- 1 Whole-Genome Resequencing of the Wild Barley Diversity Collection: A Resource for
- 2 Identifying and Exploiting Genetic Variation for Cultivated Barley Improvement

4 -

3

- 4 Rebecca Spanner¹, Ahmad H. Sallam^{1,2}, Yu Guo³, Murukarthick Jayakodi^{3,4}, Axel
- 5 Himmelbach³, Anne Fiebig⁵, Jamie Simmons¹, Gerit Bethke⁶, Yoonjung Lee¹, Luis Willian
- 6 Pacheco Arge⁶, Yinjie Qiu⁷, Ana Badea⁸, Michael Baum⁹, François Belzile¹⁰, ¹¹, ¹², Roi Ben-
- 7 David¹³, Robert Brueggeman¹⁴, Austin Case¹⁵, Luigi Cattivelli¹⁶, Michael Davis¹⁷,
- 8 Christoph Dockter¹⁸, Jaroslav Doležel¹⁹, Antonin Dreiseitl²⁰, Ryan Gavin¹, Lior Glick²¹,
- 9 Stephan Greiner²², Ruth Hamilton²³, Patrick M. Hayes²⁴, Scott Heisel¹⁷, Cynthia Henson²⁵,
- 10 Benjamin Kilian²⁶, Takao Komatsuda²⁷, Chengdao Li^{28,29}, Cheng Liu²⁷, Ramamurthy
- 11 Mahalingam²⁵, Maren Maruschewski⁵, Oadi Matny¹, Andreas Maurer³⁰, Klaus F. X.
- 12 Mayer^{31,32}, Itay Mayrose²¹, Matthew Moscou³³, Gary J. Muehlbauer⁶, Youko Oono³⁴,
- 13 Frank Ordon³⁵, Hakan Özkan³⁶, Ales Pecinka¹⁹, Dragan Perovic³⁵, Klaus Pillen³⁰,
- 14 Mohammad Pourkheirandish³⁷, Joanne Russell²³, Jan Šafář³⁸, Silvio Salvi³⁹, Miguel
- 15 Sanchez-Garcia⁹, Kazuhiro Sato⁴⁰,⁴¹,⁴², Thomas Schmutzer³⁰, Uwe Scholz⁵, Jeness
- 16 Scott¹, Gurcharn Singh Brar⁴³, Kevin P. Smith⁶, Mark E. Sorrells⁴⁴, Manuel Spannagl³¹,
- Nils Stein^{45,46}, Alessandro Tondelli¹⁶, Roberto Tuberosa³⁹, James Tucker⁸, Thomas
- 18 Turkington⁴⁷, Jan Valkoun⁴⁸, Ramesh Pal Singh Verma⁹, Marcus A. Vinje²⁵, Maria von
- 19 Korff^{49,50}, Jason G. Walling²⁵, Robbie Waugh^{23,51,52}, Roger P. Wise^{53,54}, Brande B. H.
- 20 Wulff⁵⁵, Shengming Yang⁵⁶,⁵⁷, Guoping Zhang⁵⁸, Peter L. Morrell⁶, Martin Mascher³,⁵⁹,
- 21 Brian J. Steffenson¹

- 23 Department of Plant Pathology, University of Minnesota Twin Cities, Saint Paul, MN.
- 24 55108, USA; ²U.S. Arid Land Agricultural Research Center, Maricopa, Arizona, 85138,
- 25 USA; ³Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland,
- 26 Saxony-Anhalt, 06466, Germany; Department of Soil and Crop Sciences, Texas A&M
- 27 AgriLife Research, Dallas, TX, 75252, USA; Bioinformatics and Information Technology,
- 28 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Saxony-
- 29 Anhalt, 06466, Germany; Department of Agronomy and Plant Genetics, University of
- 30 Minnesota Twin Cities, Saint Paul, MN, 55108, USA; USA; Minnesota Supercomputing
- 31 Institute, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA, Brandon

Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, 1 Manitoba, R7A 5Y3, Canada; Biodiversity and Crop Improvement, International Center 2 3 for Agricultural Research in the Dry Areas (ICARDA), Rabat, BP6299, Morocco; ¹⁰Département de Phytologie, Université Laval, Québec, G1V 0A6, Canada; ¹¹Institut de 4 Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, G1V 0A6, Canada; 5 ¹²Centre de Recherche Et d'innovation Sur Les Végétaux (CRIV), Université Laval, 6 Québec, G1V 0A6, Canada; ¹³Department of Vegetables and Field Crops, ARO-Volcani 7 8 Center, Rishon LeZion, 7505101, Israel; ¹⁴Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA; ¹⁵Anheuser-Busch InBev, 9 10 Fort Collins, CO, 80524, USA; ¹⁶Research Centre for Genomics and Bioinformatics, Council for Agricultural Research and Economics (CREA), Fiorenzuola d'Arda, Piacenza, 11 12 29017, Italy; ¹⁷American Malting Barley Association, Inc., Brookfield, WI, 53005, USA; ¹⁸Raw Materials, Carlsberg Research Laboratory, Copenhagen, DK-1799, Denmark; 13 ¹⁹Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, 14 Czech Academy of Sciences, Olomouc, CZ-77900, Czech Republic; ²⁰Department of 15 16 Integrated Plant Protection, Agrotest Fyto Ltd., Kroměříž, CZ-767 01, Czech Republic; 17 ²¹School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel: ²²Roche Information Solutions (RIS), Data, Analytics & Research (DA&R), Roche 18 Diagnostics GmbH, Penzberg, Bavaria, 82377, Germany; ²³Cell and Molecular Sciences, 19 20 The James Hutton Institute, Dundee, DD2 5DA, Scotland; ²⁴Department of Crop and Soil 21 Science, Oregon State University, Corvallis, OR, 97331, USA; ²⁵Cereal Crops Research Unit, USDA-ARS, Madison, WI, 53726, USA; ²⁶Global Crop Diversity Trust, Bonn, 53113, 22 23 Germany; ²⁷Crop Research Institute, Shandong Academy of Agricultural Sciences (SAAS), Jinan, Shandong, 250100, China; ²⁸Western Crop Genetics Alliance, Food 24 25 Futures Institute/School of Agriculture, Murdoch University, Murdock, WA, 6150, Australia; ²⁹Department of Primary Industries and Regional Development, Government of 26 27 Western Australia, Perth, WA, 6151, Australia; 30 Institute of Agricultural and Nutritional 28 Sciences, Martin Luther University Halle-Wittenberg, Halle, Saxony-Anhalt, 06120, 29 Germany; ³¹Plant Genome and Systems Biology (PGSB), Helmholtz Zentrum München, 30 German Research Center for Environmental Health (GmbH), Neuherberg, Bavaria, 31 85764, Germany; ³²School of life Sciences, Technical University of Munich, Freising,

Bavaria, 85354, Germany; ³³Cereal Disease Laboratory, USDA-ARS, Saint Paul, MN, 1 55108, USA; 34Institute of Crop Science, National Agriculture and Food Research 2 Organization (NARO), Tsukuba, Ibaraki, 305-8602, Japan; ³⁵Institute for Resistance 3 4 Research and Stress Tolerance, Julius Kühn Institute (JKI), Quedlinburg, Saxony-Anhalt, 06484, Germany; ³⁶Department of Field Crops, University of Çukurova, Faculty of 5 Agriculture, Sarıçam, Adana, 1250, Turkey; ³⁷School of Agriculture, Food, and Ecosystem 6 Sciences (SAFES), University of Melbourne, Melbourne, Victoria, 3010, Australia; 7 8 ³⁸Institute of Experimental Botany, Centre of Plant Structural and Functional Genomics, Olomouc, 779 00, Czech Republic; ³⁹Department of Agricultural and Food Sciences, 9 10 University of Bologna, Bologna, 40127, Italy; ⁴⁰Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan; ⁴¹Department of Frontier 11 12 Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan; ⁴²Faculty of Agriculture, Setsunan University, Hirakata, Osaka, 573-0101, 13 Japan: 43 Department of Agricultural, Food and Nutritional Sciences, University of Alberta, 14 Edmonton, AB, T6G 2P5, Canada; 44Plant Breeding and Genetics Section, School of 15 16 Integrative Plant Science, Cornell University, Ithaca, NY, 14853-1902, USA; 45Genebank, 17 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Saxony-Anhalt, 06466, Germany; 46Crop Plant Genetics, Institute of Agricultural and 18 19 Nutritional Sciences, Martin Luther University of Halle-Wittenberg, Halle (Saale), Saxony-20 Anhalt, 06120, Germany; 47Lacombe Research and Development Centre, Agriculture and 21 Agri-Food Canada, Lacombe, Alberta, T4L 1W1, Canada; 48Genetic Resources Unit, International Center for Agricultural Research in the Dry Areas (ICARDA), Praha, 15000, 22 Czech Republic; 49Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf, 23 Düsseldorf, North Rhine-Westphalia, 40225, Germany; 50Cluster of Excellence on Plant 24 25 Sciences, Düsseldorf, North Rhine-Westphalia, 40225, Germany; ⁵¹Division of Plant Sciences, The University of Dundee, Dundee, DD2 5DA, Scotland; 52The University of 26 27 Adelaide, Adelaide, South Australia, SA 5064, Australia; 53Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA, 50011, USA; ⁵⁴Department of Plant 28 29 Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA, 50011, USA; 30 ⁵⁵Plant Science Program, Biological and Environmental Science and Engineering Division 31 (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-

