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Abstract

To exploit allelicvariation in Hordeum vulgare subsp. spontaneum, the Wild Barley
Diversity Collection was subjected to paired-end lllumina sequencing at ~9X depth and
evaluated for several agronomic traits. We discovered 240.2 million single nucleotide
polymorphisms (SNPs) after alignmentto the Morex V3 assembly and 24.4 million short
(1-50 bp) insertions and deletions. A genome-wide association study of lemma color
identified one marker-trait association (MTA) on chromosome 1H close to HvBIp, the
cloned gene controlling black lemma. Four MTAs were identified for seedling stem rust
resistance, including two novel loci on chromosomes 1H and 6H and one co-locating to
the complex RMRL1-RMRL2 locus on 5H. The whole-genome sequence data described

herein will facilitate the identification and utilization of new alleles for barley improvement.

Keywords: Hordeum vulgare subsp. spontaneum; whole genome sequence data;

genome-wide association study; agronomic traits
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Introduction

Barley (Hordeum vulgare L. subsp. vulgare) was one of the first crops
domesticated in the Near East ~10,000 years ago (Zohary et al., 2012) and is currently
cultivated over 47 million hectares worldwide (FAO, 2017). Its main uses include animal
feed, malt for various alcoholic beverages, and human food. Through the domestication
process and modern plant breeding, the genetic diversity of barley has been eroded
(Civan et al., 2024; Milneret al., 2019; Russell et al., 2016), leaving the crop vulnerable
to various biotic and abiotic threats and limiting further improvements for key traits. The
primary gene pool of barley includes varieties, breeding lines, landraces, and wild barley
(H. vulgare L. subsp. spontaneum C. Koch. Thell.), the latter of which can readily hybridize
with the cultivated forms (Harlan & Zohary, 1966; Liu et al., 2024). Studies aimed at
identifyingunexploited genesforuse in barley breeding programs typically include panels
more closely related to elite germplasm, thereby preserving the genetic linkages of
favorable alleles for yield, quality, and agronomic traits. When a particular trait cannotbe
foundin the cultivated forms of the primary gene pool, researchers often seek the desired
alleles in the wild progenitor. To capture the allelic variation in wild barley, an
ecogeographically diverse collection, known as the Wild Barley Diversity Collection
(WBDC), was assembled (Steffenson etal., 2007). The WBDC comprises 318 accessions
from across the range of H. vulgare subsp. spontaneum and has been evaluated for
various agronomic, morphological, nutritional, and disease/pest resistance traits. These
evaluations revealed a high level of variation for all the characterized traits, leading to
subsequent genetic and genome-wide association studies (GWAS) based on various

molecular marker technologies (Mahalingam et al., 2020; Roy et al., 2010; Sallam et al.,
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2017; Walling et al., 2022). Here, we describe the whole-genome resequencing of 281
WBDC accessions with ~9X coverage and demonstrate its utility for identifying both
previously described and novel genesin Hordeum vulgare using an association genetic

approach.

Methods

Wild barley germplasm

Collection site data for longitude andlatitude, elevation, high and low temperature,
rainfall, and soil type (Table S1; Figure 1A) were used to assemble the WBDC at the
International Center for Agricultural Research in the Dry Areas (ICARDA) (Steffenson et
al., 2007). The proportion of samples included was generally reflective of the density of
populationsin the Fertile Crescent, Central Asia, North Africa, and Caucasus regions. Of
the 318 WBDC accessions selected initially, 37 were notincluded in resequencing due to
failed genotyping or sequencing, duplication, or seed admixtures. The final sequenced
panel comprises 281 accessions from 19 countries. Single plant selections were initially
made from each accession and then selfed for five successive generations in the

greenhouse before being used for DNA extraction and sequencing.

DNA extractions
The first and second leaves of each accession were harvested, flash-frozen in

liquid nitrogen, and stored at -80°C until the DNA extractions were performed. For the

extractions, tissue was first ground to a fine powderin liquid nitrogen using a mortar and

pestle. Then, genomic DNA was extracted using a modified CTAB protocol (Yu et al.,
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2017). Agarose gel electrophoresis was used to confirm that the genomic DNA was of
high molecular weight (>10 kb). DNA quality was assessed using a NanoDrop

spectrophotometer.

