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The field of computational pathology has been transformed with

recent advancesin foundation models that encode histopathology
region-of-interests (ROIs) into versatile and transferable feature
representations via self-supervised learning. However, translating these
advancements to address complex clinical challenges at the patient and slide
level remains constrained by limited clinical data in disease-specific cohorts,
especially for rare clinical conditions. We propose Transformer-based
pathology Image and Text Alignment Network (TITAN), a multimodal
whole-slide foundation model pretrained using 335,645 whole-slide images
viavisual self-supervised learning and vision-language alignment with
corresponding pathology reports and 423,122 synthetic captions generated
from a multimodal generative Al copilot for pathology. Without any
fine-tuning or requiring clinical labels, TITAN can extract general-purpose
slide representations and generate pathology reports that generalize to
resource-limited clinical scenarios such as rare disease retrieval and cancer
prognosis. We evaluate TITAN on diverse clinical tasks and find that it
outperforms both ROl and slide foundation models across machine learning
settings, including linear probing, few-shot and zero-shot classification, rare
cancer retrieval, cross-modal retrieval and pathology report generation.

Foundation models are transforming computational pathology by
accelerating the development of Al tools for diagnosis, prognosis and
biomarker prediction from digitized tissue sections'. Developed using
self-supervised learning (SSL) on millions of histology image patches
(or regions of interests), these models capture morphological pat-
ternsin histology patch embeddings, such as tissue organization and
cellular structure’”. These representations serve as a ‘foundation’
for models that predict clinical endpoints from whole-slide images

(WSlIs), suchas diagnosis or biomarker status'®~*, However, translating
the capabilities of current patch-based foundation models to address
patient- and slide-level clinical challenges still remains complex due
to the immense scale of gigapixel WSIs, compounded by the small
size of patient cohorts in real-world evidence® *, especially for rare
diseases with limited training data*~*. Similarly, given a diagnosti-
cally challenging WSI, retrieving a similar WSl via slide search®**"> or
pathology reports through cross-modal report search'®**~¢ typically
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requires specialized algorithms to bridge the gap between fine-grained
patch embeddings and slide-level information, introducing hurdles
to clinical adoption.

To overcome these limitations, new types of foundation models
haverecently been proposed for encoding entire WSIsinto slide-level
general-purpose feature representations® "% Instead of training an
additional model on top of patch embeddings from scratch®*”*~%,
these whole-slide representation models can be pretrained to distill
pathology-specificknowledge from large WSI collections, simplifying
clinical endpoint prediction with their off-the-shelf application. The
outstanding challenge then becomes developing whole-slide founda-
tionmodels that faithfully encode the tissue microenvironment based
onaset of patch embeddings while also handling arbitrarily large WSlIs.
Although relatively underexplored, slide-level self-supervision can
be performed with vision-only pretraining, either through masked
image reconstruction®® or intraslide contrastive learning™*®®, orina
multimodal fashioninvolving pathology reports, bulk transcriptomics,
or immunohistochemistry (IHC)®"¢*¢*¢’82_Furthermore, long-range
context modeling can either be neglected, essentially treating a WSI
asabag ofindependent features™®***">%3 or explicitly modeled using
Transformers®%¢°¢!, With efforts to learn general-purposeslide repre-
sentations intensifying, we believe that adapting successful patch-level
recipes to the entire WSI would lead to powerful general-purpose
slide representations.

Despite their widespread application potential, previous works
on pretraining slide foundation models have several shortcomings.
First, these models are predominantly pretrained using vision-only
modeling®™**%°, which neglects not only rich supervisory signals
found in pathology reports but also precludes multimodal capabili-
ties suchas zero-shot visual-language understanding and cross-model
retrieval—a fundamental hallmark in foundation models®***, Second,
whereas current patch foundation models are trained with millions
of histology image patches, slide foundation models are developed
with orders of magnitude fewer samples and limited optimization
of SSL recipes, leading to slide representations with restricted gen-
eralization capability*®******, Even with multimodal techniques such
as vision-language pretraining that augment the pretraining data-
set with pathology reports, current slide foundation models still
require end-to-end training or fine-tuning and lack the capability of
learning transferable slide representations for challenging clinical
scenarios*®*>®* Finally, the current models are nascent in transform-
ing pathology Al model development due to their limited evalua-
tions in diagnostically relevant settings, such as few-shot learning or
slideretrieval.

Here, we introduce Transformer-based pathology Image and Text
Alignment Network (TITAN), amultimodal whole-slide vision-language
model designed for general-purpose slide representation learning in
histopathology. Building on the success of knowledge distillation and
masked image modeling®* for patch encoder pretraining”*, TITAN
introduces alarge-scale pretraining paradigm that leverages millions
of high-resolution region-of-interests (ROIs; at 8,192 x 8,192 pixels at
20x magnification) for scalable WSl encoding. Trained using 336k WSlIs
across 20 organ types, vision-only TITAN produces general-purpose
slide representations that can readily be applied to slide-level tasks
such as cancer subtyping, biomarker prediction, outcome prognosis
and slide retrieval tasks, outperforming supervised baselines and
existing multimodal slide foundation models. Toaugment TITAN with
language capabilities, we further fine-tune it by contrasting with 423k
synthetic fine-grained ROI captions generated using PathChat®*®, a
multimodal generative Al copilot for pathology and with 183k pathol-
ogy reports at the slide level. By leveraging free-text morphological
descriptions, TITAN gains the ability to generate pathology reports,
perform zero-shot classification and enable cross-modal retrieval
between histology slides and clinical reports. Pretraining TITAN on
anextensive repository of multimodal pathology dataunlocks higher

levels of performance compared to existing slide foundation models,
particularly in low-data regimes, language-guided zero-shot clas-
sification and rare cancer retrieval. Additionally, we demonstrate
the utility of pretraining with synthetic fine-grained morphological
descriptions, suggesting the scaling potential of TITAN pretraining
with synthetic data® . Through comprehensive evaluation across a
large range of clinical tasks, including the application to rare cancer
retrieval, we demonstrate the efficacy of our vision-language pretrain-
ing approach, showcasing the general-purpose capability of our slide
foundation model.

Results

Scaling SSL from histology patches to whole-slide

images (WSIs)

TITAN is a Vision Transformer (ViT)* that creates a general-purpose
slide representation readily deployable in diverse clinical settings. It
is pretrained on an internal dataset (termed Mass-340K) consisting
of 335,645 WSIs and 182,862 medical reports (Fig. 1a). To ensure the
diversity of the pretraining dataset, which has proven to be a key fac-
torinsuccessful patch encoders”, Mass-340K is distributed across 20
organs, different stains, diverse tissue types and scanned with various
scanner types (Fig. 1a and Supplementary Table 1). The pretraining
strategy consists of three distinct stages to ensure that the resulting
slide-level representations capture histomorphological semantics both
attheROI-level (4 x 4 mm?) and at the WSI-level with the help of visual
and language supervisory signals—stage 1, vision-only unimodal pre-
training with Mass-340K on ROl crops (Fig. 1b,c), stage 2, cross-modal
alignment of generated morphological descriptions at ROI-level (423k
pairs of 8k x 8k ROIs and captions) and stage 3, cross-modal alignment
at WSI-level (183k pairs of WSIs and clinical reports; Fig. 1d; see Methods
for more details). For ease of notation, we refer to the model pretrained
with vision-only instage1as TITAN, and to the fullmodel after all three
stages of pretraining as TITAN.

The cornerstone of our approachis emulating the patch encoder
designed for input patch images at the slide level. Instead of using
tokens from a partitioned image patch, the slide encoder takes a
sequence of patch features encoded by powerful histology patch
encoders*’ %, Consequently, all of TITAN pretraining stages occur
in the embedding space based on pre-extracted patch features, with
the patch encoder assuming the role of the ‘patch embedding layer’
inaconventional ViT (Fig. 1b). To preserve the spatial context of each
patch and consequently enable the use of positional encoding in
the embedding space, the patch features are spatially arranged in a
two-dimansional (2D) feature grid replicating the positions of the
corresponding patches within the tissue (Fig. 1c). Following the suc-
cess of masked image modeling and knowledge distillation in patch
encoders®, we apply the iBOT®*® framework for vision-only pretraining
of TITAN on the 2D feature grid.

While the conceptual transition to slide-level is simple, this pre-
sents a new set of model design and pretraining challenges as follows:
(1) handlinglong and variable input sequences (>10* tokens at slide-level
versus196to 256 tokens at the patch-level), (2) creating multiple views of
one sample for SSL and (3) ambiguity over positional encoding schemes
that capture local and global context in the tissue microenvironment.
First, to tame the computational complexity caused by long input
sequences, we construct the input embedding space by dividing each
WSlinto nonoverlapping patches of 512 x 512 pixels (instead of widely
used 256 x 256 pixels) at x20 magnification, followed by the extrac-
tion of 768-dimensional features for each patch with CONCHv1.5, the
extended version of CONCH. To address the issue of large and irregu-
larly shaped WSIs, we create views of a WSI by randomly cropping the
2D feature grid (Fig. 1c). Specifically, a region crop of 16 x 16 features
covering aregion of 8,192 x 8,192 pixels is randomly sampled from the
WSl feature grid. From this region crop, two random global (14 x 14)
andtenlocal (6 x 6) crops are sampled for iBOT pretraining. We further
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Fig.1| Overview of TITAN. a, Tissue site distribution of Mass-340K used for
TITAN, pretraining (stage 1). Mass-340K includes 335,645 WSIs across 20 organs
withamix of tissue sections stained with H&E (89.7%), IHC (7.9%), special stains
(2.3%) and others (0.1%) or amix of neoplastic (70.0%), tissue damage response
(8.4%), normal (4.7%), inflammatory (3.4%) and others (13.5%) scanned with
diverse scanner types. TITAN pretraining (stages 2 and 3) uses a subset of Mass-
340K with paired captions and medical reports. b-d, Block diagram of TITAN,

pretraining. b, TITAN uses a ViT to encode a WSl into a slide embedding. ¢, TITAN,
(stage1) is pretrained using SSL with student-teacher knowledge distillation.

d, TITAN (stage 2 and 3) is pretrained using vision-language modeling, first by
aligning the slide embedding with synthetic captions (stage 2) and then with
medical reports (stage 3). e, UMAP visualization of TCGA slide embeddings
obtained with TITAN, color-coded by organ. UMAP, uniform manifold
approximation and projection; px, pixel.
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augment these feature crops with vertical and horizontal flipping,
followed by posterization feature augmentation®. Finally, to ensure
that the limited context pretraining translates to slide-level tasks, we
use attention with linear bias (ALiBi) for long-context extrapolation of
TITAN at inference time®*. Originally proposed for long-context infer-
enceinlarge language models, we extended ALiBi to 2D, where the linear
biasis based ontherelative Euclidean distance between featuresin the
feature grid, which reflects the actual distances between patchesin the
tissue (Supplementary Tables 2 and 3; see Methods for more details).

To equip our model with language capabilities, we implement two
additional multimodal and multiscale pretraining strategies (stages
2 and 3) using a subset of Mass-340K (Fig. 1d). These stages leverage
language descriptions that exist at multiple morphological scales,
from fine-grained descriptions in pathologist annotations or text-
books at the patch-or region-level (stage 2) to high-level descriptions
inpathology reports at thesslide-level (stage 3). For both stages, we use
contrastive captioners (CoCa)® as the pretraining strategy that aligns
ROl and slide representations with the corresponding captions and
reports, while generating accurate descriptions at ROl-level or reports
atslide level, respectively. The slide encoder (weights initialized with
TITAN,), the text encoder and the multimodal decoder are all finetuned
as part of the pretraining. In stage 2, we pretrain TITAN, with 423,122
pairs of 8,192 x 8,192 pixels ROIs and synthetic captions generated by
thevision-language copilot PathChat®, In stage 3, we further pretrain
the model with 182,862 pairs of WSIs and corresponding pathology
reports, resulting in our final model TITAN (see Methods for more
details; Supplementary Tables 4-10).