- 1 6900, Saudi Arabia; ⁵⁶Cereal Crops Improvement Research Unit, USDA-ARS, Fargo,
- 2 North Dakota, 58102, USA; ⁵⁷Department of Plant Sciences, North Dakota State
- 3 University, Fargo, North Dakota, 58102, USA; 58 Department of Agronomy, Zhejiang
- 4 University, Hangzhou, Zhejiang, 310029, China; 59 Halle-Jena-Leipzig, German Centre for
- 5 Integrative Biodiversity Research (iDiv), Leipzig, 04103, Germany.

7 Corresponding authors: Brian J. Steffenson (bsteffen@umn.edu) and Martin Mascher

8 (mascher@ipk-gatersleben.de)

6

9

11

12

13

14

15

16

17

18

19

20

10 Abstract

To exploit allelic variation in *Hordeum vulgare* subsp. *spontaneum*, the Wild Barley Diversity Collection was subjected to paired-end Illumina sequencing at ~9X depth and evaluated for several agronomic traits. We discovered 240.2 million single nucleotide polymorphisms (SNPs) after alignment to the Morex V3 assembly and 24.4 million short (1-50 bp) insertions and deletions. A genome-wide association study of lemma color identified one marker-trait association (MTA) on chromosome 1H close to *HvBlp*, the cloned gene controlling black lemma. Four MTAs were identified for seedling stem rust resistance, including two novel loci on chromosomes 1H and 6H and one co-locating to the complex RMRL1-RMRL2 locus on 5H. The whole-genome sequence data described herein will facilitate the identification and utilization of new alleles for barley improvement.

- 21 **Keywords:** Hordeum vulgare subsp. spontaneum; whole genome sequence data;
- 22 genome-wide association study; agronomic traits

1 Introduction

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Barley (Hordeum vulgare L. subsp. vulgare) was one of the first crops domesticated in the Near East ~10,000 years ago (Zohary et al., 2012) and is currently cultivated over 47 million hectares worldwide (FAO, 2017). Its main uses include animal feed, malt for various alcoholic beverages, and human food. Through the domestication process and modern plant breeding, the genetic diversity of barley has been eroded (Civáň et al., 2024; Milner et al., 2019; Russell et al., 2016), leaving the crop vulnerable to various biotic and abiotic threats and limiting further improvements for key traits. The primary gene pool of barley includes varieties, breeding lines, landraces, and wild barley (H. vulgare L. subsp. spontaneum C. Koch. Thell.), the latter of which can readily hybridize with the cultivated forms (Harlan & Zohary, 1966; Liu et al., 2024). Studies aimed at identifying unexploited genes for use in barley breeding programs typically include panels more closely related to elite germplasm, thereby preserving the genetic linkages of favorable alleles for yield, quality, and agronomic traits. When a particular trait cannot be found in the cultivated forms of the primary gene pool, researchers often seek the desired alleles in the wild progenitor. To capture the allelic variation in wild barley, an ecogeographically diverse collection, known as the Wild Barley Diversity Collection (WBDC), was assembled (Steffenson et al., 2007). The WBDC comprises 318 accessions from across the range of H. vulgare subsp. spontaneum and has been evaluated for various agronomic, morphological, nutritional, and disease/pest resistance traits. These evaluations revealed a high level of variation for all the characterized traits, leading to subsequent genetic and genome-wide association studies (GWAS) based on various molecular marker technologies (Mahalingam et al., 2020; Roy et al., 2010; Sallam et al.,

1 2017; Walling et al., 2022). Here, we describe the whole-genome resequencing of 281

2 WBDC accessions with ~9X coverage and demonstrate its utility for identifying both

previously described and novel genes in *Hordeum vulgare* using an association genetic

approach.

