that every class is represented by at least 50 
samples. We select all diagnostic H&E FFPE WSIs from TCGA with pri-
mary tumors. Concretely, we exclude frozen tissue slides, slides without 
magnification information, metastatic or recurrent tumor slides, slides 
without tumor tissue and IHC slides. For training and evaluation, we 
split the dataset into training-validation-test folds of 8,226:1,612:1,348 
samples while preserving the source sites; that is, all slides from one 
source site are in one split. Refer to Supplementary Table 12 for a 
detailed overview of all classes.

TCGA-Slide-Reports. The TCGA-Slide-Reports is a pan-cancer 
slide-report dataset of H&E FFPE diagnostic histopathology WSIs from 
TCGA96. The dataset consists of 10,108 WSIs with paired pathological 
reports at the slide level. The dataset is built on the TCGA-Reports 
dataset, which consists of 9,523 patient-level reports released by 
a previous study109. The dataset TCGA-Reports was created using 
11,108 pathology report PDFs, corresponding to 11,010 patients, avail-
able on the TCGA data portal. The raw reports were preprocessed 
by removing 82 patients with multiple reports, 399 patients with 
nonprimary tumors, 72 patients with no survival data, 381 ‘missing 
pathology’ reports and 212 ‘TCGA Pathologic Diagnosis Discrepancy 
Form’ reports, resulting in 9,850 reports. Optical character recogni-
tion was then performed to extract text from the PDFs, followed by 
the removal of ‘Consolidated Diagnostic Pathology Form’ reports, 
‘Synoptic Translated’ forms, within-report TCGA metadata inser-
tions and clinically irrelevant reports, resulting in 9,523 patient-level 
reports. While these reports are clean and clinically relevant, they 
often contain descriptions of multiple tissue blocks per patient. This 
lack of one-to-one mapping between slides and reports poses a chal-
lenge for slide-level report generation and cross-modal retrieval, 
which require distinct slide-to-report alignment. Since block IDs 
are unavailable in TCGA metadata, we used the slide-level diagnoses 

to map diagnoses in each tissue block description. Specifically, if a 
block’s diagnosis matched the slide-level diagnosis, we designated 
it as corresponding to the slide. This process was automated using 
GPT4o-mini, resulting in a final set of 10,108 slide-report pairs. These 
paired slides are all H&E FFPE WSIs from primary tumors adhering to 
the same exclusion criteria as mentioned for TCGA-OT. We excluded 
all frozen tissue slides, slides without magnification information, 
metastatic or recurrent tumor slides, slides without tumor tissue and 
IHC slides. Refer to Supplementary Table 125 for a detailed overview 
of the diagnosis distribution.

Rare-Cancer-Public. The Rare-Cancer-Public is a pan-cancer dataset 
of H&E FFPE diagnostic WSIs from TCGA96. The dataset consists of 
1,982 WSIs, with 1,548 WSIs from TCGA and 434 WSIs from EBRAINS, 
representing 29 rare cancer types. According to the National Institute 
of Health, rare cancers are defined as those occurring in fewer than 15 
individuals per 100,000 annually44. The OncoTree codes of WSIs from 
TCGA and EBRAINS were manually curated for this criterion by two 
expert pathologists (A.K. and D.F.K.W.). EBRAINS provides more granu-
lar diagnostic classifications than the OncoTree codes, enabling the 
dataset to include finer distinctions for rare brain tumors. The dataset 
was divided into five patient-level folds. To assess retrieval performance 
for rare cancers within a clinically representative dataset, we use one 
fold of the rare cancer dataset as the query set and the remaining folds 
combined with the common cancer types as a support set. In total, the 
support and query datasets contain 14,062 slides, including 11,646 WSIs 
from TCGA and 2,416 from EBRAINS.