Library preparation and whole-genome sequencing (WGS)

WGS libraries were prepared using the ‘lllumina Nextera DNA Flex Library
Preparation Kit' (workflow for 100-500 ng DNA input, 5 PCR-cycles for the addition of
indexes) according to manufacturer'sinstructions (lllumina, Inc., San Diego, CA, USA).
The final library pool was quantified by gqPCR (Mascher et al., 2021). The pool was
sequenced (XP workflow, paired-end, 2 x 151 cycles) usingthe lllumina NovaSeq6000

device and standard protocols from the manufacturer.

Variant calling

Quality assessment, read mapping, deduplication, and coverage estimation
utilized scripts in the RepAdapt pipeline
(https://github.com/RepAdapt/snp_calling_simple). Thisinvolved quality assessment and
adapter trimming with FASTP (Chen et al., 2018), read mapping with BWA MEM (Li,
2013), read deduplication with Picard (Broad Institute, 2019) and coverage estimation
with samtools (Danecek et al., 2021; Li et al., 2009). Both SNP and indel variants were
called using GATK version v4.1.2 (McKenna et al., 2010), with recommended GATK
filtering as follows: SNP filtering “QD < 2.0 || FS > 60.0 || MQ < 45.0 || MQRankSum < -
12.5 || ReadPosRankSum< -8.0 || DP > 4654.61"; and Indel Filtering“QD < 2.0 || FS >
200.0 || ReadPosRankSum < -20.0”. Heterozygous and multiallelic sites were retained in
the data set, and no frequency filter was applied to variants. The general feature format

(GFF3) descriptions of both high and low confidence genes from the Morex V3 assembly
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(Mascher, 2020) were used to create a BED file defining “gene space.” Based on the

descriptionsin the GFF, gene space here comprises ' and 3' UTRs, exons, and introns.

Variant statistics

Variant statistics, including sample size estimation and read depth per SNP, level
of missingness, andrelated statistics, were calculated using the bcftools “+fill-tags” plugin
(Danecek et al., 2021). Sample-level statistics were calculated with bcftools stats. The
Variant Effect Predictor (VeP) (McLaren et al., 2016), along with GFF3 annotations for
Morex V3, was used to annotate all variants. VeP results were used to parse variants by
class for calculating the site frequency spectrum.

The folded site frequency spectrum (SFS) was estimated based on the minor allele
frequency forbiallelic SNPs genome-wide and for synonymous sites. The expectation for
the SFS undera neutral coalescent history was generated using msprime (Baumdicker
et al., 2022) based on nucleotide sequence diversity estimated as 6§ = 4Nep = 0.008
(Morrell et al., 2006; Schmid et al., 2018) and recombination rate of p/6 = 1.5 (Morrell et
al., 2006). We simulated 281 haploid samples with 1,000 replicate simulations with a
locus length sufficientto generate ~100 SNPs per simulation or 100,000 variants that

could be compared to the folded SFS for the empirical datasets.

Cluster analysis

The SNP dataset was filtered prior to analyses by setting heterozygote calls to
missing and retaining biallelic sites with <10% missing data and 25% minor allele
frequency. The SNP dataset was further pruned by discarding sites with 2 >0.2 in
windows of 50 sites. Principal component analysis was performed in TASSEL v5.0

(Bradbury et al., 2007). K-means clustering was used to partition the wild barley panel
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into subpopulations (Table S1). Based on our previous knowledge of the panel (Sallam
etal., 2017), seven subpopulationswere assignedto the clusteranalysisin JMP 17 (JMP
Statistical Discovery LLC, Cary, NC, USA). JMP was used to plot the PCA results and

create the map forthe WBDC panel (Figure 1).

Phenotyping

To demonstrate the utility of the WGS dataset foridentifying trait-associated loci in
wild barley, we selected two important traits for study: 1) lemma color and 2) stem rust
resistance. Lemma colorwas assessed by taking digitalimages of mature seeds andthen
analyzingeach colorchannel using the Fiji package (Schindelin etal.,2012). The average
color channel value (CCV) of two representative seeds of each accession for each color
channelin the RGB color model was measured. Each RGB value was converted into a
single 24-bitinteger for GWAS analysis using the formula: Color = (R x 2562) + (G x 256)
+ B. Stem rustassays on seedlings were performed with two races (MCCFC and QCCJB)
of the wheat stem rust pathogen (Puccinia graminis f. sp. tritici (Pgt) and one isolate (92-
MN-90) of the rye stem rust pathogen (P. graminis f. sp. secalis) (Pgs) as described in

Sallam et al. (2017).