6 Methods

Wild barley germplasm

Collection site data for longitude and latitude, elevation, high and low temperature, rainfall, and soil type (**Table S1**; **Figure 1A**) were used to assemble the WBDC at the International Center for Agricultural Research in the Dry Areas (ICARDA) (Steffenson et al., 2007). The proportion of samples included was generally reflective of the density of populations in the Fertile Crescent, Central Asia, North Africa, and Caucasus regions. Of the 318 WBDC accessions selected initially, 37 were not included in resequencing due to failed genotyping or sequencing, duplication, or seed admixtures. The final sequenced panel comprises 281 accessions from 19 countries. Single plant selections were initially made from each accession and then selfed for five successive generations in the greenhouse before being used for DNA extraction and sequencing.

DNA extractions

The first and second leaves of each accession were harvested, flash-frozen in liquid nitrogen, and stored at -80°C until the DNA extractions were performed. For the extractions, tissue was first ground to a fine powder in liquid nitrogen using a mortar and pestle. Then, genomic DNA was extracted using a modified CTAB protocol (Yu et al.,

- 1 2017). Agarose gel electrophoresis was used to confirm that the genomic DNA was of
- 2 high molecular weight (>10 kb). DNA quality was assessed using a NanoDrop
- 3 spectrophotometer.

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Library preparation and whole-genome sequencing (WGS)

5 WGS libraries were prepared using the 'Illumina Nextera DNA Flex Library

6 Preparation Kit' (workflow for 100-500 ng DNA input, 5 PCR-cycles for the addition of

indexes) according to manufacturer's instructions (Illumina, Inc., San Diego, CA, USA).

The final library pool was quantified by qPCR (Mascher et al., 2021). The pool was

sequenced (XP workflow, paired-end, 2 x 151 cycles) using the Illumina NovaSeq6000

device and standard protocols from the manufacturer.

Variant calling

Quality assessment, read mapping, deduplication, and coverage estimation utilized scripts in the RepAdapt pipeline (https://github.com/RepAdapt/snp calling simple). This involved quality assessment and adapter trimming with FASTP (Chen et al., 2018), read mapping with BWA MEM (Li, 2013), read deduplication with Picard (Broad Institute, 2019) and coverage estimation with samtools (Danecek et al., 2021; Li et al., 2009). Both SNP and indel variants were called using GATK version v4.1.2 (McKenna et al., 2010), with recommended GATK filtering as follows: SNP filtering "QD < 2.0 || FS > 60.0 || MQ < 45.0 || MQRankSum < -12.5 || ReadPosRankSum < -8.0 || DP > 4654.61"; and Indel Filtering "QD < 2.0 || FS > 200.0 || ReadPosRankSum < -20.0". Heterozygous and multiallelic sites were retained in the data set, and no frequency filter was applied to variants. The general feature format (GFF3) descriptions of both high and low confidence genes from the Morex V3 assembly

- 1 (Mascher, 2020) were used to create a BED file defining "gene space." Based on the
- 2 descriptions in the GFF, gene space here comprises 5' and 3' UTRs, exons, and introns.

Variant statistics

Variant statistics, including sample size estimation and read depth per SNP, level of missingness, and related statistics, were calculated using the bcftools "+fill-tags" plugin (Danecek et al., 2021). Sample-level statistics were calculated with bcftools stats. The Variant Effect Predictor (VeP) (McLaren et al., 2016), along with GFF3 annotations for Morex V3, was used to annotate all variants. VeP results were used to parse variants by class for calculating the site frequency spectrum.

The folded site frequency spectrum (SFS) was estimated based on the minor allele frequency for biallelic SNPs genome-wide and for synonymous sites. The expectation for the SFS under a neutral coalescent history was generated using msprime (Baumdicker et al., 2022) based on nucleotide sequence diversity estimated as $\theta = 4$ Ne $\mu = 0.008$ (Morrell et al., 2006; Schmid et al., 2018) and recombination rate of $\rho/\theta = 1.5$ (Morrell et al., 2006). We simulated 281 haploid samples with 1,000 replicate simulations with a locus length sufficient to generate ~100 SNPs per simulation or 100,000 variants that could be compared to the folded SFS for the empirical datasets.

Cluster analysis

The SNP dataset was filtered prior to analyses by setting heterozygote calls to missing and retaining biallelic sites with \leq 10% missing data and \geq 5% minor allele frequency. The SNP dataset was further pruned by discarding sites with $r^2 >$ 0.2 in windows of 50 sites. Principal component analysis was performed in TASSEL v5.0 (Bradbury et al., 2007). *K*-means clustering was used to partition the wild barley panel

- into subpopulations (**Table S1**). Based on our previous knowledge of the panel (Sallam
- et al., 2017), seven subpopulations were assigned to the cluster analysis in JMP 17 (JMP
- 3 Statistical Discovery LLC, Cary, NC, USA). JMP was used to plot the PCA results and
- 4 create the map for the WBDC panel (**Figure 1**).