Rare-Cancer. The Rare-Cancer is an in-house extension of the public 
dataset Rare-Cancer-Public with MGB internal cases. This dataset 
comprises 43 rare cancer types and 3,039 H&E FFPE diagnostic his-
topathology WSIs, where 1,056 additional cases were added from 
Brigham and Women’s Hospital (BWH). The entire dataset, including 
common cancer types, comprises 19,626 WSIs, with 5,564 WSIs from 
BWH, covering 186 OncoTree codes.

Rare-Cancer-External. The Rare-Cancer-External is an external test-
ing cohort for rare cancer cases collected from the Department of 
Pathology, Kanagawa Cancer Center Hospital, Japan. This dataset 
consists of 39 H&E FFPE diagnostic WSIs from 12 rare ovarian and soft 
tissue cancers. The slides were stained using SAKURA TISSUE-TEK 
PRISMA 6130 Slide Stainer, and scanned by Leica Aperio AT2 at ×20 
magnification. Detailed breakdown of the cohort can be found in 
Supplementary Table 116.

BCNB. The BCNB consists of 1,058 H&E FFPE WSIs of early breast cancer 
core-needle biopsies141. All cases are annotated with estrogen receptor 
(ER; WT, 227; MUT, 831), progesterone receptor (PR; WT, 268; MUT, 
790) and HER2 (WT, 781; MUT, 277) expressions. We split the dataset 
label-stratified by a ratio of 60:20:20 (676:170:212 slides).

BRACS. The BRACS consists of 547 H&E FFPE WSIs of benign (including 
normal), atypical and malignant breast tumors from 189 patients142. 
The cases are annotated in coarse and fine-grained subtypes of three 
classes (benign tumors, 265; atypical tumors, 89; malignant tumors, 
193) and six classes (atypical ductal hyperplasia, 48; ductal carcinoma 
in situ, 61; flat epithelial atypia, 41; invasive carcinoma, 132; normal, 44; 
pathological benign, 147; usual ductal hyperplasia, 74). We split the 
dataset label-stratified at the patient level into five splits, with a ratio 
of 60:20:20 (approximately 302:94:151 slides).

Cardiac allograft rejection. The cardiac allograft rejection consists 
of 5,021 H&E FFPE WSIs of 1,688 patient biopsies collected from BWH24. 
Each biopsy is labeled for the presence of cardiac rejection, character-
ized by acute cellular rejection (no rejection, 866 patients; rejection, 
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822 patients). We split the dataset label-stratified on the patient level 
into train, val and test splits by a ratio of 70:10:20 (3547:484:990 slides).

DHMC-LUAD. The DHMC-LUAD consists of 143 H&E FFPE WSIs of lung 
adenocarcinoma (LUAD) from the Department of Pathology and Labo-
ratory Medicine at DHMC100. All WSIs are labeled into five classes of the 
predominant patterns of LUAD (acinar, 59; lepidic, 19; micropapillary, 
9; papillary, 5; solid, 51). Given the limited size of the dataset, we use 
it exclusively for evaluation in a zero-shot setting, where we use the 
entire dataset as test set.

DHMC-RCC. The DHMC-RCC consists of 563 H&E FFPE WSIs of renal 
cell carcinoma (RCC) from DHMC101. All slides are labeled into the 
four predominant patterns of RCC, including one benign class (renal 
oncocytoma, chromophobe RCC, clear cell RCC, papillary RCC). We 
use the three RCC subtypes as an external test set for the three-class 
subtyping task, TCGA RCC.

EBRAINS. The EBRAINS consists of 2,319 H&E FFPE diagnostic histo-
pathology WSIs from the EBRAINS Digital Tumor Atlas sourced from 
the University of Vienna143. Due to the small sample size, we exclude 
two classes and predict a fine-grained 30-class brain tumor subtyp-
ing task. All brain tumors in these tasks are designated as rare cancers 
by the RARECARE project and the NCI-SEER program. For training 
and evaluation, we approximately label-stratified the dataset into a 
train-val-test fold with a ratio of 50:25:25 (1,151:595:573 slides). Addi-
tionally, we use 873 samples with annotations for isocitrate dehydro-
genase 1 (IDH1) mutation as an external test set for IDH1 mutation 
prediction on the TCGA-Glioblastoma Multiforme and Lower-Grade 
Glioma (GBMLGG) cohort.