TITAN improves region and slide-level diagnostic capabilities
We evaluate TITAN, TITAN, and existing slide encoders on alarge set of
diverseslide-leveltasks, including morphological subtyping and molec-
ular classification by linear probing on the frozen slide embeddings.
For tasks with multiple cohorts available, we perform cross-validation
onone cohort, forexample, from The Cancer Genome Atlas (TCGA)’*”,
and use the remaining cohorts, for example, from Clinical Proteomic
Tumor Analysis Consortium (CPTAC)***° or Dartmouth-Hitchcock
Medical Center (DHMC)'°'* as an external test cohort. As baselines, we
compare torecent publicly available slide foundation models, PRISM®?,
GigaPath®® and CHIEF®. These models employ different slide-level
pretraining strategies (PRISM, WSI-report contrastive pretraining;
GigaPath, masked image reconstruction pretraining; CHIEF, super-
vised contrastive learning of cancerous versus noncancerous WSIs),
different patch-level encoders (PRISM and GigaPath, 256 x 256 pixels at
x20 magpnification; CHIEF, 256 x 256 pixels at x10 magnification) and a
varying number of WSlIs for pretraining (PRISM, 1.7x; GigaPath, 0.49x;
CHIEF, 0.18x the WSIs used for TITAN pretraining). Except for CHIEF, the
pretraining datasets of TITAN (Mass-340K), PRISM and GigaPath do not
include TCGA and PANDA, which allows us to use these two datasets as
benchmarking tasks without concern for data leakage'*>. Additionally,
we compare our approach with mean pooling using the same
CONCHUVL.5 patch encoder as TITAN, a simple yet powerful unsuper-
vised slide representation framework®>¢¢1%,

Furthermore, foracomprehensive evaluation of the baselines, we
introduce two tumor classification tasks based on the publicly avail-
ablerepository TCGA with the following two different context lengths:
(1) main cancer type classification on ROIs (TCGA-Uniform-Tumor-8K
or TCGA-UT-8K), a ROI-level cancer subtyping task with 32 classes,
where we manually curated 25,495 tumor-containing regions of
8,192 x 8,192 pixels at x20 magnification (-4 x 4 mm?) across TCGA,
covering the same tissue context as the region crops in TITAN, pre-
training (Extended Data Fig. 1 and Supplementary Table 11) and (2) a
slide-level pan-cancer classification (TCGA-OncoTree or TCGA-OT) task
of OncoTree codes'** with 46 classes, consisting 0f 11,186 formalin-fixed
paraffin-embedded (FFPE) WSIs from TCGA (Supplementary Table 12;
see Methods for more details).

We first assess how the pretraining data scale affects the down-
stream performance of TITAN,, focusing on the four subtyping tasks—
TCGA-UT-8K, TCGA-OT, OT108 and EBRAINS. The purpose of these
multiclass classification tasks is to assess the generalizability and
richness of feature representations across diverse diagnostic classes.
We observe that the performance increases on all four tasks as more
pretraining datais used, where TITAN, with full Mass-340K exhibits an
averageincrease of 3.65%,3.21% and 1.21%, compared to 12.5%, 25% and
50%, respectively, of Mass-340K, where the same distribution across
the organs was maintained (Fig. 2a and Supplementary Tables 13-16).
Despite the difference in pretraining recipes, we observe the same gen-
eraltrend for the three other slide encoders, where PRISM outperforms
GigaPathand CHIEF by 9.01% and 20.1% on average, having 3.4 times and
9.7 times the number of pretraining WSIs, respectively. Furthermore,
we observe that TITAN and TITAN,, with 48.5 million and 42.1 million
parameters, outperform heavier slide encoders PRISM and GigaPath,
with 99.0 million and 86.3 million parameters, demonstrating superior
parameter efficiency of our model (Fig. 2b).

We next evaluate TITAN on a range of clinically relevant tasks
that span morphological classification (14 tasks), grading (3 tasks),
molecular classification (39 tasks) and survival prediction (6 tasks;
Supplementary Tables 17-21). On average, we observe that TITAN
and TITAN, outperform other slide encoders (Fig. 2c), demonstrat-
ing the superior slide representation quality of our models. In par-
ticular, TITAN significantly outperforms all existing slide encoders
in morphological subtyping tasks across the entire spectrum of
diagnostic complexities, including fine-grade pan-cancer classifi-
cation (challenging morphological classification tasks, as shown in
Fig.2c) and noncancerous tasks, such as cardiac allograft assessment
(cellular-mediated rejection) and renal allograft assessment (anti-
body and cellular-mediated rejection). TITAN and TITAN, achieve
an average of +8.4% and 6.7%, respectively, in performance on mul-
ticlass (balanced accuracy) and binary subtyping tasks (area under
thereceiver operator curve (AUROC)) over the next best-performing
model, PRISM (Fig. 2c and Supplementary Tables 22-33). In particular,
TITAN, (and TITAN) not only outperforms others on TCGA-UT-8K
with 8k x 8k context that the model was trained on (+6% and 7.5%
over PRISM) but also on WSI-level tasks that involve the entire tissue
context, where TITAN, benefits from the long-context extrapolation
via ALiBi, for example, TCGA-OT (+7% and 9.5% over PRISM), OT108
(+10% and 16% over PRISM) and EBRAINS (+9% and 9.1% over PRISM).
Even with other nonparametric evaluations with prototyping'*>'°®
and 20 nearest-neighbor evaluation, which predicts each WSI’s label
based on the proximity to other WSl embeddings in the embedding
space, we observe that TITAN and TITAN, maintain superior per-
formance Supplementary Tables 22-33. On grading tasks, TITAN
outperforms the next best models CHIEF on average by +3.2% and
PRISM by +4% in quadratic-weighted Cohen'’s k, where the high
performance of CHIEF can be attributed to including the dataset
PANDA in pretraining (Supplementary Tables 34-36). To evaluate the
molecular classification performance, we tested the model on tasks
from public datasets (BCNB and MUT-HET) and internal-external
paired public datasets (TCGA, CPTAC and EBRAINS), on IHC tasks,
and MGB internal molecular tasks (Fig. 2c, Extended Data Fig. 2 and
Supplementary Tables 37-63). Averaged across all molecular tasks,
TITAN significantly outperforms its mean baseline on CONCHv1.5
features, GigaPath and CHIEF (P < 0.0001).

On survival prediction tasks, we observe that TITAN and TITAN,
are generally the best-performing baselines, outperforming the next
best-performing model CHIEF by +3.62% and +2.90%, respectively, on
concordance index for disease-specific survival” although CHIEF was
pretrained on TCGA slides (Supplementary Table 64). Interestingly,
the mean pooling baseline shows competitive performance, suggest-
ing that the proportion of different morphological phenotypes is an
important prognostic factor®>'%,
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Fig. 2| TITAN evaluation. a, Impact of pretraining data size on TITAN, and
baselines across four challenging subtyping tasks. TITAN, is pretrained with
12.5%,25%,50% and 100% of Mass-340K. b, The average performance of the four
tasks against the number of parameters. ¢, Linear probe evaluation of TITAN
and baselines on morphological classification, molecular status and survival
prediction tasks. The mean pooling baseline uses the same patch encoder as
TITAN (CONCHvVL.5). Multiclass tasks are evaluated with balanced accuracy,
binary tasks with AUROC and survival tasks with the concordance index. For
external cohorts (DHMC, CPTAC), the classifier is trained on the corresponding
TCGA cohort. All error bars represent s.d. based on bootstrapping (n =1,000)
or k-fold evaluation (k = 5).d, Ablation for positional encoding, number of
transformer layers and inclusion of vision-pretraining stage. The performance
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Training labels per class

isaveraged across the four subtyping tasks. e, Change in performance of slide
encoders averaged across the four subtyping tasks for different learning
paradigms. For mean pooling and ABMIL, the respective patch encoder for each
framework is used. PRISM fine-tuning is not evaluated as the fine-tuning recipes
arenot provided. f, Linear probe few-shot performance using K shots, K € {1, 2,
4, 8,16}, comparing baselines and ABMIL with CONCHV1.5. For each setting, 50
runs were performed. The center of each box plot (horizontal line) represents
the median, with whiskers extending to data points within 1.5x the interquartile
range. Statistical significance was assessed by fitting generalized linear mixed-
effects model and two-sided Wald z test on the fitted model. Significance shown
with respect to TITAN. Pvalues for nonsignificant results are shown. **P < 0.01,
***P<0.001,****P < 0.0001. C, number of classes; Ft., fine-tune.

To further understand how the slide embedding space is organ-
ized and consequently affects the downstream performance, we visu-
alize UMAP embeddings of WSIs from TCGA-OT colored by organ

type, showing that TITAN and TITAN, form distinct organ clusters
(for example, breast further separated from bladder, stomach and
lung) better separated than with other slide encoders (Fig. 1e and

Nature Medicine


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-025-03982-3

Extended Data Fig. 3). To investigate the robustness of TITAN to
nonmorphology-related effects (that is, batch effects), we evaluate
how well slide representations from TCGA-OT cluster according to
tumor type, organ and TCGA submission site. Both TITAN and TITAN,,
mix submission sites well, while performing best in clustering them by
biological factors, which suggests superior generalization capabilities
(Extended DataFig. 4). For interpretability analysis, we visualize atten-
tion heatmaps derived from the Transformer attention heads. The
heatmapsindicate that different heads focus ondistinct morphological
regions such as dense tumor, tumor-adjacent stroma and nontumor
regions, with majority of the heads focusing on dense tumor, consist-
ently across multiple inputs (Extended Data Fig. 5).

To assess the calibration and the confidence of predictions from
TITAN, we implement the expected calibration error (ECE)'*” and
entropy-based confidence score, and average both metrics across
the four challenging subtyping tasks. Again, we observe that TITAN
and TITAN, achieve the best calibration and the highest confidence
prediction (Supplementary Table 65).

Finally, to better understand how our model choices affect the
downstream performance, we perform ablation experiments on the
following four design choices of TITAN: the positional encoding, the
number of transformer layers in TITAN,, the inclusion of vision pre-
training and the region size in vision-only pretraining (Fig. 2d and
Supplementary Tables 66-77; see Methods for more details). Aver-
aged across the four challenging subtyping tasks, our results demon-
strate that ALiBi positional encoding outperforms original absolute
positional encoding’ by +1.89%, six transformer layers provide best
performance compared to 12 layers (+1.16%) and 4 layers (+1.74%),
vision pretraining improves results by +2% over vision-language
alignment alone, and a region size of 8,192 achieves the best balance
between performance (+3.6% over smaller regions of 4,096%) and
computational efficiency.

Comparison with different learning paradigms for

slide encoding

To further assess the quality of the slide embeddings and how applica-
tion settings affect downstream performance, we evaluate different
learning paradigms by comparing the linear probe performance of each
slide encoder against other MIL models comprised of mean pooling,
thatis, averaging the patch embeddings, attention-based MIL (ABMIL)”
and task-specific fine-tuning of the slide encoder from randomor pre-
trained weights. For mean pooling and ABMIL, we use respective patch
encoders for each slide encoder. This allows us to gauge whether the
pretrained slide encoders have learned meaningful slide representa-
tions and outperform the simple yet powerful unsupervised (mean
pooling) and supervised (ABMIL) baselines, neither of which involves
large-scale pretraining.

We observe several trends with TITAN (Fig. 2e, Extended DataFig. 6
and Supplementary Tables 78-81). First, ABMIL outperforms mean
pooling, as expected, since ABMIL is supervised and equivalent to
weighted averaging of the patch features. Next, the linear probe out-
performs ABMIL, demonstrating that multimodal self-supervised
pretraining of TITAN and TITAN, effectively captures the contextual
and semantic morphological details of the slide. This further sug-
geststhat our task-agnostic slideembeddings are better equipped for
downstream tasks than task-specific supervised slide embeddings.
Finally, we observe that task-specific fine-tuning of TITAN leads mostly
to performance improvement over linear probe of TITAN and TITAN,,
while fine-tuning the slide encoder from randomly initialized weights
yields lower performance (-3.63% on average). This suggests that the
pretrained weights of TITAN, can serve as a good initialization for
task-specific training, in line with previous works®***. One exception
is OT108, which could be attributed to the small number of samples
for each class (ranging from 4 to 42), which may lead to overfitting.
However, we observe that other slide encoders do not necessarily

follow suchimportant trends, possibly suggesting suboptimal model
pretraining and lack of generalizability.