Phenotyping

To demonstrate the utility of the WGS dataset for identifying trait-associated loci in wild barley, we selected two important traits for study: 1) lemma color and 2) stem rust resistance. Lemma color was assessed by taking digital images of mature seeds and then analyzing each color channel using the Fiji package (Schindelin et al., 2012). The average color channel value (CCV) of two representative seeds of each accession for each color channel in the RGB color model was measured. Each RGB value was converted into a single 24-bit integer for GWAS analysis using the formula: Color = $(R \times 256^2) + (G \times 256) + B$. Stem rust assays on seedlings were performed with two races (MCCFC and QCCJB) of the wheat stem rust pathogen (*Puccinia graminis* f. sp. *tritici* (*Pgt*) and one isolate (92-MN-90) of the rye stem rust pathogen (*P. graminis* f. sp. *secalis*) (*Pgs*) as described in Sallam et al. (2017).

Genome-wide association mapping

To identify markers associated with the three traits, GWAS was conducted for 281 WBDC accessions using the following methods: 1) Mixed Linear Model (MLM) that accounts for population structure (Q) + kinship (K) (Yu et al., 2006), 2) Fixed and random model Circulating Probability Unification (FarmCPU) (Kusmec & Schnable, 2018) that utilizes fixed and random effects iteratively to improve association power, and 3) a

Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) (Huang et al., 2019) that utilizes Bayes and linkage disequilibrium to improve both association power and computation efficiency. The SNP dataset was filtered prior to GWAS by setting heterozygote calls to missing and retaining biallelic sites with $\leq 10\%$ missing data and $\leq 5\%$ minor allele frequency. The SNP dataset was further pruned by discarding sites with $\leq r^2 > 0.2$ in windows of 50 sites. All association mapping methods were executed in the R package GAPIT v3.5 using ≈ 1.3 million SNP markers (Wang & Zhang, 2021). Marker trait associations (MTAs) identified using two or more methods or those detected with a single method but across two different datasets are presented. The Bonferroni test was performed to declare significant associations.

Results and Discussion

Variant calling with GATK in the sequenced 281 wild barley lines of the WBDC (~9X coverage, **Figure S1**) resulted in the identification of 240.2 million SNPs and 24.4 million indels (**Table 1**). In addition to these reported indels, there were a further 3.2 million sites where one of the variants at an indel site had a single base pair difference from the reference. These are among 6.5 million multiallelic variants, with 26.6% of indel sites called as multiallelic.

The vast majority of detected indels were one bp deletions; the second most abundant class was one bp insertions, with roughly half as many one bp insertions identified relative to deletions (**Figure S2**). The majority of variants identified were annotated as intergenic variants, including 219.2 million SNPs and 20.8 million indels (**Table 2**). Among coding SNPs, 53.3% (807,753) were missense changes, 45.2%

1 (685,452) were synonymous changes, and 1.2% (18,571) were stop-gained. Among
2 indels affecting coding regions, 61.9% (74,148) were frameshift variants, 20.7% (24,768)
3 were inframe deletions, 13.1% (15,642) were inframe insertions, and 1.9% (2,329) were
4 stop-gained.

We also partitioned the data set into variants found within gene space as defined by Morex V3 annotations. SNPs within genic regions showed much lower rates of multiallelic polymorphisms at 2.6% and a lower missingness rate at 0.068 (±0.158) with a median of 0.007, consistent with the relative ease of read alignment and variant calling within gene space (**Table 1**).

The transition to transversion ratio (Ts/Tv) can vary among classes of variants and is a potential metric of variant call quality. Values in partitions for the dataset ranged from 1.07 for indels to 1.90 for variants in gene space. These values align with prior reported values of 1.7 for Sanger sequencing in wild barley (Morrell et al., 2006) and Illumina exome capture sequencing from domesticated barley (Kono et al., 2016).

There were 59.5 million biallelic SNPs in the dataset that occurred outside of indels and thus were unique mutations. The folded site frequency spectrum in Figure 2 includes all biallelic SNPs. We compared frequencies with expectations under a standard coalescent model of a panmictic population with constant population size. The SFS shows that a large proportion of variants reside in the rarest frequency class, here <2.5% frequency. While this was consistent with expectations under a standard coalescent model (Tajima, 1989), rare variants at the whole-genome level were more abundant than expected based on neutral coalescent simulations (**Figure 2**). The frequency spectrum for synonymous sites more closely resembles the expectation for neutral variants based

on coalescent simulations but again demonstrate more variants in the rarest frequency classes. This result likely reflects both the challenges of variant calling in a highly repetitive genome and an excess of rare variants at most wild barley loci, consistent with a recent population expansion in the species' coalescent history (Morrell et al., 2006).