IMP-CRC. The IMP-CRC consists of 5,333 H&E FFPE colorectal biopsy 
and polypectomy WSIs retrieved from the data archive of IMP Diag-
nostics laboratory, Portugal144–146. All cases are classified into one of 
the following three categories: non-neoplastic (847 slides), low-grade 
lesions (2,847 slides), which include conventional adenomas with 
low-grade dysplasia, and high-grade lesions (1,639 slides), which 
include conventional adenomas with high-grade dysplasia, intra-
mucosal carcinomas and invasive adenocarcinomas. We split the 
dataset label-stratified by a ratio of 60:20:20 into train-val-test set 
(3546:887:900 slides).

MGB-BRCA. The MGB-BRCA consists of 1,264 H&E FFPE WSIs of biop-
sies and resections of invasive breast cancers (BRCA) from BWH66,124. 
Each case is annotated with the following three IHC status prediction 
tasks: ER status prediction (negative, 261; positive, 613), PR status 
prediction (negative, 37; positive, 504) and HER2 status prediction 
(negative, 665; positive, 151), where ER, PR and HER2 status were manu-
ally extracted from pathology reports.

MGB-LUAD. The MGB-LUAD consists of 1,939 H&E FFPE WSIs of LUAD 
from BWH66,124. The WSIs are annotated by five molecular tasks with 
ground truth from IHC—protein 40 (P40) status prediction (negative, 
113; positive, 72), protein 63 (P63) status prediction (negative, 72; 
positive, 81), Napsin A status prediction (negative, 60; positive, 66), 
caudal type homeobox 2 (CDX2) status prediction (negative, 55; posi-
tive, 24) and cytokeratin 5 and 6 (CK-5&6) status prediction (negative, 
29; positive, 29).

MGH-BRCA. The MGH-BRCA consists of 1,071 IHC FFPE WSIs of inva-
sive breast carcinoma from Mass General Hospital66. The cases con-
tain annotations for IHC quantification in six expression levels of ER 
abundance (levels 1–6 with counts—168, 169, 219, 170, 175 and 169, 
respectively) and PR abundance (levels 1–6 with counts—2,603, 2,397, 
1,209, 1,118, 1,124 and 1,101, respectively).

MUT-HET. The MUT-HET consists of 1,291 H&E FFPE WSIs of clear cell 
RCC, each representing a single patient treated at the Mayo Clinic147,148. 
All cases are labeled with the following mutations, determined from 
matched IHC slides—BAP1 mutation (WT, 1,130; MUT, 162), PBRM1 
mutation (WT, 622; MUT, 670) and SETD2 mutation (WT, 943; MUT, 
349). We split the dataset into five splits with train-val-test ratio of 
60:20:20 (774:258:259 slides) in each split.

OT108. The OT108 is an in-house pan-cancer subtyping dataset con-
sisting of 5,564 H&E FFPE diagnostic WSIs from BWH classified into 
108 classes according to the OncoTree classification104. We split the 
dataset into train-val-test (3,164:780:1,620 slides). The test set is bal-
anced across the classes and contains 15 slides per class.

PANDA. The PANDA consists of 10,616 H&E FFPE diagnostic histopa-
thology WSIs of core-needle biopsies of prostate cancer sourced from 
the Radboud University Medical Center and the Karolinska Institute. 
Each slide is assigned a score recommended by the International Soci-
ety of Urological Pathology (ISUP) that defines prostate cancer grade 
(six-class grading task). For quality control, we follow prior work149 in 
excluding slides that were erroneously annotated or had noisy labels, 
resulting in an overall 9,555 slides (grade 0, 2,603; grade 1, 2,399; grade 
2, 1,209; grade 3, 1,118; grade 4, 1,124; grade 5, 1,102). For training and 
evaluation, we label-stratified PANDA into 80:10:10 train-val-test folds 
(7,645:954:953 slides).