Few-shot learning for low-data regime

We also evaluate the data-constrained setting of few-shot learning,
where only a few samples for each category are provided within the
linear probe setting (Fig. 2f; see Methods for more details). We observe
that TITAN significantly outperforms all other encoders across differ-
ent tasks and the number of shots (P < 0.0001), demonstrating strong
generalizability. TITAN, is the second-best-performing model, again
underscoring that vision-language alignment benefits the downstream
task performance. Notably, TITAN and TITAN, exhibit especially high
performance in one-shot learning, on par with other slide encoders
trained on more shots (Supplementary Tables 82-85). Specifically,
TITAN and TITAN, outperform CHIEF by 22.4% and 13.5% (TCGA-UT-8K)
and 18.7% and 6.8% (TCGA-OT), respectively, on 16 shots, although
CHIEF has been pretrained on TCGA slides.

Interestingly, both TITAN and TITAN, also outperform ABMIL with
the same patch encoder across all settings, particularly in lower-shot
settings. Thelargest gap for1-shotis observed inthe OT108 task, where
TITAN outperforms ABMIL by 56.7%, with similar trends in prototyp-
ing evaluation (Supplementary Tables 86-89). Such superior data
efficiency suggests that TITAN, can excel in rare cancer settings with a
limited number of samples, suchas OT108 in our benchmark, without
the need for task-specific fine-tuning.

Language-aligned TITAN enables cross-modal capabilities

We further assess the language capabilities of TITAN by aligning the slide
representations of TITAN, to language-based morphological descrip-
tions. Specifically with TITAN, we assess the cross-modal zero-shot
classification®>**'°® and report-generation capabilities and study the
effect of stage 2 pretraining for caption alignment with fine-grained
morphological descriptions and stage 3 pretraining with coarse clinical
reports of relevant microscopic findings.

To evaluate the quality of vision-language alignment, we first
perform cross-modal zero-shot experimentation on 13 subtyping
tasks of varying difficulties comparing with PRISM, also equipped with
cross-modal capabilities (Fig. 3a). In zero-shot classification, the diag-
nosticlabels expressed as text prompts (Supplementary Tables 90-96)
are encoded with the text encoder. The diagnostic prediction of
the query slide is decided by the closest label embedding to the
TITAN-encoded slide embedding, based on ¢, distance in the embed-
ding space. We observe that TITAN performs the best across these
tasks, significantly outperforming PRISM by a large margin on mul-
ticlass classification tasks (balanced accuracy +56.52%) and binary
subtyping tasks (AUROC +13.8%), for both cancer subtyping tasks
and noncancerous tasks (Fig. 3b and Supplementary Tables 97-109).
The performance gap between TITAN and PRISM is the widest on
the 30-class EBRAINS subtyping task, where the balanced accuracy
of TITAN is more than double that of PRISM (balanced accuracy
of +121.9%).

To understand how different design considerations affect the
zero-shot performance, we ablate over pretraining stages and the slide
encoder architecture (Fig. 3¢). In total, we experiment with four vari-
ations of TITAN and present the average performance over four chal-
lenging subtyping tasks, TCGA-UT-8K, TCGA-OT, OT108 and EBRAINS
(individual results can be found in Supplementary Tables 110-113).
We observe that TITAN maintains the best overall zero-shot perfor-
mance. Of the three pretraining stages, stage 1 vision pretraining
contributes the least (balanced accuracy of —0.4% against TITAN),
followed by stage 2 ROI caption alignment (-3.6% against TITAN)
and stage 3 slide-report alignment (-7.3% against TITAN). This
underscores the importance of aligning vision and language at both
fine-grained and global levels, thereby combining the insights inde-
pendently derived at patch-level”’ and slide-level®*®>”2, which is
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Fig. 3| Visual-language evaluation of TITAN. a, A schematic for zero-shot
evaluation. The query slide is classified by identifying the closest text prompt
embeddingin the slide embedding space. b, Zero-shot performance of TITAN
and PRISM. All multiclass tasks are evaluated with balanced accuracy and
binary tasks are evaluated with AUROC. All error bars represent s.d. based
onbootstrapping (n=1,000). Dashed lines represent average performance
for respective models (red, TITAN; teal, PRISM) ¢, Ablation study comparing
different pretraining strategies, and assessed with zero-shot performance
averaged across TCGA-UT-8K, TCGA-OT, OT108 and EBRAINS. Evaluations are

based on the percentage changes of balanced accuracy from the reference zero-
shot performance of TITAN. d, Report-generation evaluation on TCGA-Slide-
Reports, and evaluated using METEOR, ROUGE and BLEU. All error bars represent
s.d.based on bootstrapping (n=1,000). e, TCGA examples of generated reports
of TITAN and PRISM, with the corresponding clinical reports. Additional
examples of generated reports are available in Extended Data Fig. 7. Statistical
significance was assessed by fitting a generalized linear mixed-effects model and
performing a two-sided Wald z test on the fitted model. Significance shown with
respect to TITAN. ***P<0.0001.

lackinginreport-only aligned baselines such as PRISM and GigaPath.
Finally, a multiheaded ABMIL (MH-ABMIL) network, serving as the
vision backbone with vision-language alignment pretraining, lags
behind TITAN with and without vision pretraining by 1.94% and 1.54%,
respectively. This indicates that the ViT architecture, incorporating
self-attention and ALiBi, provides better downstream performance
than attention-based alternatives.

Finally, we assess TITAN’s capabilities of generating pathologi-
cal reports, using the text decoder trained during CoCa pretrain-
ing. To this end, we introduce a report-generation task on TCGA,

TCGA-Slide-Reports, consisting of 10,108 FFPE WSIs with paired
slide-level reports parsed from 9,523 patient-level TCGA reports
released by a previous study'®’ (see Methods for more details). We
evaluate the models using three metrics METEOR"’, ROUGE™ and
BLEU"2. We observe that TITAN outperforms PRISM by alarge margin,
onaverage by 161% across the three metrics (Fig. 3d). Examples of the
generated reports for TITAN considered high-quality by the patholo-
gists are shown in Fig. 3e, often capable of correctly capturing key
attributes such as tissuessite, diagnosis and tumor grade as well as key
representative morphology (Extended Data Fig. 7).
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TITAN enables rare cancer retrieval and cross-modal retrieval
Consulting cases with similar morphological features and diagnoses is
essential for pathologists to make informed decisions, especially when
dealing with complex or rare cases>7#4850515313114 Retrieving similar
histology slides or pathology reports facilitates the identification of rel-
evant cases from large archival databases, and has become an essential
clinical decision support in digital pathology workflows. This is espe-
cially beneficial for rare cancers that affect fewer than 15 individuals per
100,000 annually*™*, for which pathologists canidentify nonspecific
malignancies based on similar WSIs and their corresponding pathology
reports. Slide foundation models readily provide WSI representations
for vector database indexing, fundamentally simplifying the task of
histology slide retrieval.

Given a query slide and a set of support slides with diagnostic
labels (indexed by aslide foundation model), histology slide searchis
evaluated by assessing the accuracy in retrieving identically labeled
slides fromthe support set. Specifically, we test whether the K-closest
neighbors of aquery slide in the embedding space, determined using
Euclideandistance withK'={1, 3, 5}, include slides of the same diagnos-
ticlabel as the query (see Methods for more details).

We design three variations of the rare cancer retrieval task,
Rare-Cancer, Rare-Cancer-Public and Rare-Cancer-External, to assess
generalization in different scenarios (see Methods for more details).
For Rare-Cancer, we curate a large database of 186 cancer types with
19,626 WSIs by combining a ‘rare cancer set’ of 43 cancer types (3,039
WSIs) withthe ‘common cancer set’ 0f 143 more common cancer types
(16,587 WSIs) from TCGA, EBRAINS and MGB internal data (Fig. 4a and
Supplementary Table 114). This emulates the real-world setting of
clinicians interacting with an extensive cancer database encompass-
ing a diverse mix of rare and common cancer types. A query set is the
subset of the ‘rare cancer set’, ensuring representation of all 43 rare
cancer types, and a support set contains all remaining WSIs of the
‘rare cancer set and the common cancer set’, ensuring representation
of all 186 cancer types. For Rare-Cancer-Public, we curate a public
version with 127 cancer types and 14,062 WSIs using the data from
TCGA and EBRAINS, resulting in 29 rare cancer types (1,982 WSIs)
and 98 common cancer types with lower diversity (12,080 WSIs;
Supplementary Table 115). Finally, we curate Rare-Cancer-External for
external validation, comprised of 39 WSIs covering 12 challenging rare
ovary and soft tissue cancers from Kanagawa Cancer Center Hospital,
Japan (Supplementary Table 116).

We observe that TITAN significantly outperforms other slide
encoders on average with +14.8% in Accuracy@K and +18.1% in
MVAcc@K to the next best model PRISM (Supplementary Table 117).
On Rare-Cancer-External, we observe that our slide encoder is sig-
nificantly more robust to the domain shift to the external institution
than otherslide encoders with +30.8% and +41.5% in Accuracy@K and
+31.2% and +26.7% in MVAcc@K for TITAN and TITAN, to the next best
model GigaPath (P< 0.0001; Supplementary Table 118). The trends
in performance are preserved on Rare-Cancer-Public with slightly
higher performance levels as the task is easier with a support set con-
taining fewer cancer types (Supplementary Table 119). An example
of rare cancer retrieval is demonstrated in Fig. 4b, where the closest
slide to the paraganglioma query is also of paragangliomawith a high
similarity of 0.794 and less similar slides are of different cancer types
(haemangioma from brain, similarity of 0.341). One of the retrieved
slides is pheochromocytoma with a high similarity of 0.651, agreeing
with the clinical understanding that both are morphologically tightly
connected as rare neuroendocrine tumors™ (additional examples
in Extended Data Fig. 8). With multiclass cancer subtyping tasks of
varying difficulties, we also observe that both TITAN and TITAN, sig-
nificantly outperform other slide encoders (P< 0.0001; Fig. 4c and
Supplementary Tables 120-124).

We further investigate the cross-modal retrieval performance of
TITAN, as the slide and report embedding spaces are already aligned

(see Methods for more details). We perform the cross-modal experi-
ments on TCGA-Slide-Reports, our proposed dataset for report gen-
eration with 10,108 slide-report pairs (Supplementary Table 125).
We observe that TITAN significantly outperforms PRISM on both
retrieval tasks across all K retrievals, as measured with Recall@K for
K=11,3,5,10}, with +10.5% and +20.5% on average for report-to-slide
and slide-to-report retrieval tasks, respectively (Fig. 4d and
Supplementary Tables 126-127). The strong performance of TITAN
evenwithasingle report (0.75) hints at the clinical potential. For adiag-
nostically challenging query slide, clinicians can benefit from sifting
through retrieved past reports with similar diagnoses.

Discussion

We introduce TITAN, amultimodal whole-slide foundation model for
pathology, which combines and elevates successful SSL recipes from
the patch level to the slide level. Methodologically, TITAN employs
histology knowledge distillation in the feature space (vision-only) and
contrastive learning by aligning ROIs with synthetic captions and WSIs
with reports (vision-language). Pretrained on 336k WSIs, TITAN, a ViT
architecture equipped with ALiBi positional encoding for long-context
extrapolation, produces powerful general-purpose slide representa-
tions for alarge variety of downstream tasks even without task-specific
fine-tuning. From cancer subtyping to molecular classification, TITAN
consistently outperforms other state-of-the-art slide encoders, such
as PRISM®, GigaPath*® and CHIEF®. This superiority is maintained in
data-constrained settings such as rare disease classification and histol-
ogy slide retrieval, which underscores the representation quality of
TITAN. Further aligning the vision-pretrained TITAN with 423k ROI-level
captions generated by PathChat and 183k pathology reports equips
the model with multimodal capabilities such as zero-shot diagnosis,
slide-reportretrieval and report generation. We observe that aligning
the slide embedding with both the fine-grained (ROI captions) and
coarse-level (pathology reports) descriptions is crucial for handling
the multiscale information inherentin tissue slides.