Prior to GWAS, population structure was assessed by *k*-means clustering and principal component analyses (**Figure 1B**). Consistent with previous results on the population structure of wild barley (Fang et al., 2014; Russell et al., 2016; Sallam et al., 2017), genetic relatedness mirrored geographic distance: the distribution of population centers roughly traced a path from the North African coast and the Southern Levantalong the Fertile Crescent to Central Asia (**Figure 1A**). A detailed analysis of population structure in wild barley and its relationship to domesticated accessions was undertaken by Guo et al. (2025) using the present data set.

Lemma color

Lemma color in the WBDC ranged from pale yellow (straw-colored) to brown and dark black based on visual inspection (**Figure 3A**). Converted RGB values from digital images of pale yellow and dark black seed generally ranged from 10,750,000-13,550,000 and 4,350,000-6,570,000, respectively (**Table S1; Figure S3**). Black lemma is a classic morphological trait in barley and is controlled by the *Blp* locus, which is composed of different alleles contributing to the intensity and distribution of color (Franckowiak and Lundqvist 1997). GWAS identified one association (WBDC_LC_1H_499.0) by a single SNP (S1H_499023721) on chromosome 1H using all three models (MLM, FarmCPU and BLINK) (**Figure 3B**, **Table 3**). This SNP explained 17.5% of the phenotypic variation and lies in close proximity to *HvBlp*, the recently cloned gene controlling black lemma color

- 1 positioned between 498.5 to 499.0 Mbp on 1H in the Morex V3 assembly (Li et al., 2024)
- 2 (**Table 3**). Due to the complexity of the locus and a duplicated fragment of *HvBlp*, it is
- 3 difficult to state with certainty the physical relationship of the identified SNP marker and
- 4 this gene.

Stem rust

6 Based on a coefficient of infection threshold of 2.7, only 15 (5.0%), 39 (14.0%), 7 and 54 (19.0%) of the sequenced WBDC accessions were classified as resistant to Pgt-8 MCCFC, Pgt-QCCJB and Pgs-92-MN-90, respectively (**Table S1**; **Figure S4**). Four MTAs 9 (WBDC SR 1H 11.7, WBDC_SR_1H_67.4-71.5, WBDC SR 5H 562.9, and 10 WBDC SR 6H 501.8) were identified for stem rust resistance. WBDC SR 1H 11.7 11 was novel and mapped to chromosome 1H in response to both Pgt-MCCFC and Pgt-12 QCCJB, explaining 20.0% and 14.9% of the variation, respectively (Figure 4, Table 3). 13 WBDC SR 6H 501.8 was also novel and positioned on 6H in response to both Pgt-14 MCCFC and *Pgt*-QCCJB, explaining 15.4%-15.8% of the variation (**Table 3**). 15 WBDC SR 1H 67.4-71.5 was mapped on chromosome 1H in response to races Pgt-16 MCCFC and Pgt-QCCJB (Table 3). The two different SNPs (S1H 67388912 and 17 S1H 71536803) identified in the MTA were in moderate linkage disequilibrium (r^2 = 18 0.565). The position of this MTA is close to S1H 71499376, a genotyping-by-sequencing 19 (GBS)-derived marker that was found significantly associated with resistance to both Pgt-20 MCCFC and Pgt-QCCJB based on 314 individuals (Sallam et al. 2017). This MTA 21 explained 18.7-31.0% of the variation in this study (**Table 3**). WBDC SR 5H 562.9 was identified on chromosome 5H (S5H 562922829) after challenge with all three P. graminis 22 23 cultures using all three models and explained 22.4-32.3% of the variation (Table 3). It colocated to the position of the complex RMRL1-RMRL2 loci (Wang et al., 2013) from which several component resistance genes (e.g. *rpg4* and *Rpg5*) were cloned (Arora et al., 3 2013; Brueggeman et al., 2008).