PD-L1. The PD-L1 consists of 234 IHC FFPE diagnostic histopathology 
WSIs from 217 patients with stage IV nonsmall cell lung cancer (NSCLC) 
who initiated treatment with anti-PD-(L)1 blockade therapy between 
2014 and 2019 at Memorial Sloan Kettering Cancer Center150. Patients 
who received chemotherapy concurrently with immunotherapy were 
not included. We used the clinical PD-L1 assessments as labels and 
substituted these labels by pathologist re-annotations on 157 slides 
when available. Following the original study, we created three levels of 
PD-L1 expression (<1%, 62; 1–50%, 49; ≥50%, 123) as target predictions. 
We split the dataset into five splits with train-val-test ratio of 60:20:20 
(129:44:44 slides) in each split.

Renal allograft rejection. The renal allograft rejection consists of 
4,847 H&E FFPE WSIs of renal allograft biopsies from 1,118 patients col-
lected at BWH between 2013 and 2022. Each case has associated labels 
for antibody-mediated rejection (AMR) status (AMR, 286 patients; no 
AMR, 832 patients), cellular-mediated rejection (cellular rejection, 341; 
no cellular rejection, 777) and interstitial fibrosis and tubular atrophy 
(IFTA) status (advanced IFTA, 162 patients; mild IFTA, 706 patients; 
moderate IFTA, 250 patients). We split the dataset into a label-stratified 
train-val-test set (3002:376:824 slides).

TCGA-BRCA. The TCGA-BRCA consists of 1,049 invasive breast carci-
noma (BRCA) H&E FFPE diagnostic histopathology WSIs from TCGA. 
The WSIs are classified into the following two classes: invasive ductal 
carcinoma and invasive lobular carcinoma.

TCGA-NSCLC. The TCGA-NSCLC consists of 1,043 H&E FFPE diagnostic 
histopathology WSIs from TCGA of 946 patients with NSCLC. The WSIs 
are classified into the following two classes: LUAD (531 slides) and lung 
squamous cell carcinoma (512 slides). We split the dataset into fivefold 
cross-validation, stratified by labels with a ratio of 60:20:20 (for exam-
ple, 659:191:193 for fold 0). CPTAC-NSCLC serves as an external dataset 
with 1,091 H&E FFPE diagnostic histopathology WSIs from CPTAC of 
422 patients with NSCLC.

TCGA-LUAD. The TCGA-LUAD consists of 524 H&E FFPE diagnostic 
histopathology WSIs from TCGA of 462 patients with LUAD. We pre-
dict the mutations in the genes EGFR (wild type (WT), 404 patients; 
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mutated (MUT), 58 patients), KRAS (WT, 317; MUT, 145), STK11 (WT, 
391; MUT, 71) and TP53 (WT, 222; MUT, 240). We split the dataset into 
fivefold cross-validation, stratified by labels with a ratio of 60:20:20 
(for example, 659:191:193 for fold 0). CPTAC-LUAD serves as an external 
dataset with 324 H&E FFPE diagnostic histopathology WSIs from CPTAC 
of 108 patients with LUAD.

TCGA-CRC. The TCGA-CRC consists of 549 H&E FFPE diagnostic his-
topathology WSIs from TCGA of 543 patients with colorectal cancer 
(CRC). We predict microsatellite instability (61 patients) and micro-
satellite stable (353 patients), mutations in the genes BRAF (WT, 429 
patients; MUT, 58 patients) and KRAS (WT, 286 patients; MUT, 201 
patients), and tumor staging (T1, 16 slides; T2, 97 slides; T3, 372 slides; 
T4, 64 slides). CPTAC-COAD with 107 H&E FFPE diagnostic histopa-
thology WSIs from 103 patients with colon adenocarcinoma serves as 
external validation dataset for all tasks (microsatellite instability, 24 
patients; microsatellite stable, 79 patients; BRAF WT, 16 patients; BRAF 
MUT, 87 patients; KRAS WT, 36 patients; KRAS MUT, 58 patients; T2, 17 
slides; T2, 77 slides; T4, 13 slides).