Genome-wide association mapping

To identify markers associated with the three traits, GWAS was conducted for 281
WBDC accessions using the following methods: 1) Mixed Linear Model (MLM) that
accounts for population structure (Q) + kinship (K) (Yu et al., 2006), 2) Fixed and random
model Circulating Probability Unification (FarmCPU) (Kusmec & Schnable, 2018) that

utilizes fixed and random effects iteratively to improve association power, and 3) a
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Bayesian-information and Linkage-disequilibrium [teratively Nested Keyway (BLINK)
(Huang et al., 2019) that utilizes Bayes and linkage disequilibrium to improve both
association power and computation efficiency. The SNP dataset was filtered prior to
GWAS by setting heterozygote calls to missing and retaining biallelic sites with <10%
missing data and 25% minor allele frequency. The SNP dataset was further pruned by
discardingsites with r2>0.2 in windows of 50 sites. All association mapping methods were
executed in the R package GAPIT v3.5 using ~1.3 million SNP markers (Wang & Zhang,
2021). Marker trait associations (MTAs) identified using two or more methods or those
detected with a single method but across two different datasets are presented. The

Bonferroni test was performed to declare significant associations.

Results and Discussion

Variant calling with GATK in the sequenced 281 wild barley lines of the WBDC
(~9X coverage, Figure S1) resulted in the identification of 240.2 million SNPs and 24 .4
million indels (Table 1). In addition to these reported indels, there were a further 3.2
million sites where one of the variants at an indel site had a single base pair difference
from the reference. These are among 6.5 million multiallelic variants, with 26.6% of indel
sites called as multiallelic.

The vast majority of detected indels were one bp deletions; the second most
abundant class was one bp insertions, with roughly half as many one bp insertions
identified relative to deletions (Figure S2). The majority of variants identified were
annotated as intergenic variants, including 219.2 million SNPs and 20.8 million indels

(Table 2). Among coding SNPs, 53.3% (807,753) were missense changes, 45.2%

10
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(685,452) were synonymous changes, and 1.2% (18,571) were stop-gained. Among
indels affecting coding regions, 61.9% (74,148) were frameshift variants, 20.7% (24,768)
were inframe deletions, 13.1% (15,642) were inframe insertions,and 1.9% (2,329) were
stop-gained.

We also partitioned the data set into variants found within gene space as defined
by Morex V3 annotations. SNPs within genic regions showed much lower rates of
multiallelic polymorphisms at2.6% and a lower missingness rate at 0.068 (+0.158) with a
median of 0.007, consistent with the relative ease of read alignmentand variant calling
within gene space (Table 1).

The transition to transversion ratio (Ts/Tv) can vary among classes of variants and
is a potential metric of variant call quality. Values in partitions for the dataset ranged from
1.07 for indels to 1.90 for variants in gene space. These values align with prior reported
values of 1.7 for Sanger sequencing in wild barley (Morrell et al., 2006) and lllumina
exome capture sequencing from domesticated barley (Kono et al., 2016).

There were 59.5 million biallelic SNPsin the dataset that occurred outside ofindels
and thus were unique mutations. The folded site frequency spectrumin Figure 2 includes
all biallelic SNPs. We compared frequencies with expectations under a standard
coalescentmodel of a panmictic population with constantpopulation size. The SFS shows
that a large proportion of variants reside in the rarest frequency class, here <2.5%
frequency. While this was consistent with expectations under a standard coalescent
model (Tajima, 1989), rare variants at the whole-genome level were more abundantthan
expected based on neutral coalescent simulations (Figure 2). The frequency spectrum

for synonymous sites more closely resembles the expectation for neutral variants based

11
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on coalescent simulations but again demonstrate more variants in the rarest frequency
classes. This result likely reflects both the challenges of variant calling in a highly
repetitive genome and an excess of rare variants at most wild barley loci, consistent with
a recent population expansion in the species’ coalescent history (Morrell et al., 2006).
Prior to GWAS, population structure was assessed by k-means clustering and
principal component analyses (Figure 1B). Consistent with previous results on the
population structure of wild barley (Fang et al., 2014; Russell et al., 2016; Sallam et al.,
2017), genetic relatedness mirrored geographic distance: the distribution of population
centers roughlytraced a path from the North African coastand the Southern Levantalong
the Fertile Crescent to Central Asia (Figure 1A). A detailed analysis of population
structure in wild barley and its relationship to domesticated accessions was undertaken

by Guo et al. (2025) using the present data set.