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

WGS data for diverse accessions of a crop and its wild relatives are essential for population genomic studies, the informed selection of genotypes for full genome sequence assembly (pangenomics), and the isolation of agronomically important genes. Our dataset complements similar short-read datasets for 1,315 domesticated barleys (Jayakodi et al., 2020, 2024) and 100 wild barleys from another collection (Jayakodi et al., 2020). Chromosome-scale genome assemblies of nine WBDC accessions have been completed (Jayakodi et al., 2024) with more accessions to follow in the future. Applying GWAS to the WBDC, we demonstrated the utility of high-coverage sequence data for identifying novel genetic variation that may be useful in barley improvement. Additionally, we also validated major genes controlling key traits in barley such as Blp for black lemma color and RMRL1/RMRL2 for stem rust resistance. Thus, this dataset may serve as a starting point for the identification of candidate genes underlying other important traits. In a companion paper, Guo et al. (2025) demonstrated the utility of WBDC sequence data in a population genomic study. They analyzed this dataset together with sequence data from other diverse wild and domesticated barley accessions to reconstruct the evolutionary history of wild barley and elucidate the origin of haplotypes in cultivated barley. The sequenced WBDC genomes will help connect target phenotypic traits to chromosome positions. Reference genome positions, as identified by HORVUI.D.s in the Morex V3 assembly (Mascher, 2020), serve as anchors to protein-protein interactome

- 1 hubs (Velásquez-Zapata et al., 2022) and the potential for engineering the molecular and
- 2 cellular mechanisms by which key phenotypes are expressed.

4 Data Availability Statement

3

17

18

20

21

- 5 Seed of the complete WBDC (N=318) can be obtained from the USDA-ARS National
- 6 Small Grains Collection as accessions PI 681726 to PI 682043. Raw sequence data are
- 7 deposited in the European Nucleotide Archive (ENA) under project ID PRJEB56087.
- 8 The variant data are deposited in the GrainGenes database (Yao et al. 2022) at
- 9 https://graingenes.org/snpversity/. SNP names from previous barley genotyping
- 10 platforms (Bayer et al., 2017; Close et al., 2009; Comadran et al., 2011, 2012) are
- added as annotations. Scripts used for variant calling, filtering and other analyses can
- 12 be found in GitHub repository:
- 13 https://github.com/SteffensonLab/Barley_IPK_variant_calling. We used stem rust
- reaction type data from a previously published G3 paper (Sallam et al. 2017):
- https://doi.org/10.1534/g3.117.300222. These data are also included in Table S1.
- Figures S1-S4 and Table S1 are available to download at G3 online.

Web Resources

19 https://graingenes.org/snpversity/

Acknowledgments

- A.H. acknowledges lnes Walde for expert technical assistance in the sequencing
- operation. B.J.S. thanks Harold Bockelman, Matthew Martin, and Tamas Szinyei for
- technical assistance in the handling of the wild barley materials. We acknowledge the
- 25 University of Minnesota Supercomputing Institute (MSI) for providing computing
- 26 resources.

Conflict of Interest

The authors declare no competing interests.

Funding

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

The research of B.J.S. was supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, Hatch project (#MIN-22-085 "Exploiting Wild Relatives for Cultivated Wheat and Barley Improvement"); Lieberman-Okinow Endowment at the University of Minnesota; Binational Agriculture Research and Development Fund (BARD US-5089-18 "Cloning and comparative sequence analysis of powdery mildew and leaf rust resistance gene complements in wild barley"); and American Malting Barley Association. Barley genome research in the laboratory of M.M., U.S. and N.S. is supported by a grant from the German Ministry of Research and Education (BMBF, SHAPE-P3, 031B0190). The wild barley research of M.M. is supported by a grant from the German Research Foundation (DFG, 460265804). A.T. was supported by project RECOBAR (Recovering and Exploiting Old and New Barley Diversity for Future-Ready Agriculture). B.K. was supported by Biodiversity for Opportunities, Livelihoods and Development (BOLD) Project funded by the Government of Norway [grant number: QZA-20/0154]. B.B.H.W. was supported by funding from King Abdullah University of Science and Technology. The research of C.D. is supported by the Carlsberg Foundation (CF15-0236). J.D., A.P. and J.S. were supported from the project TowArds Next GENeration Crops, reg. no. CZ.02.01.01/00/22 008/0004581 of the ERDF Programme Johannes Amos Comenius. For R.P.W., research was supported

- 1 in part by the National Science Foundation Plant Genome Research Program grant
- 2 13-39348, and USDA-Agricultural Research Service projects 3625-21000-067-00D and
- 3 5030-21220-068-000-D. For C.H., R.M., M.A.V., and J.G.W, research was supported by
- 4 USDA-Agricultural Research Service projects 5090-21430-011-000D and 5090-43440-
- 5 007-000D. Mention of trade names or commercial products in this publication is solely
- 6 for the purpose of providing specific information and does not imply recommendation or
- 7 endorsement by the USDA, ARS, or the National Science Foundation. USDA is an
- 8 equal opportunity provider, employer and lender. M.J.M. was supported by United
- 9 States Department of Agriculture-Agricultural Research Service CRIS #5062-21220-
- 10 025-000D.