Detailed ablation analyses reveal further insights into TITAN. We
observe that stage 1unimodal pretraining of TITAN, captures morpho-
logical concepts already with much less data than existing slide encod-
ers. In particular, TITAN, consistently outperforms its mean pooling
and task-specific attention-based pooling baselines that use the same
patchencoder as TITAN,, proving that unimodal pretraining effectively
captures the context of patch features in contrast to existing unimodal
slideencoders. Next, in addition to unlocking language-related capabil-
ities, we observe that the vision-language alignment further enhances
therepresentation quality of our vision-only model. Specifically, TITAN
outperforms TITANV for slide-level tasks, with the strongestimprove-
ments observed in nonparametric evaluation settings. While slide
embeddings from pretrained TITAN are already promising, especially
in the low-data regime, task-specific fine-tuning of the pretrained
model can further enhance the downstream performance for tasks
withalarge enough patient cohort, pointing to the flexibility of TITAN
whenapplied to diverse clinical and data settings. We conjecture that
some of these insights canbe readily translated into other domains of
pathology foundation models, such as hematopathology"®, spatial
transcriptomics'’, 3D pathology"® and multiplex imaging™.

Providing multimodal slide embedding off-the-shelf presents
immediate clinical potential to assist clinicians in their routine diag-
nostic workflows®. Presented with diagnostically challenging tissue
slides, pathologists and oncologists can greatly benefit from being
able to retrieve and analyze diagnostically similar slides or clinical
reports’. This would lead to a reduction in patient misdiagnosis and
interobserver variability. TITAN can accurately retrieve similar diag-
nosticslides and reports for challenging scenarios fromalarge number
of cancer types (>100), as well as rare cancer types* where the cor-
respondingslides have scarce representationin the database. Thatall
of these tasks could be performed off-the-shelf with TITAN without a
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Fig.4|Retrieval capabilities of TITAN. a, Slide retrieval results on rare cancer
retrieval tasks assessed with Accuracy@Kk, with K= {1, 3, 5}. Rare-Cancer (internal
rare cancer cohort) consists of TCGA, EBRAINS and the MGB internal cohort,
with 43 rare and 143 common cancer types for a total of 186 classes. Rare-Cancer-
Public (public rare cancer cohort) consists of TCGA and EBRAINS only, with

29 rare and 98 common cancer types for a total of 127 classes. Rare-Cancer-
External consists of 12 rare cancer types for the ovary and soft tissue, curated

at Kanagawa Cancer Center Hospital, Japan. b, Example of rare cancer retrieval
on Rare-Cancer with the query slide and four representative retrieved slides.
The numberindicates the cosine similarity between the query and the retrieved

slide. Additional examples of rare cancer retrieval are available in Extended
DataFig. 8. ¢, Slide retrieval results on five subtyping tasks. Mean represents the
average performance across three shots. d, Report-to-slide and slide-to-report
cross-modal retrieval performance assessed with Recall@K, withK = {1, 3, 5,10}
on TCGA cohort 0f10,108 pairs of WSIs and reports for TITAN and PRISM. Mean
represents the average performance across four shots. All error bars represent
s.d. based onbootstrapping (n=1,000). Statistical significance was assessed
using TITAN by the fitting of a generalized linear mixed-effects model and a two-
sided Wald z test on the fitted model. Significance shown with respect to TITAN.
Pvalues for nonsignificant results are shown. **P< 0.01, **P< 0.001, ***P < 0.0001.

dedicated algorithm for each underscores both the generalizability of
TITAN slideembeddings and the simplicity of slide-level tasks with the
pretrained slide encoders.

Despite the encouraging performance of TITAN, our framework
has afew shortcomings. First, pretraining on 8k x 8k region crops and
extrapolating with ALiBi to the entire WSI may still not capture the full
contextual information. Other positional encodings for extrapola-
tion could address this limitation. Next, despite our best efforts to

curate a diverse pretraining dataset, patch foundation models and,
consequently, slide foundation models are susceptible to encoding
nonbiological features, such as tissue processing sites and scanners,
which may compromise their translational impact'*°7'>, We believe
that systematic investigations similar to our robustness analysis and
insights discovered™*'*, combined with ongoing efforts to curate
larger and multi-institutional pretraining datasets can mitigate the
issue. Next, clinical reports processing still poses a challenge for
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vision-language alignment. Incorporating comprehensive clinical
information conducive to contrastive learning, while ensuring that it
is linked to morphology to some degree, involves substantial manual
tuning even with the automated processing pipelines. Restructur-
ing the reports into distinctive morphology and molecular charac-
teristics could facilitate more effective learning. Finally, Mass-340K
contains fewer slides compared to other pretraining datasets used
for patch encoders*'** and slide encoders®’%. We believe that the
already strong performance of TITAN, merged with efforts to expand
Mass-340K, will further improve performance.

Promisingly, TITAN can be scaled up in terms of data and archi-
tecture. WSIs and corresponding medical reports are routinely avail-
able and stored. The synthetic region-level captions can easily be
generated with the generative Al model to provide a wealth of text
guidance®'”, Combining the additional data and a heavier architecture
canpotentiallyimprove the performance, as demonstrated with patch
encoders'>*?°, Additionally, improved patch representation quality is
likely to enhance the quality of the downstream slide encoder.

In conclusion, we envision TITAN and its future iterations being
incorporated into practitioners’ everyday toolkits for routine appli-
cation and comparison with other task-specific supervised frame-
works, together reaching higher levels of performance in clinically
important tasks.

Online content
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Methods

Ethics statement

The retrospective analysis of internal pathology images and asso-
ciated reports used in this study received approval from the Mass
General Brigham Institutional Review Board. Before the computa-
tional analysis and model development, allinternal digital data, includ-
ing WSIs, pathology reports and electronic medical records, were
anonymized. Since the study did not involve direct patient participa-
tion or recruitment, informed consent was waived for the analysis of
archival pathology slides.

Pretraining dataset

For large-scale visual pretraining, we curated Mass-340K, a diverse
dataset consisting of 335,645 WSIs across 20 organs, with 89.7% hema-
toxylin and eosin (H&E), 7.9% IHC, 2.3% special stains and 0.1% others,
across different tissue types (neoplastic 70.0%, tissue damage response
8.4%,normal 4.7%, inflammatory 3.4% and others 13.5%), sourced from
the combination of in-house histology slides at Mass General Brigham
(MGB), consult slides sent to MGB and the GTEx consortium'*'%’,
Sourced from several sites, Mass-340K covers a wide range of tissue
preprocessing protocols with diverse scanners and stainers.

Scanner type. Setting aside the publicly available GTEx cohort for
which the scanner type information is not available, we confirm that
Mass-340K uses 16 different scanners from seven different manufac-
turers. Detailed data breakdown along scanner types can be found in
Supplementary Table 1.

Stainer type. For the internally-curated cohort at MGB, the following
stainers were used: Leica HistoCore Spectra (H&E), Agilent DAKO Cov-
erStainer (H&E), Leica Bond Il (molecular), Leica BOND PRIME (IHC),
Agilent Dako AutoStainer Link 48 (IHC) and Agilent Dako Artisan Link
Pro (special stain).

Stains. The 27k IHC slides in Mass-340K span 100+ unique stains,
without focus on particular biomarkers. The goal of IHC curation was
toensurethat TITANis exposedto alarge set of slides with diverse tis-
sue appearances during the pretraining process. For example, these
stains include proliferation markers (Ki-67), lymphoid and hemat-
opoietic markers (CD4, CD20) and oncogenes and tumor markers
(MYC, BRAF, human epidermal growth factor receptor 2 (HER2)). In
addition, Mass-340K contains 50+ unique special stains, such as Mas-
son’s trichrome and Congo red.

To explore the effects of data scale at the pretraining stage, we
formed three additional partitions of Mass-340K, containing 12.5%, 25%
and 50% of the original dataset. These partitions were sampled to main-
taintheratio of different data sources and preserve organ distribution.

Synthetic caption generation using PathChat. For the initial stage of
vision-language alignment (stage 2 of TITAN), we used synthetic cap-
tions generated by PathChat, a state-of-the-art multimodal large lan-
guage model designed for pathology®. To go beyond the typically brief
clinical reports focused on the final diagnosis, we prompted PathChat
to generate detailed morphological descriptions of ROIs, providing
important training data for models to capture complex pathological
features. Using PathChat, we generated synthetic captions for 423,122
diverse ROIs of 8,192 x 8,192 pixels sampled from Mass-340K. Since
PathChat cannot processinputs of size 8,192 x 8,192 pixels directly, we
divide each ROl into 64 patches of size 1,024 x 1,024 pixels. To retain
the most representative morphological features, we applied K-means
clusteringwithK=16to the 64 patches and then randomly sampled one
patchfromeach cluster. The resulting 16 morphologically representa-
tive1,024 x 1,024 patches were subsequently fed to PathChat. To further
enhance the diversity of these captions, we used Qwen2-7B-Instruct*°
torewrite the generated captions, ensuring varied language structures

and expressions. Detailed prompts for both PathChatand Qwen2, along
with examples of generated and diversified captions, are provided in
Supplementary Tables 4 and 5.

Curation of slide-report dataset. For the second stage of vision-
language alignment (stage 3 of TITAN), we curated a dataset 0f 182,862
slide-report pairs from a combination of in-house clinical reports
and pathology notes from the GTEx consortium'”. However, clinical
reportsare often noisy and are typically organized at the patient level,
hence contain information on multiple slides from the same patient,
complicating the slide-report alignment. To address this, we used a
locally served Qwen2-7B-Instruct’ model to extract slide-specific
descriptions and remove sensitive information unrelated to patho-
logical diagnosis, such as gross descriptions, hospital and doctor
names and patient clinical history. Additionally, we applied the same
rewriting strategy used for synthetic captions to diversify the report
text. Example prompts used for report cleaning and rewriting can be
found in Supplementary Tables 6-8.

Unimodal visual pretraining

Preprocessing. Similar to previous studies®'®”*, WSIs were preproc-
essed by tissue segmentation, tiling, and feature extraction using
a pretrained patch encoder. We used the CLAM toolbox™ for tissue
segmentation and tiling. Tissues were segmented by binary threshold-
ing of the saturation channel in HSV color space at a low resolution.
Following this, we applied median blurring, morphological closing and
filtering of contours below aminimum area to smooth tissue contours
and eliminate artifacts. Nonoverlapping 512 x 512 pixel patches were
then extracted from the segmented tissue regions of each WSI at x20
maghnification. For feature extraction, we used CONCHv1.5, an extended
version of CONCH'’, which was trained with 1.26 millionimage-caption
pairs using the CoCa training objective for 20 epochs. The choice of
CONCHVL.5 for feature extraction was due to the fact that the model
was pretrained on histology regions with diverse stains and tissue
types, including FFPE, frozen tissue and IHC, thereby yielding region
features that are robust against diverse tissue processing protocols.
By increasing the patch size from the widely used 256 x 256 pixels, we
effectively reduce the sequence length by four withoutimpacting the
representation quality due to higher resolution patchinput, leveraging
therobustness of the patch-level foundation models in generalizing to
higher resolutions™%%,

Refer to Supplementary Table 2 for detailed hyperparameters of
the patch encoder.

To enhance the effectiveness of the ROl sampling strategy dur-
ing stage 1 training of TITAN,, an additional preprocessing step was
performed to group the segmented tissue contours based on their
spatial proximity within the slide. This addresses the challenging cases
where multiple tissue regions are interspersed with background areas,
particularly for biopsy samples where tissue fragments are often widely
dispersed and for samples with multiple slices placed on the same
slide. Specifically, we grouped tissue contours into clusters based
on their coordinates, resulting in tissue groups that contain densely
packed tissue regions with minimal background regions between them.
Furthermore, tissue groups that contained fewer than 16 patches were
filtered out. This grouping operation produced a total of 345,782 tissue
groups from Mass-340K.