Lemma color

Lemma color in the WBDC ranged from pale yellow (straw-colored) to brown and
dark black based on visual inspection (Figure 3A). Converted RGB values from digital
images of pale yellow and dark black seed generallyranged from 10,750,000-13,550,000
and 4,350,000-6,570,000, respectively (Table S1; Figure S3). Black lemma is a classic
morphological trait in barley and is controlled by the Blp locus, which is composed of
different alleles contributing to the intensity and distribution of color (Franckowiak and
Lundqvist 1997). GWAS identified one association (WBDC_LC_1H_499.0) by a single
SNP (S1H_499023721) on chromosome 1H using all three models (MLM, FarmCPU and
BLINK) (Figure 3B, Table 3). This SNP explained 17.5% of the phenotypic variation and

lies in close proximity to HvBIp, the recently cloned gene controlling black lemma color
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positioned between 498.5 to 499.0 Mbp on 1H in the Morex V3 assembly (Li et al., 2024)
(Table 3). Due to the complexity of the locus and a duplicated fragment of HvBIp, it is
difficultto state with certainty the physical relationship of the identified SNP marker and

this gene.

Stem rust

Based on a coefficient of infection threshold of 2.7, only 15 (5.0%), 39 (14.0%),
and 54 (19.0%) of the sequenced WBDC accessions were classified as resistant to Pgt-
MCCFC, Pgt-QCCJB and Pgs-92-MN-90, respectively (Table S1; Figure S4). Four MTAs
(WBDC_SR_1H_11.7, WBDC_SR_1H_67.4-71.5, WBDC_SR_5H_5629, and
WBDC_SR_6H_501.8) were identified for stem rust resistance. WBDC_SR_1H_11.7
was novel and mapped to chromosome 1H in response to both Pgt-MCCFC and Pgt-
QCCJB, explaining 20.0% and 14.9% of the variation, respectively (Figure 4, Table 3).
WBDC_SR_6H_501.8 was also novel and positioned on 6H in response to both Pgt-
MCCFC and Pgt-QCCJB, explaining 15.4%-15.8% of the variation (Table 3).
WBDC_SR_1H_67.4-71.5 was mapped on chromosome 1H in response to races Pgt-
MCCFC and Pgt-QCCJB (Table 3). The two different SNPs (S1H_67388912 and
S1H_71536803) identified in the MTA were in moderate linkage disequilibrium (7 =
0.565). The position of this MTA is close to S1H_71499376, a genotyping-by-sequencing
(GBS)-derived marker thatwas found significantly associated with resistance to both Pgt-
MCCFC and Pgt-QCCJB based on 314 individuals (Sallam et al. 2017). This MTA
explained 18.7-31.0% of the variation in this study (Table 3). WBDC_SR_5H_562.9 was
identified on chromosome 5H (S5H_562922829) after challenge with all three P. graminis

cultures using all three models and explained 22.4-32.3% of the variation (Table 3). It co-
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located to the position of the complex RMRL1-RMRL2 loci (Wang et al., 2013) from which
several component resistance genes (e.g. rpg4 and Rpg5) were cloned (Arora et al.,
2013; Brueggeman et al., 2008).

WGS data for diverse accessions of a crop and its wild relatives are essential for
population genomic studies, the informed selection of genotypes for full genome
sequence assembly (pangenomics), and the isolation of agronomically important genes.
Our dataset complements similar short-read datasets for 1,315 domesticated barleys
(Jayakodi et al., 2020, 2024) and 100 wild barleys from another collection (Jayakodi et
al., 2020). Chromosome-scale genome assemblies of nine WBDC accessions have been
completed (Jayakodi et al., 2024) with more accessions to follow in the future. Applying
GWAS to the WBDC, we demonstrated the utility of high-coverage sequence data for
identifying novel genetic variation that may be useful in barley improvement. Additionally,
we also validated major genes controlling key traits in barley such as Blp for black lemma
color and RMRL1/RMRL2 for stem rust resistance. Thus, this dataset may serve as a
starting pointfor the identification of candidate genes underlying otherimportanttraits. In
a companion paper, Guo et al. (2025) demonstrated the utility of WBDC sequence data
in a population genomic study. They analyzed this dataset together with sequence data
from other diverse wild and domesticated barley accessions to reconstruct the
evolutionary history of wild barley and elucidate the origin of haplotypes in cultivated
barley. The sequenced WBDC genomes will help connect target phenotypic traits to
chromosome positions. Reference genome positions, as identifiedby HORVU I.D.s in the

Morex V3 assembly (Mascher, 2020), serve as anchors to protein-protein interactome
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hubs (Velasquez-Zapata etal., 2022) and the potential forengineering the molecular and

cellular mechanisms by which key phenotypes are expressed.