TCGA-GBMLGG. The TCGA-GBMLGG consists of 1,123 H&E FFPE diag-
nostic histopathology WSIs from TCGA of 558 patients with gliomas, 
more specifically GBMLGG. The WSIs are classified into the following 
two classes: IDH1 mutation (425 slides) and no IDH1 mutation (698 
slides). EBRAINS serves as an external cohort for this task (IDH1 MUT, 
333 slides; IDH1 WT, 540 slides).

Computing software and hardware
We used Python (version 3.9.16) for all experiments and analyses in the 
study, which can be replicated using open-source libraries as outlined 
below. We used PyTorch (version 2.0.1, CUDA 11.8) for training and 
inference of our deep learning model. To train TITANV and TITAN, we 
modified the public implementation of iBOT (http://github.com/byted-
ance/ibot) and CoCa (http://github.com/mlfoundations/open_clip). 
We used 4× and 8× 80GB NVIDIA A100 GPUs configured for multi-GPU 
training using distributed data parallelism for TITANV and TITAN train-
ing, respectively. All downstream experiments were conducted on a 
single 24GB NVIDIA 3090 GPUs. All WSI processing was supported 
by OpenSlide (version 4.3.1), openslide-python (version 1.2.0) and 
CLAM (http://github.com/mahmoodlab/CLAM). We used Scikit-learn 
(version 1.2.2) for its implementation of k-NN, and the logistic regres-
sion implementation and SimpleShot implementation provided by 
the LGSSL codebase (http://github.com/mbanani/lgssl). For survival 
tasks, we used scikit-survival (Version 0.23.1). Implementations of other 
slide encoders benchmarked in the study are found at the following 
links: GigaPath (http://github.com/prov-gigapath/prov-gigapath), 
PRISM (https://huggingface.co/paige-ai/Prism) and CHIEF (http://
github.com/hms-dbmi/CHIEF). For training weakly-supervised 
ABMIL models, we adapted the training scaffold code from the CLAM 
codebase (http://github.com/mahmoodlab/CLAM). Matplotlib (ver-
sion 3.8.4) and Seaborn (version 0.13.2) were used to create plots in 
Figs. 1–4. Usage of other miscellaneous Python libraries is listed in the 
Reporting summary.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
GTEx data used in pretraining can be accessed through the GTEx 
portal (https://www.gtexportal.org/home/). For benchmarks, 
TCGA and CPTAC data can be accessed through the NIH genomic 
data commons (https://portal.gdc.cancer.gov) and proteomics 
data commons (https://proteomic.datacommons.cancer.gov), 
respectively. Coordinates and labels of TCGA-UniformTumor-8K 

dataset is made publicly available in the TITAN GitHub repository. 
All other publicly available datasets benchmarked in this work can 
be can accessed in their respective data portals: EBRAINS (https://
doi.org/10.25493/WQ48-ZGX), DHMC RCC (https://bmirds.github.
io/KidneyCancer), DHMC LUAD (https://bmirds.github.io/Lung-
Cancer/), BRACS (https://bracs.icar.cnr.it), PANDA (https://panda.
grand-challenge.org), IMP (https://rdm.inesctec.pt/dataset/nis-2023-
008), BCNB (https://bupt-ai-cz.github.io/BCNB/), MUT-HET-RCC 
(https://aacrjournals.org/cancerres/article/82/15/2792/707325/
Intratumoral-Resolution-of-Driver-Gene-Mutation). Links for all pub-
lic datasets are also presented in Supplementary Table 17. Following 
institution policies, all requests for data collected or curated in-house 
will be evaluated on a case-by-case basis to determine whether the data 
requested is compliant with intellectual property and patient privacy 
obligations. Data can only be shared for academic research purposes 
and will require a material transfer agreement.