Pretraining protocol. For training TITAN, on Mass-340K, we use iBOT,
astate-of-the-art SSL method that combines student-teacher knowl-
edge distillation and masked image modeling®. As iBOT is applied in
the patch embedding space, instead of the typical use case of the raw
image space, we adapt the pretraining recipes as follows.

View generation. During training, we create region crops randomly
sampled fromthetissue groups, each of which correspondsto afeature
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grid of size 16 x 16, corresponding to a field of view of 8,192 x 8,192
pixels at xX20 magnification (Fig. 1b). The random sampling of region
crops, instead of precomputing fixed regions, increases the diversity
ofthe training set and effectively acts as an additional data augmenta-
tion, as the model encounters different parts of the same WSl at each
trainingepoch. Aregion crop contains 256 features, whichis equivalent
inlength to training on images of 256 x 256 pixels with a token size of
16 x 16 inthe typical natural image setting. From this region crop, two
global views (14 x 14 crops) and ten local views (6 x 6 crops) are gener-
ated by cropping within the region crop without scaling or interpola-
tion and subsequently fed to iBOT training. The 2D feature grid setup
allows us to directly apply student-teacher knowledge distillation
approaches, which typically require square crop inputs.

To achieverealistic augmentationsin the embedding space, exist-
ing methods have employed offline image augmentationsin the pixel
space®**’ by extracting multiple patch features from different views
of a given patch. While effective, this approach limits the number of
additional views and becomes computationally infeasible for large
training datasets. Additionally, choosing color space augmentations
tailored to histopathology that go beyond standard color transforma-
tions introduces additional computational overhead. A few recent
approaches addressed the difficulty with training generative networks
onthe feature space to transform the features™'*, but alsointroduced
additional computational cost for training. Instead, we apply frozen
feature augmentations, which have been shown to work well for a
few-shot classification task in the feature space of pretrained ViTs®.

Positional encoding. Traditional multiple instance learning methods
consider the patches to be permutation-invariant within the slide.
Despite the promising results, this approachignores the tissue context,
which canbe essential for capturing the interactionin the tumor micro-
environments and can thus affect the model’s performance', In this
context, for TITAN, we employ positional encodings in the patch
embedding space to break permutationinvariance and encode tissue
context. Furthermore, TITAN adopts the strategy of ‘train short, test
long’to ease the computational burden, which also requires positional
information via positional encodings. Trained at the region crops
(ROIs) of 8,192 x 8,192 pixels (train short), we directly apply TITAN on
the whole slide during inference (test long). We used ALiBi, a method
originally proposed for 1D sequence in large language models*. Abso-
lute positional encoding, another popular alternative that works well
for images at training sizes, was shown to have weak extrapolation
abilities’. Unlike other positional encodings applied to the input fea-
tures, ALiBi adds a bias to the query-key dot product during the com-
putation of attention scores. ALiBi effectively penalizes the attention
score for tokens that are further apart from each other. Formally, let
g; € RYand k; € R?represent the i-th query andj-th key, respectively.
The attention score, which is typically computed as softmax (q,-k}), is
modified with 1D ALiBi as softmax (q,-kg — m|i —j|), where mis a prede-
fined slope specific to each attention head. Since the feature grids and
the resulting views are of 2D grid structure, we extend ALiBi to 2D by
incorporatingthe Euclidean distance between the patchesiandj. The
2D ALiBi can be written as

softmax (q,-k} —m/ (i —j)* + (i —jy)z), 1

where i, i,andj,,j,are the 2D grid coordinates of patches iand,. The x
andy coordinates are defined as the 2D patch coordinates (at magni-
fication x20) divided by the patch size of 512.

Network architecture and training details. For the slide encoder, we use
aViT” withsix transformer layers, 12 attention heads of dimension 64,
resulting in an embedding dimension of 768 and a hidden dimension
of 3,072. This smaller architecture, compared to typical ViTs used in

patch encoders, is chosen based on previous studies®’, which suggest
that a compact network suffices for slide representation learning in
the embedding space, especially given the limited data scale of WSIs
compared to histology patch datasets, which are on the scale of bil-
lions. The patch embedding layer is replaced by an MLP to process
the feature inputs. We train the model for 270 epochs (equivalent to
91,260 iterations), distributed across four NVIDIA A100 80GB graphics
processing units (GPUs) with a local batch size of 256 per GPU. For all
training hyperparameters, refer to Supplementary Table 3.

Vision-language continual pretraining

To enhance the unimodal capabilities of TITAN,, we further explored
the multimodal vision-language alignment of TITAN, with clinical
text. Training a multimodal foundation model, however, faces several
limitations related to dataand compute. First, paired slide-report data
are scarce compared to the scale of millions of image-caption pairs
for patches. Additionally, real-world clinical reports typically contain
only brief diagnostic information, unlike the detailed morphological
descriptionsin educational captions for histology ROlimages. Finally,
contrastive learning-based cross-modal training typically requires a
large batch size, which is computationally infeasible for WSlIs.

To address these issues, we propose a two-stage continual pre-
training approach (referred to as stage 2 and stage 3 for TITAN) that
progressively aligns the model with increasing context. We first align
synthetic captions for ROIs of 8,192 x 8,192 pixels, followed by real
clinical reports for WSIs. With emphasis on detailed morphological
descriptions, the first vision-language alignment stage allows the
modeltolearn fine-grained pathological concepts usingalarge batch
size. In the next stage, we further augment the model’s understand-
ing of diagnostic terminology and reasoning, targeted to enhance its
zero-shot understanding in downstream tasks. The second stage also
serves as a ‘high-resolution fine-tuning’ phase, adapting the model
fromthelocal contexts of ROIs to the full-scale global context of WSIs.
Altogether, these two stages are designed to gradually build the model’s
ability to comprehend and generate meaningful vision-language rep-
resentations for WSlIs.

Network architecture and training details. Following the success of
previous studies', we use CoCa”, a state-of-the-art visual-language
foundation model pretraining method, for both stages of
vision-language alignment. The model consists of an image encoder,
atext encoder and a multimodal text decoder. Using our unimodal
TITAN, as the image backbone, we add two attentional pooler com-
ponents on top. The first attentional pooler uses a single query (con-
trastive query) to pool a single global representation of the feature
grids and enable cross-modal contrastive learning with text embed-
dings. This global WSI representation can then be used for zero-shot
orunsupervised evaluation of TITAN on downstream tasks. The second
attentional pooler uses n =128 queries (reconstruction queries) to
generate a set of 128 image tokens designed for interacting with the
multimodal text decoder for caption generation. We use the pretrained
text encoders and multimodal decoders of CONCHVL.5 (ref. 10), each
consisting of 12 transformer layers with an embedding dimension of
768 and a hidden dimension of 3,072.

For both stages, we used eight NVIDIA A100 80GB GPUs. During
stage 2 vision-caption pretraining, we used alocal batch size of 196 per
GPU, with gradient accumulation of 2, resulting in an effective batch
size of 3,136. For stage 3 vision-report pretraining, we randomly crop
the WSIs to 64 x 64 feature grids, allowing for larger batch sizes while
maintainingalarge field of view, corresponding to 32,768 x 32,768 pix-
els, which already covers most slides in our pretraining dataset. We
used a local batch size of 16 per GPU, with a gradient accumulation of
2 to achieve an effective batch size of 256. To avoid deteriorating the
quality of the pretrained vision encoder, we used a smaller learning
rate and weight decay, as well as a slow warm-up strategy for the vision
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backbone, following previous work™*. For all hyperparameters, refer
to Supplementary Tables 9 and 10.

Evaluation setting

Baselines. We compare TITAN, against (1) unsupervised baselines with
four other slide encoders, Prov-GigaPath (referred to as GigaPath)*®,
PRISM®, CHIEF®, and the mean pooling baselines with features from
the respective patch encoders, (2) supervised baselines and (3) our
vision-language model TITAN against zero-shot baseline PRISM.

Unsupervised baselines. GigaPath uses LongNet architecture as the
slide encoder, a ViT*?in the ‘base configuration’, replacing the vanilla
dense attention with dilated attention. It was trained on 171,189
in-house WSIs from Providence viamasked autoencoder'. As a patch
encoder, GigaPath uses ViT-G/14 pretrained with DINOv2 (ref. 87) on
the same in-house dataset. While GigaPath further performed con-
tinual vision-language pretraining, we only assess the unimodal model,
as the multimodal model is not publicly available. For performance
analysis, we use the output of the Transformer layer 11 as slide repre-
sentation, which yields the best results on downstream tasks and also
agrees with the provided fine-tuning recipe. PRISM®* uses the Per-
ceiver architecture®as the slide encoder, incorporating CoCa-based
vision and language alignment® on 195,344 specimen-report pairs,
which comprise a total of 587,196 WSIs, each containing one or more
WSiIs. As for the patch encoder, PRISM uses Virchow", a ViT-H/14 pre-
trained with DINOV2 (ref. 87) on an in-house dataset. CHIEF® applies
attention-based feature aggregation, trained viaslide-level contrastive
learning and anatomic siteinformation. The patchencoderis based on
CTransPath*, aself-supervised SwinTransformer™ trained on 15 million
patches. Inaddition to the pretrained slide encoders, we evaluate mean
pooling as a baseline, where the patch features are averaged within
each slide, as it serves as a strong unsupervised baseline despite its
simplicity®*°®. While we mainly compare with mean pooling based on
CONCHVL1.5 patch features, we also provide results for mean pooling
with the corresponding patch encoders of each slide encoder for a
subset of analyses.

Supervised baselines. We compare TITAN against ABMIL”>"* and the
fine-tuning of the pretrained slide encoders. For ABMIL, the model was
trained with a batch size of 1 using the AdamW optimizer with weight
decay 107 and a Cosine annealing learning rate scheduler with peak
learning rate 10~ over 20 epochs. The patch encoders were selected
accordingly for each analysis. For GigaPath fine-tuning, we used the
publicly available code, which uses abatch size of 1, AdamW optimizer
with weight decay 0.05 and Cosine annealing learning rate scheduler
with warm-up and base learning rate 2 x 107 over five epochs. For
CHIEF fine-tuning, we also used the publicly available fine-tuning
code. For tasks with a validation set, the best model is chosen based
onthe validation loss.

Cross-modal baselines. For cross-modal zero-shot retrieval and clinical
report generation, we compare TITAN against PRISM®,

Linear and k-nearest neighbor (k-NN) probe evaluation. To evaluate
the transfer capabilities and representation quality of slide encoders,
we adopt recent work in representation learning with self-supervised
frameworks and perform linear (logistic regression) and k-NN prob-
ing. For linear probing, we minimize cross-entropy loss using the
scikit-learn L-BFGS solver with ¢, regularization, selecting ¢, from 45
logarithmically spaced values between 10 ®and 10° based on the valida-
tion loss. The maximum number of L-BFGS iterations is set to 500. For
datasets without a validation set, such as small datasets or few-shot
experiments, we use the default values of £, =1with1,000iterations. We
additionally evaluated with k-NN probing, anonparametrized measure
to quantify the representation quality of fixed embeddings. We apply

itin the following two settings: first, we follow SimpleShot to create a
prototypical class representation by averaging all slide embeddings
per diagnostic class'®; second, we use the scikit-learn implementa-
tion of k-NN with k = 20 following stability observations from SSL
literature® %, In both settings, Euclidean distance is used as the dis-

tance metric based onthe centered and normalized slide embeddings.

Slide retrieval. To further evaluate the representation quality of dif-
ferent slide encoders, we perform content-based slide retrieval using
slide-level classification datasets, where we retrieve slides with the
same class label as a given query slide. Specifically, we extract slide
features for all WSIs. The training and validation sets are combined
to serve as the database of candidate slides (keys), and we treat each
slideinthetestsetasaqueryslide. Beforeretrieval, we preprocess both
keys and queries by centering the slide embeddings, which involves
subtracting their Euclidean centroid, followed by ¢, normalization.
The similarity between the query and each candidate in the database
is computed using the ¢, distance metric, where a smaller distance
indicates ahigher similarity. The retrieved slides are then sorted based
on their similarities to the query. The class labels are used to evaluate
theretrieval performance using Acc@K for K € {1, 3, 5}, which measures
whether atleast one of the top Kretrieved slides shared the same class
label as the query, and MVAcc@5, which considers the majority class
labelamong thetop fiveretrieved slides. Detailed descriptions of these
metrics are provided in ‘Evaluation metrics’.