Data Availability Statement

Seed of the complete WBDC (N=318) can be obtained from the USDA-ARS National
Small Grains Collection as accessions P1 681726 to Pl 682043. Raw sequence data are
deposited in the European Nucleotide Archive (ENA) under project ID PRJEB56087.
The variant data are deposited in the GrainGenes database (Yao et al. 2022) at
https://graingenes.org/snpversity/. SNP names from previous barley genotyping
platforms (Bayer et al., 2017; Close et al., 2009; Comadran et al., 2011, 2012) are
added as annotations. Scripts used for variant calling, filtering and other analyses can
be found in GitHub repository:

https://github.com/SteffensonLab/Barley IPK_variant_calling. We used stem rust
reaction type data from a previously published G3 paper (Sallam et al. 2017):
https://doi.org/10.1534/93.117.300222. These data are also included in Table S1.

Figures S1-S4 and Table S1 are available to download at G3 online.

Web Resources

https://graingenes.org/snpversity/
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1 Tables
2
3 Table 1. Summary statistics for variants obtained after aligning whole-genome
4  sequencing reads from 281 individuals of the Wild Barley Diversity Collection to the
5 Morex V3 reference genome. Biallelic sites include positions with unique mutations and
6 nooverlapping indels. Gene space includes coding regions and UTRs from Morex V3
7 gene annotation.
. . . Proportion

Data set Variant # Multiallelic Ts/Tv missing

SNPs 240,171,785 9,214,159 1.39 0.094 (+0.177)-0.018

Indels 24,387,195 6,493,811 107  0.148 (+0.217)-0.039

Biallelic 59,520,067 - 1.47 0.083 (+0.166) -0.014

SNPs - Gene 6,385,855 166,712 19  0.068 (+0.158) - 0.007

space

8

9 Table 2. Variant Effect Predictor (VeP) results for genome-wide SNPs and indels.

SNPs Indels

Variant Count Proportion (%) Count Proportion (%)
Splice acceptor 2,007 0.0008 986 0.00404
Splice donor 1,747 0.0007 1,201 0.00492
Stop gained 18,571 0.0077 2,329 0.00955
Frameshift variant - - 74,148 0.30404
Stop lost 1,520 0.0006 190 0.00078
Start lost 1,507 0.0006 267 0.00109
Inframe insertion - - 15,642 0.06414
Inframe deletion - - 24,768 0.10156
Missense 807,753 0.3363 334 0.00137
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Protein altering variant
Splice donor 5th base
Splice region

Splice donor region
Splice polypyrimidine tract
Start retained

Stop retained
Synonymous

Coding sequence variant
5'UTR

3'UTR

Intron

Upstream gene
Downstream gene

Intergenic

4,472
47,271
12,910

46,258

989

685,452

96,094
229,979
2,757,606
9,135,842
7,049,038

219,000,000

0.0019

0.0197

0.0054

0.0193

0.0004

0.2854

0.04

0.0958

1.1482

3.8039

2935

91.2983

1,163
1,248
7,983
2,225
11,488
9
98
71
781
36,888
56,752
554,672
1,560,586
1,194,674

20,838,692

0.00477

0.00512

0.03273

0.00912

0.04711

0.00004

0.0004

0.00029

0.0032

0.15126

0.23271

227444

6.3992

4.89878

85.44932
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Table 3. Single nucleotide polymorphism (SNP) markers significantly associated with lemma color and stem rust

resistance in 281 Hordeum vulgare subsp. spontaneum accessions of the Wild Barley Diversity Collection.

Association Treatment GWAS detection
Phenotype designation? or Trait? SNPC chrd Pos® MAF method9 p-value range R?
Lemma  WBDC_LC_1H_ 4990  "SMM@  s1h 499023721  1H  4990Mbp 006  MLM/FarmCPU/BLINK 9.78x10"  1.36x10° 17.51%
rit:lg‘t arﬁzg WBDC_SR_1H_11.7  MCCFC  S1H_11651434  1H 11.7 Mbp 0.07 MLM/FarmCPU 9.83x10" 181510 20.02%
QCCJB  S1H_11651434  1H 117Mop 007 MLM/FarmCPU 247400 5.76x0 14.86%
S1H_67388912, MLM ] ]
WBDC_SR_IH_674- mccre 1H 67-%;1 5 g07 1.50x10° 1.87x10° 55 46 - 31.03%
‘ S1H_71536803 MLM/FarmCPU/BLINK
QCCJB  STH 67388912  1H 67.4Mbp  0.07 BLINK 57110 18.71%
3.25x10°  3.49x10°
WBDC_SR 5H 5629  MCCFC g\ seponpgpe  SH  5629Mbp 007  MLM/FarmCPU/BLINK > e 22.38%
QCCJB  S5H_ 562922829 5H  5629Mbp 007  MLM/FarmCPUBLINK 98107 37740 24.08%
92-MN-90 S5H_ 562922829 5H  5629Mbp 007  MLM/FarmCPUBLINK 289107 5.09x10 32.28%
WBDC SR _6H 501.8 MCCFC  S6H 501789703 6H  501.8Mbp  0.08 MLM 1.84x10 15.80%
QCCJB  S6H_ 501789703 6H  501.8Mbp  0.08 MLM/FarmCPU 9.49x10"  2.60x10° 15.43%