Code availability
Code and model weights for loading both TITAN and 
TITANV can be accessed for academic research purposes 
at https://github.com/mahmoodlab/TITAN.
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Extended Data Fig. 1 | Examples of TCGA-UT-8K dataset. Examples of TCGA-UT-8K, which are ROIs of 8,192 × 8,192 pixels selected by the pathologists. The green 
contours illustrate the cancer region annotations, with the red number indicating the ROI index within a given TCGA slide.
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Extended Data Fig. 2 | Linear probe results for molecular classification tasks. 
(a) Linear models are fitted and evaluated on binary molecular status predictions 
for BCNB and MUT-HET. We observe that TITAN consistently performs best with 
+ 0.9% on BCNB and MUT-HET, +1.7% on TCGA, and +3.7% on internal molecular 
classification of BRCA and LUAD, in averaged AUROC scores over the next best 
model PRISM. (b) Linear models are fitted and evaluated on five-fold splits on 

TCGA. (c) The same models are evaluated on the corresponding external datasets 
from CPTAC and EBRAINS. (d) 6-level ER and PR prediction from Mass General 
Hospital (MGH) and 3-level PD-L1 prediction, all from immunohistochemistry 
(IHC) slides. (e) Molecular classification tasks for BRCA and LUAD from Mass 
General Brigham (MGB). All error bars represent standard deviations based on 
bootstrapping (n = 1,000) or k-fold evaluation (k = 5).
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Extended Data Fig. 3 | UMAP of slide embedding space for TCGA-OT. UMAP visualization of slide embeddings in TCGA-OT cohort (n = 11,186) for all slide encoder 
baselines, including TITAN and TITANV, color-coded by different organs for visual decluttering.
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Extended Data Fig. 4 | UMAP of TCGA-OT slide representations (n = 11,186) 
from all slide encoders. The first row is labeled by OncoTreeCode, the second 
row by OncoTreeSiteCode, and the third row by submission site. Clustering 

metrics, mean local diversity (mLD), adjusted rand index (ARI), and normalized 
mutual information (NMI), are computed for all labels. Note that CHIEF includes 
TCGA in the pretraining dataset.
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Extended Data Fig. 5 | Attention heatmaps of TITAN. Exemplar attention 
heatmaps for three Transformer attention heads of TITAN (head #4, #10, #11) 
are shown across three different TCGA WSIs. Out of the 12 attention heads, 
we find that most attention heads focus on dense tumor regions, with certain 
attention heads such as head #10 focusing on tumor-adjacent stroma and head 

#11 focusing on non-tumor areas. Across different cancer types, while head 
#11 attends to tissue-specific morphologies such as peritumoral stroma in the 
thymoma WSI and the tumor-adjacent stroma and ducts in the BRCA WSI, we 
do observe that general morphological patterns such as tumor/non-tumor are 
conserved across tissue types.
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Extended Data Fig. 6 | Ablation experiments on different learning paradigms. 
Change in balanced accuracy performance for several learning paradigms on 
four subtyping tasks with respect to the linear probe. The baselines include 
mean pooling, ABMIL, linear probe, and finetuned from pretrained or randomly 
initialized weights. The number under each task name indicates the linear 

probe performance. TITAN-L represents the variation of TITAN without vision-
pretraining. For mean pooling and ABMIL, we use the respective patch encoder 
for each framework, as specified under each slide encoder name. Finetuning 
results are not provided for PRISM, as the finetuning recipes were not available.
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Extended Data Fig. 7 | Examples of generated reports. TCGA examples of generated reports of TITAN and PRISM, with the corresponding clinical reports.
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Extended Data Fig. 8 | Rare cancer retrieval with TITAN. (a)–(c) Examples of 
slide retrieval on Rare-Cancer. The number for each retrieved slide represents 
the cosine similarity between the query and the retrieved slide. The retrieved 

slides with high similarity are either of the same diagnostic label or from the same 
organ as the query slide. (a) Thyroid (THFO) query (b) Pleura (PLBMESO) query 
(c) Adrenal gland (ACC) query.
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