Cross-modal retrieval. Leveraging the vision-language aligned
embedding space, we also evaluate cross-modal retrieval performance
on TCGA-Slide-Reports. Specifically, we assess both slide-to-report and
report-to-slide retrieval tasks. All slides and reports are embedded into
ashared space using the vision and the text encoders, respectively,
followed by ¢, normalization. Retrieval is performed by calculating
pairwise cosine similarity between the slide and report embeddings.
Our class-based approach mirrors the unimodalsslide retrieval, where
retrievalis successful if the retrieved slide or report belongs to the same
diagnostic class as the query. Performanceis quantified using Recall@K
forK €11,3,5,10} for the class-based approach, which measures the pro-
portion of queries for which the correct result appearsamongthe top
Kretrieved items. Additionally, we report the mean recall, computed
astheaverage of the Recall@K values across the four K levels. Further
details on these metrics can be found in ‘Evaluation metrics’.

Few-shot slide classification. We evaluate few-shot classification by
varying the number of shotsKin{l,2,4, 8,16,32}. For each K, we select
Kshots per class orallsamples per class if the class hasless than K sam-
ples. We follow previous studies that used the SimpleShot'** framework
for evaluation of the few-shot learning performance of self-supervised
models’. SimpleShot computes a prototypical representation per
class by averaging all samples within that class. The distances to the
class prototypes are then computed on the test set. All embeddings
are centered and normalized based on the few-shot samples. To make
the evaluation more comparable to supervised baselines, such as
ABMIL, we also assess few-shot classification with linear probing. Asno
validation setis available in few-shot experiments, we use the default
scikit-learn recipe with regularization strength £,=1and up to 1,000
iterations of the L-BFGS solver. To mitigate sampling bias, we aggregate
theresults across 50 different runs, using random samples for training
while keeping the test set fixed.

Survival analysis. For survival analysis, we employed the linear
Cox proportional hazards model on the disease-specific survival
clinical endpoint. We note that this differs from typical MIL survival
prediction with negative log likelihood®*'*’, as we deal with a single
embedding for the slide (as opposed to a bag of patch embeddings),
and patients can be batched (as opposed to the single patient per
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batch due to memory usage). To reduce the impact of batch effects,
we performed a five-fold site-preserved stratification'’. Due to the
small cohort size for reliable survival prediction modeling, we used
four folds for training and the remaining fold for evaluation, without
employing the validation fold. A hyperparameter a was searched
over 25 logarithmically spaced values between 10" and 10°, with the
¢, coefficient defined as C= a. For each combination of encoder and
cancer type, we chose C that yielded the best average test metric
across the five folds. For fitting and testing the Cox model, we used
the scikit-surv package.

Zero-shot slide classification. For zero-shot slide classification, we
adopted the method described in CLIP'*® to use the similarities between
agivenslide and the text prompts of each class asits prediction logits.
Specifically, foraclassce{l, 2, ..., C}, wefirst created the text prompts
for eachclass, followed by extracting their £,-normalized text embed-
dings v. using the text encoder. Since the model could be sensitive to
the specific choice of text prompts, we created an ensemble of prompts
for each class. The complete set of prompt ensembles are provided
in Supplementary Table 103. For each WSI, we similarly computed a
¢,-normalized embedding u;using the slide encoder. We then calculated
the cosine similarity between the slide embedding and each class text
embedding. The predicted class for aslide was the one with the highest
cosine similarity score:

Y, = argmaxcu;"v, )

Report generation. Slide captioning provides concise and interpret-
able summaries of visual findings in pathology, potentially enhancing
clinical workflows. The generative objective of CoCa enabled the mod-
el’s capabilities of generating pathological reports, which we explored
on 10,108 slide-report pairs from TCGA. We performed zero-shot cap-
tioning using TITAN and compared the quality of the generated report
against PRISM®, Specifically, we use abeam search decoding strategy
with5beamsand1beamgroup, where the model explores five potential
sequences at each step and retains only the most likely sequence within
asingle group to maximize quality while minimizing redundancy.

Evaluation metrics. We report balanced accuracy and weighted
F1-score for all classification tasks with more than two classes. For
ordinal multiclass classification tasks, we report balanced accuracy
and quadratic-weighted Cohen’s k. For binary classification tasks, we
reportbalanced accuracy and AUROC. For survival tasks, wereport the
concordance index (c-index), which measures the agreement between
the model’s predicted risks and the actual survival times. The expected
calibration error (ECE)'”” measures whether the model’s predicted
probabilities match the actual frequencies of each diagnostic label,
with the lower valueindicating that the model’s confidence estimates
are well-calibrated. We use amulticlass variant of the original ECE, with
one-versus-all binarization of the labels with respect to a given diagnos-
tic label computed and averaged across all labels. The entropy score
measures the uncertainty of predictions, withalower valueindicating
that the model has higher confidence in its predictions. The entropy
ofthe predicted probabilities was computed.

For slide retrieval tasks, we report Acc@K for K € {1, 3, 5}, which
measures if at least one slide among the top K retrieved slides has
the same class label as the query. We also report MVAcc@5, which is
a stricter metric that considers whether the majority vote of the top
Sretrieved slides is in the same class as the query. For cross-modal
retrieval tasks, we report Recall@K for K € {1,3, 5,10}, which measures
the proportion of queries for which the correct result appears in the
top Kretrieved items. We also report mean recall, which is calculated
as the average of the four Recall@K values. For report generation, we
compare the generated reports with the ground truth pathological
reports using METEOR, ROUGE and BLEU. METEOR"? is a metric that

evaluates text quality through unigram matching by considering both
precision and recall while also accounting for synonyms, stemming and
word order between the candidate and reference texts. ROUGE™ com-
pares the overlap of n-gram, word sequences and word pairs between
the generated and reference texts, focusing onrecall. We use ROUGE-1,
which specifically measures the overlap of unigrams. BLEU™” measures
the quality of generated text based on unigram overlap, focusing on
precision. We use BLEU-1, which evaluates the extent of word-level
matches between the generated and reference texts.

Statistical analysis. For the datasets with five-fold splits, where we
employ five-fold cross-validation, we report the mean performance
and the s.d. across all folds. For the datasets with a single split, we use
nonparametric bootstrapping with 1,000 samples to calculate the
meanands.d.

To compare the performance of multiple methods across different
datasets, we used a hierarchical generalized linear mixed-effects model
(GLMM).A GLMM is astatistical model that enables analysis of the data
with both fixed and random effects. Specifically, we are interested in
estimating the effect of each method (fixed effects) while accounting for
variability across datasets (random effects). The hierarchical structure
capturesthe fact that datasets differin their overall performance levels,
while the mixed-effects framework ensures that method comparisons
are made after adjusting for these dataset-specific effects. Since the
performance metric is bounded between 0 and 1, we used a S distribu-
tion, parameterized interms of amean y;and a precision parameter ¢.
The expected value of the metric for methodjon dataset iis modeled as:

Vi~ By, @), logit(uy) = a+p;+b;,

where the mean u; was linked to the predictors using a logit
transformation, with

« aistheoverallintercept,

+ Bjisthe fixed effect of method),

« b;isarandomintercept for dataset i modeled with Gaussian
distribution, that s, b; - n(0, ¢?).

Thisapproachaccounts for the possibility that some datasets may
consistently produce higher or lower performance scores, preventing
these systematic differences from being misattributed to the methods
themselves. We assume that, while absolute performance scores vary
across datasets, the relative ranking of methods remains approximately
consistent (for example, if Method A tends to outperform Method B, it
is likely to do so across most datasets). Parameters were fitted using the
maximum likelihood estimation, and model fit was assessed through
diagnostic checks of residual distributions and variance components.
To compare methods, we compute estimated marginal means—the pre-
dicted average performance for each method adjusted for dataset-level
variability. Pairwise comparisons of these means are conducted using
two-sided Wald ztests, with the Tukey correction applied to control for
multiple comparisons and ensure robust inference.

We also evaluate few-shot learning performance, where methods
are compared with limited training examples (K =1, 2, 4, 8, 16). For
agiven task (or dataset), to isolate the effect of method choice, we
include the number of training examples as the random effect. We use
ahierarchical GLMM with a fdistribution and compute estimated mar-
ginalmeans, with correction for multiple hypothesis testing, to assess
whether substantial performance differences exist between models.
For theretrieval tasks, we follow a similar approach to the few-shot by
treating different numbers of retrieved samples as the random effect.

Downstream evaluation datasets

For the evaluation of TITAN on a diverse set of downstream tasks
(Supplementary Tables 18-21), we re-arrange the pre-extracted
CONCHVL.5 features from patches of 512 x 512 pixels to feature grids
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cropped around the tissue regions of the WSIs. Additionally, back-
ground masks are created to mask out features corresponding to
background patches. Each WSl is then one single input image to
TITAN. For downstream tasks with patient-level annotations, we cre-
ate patient embeddings by averaging all slide embeddings of TITAN
corresponding to a single patient. In the following, we detail all data-
sets used in our downstream evaluations, including splits and tar-
gets. We first describe the six datasets that we introduce in our study,
TCGA-UniformTumor-8K, TCGA-OncoTree, TCGA-Slide-Reports,
Rare-Cancer, Rare-Cancer-Public and Rare-Cancer-External, followed
by existing datasets in alphabetical order. To mitigate the impact of
batch effects, all datasets based on TCGA are split into label-stratified
and site-preserving folds such that slides from one clinical site only
occur in one fold following™°.

TCGA-UniformTumor-8K (TCGA-UT-8K). The TCGA-UT-8K dataset
is aregion-level pan-cancer subtyping resource comprising 25,495
ROIs of 8,192 x 8,192 pixels. These regions were extracted from 9,662
H&E-stained FFPE diagnostic histopathology WSIs sourced from TCGA.
The tumor regions were manually annotated by two expert patholo-
gists, with slide exclusion due to poor staining, poor focus, lacking
cancerous regions and incorrect cancer types. Approximately three
representative tumor regions per WSIwere annotated with pixel-level
contours. For each contour, we center-cropped an image region of
8,192 x 8,192 pixels to encompass both the dense tumor and its sur-
rounding tissue context. We split theregionsinto train-validation-test
split (train-val-test; 13,853:3,434:8,208 slides), preserving the source
site. Refer to Supplementary Table 11 for a detailed overview of all
classes contained in this dataset.

TCGA-OncoTree (TCGA-OT). The TCGA-OT is a pan-cancer subtyp-
ing dataset of 11,186 H&E FFPE diagnostic histopathology WSIs from
TCGA®. AllWSIs are classified into 46 classes according to the OncoTree
classification system, such that every class is represented by at least 50
samples. We select all diagnostic H&E FFPE WSIs from TCGA with pri-
mary tumors. Concretely, we exclude frozentissue slides, slides without
magnificationinformation, metastatic or recurrent tumor slides, slides
without tumor tissue and IHC slides. For training and evaluation, we
splitthe datasetinto training-validation-test folds of 8,226:1,612:1,348
samples while preserving the source sites; that is, all slides from one
source site are in one split. Refer to Supplementary Table 12 for a
detailed overview of all classes.