@ Association designation isbased on the gemplasm (WBDC), trait abbreviation (e.g. lemmacolor), chromosome location (1H), an d physical position from the Morex (V3) genome assembly.

b Treatmentor Traitincludeslemma color, reaction to races MCCFC and QCCJB of the wheat stem rust pathogen ( Puccinia graminis f. sp. tritici) and reaction to isolate 92-MN-90 of the rye

stem rust pathogen (P. graminis f. sp. secalis).

SN Y2y301|qIg|eJjuaz - HQWS) IdYpunsas) pun jjamwn Jany wniuazsbunyosio4-4S9 Aq 8G691£8/19ziexl/leuinoleb/ce0 1 01 /1op/ajo1e-aoueape/eudnolg6/woo dnooiwapeoe/



C SNP designation is based on the chromosome and physical position from the Morex (V3) genome assembly.
d Barley chromosome and arm designation: S =shortor L =Long.

e Physical position based on the Morex (V3) genome assembly.

f Minimum allele frequency

9 Only associations detected with two or more methods orwith a single method butin more than one datasetare shown. MLM denotes Mixed Linear Model (MLM); FarmCPU denotes fixed

and random model Circulating Probability Unification; and BLINK denotes Bayesian-information and Linkage-disequilibrium lteratively Nested Keyway.

h Range of p-values for the associations identified through different models.

I R? values for the SNP marker found significantly associated with the trait.
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Figure Legends

Figure 1. A) Geographic distribution of 281 Hordeum vulgare subsp. spontaneum
accessions of the Wild Barley Diversity Collection (WBDC) and B) Principal component
analysis determined from ~1.3 million single nucleotide polymorphisms (SNPs).

Accessions are color-coded by sub-population, defined by k-means clustering.

Figure 2. Folded site frequency spectrum for genome-wide biallelic SNPs. The plot
includes all biallelic sites, synonymous sites, and variants simulated under a neutral

coalescent history.

Figure 3. A) Examples of differentlemma colors in the Wild Barley Diversity Collection;
from left to right: yellow (straw) from WBDCO045, brown from WBDC204, diffuse black
from WBDCO014, and dark black from WBDC355. B) Manhattan plots displaying single
nucleotide polymorphism (SNP) markers significantly associated with lemma color in the
Wild Barley Diversity Collection. Three models were used in the analysis: 1) a Mixed
Linear Model (MLM), 2) a Fixed and random model Circulating Probability Unification
(FarmCPU), and 3) a Bayesian-information and Linkage-disequilibrium lteratively Nested
Keyway (BLINK). Bonferroni significance threshold is shown with a horizontal solid green

line.

Figure 4. Manhattan plots displaying single nucleotide polymorphism (SNP) markers
significantly associated with resistance to the wheat stem rust (Puccinia graminis f. sp.
tritici, Pgt) and rye stem rust (P. graminis f. sp. secalis, Pgs) pathogens: (A) race Pgt-
MCCFC, (B) race Pgt-QCCJB, and (C) isolate Pgs-92-MN-90 in the Wild Barley Diversity
Collection. Three models were used in the analysis: 1) a Mixed Linear Model (MLM), 2)
a Fixed and random model Circulating Probability Unification (FarmCPU), and 3) a
Bayesian-information and Linkage-disequilibrium lteratively Nested Keyway (BLINK). The
Bonferroni significance threshold is shown with a horizontal solid green line. The vertical
blue, purple, yellow and green lines show the significant associations consistently

identified for resistance to two cultures of P. graminis with at least one or two models or
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to one culture with all three models. RMRL1/RMRL2 is a complex of several stem rust

resistance genes.
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