TCGA-Slide-Reports. The TCGA-Slide-Reports is a pan-cancer
slide-report dataset of H&E FFPE diagnostic histopathology WSIs from
TCGA®. The dataset consists 0f 10,108 WSIs with paired pathological
reports at the slide level. The dataset is built on the TCGA-Reports
dataset, which consists of 9,523 patient-level reports released by
a previous study'®. The dataset TCGA-Reports was created using
11,108 pathology report PDFs, corresponding to 11,010 patients, avail-
able on the TCGA data portal. The raw reports were preprocessed
by removing 82 patients with multiple reports, 399 patients with
nonprimary tumors, 72 patients with no survival data, 381 ‘missing
pathology’ reports and 212 “TCGA Pathologic Diagnosis Discrepancy
Form’reports, resulting in 9,850 reports. Optical character recogni-
tion was then performed to extract text from the PDFs, followed by
the removal of ‘Consolidated Diagnostic Pathology Form’ reports,
‘Synoptic Translated’ forms, within-report TCGA metadata inser-
tions and clinically irrelevant reports, resulting in 9,523 patient-level
reports. While these reports are clean and clinically relevant, they
often contain descriptions of multiple tissue blocks per patient. This
lack of one-to-one mapping between slides and reports poses a chal-
lenge for slide-level report generation and cross-modal retrieval,
which require distinct slide-to-report alignment. Since block IDs
are unavailable in TCGA metadata, we used the slide-level diagnoses

to map diagnoses in each tissue block description. Specifically, if a
block’s diagnosis matched the slide-level diagnosis, we designated
it as corresponding to the slide. This process was automated using
GPT40-mini, resultingin afinal set of 10,108 slide-report pairs. These
paired slides are all H&E FFPE WSIs from primary tumors adhering to
the same exclusion criteria as mentioned for TCGA-OT. We excluded
all frozen tissue slides, slides without magnification information,
metastatic or recurrent tumor slides, slides without tumor tissue and
IHC slides. Refer to Supplementary Table 125 for a detailed overview
of the diagnosis distribution.

Rare-Cancer-Public. The Rare-Cancer-Publicis a pan-cancer dataset
of H&E FFPE diagnostic WSIs from TCGA®. The dataset consists of
1,982 WSIs, with 1,548 WSIs from TCGA and 434 WSIs from EBRAINS,
representing 29 rare cancer types. According to the National Institute
of Health, rare cancers are defined as those occurring in fewer than 15
individuals per 100,000 annually**. The OncoTree codes of WSIs from
TCGA and EBRAINS were manually curated for this criterion by two
expert pathologists (A.K.and D.F.K.W.). EBRAINS provides more granu-
lar diagnostic classifications than the OncoTree codes, enabling the
dataset toinclude finer distinctions for rare brain tumors. The dataset
was divided into five patient-level folds. To assess retrieval performance
for rare cancers within a clinically representative dataset, we use one
fold of the rare cancer dataset as the query set and the remaining folds
combined with the common cancer types as asupportset.Intotal, the
supportand query datasets contain14,062slides, including 11,646 WSIs
from TCGA and 2,416 from EBRAINS.

Rare-Cancer. The Rare-Cancer is an in-house extension of the public
dataset Rare-Cancer-Public with MGB internal cases. This dataset
comprises 43 rare cancer types and 3,039 H&E FFPE diagnostic his-
topathology WSIs, where 1,056 additional cases were added from
Brigham and Women'’s Hospital (BWH). The entire dataset, including
common cancer types, comprises 19,626 WSIs, with 5,564 WSIs from
BWH, covering 186 OncoTree codes.

Rare-Cancer-External. The Rare-Cancer-External is an external test-
ing cohort for rare cancer cases collected from the Department of
Pathology, Kanagawa Cancer Center Hospital, Japan. This dataset
consists of 39 H&E FFPE diagnostic WSIs from 12 rare ovarian and soft
tissue cancers. The slides were stained using SAKURA TISSUE-TEK
PRISMA 6130 Slide Stainer, and scanned by Leica Aperio AT2 at x20
magnification. Detailed breakdown of the cohort can be found in
Supplementary Table 116.

BCNB. The BCNB consists 0of 1,058 H&E FFPE WSIs of early breast cancer
core-needlebiopsies'. All cases are annotated with estrogen receptor
(ER; WT, 227; MUT, 831), progesterone receptor (PR; WT, 268; MUT,
790) and HER2 (WT, 781; MUT, 277) expressions. We split the dataset
label-stratified by a ratio of 60:20:20 (676:170:212 slides).

BRACS. The BRACS consists of 547 H&E FFPE WSIs of benign (including
normal), atypical and malignant breast tumors from 189 patients'*.
The cases are annotated in coarse and fine-grained subtypes of three
classes (benign tumors, 265; atypical tumors, 89; malignant tumors,
193) and six classes (atypical ductal hyperplasia, 48; ductal carcinoma
insitu, 61; flat epithelial atypia, 41; invasive carcinoma, 132; normal, 44;
pathological benign, 147; usual ductal hyperplasia, 74). We split the
dataset label-stratified at the patient level into five splits, with a ratio

of 60:20:20 (approximately 302:94:151 slides).

Cardiac allograft rejection. The cardiac allograft rejection consists
of 5,021 H&E FFPE WSIs 0f 1,688 patient biopsies collected from BWH*.
Eachbiopsyislabeled for the presence of cardiac rejection, character-
ized by acute cellular rejection (no rejection, 866 patients; rejection,
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822 patients). We split the dataset label-stratified on the patient level
intotrain, valand test splits by aratio of 70:10:20 (3547:484:990 slides).

DHMC-LUAD. The DHMC-LUAD consists of 143 H&E FFPE WSIs of lung
adenocarcinoma (LUAD) from the Department of Pathology and Labo-
ratory Medicine at DHMC'?°. All WSIs are labeled into five classes of the
predominant patterns of LUAD (acinar, 59; lepidic, 19; micropapillary,
9; papillary, 5; solid, 51). Given the limited size of the dataset, we use
it exclusively for evaluation in a zero-shot setting, where we use the
entire dataset as test set.

DHMC-RCC. The DHMC-RCC consists of 563 H&E FFPE WSIs of renal
cell carcinoma (RCC) from DHMC!®. All slides are labeled into the
four predominant patterns of RCC, including one benign class (renal
oncocytoma, chromophobe RCC, clear cell RCC, papillary RCC). We
use the three RCC subtypes as an external test set for the three-class
subtyping task, TCGARCC.

EBRAINS. The EBRAINS consists of 2,319 H&E FFPE diagnostic histo-
pathology WSIs from the EBRAINS Digital Tumor Atlas sourced from
the University of Vienna'*. Due to the small sample size, we exclude
two classes and predict a fine-grained 30-class brain tumor subtyp-
ing task. Allbraintumorsin these tasks are designated as rare cancers
by the RARECARE project and the NCI-SEER program. For training
and evaluation, we approximately label-stratified the dataset into a
train-val-test fold with a ratio of 50:25:25 (1,151:595:573 slides). Addi-
tionally, we use 873 samples with annotations for isocitrate dehydro-
genase 1 (/DHI) mutation as an external test set for IDHI mutation
prediction on the TCGA-Glioblastoma Multiforme and Lower-Grade
Glioma (GBMLGG) cohort.

IMP-CRC. The IMP-CRC consists of 5,333 H&E FFPE colorectal biopsy
and polypectomy WSIs retrieved from the data archive of IMP Diag-
nostics laboratory, Portugal™*™*¢, All cases are classified into one of
the following three categories: non-neoplastic (847 slides), low-grade
lesions (2,847 slides), which include conventional adenomas with
low-grade dysplasia, and high-grade lesions (1,639 slides), which
include conventional adenomas with high-grade dysplasia, intra-
mucosal carcinomas and invasive adenocarcinomas. We split the
dataset label-stratified by a ratio of 60:20:20 into train-val-test set
(3546:887:900 slides).

MGB-BRCA. The MGB-BRCA consists 0f 1,264 H&E FFPE WSiIs of biop-
sies and resections of invasive breast cancers (BRCA) from BWH®*'*,
Each case is annotated with the following three IHC status prediction
tasks: ER status prediction (negative, 261; positive, 613), PR status
prediction (negative, 37; positive, 504) and HER2 status prediction
(negative, 665; positive,151), where ER, PR and HER2 status were manu-
ally extracted from pathology reports.

MGB-LUAD. The MGB-LUAD consists 0f 1,939 H&E FFPE WSIs of LUAD
from BWH®*'**, The WSIs are annotated by five molecular tasks with
ground truth from IHC—protein 40 (P40) status prediction (negative,
113; positive, 72), protein 63 (P63) status prediction (negative, 72;
positive, 81), Napsin A status prediction (negative, 60; positive, 66),
caudal type homeobox 2 (CDX2) status prediction (negative, 55; posi-
tive, 24) and cytokeratin 5and 6 (CK-5&6) status prediction (negative,
29; positive, 29).

MGH-BRCA. The MGH-BRCA consists of 1,071 IHC FFPE WSls of inva-
sive breast carcinoma from Mass General Hospital®. The cases con-
tain annotations for IHC quantification in six expression levels of ER
abundance (levels 1-6 with counts—168, 169, 219, 170, 175 and 169,
respectively) and PRabundance (levels 1-6 with counts—2,603, 2,397,
1,209,1,118,1,124 and 1,101, respectively).

MUT-HET. The MUT-HET consists 0f 1,291 H&E FFPE WSis of clear cell
RCC, eachrepresenting asingle patient treated at the Mayo Clinic**"'*%,
All cases are labeled with the following mutations, determined from
matched IHC slides—BAP1 mutation (WT, 1,130; MUT, 162), PBRM1
mutation (WT, 622; MUT, 670) and SETD2 mutation (WT, 943; MUT,
349). We split the dataset into five splits with train-val-test ratio of
60:20:20 (774:258:259 slides) in each split.

OT108. The OT108 is an in-house pan-cancer subtyping dataset con-
sisting of 5,564 H&E FFPE diagnostic WSIs from BWH classified into
108 classes according to the OncoTree classification'®*. We split the
dataset into train-val-test (3,164:780:1,620 slides). The test set is bal-
anced across the classes and contains 15 slides per class.

PANDA. The PANDA consists of 10,616 H&E FFPE diagnostic histopa-
thology WSIs of core-needle biopsies of prostate cancer sourced from
the Radboud University Medical Center and the Karolinska Institute.
Eachslideisassigned ascore recommended by the International Soci-
ety of Urological Pathology (ISUP) that defines prostate cancer grade
(six-class grading task). For quality control, we follow prior work'* in
excluding slides that were erroneously annotated or had noisy labels,
resultinginanoverall 9,555 slides (grade 0,2,603; grade1,2,399; grade
2,1,209; grade 3,1,118; grade 4, 1,124; grade 5, 1,102). For training and
evaluation, welabel-stratified PANDA into 80:10:10 train-val-test folds
(7,645:954:953 slides).

PD-L1. The PD-L1 consists of 234 IHC FFPE diagnostic histopathology
WSIs from 217 patients with stage IV nonsmall cell lung cancer (NSCLC)
who initiated treatment with anti-PD-(L)1 blockade therapy between
2014 and 2019 at Memorial Sloan Kettering Cancer Center™", Patients
whoreceived chemotherapy concurrently withimmunotherapy were
not included. We used the clinical PD-L1 assessments as labels and
substituted these labels by pathologist re-annotations on 157 slides
whenavailable. Following the original study, we created three levels of
PD-L1lexpression (<1%, 62;1-50%,49;>50%,123) as target predictions.
We splitthe dataset into five splits with train-val-test ratio of 60:20:20
(129:44:44 slides) in each split.

Renal allograft rejection. The renal allograft rejection consists of
4,847 H&E FFPE WSIs of renal allograft biopsies from 1,118 patients col-
lected at BWH between 2013 and 2022. Each case has associated labels
for antibody-mediated rejection (AMR) status (AMR, 286 patients; no
AMR, 832 patients), cellular-mediated rejection (cellular rejection, 341;
no cellularrejection, 777) and interstitial fibrosis and tubular atrophy
(IFTA) status (advanced IFTA, 162 patients; mild IFTA, 706 patients;
moderateIFTA, 250 patients). We split the dataset into a label-stratified
train-val-test set (3002:376:824 slides).

TCGA-BRCA. The TCGA-BRCA consists 0f 1,049 invasive breast carci-
noma (BRCA) H&E FFPE diagnostic histopathology WSIs from TCGA.
The WSIs are classified into the following two classes: invasive ductal
carcinoma and invasive lobular carcinoma.

TCGA-NSCLC. The TCGA-NSCLC consists of 1,043 H&E FFPE diagnostic
histopathology WSIs from TCGA of 946 patients with NSCLC. The WSIs
areclassified into the following two classes: LUAD (531slides) and lung
squamous cell carcinoma (512 slides). We split the dataset into fivefold
cross-validation, stratified by labels with aratio of 60:20:20 (for exam-
ple, 659:191:193 for fold 0). CPTAC-NSCLC serves as an external dataset
with 1,091 H&E FFPE diagnostic histopathology WSIs from CPTAC of
422 patients with NSCLC.

TCGA-LUAD. The TCGA-LUAD consists of 524 H&E FFPE diagnostic
histopathology WSIs from TCGA of 462 patients with LUAD. We pre-
dict the mutations in the genes EGFR (wild type (WT), 404 patients;
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mutated (MUT), 58 patients), KRAS (WT, 317; MUT, 145), STK11 (WT,
391; MUT, 71) and TP53 (WT, 222; MUT, 240). We split the dataset into
fivefold cross-validation, stratified by labels with a ratio of 60:20:20
(forexample, 659:191:193 for fold 0). CPTAC-LUAD serves as an external
dataset with 324 H&E FFPE diagnostic histopathology WSIs from CPTAC
of 108 patients with LUAD.

TCGA-CRC. The TCGA-CRC consists of 549 H&E FFPE diagnostic his-
topathology WSIs from TCGA of 543 patients with colorectal cancer
(CRC). We predict microsatellite instability (61 patients) and micro-
satellite stable (353 patients), mutations in the genes BRAF (WT, 429
patients; MUT, 58 patients) and KRAS (WT, 286 patients; MUT, 201
patients), and tumor staging (T1,16 slides; T2, 97 slides; T3,372slides;
T4, 64 slides). CPTAC-COAD with 107 H&E FFPE diagnostic histopa-
thology WSIs from 103 patients with colon adenocarcinoma serves as
external validation dataset for all tasks (microsatellite instability, 24
patients; microsatellite stable, 79 patients; BRAFWT, 16 patients; BRAF
MUT, 87 patients; KRAS WT, 36 patients; KRAS MUT, 58 patients; T2,17
slides; T2, 77 slides; T4, 13 slides).

TCGA-GBMLGG. The TCGA-GBMLGG consists of 1,123 H&E FFPE diag-
nostic histopathology WSIs from TCGA of 558 patients with gliomas,
more specifically GBMLGG. The WSiIs are classified into the following
two classes: /DHI mutation (425 slides) and no /DHI mutation (698
slides). EBRAINS serves as an external cohort for this task (/DHI MUT,
333slides; IDHIWT, 540 slides).

Computing software and hardware

We used Python (version 3.9.16) for all experiments and analyses in the
study, which canbereplicated using open-source libraries as outlined
below. We used PyTorch (version 2.0.1, CUDA 11.8) for training and
inference of our deep learning model. To train TITAN, and TITAN, we
modified the publicimplementation of iBOT (http://github.com/byted-
ance/ibot) and CoCa (http://github.com/mlfoundations/open_clip).
We used 4x and 8x 80GB NVIDIA A100 GPUs configured for multi-GPU
training using distributed data parallelism for TITAN, and TITAN train-
ing, respectively. All downstream experiments were conducted on a
single 24GB NVIDIA 3090 GPUs. All WSI processing was supported
by OpenSlide (version 4.3.1), openslide-python (version 1.2.0) and
CLAM (http://github.com/mahmoodlab/CLAM). We used Scikit-learn
(version1.2.2) foritsimplementation of k-NN, and the logistic regres-
sion implementation and SimpleShot implementation provided by
the LGSSL codebase (http://github.com/mbanani/lgssl). For survival
tasks, we used scikit-survival (Version 0.23.1). Implementations of other
slide encoders benchmarked in the study are found at the following
links: GigaPath (http://github.com/prov-gigapath/prov-gigapath),
PRISM (https://huggingface.co/paige-ai/Prism) and CHIEF (http://
github.com/hms-dbmi/CHIEF). For training weakly-supervised
ABMIL models, we adapted the training scaffold code from the CLAM
codebase (http://github.com/mahmoodlab/CLAM). Matplotlib (ver-
sion 3.8.4) and Seaborn (version 0.13.2) were used to create plots in
Figs.1-4.Usage of other miscellaneous Python librariesis listed inthe
Reporting summary.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

GTEx data used in pretraining can be accessed through the GTEx
portal (https://www.gtexportal.org/home/). For benchmarks,
TCGA and CPTAC data can be accessed through the NIH genomic
data commons (https://portal.gdc.cancer.gov) and proteomics
data commons (https://proteomic.datacommons.cancer.gov),
respectively. Coordinates and labels of TCGA-UniformTumor-8K

dataset is made publicly available in the TITAN GitHub repository.
All other publicly available datasets benchmarked in this work can
be can accessed in their respective data portals: EBRAINS (https://
doi.org/10.25493/WQ48-ZGX), DHMC RCC (https://bmirds.github.
io/KidneyCancer), DHMC LUAD (https://bmirds.github.io/Lung-
Cancer/), BRACS (https://bracs.icar.cnr.it), PANDA (https://panda.
grand-challenge.org), IMP (https://rdm.inesctec.pt/dataset/nis-2023-
008), BCNB (https://bupt-ai-cz.github.io/BCNB/), MUT-HET-RCC
(https://aacrjournals.org/cancerres/article/82/15/2792/707325/
Intratumoral-Resolution-of-Driver-Gene-Mutation). Links for all pub-
lic datasets are also presented in Supplementary Table 17. Following
institution policies, all requests for data collected or curated in-house
will be evaluated on a case-by-case basisto determine whether the data
requested is compliant withintellectual property and patient privacy
obligations. Data can only be shared for academic research purposes
and will require a material transfer agreement.

Code availability

Code and model weights for loading both TITAN and
TITAN, can be accessed for academic research purposes
at https://github.com/mahmoodlab/TITAN.
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Extended Data Fig. 1| Examples of TCGA-UT-8K dataset. Examples of TCGA-UT-8K, which are ROIs of 8,192 x 8,192 pixels selected by the pathologists. The green
contoursillustrate the cancer region annotations, with the red number indicating the ROl index within a given TCGA slide.
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Extended Data Fig. 2 | Linear probe results for molecular classification tasks.
(a) Linear models are fitted and evaluated on binary molecular status predictions
for BCNB and MUT-HET. We observe that TITAN consistently performs best with
+0.9% on BCNB and MUT-HET, +1.7% on TCGA, and +3.7% on internal molecular
classification of BRCA and LUAD, in averaged AUROC scores over the next best
model PRISM. (b) Linear models are fitted and evaluated on five-fold splits on

TCGA. (c) The same models are evaluated on the corresponding external datasets
from CPTAC and EBRAINS. (d) 6-level ER and PR prediction from Mass General
Hospital (MGH) and 3-level PD-L1 prediction, all from immunohistochemistry
(IHC) slides. (e) Molecular classification tasks for BRCA and LUAD from Mass
General Brigham (MGB). All error bars represent standard deviations based on
bootstrapping (n=1,000) or k-fold evaluation (k = 5).
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Extended Data Fig. 3| UMAP of slide embedding space for TCGA-OT. UMAP visualization of slide embeddings in TCGA-OT cohort (n =11,186) for all slide encoder

baselines, including TITAN and TITANV, color-coded by different organs for visual decluttering.
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Extended Data Fig. 4| UMAP of TCGA-OT slide representations (n = 11,186) metrics, mean local diversity (mLD), adjusted rand index (ARI), and normalized
from allslide encoders. The first row is labeled by OncoTreeCode, the second mutual information (NMI), are computed for all labels. Note that CHIEF includes
row by OncoTreeSiteCode, and the third row by submission site. Clustering TCGAinthe pretraining dataset.
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Extended DataFig. 5| Attention heatmaps of TITAN. Exemplar attention #11focusing on non-tumor areas. Across different cancer types, while head
heatmaps for three Transformer attention heads of TITAN (head #4, #10, #11) #11attends to tissue-specific morphologies such as peritumoral stromain the
are shown across three different TCGA WSIs. Out of the 12 attention heads, thymoma WSl and the tumor-adjacent stroma and ducts in the BRCA WSI, we
we find that most attention heads focus on dense tumor regions, with certain do observe that general morphological patterns such as tumor/non-tumor are
attention heads such as head #10 focusing on tumor-adjacent stroma and head conserved across tissue types.
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Extended DataFig. 6 | Ablation experiments on different learning paradigms.
Changein balanced accuracy performance for several learning paradigms on
four subtyping tasks with respect to the linear probe. The baselines include
mean pooling, ABMIL, linear probe, and finetuned from pretrained or randomly

initialized weights. The number under each task name indicates the linear

probe performance. TITAN-L represents the variation of TITAN without vision-
pretraining. For mean pooling and ABMIL, we use the respective patch encoder
for each framework, as specified under each slide encoder name. Finetuning
results are not provided for PRISM, as the finetuning recipes were not available.
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The slide from the kidney shows a
renal cell carcinoma, clear cell type,
Fuhrman nuclear grade 1l/1V, confined
to renal parenchyma with no
angiolymphatic invasion. Surgical
resection margins are free of
carcinoma.

Clinical report

The slide from the prostate gland
shows prostatic adenocarcinoma
(Gleason score 4+5=9) with bilateral
seminal vesicle invasion, extensive
extraprostatic extension, and presence
of perineural and lymphovascular
invasion.

Clinical report

The slide from the liver shows a
moderately differentiated hepato-
cellular carcinoma, 3.3 x 2.5 x 1.5 cm
in size, confined to the hepatic
parenchyma, with no evidence of
vascular or perineural invasion.

Clinical report

The slide from the brain shows
glioblastoma, WHO grade 1V,
characterized by marked
pleomorphism, numerous atypical
mitoses, vascular proliferation,
necrosis, and infiltration into the
brain matter.

Ours (generated) PRISM (generated)

clear cell renal cell renal cell carcinoma,

fuhrman nuclear grade ii/iv, confined Examined tissue: Benign
within the renal parenchyma without adrenal gland.

renal capsule invasion.

Ours (generated) PRISM (generated)

prostatic adenocarcinoma (gleason

score 4+5=9 (grade group 5) involving
both sides of the seminal vesicle and
extraprostatic soft tissue on the right side,
with lymphovascular and perineural
invasion, extraprostatic extension, seminal
vesicle invasion, and extraprostatic
extension on the left side. pik3r1-pik3r1
-pik3-tmprss2 rearrangement detected.

Diagnosis: Prostatic
adenocarcinoma with
perineural invasion;
organ: prostate.

Ours (generated) PRISM (generated)
moderately differentiated hepatocellular
carcinoma (g2) identified in the liver, Diagnosis:
confined to the hepatic parenchyma Well-differentiated

without evidence of vascular or perineural || hepatocellular carcinoma
invasion. molecular testing reveals ctnnb1|| in liver tissue.
and ctnnb1 mutations.

Ours (generated) PRISM (generated)

glioblastoma, who grade iv, identified in
brain tissue with dense cellularity, severe
atypia, numerous mitoses, vascular
proliferation, and necrosis. mgmt
promoter is methylated and tp53
mutations are present.

Diagnosis: Metastatic
high-grade sarcoma in
examined tissue.

Extended Data Fig. 7| Examples of generated reports. TCGA examples of generated reports of TITAN and PRISM, with the corresponding clinical reports.
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Extended Data Fig. 8 | Rare cancer retrieval with TITAN. (a)-(c) Examples of
slide retrieval on Rare-Cancer. The number for each retrieved slide represents
the cosine similarity between the query and the retrieved slide. The retrieved
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source: TCGA
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0.163 = 3

source: TCGA

slides with high similarity are either of the same diagnostic label or from the same

organ as the query slide. (a) Thyroid (THFO) query (b) Pleura (PLBMESO) query
(c) Adrenal gland (ACC) query.
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