12

Author Contributions

- B. J. Steffenson and M. Mascher designed and led the study. A. H. Sallam, G.
- 14 Bethke, and J. Simmons grew and harvested the plant materials and extracted DNA. A.
- Himmelbach, and A. Fiebig performed the sequencing operations. R. Spanner, A. H.
- 16 Sallam, Y. Lee, M. Jayakodi, M. Mascher, Y. Qiu, P. L. Morrell, L. W. Pacheco Arge and
- 17 Y. Guo analyzed the data. B. J. Steffenson, R. Spanner, A. H. Sallam, Y. Lee, P. L.
- 18 Morrell, M. Mascher, and Y. Guo drafted the manuscript and made the revisions. All
- 19 authors reviewed and edited the manuscript.

Ethics declarations

Publisher's note Genetics Society of America remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

25

20

21

22

23

1 References

- 2 Arora, D., Gross, T., & Brueggeman, R. (2013). Allele characterization of genes required for rpg4-
- mediated wheat stem rust resistance identifies *Rpg5* as the R gene. *Phytopathology*, *103*(11).
- 4 https://doi.org/10.1094/PHYTO-01-13-0030-R
- 5 Baumdicker, F., Bisschop, G., Goldstein, D., Gower, G., Ragsdale, A. P., Tsambos, G., Zhu, S.,
- 6 Eldon, B., Ellerman, E. C., Galloway, J. G., Gladstein, A. L., Gorjanc, G., Guo, B., Jeffery, B.,
- 7 Kretzschumar, W. W., Lohse, K., Matschiner, M., Nelson, D., Pope, N. S., ... Kelleher, J.
- 8 (2022). Efficient ancestry and mutation simulation with msprime 1.0. *Genetics*, 220(3).
- 9 https://doi.org/10.1093/genetics/iyab229
- 10 Bayer, M. M., Rapazote-Flores, P., Ganal, M., Hedley, P. E., Macaulay, M., Plieske, J., Ramsay,
- L., Russell, J., Shaw, P. D., Thomas, W., & Waugh, R. (2017). Development and evaluation
- of a barley 50k iSelect SNP array. Frontiers in Plant Science, 8.
- 13 https://doi.org/10.3389/fpls.2017.01792
- 14 Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007).
- 15 TASSEL: Software for association mapping of complex traits in diverse samples.
- 16 Bioinformatics, 23(19). https://doi.org/10.1093/bioinformatics/btm308
- 17 Broad Institute. (2019). Picard. GltHub.
- 18 Brueggeman, R., Druka, A., Nirmala, J., Cavileer, T., Drader, T., Rostoks, N., Mirlohi, A.,
- Bennypaul, H., Gill, U., Kudrna, D., Whitelaw, C., Kilian, A., Han, F., Sun, Y., Gill, K.,
- 20 Steffenson, B., & Kleinhofs, A. (2008). The stem rust resistance gene *Rpg5* encodes a
- 21 protein with nucleotide-binding-site, leucine-rich, and protein kinase domains. Proceedings of
- the National Academy of Sciences of the United States of America, 105(39).
- 23 https://doi.org/10.1073/pnas.0807270105
- 24 Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). Fastp: An ultra-fast all-in-one FASTQ preprocessor.
- 25 Bioinformatics, 34(17). https://doi.org/10.1093/bioinformatics/bty560
- 26 Civáň, P., Fricano, A., Russell, J., Pont, C., Özkan, H., Kilian, B., & Brown, T. A. (2024). Genetic
- 27 erosion in domesticated barley and a hypothesis of a North African centre of diversity.
- 28 Ecology and Evolution, 14(8), e70068. https://doi.org/https://doi.org/10.1002/ece3.70068
- 29 Close, T. J., Bhat, P. R., Lonardi, S., Wu, Y., Rostoks, N., Ramsay, L., Druka, A., Stein, N.,
- 30 Svensson, J. T., Wanamaker, S., Bozdag, S., Roose, M. L., Moscou, M. J., Chao, S.,
- 31 Varshney, R. K., Szucs, P., Sato, K., Hayes, P. M., Matthews, D. E., ... Waugh, R. (2009).
- 32 Development and implementation of high-throughput SNP genotyping in barley. BMC
- 33 *Genomics*, 10. https://doi.org/10.1186/1471-2164-10-582
- 34 Comadran, J., Kilian, B., Russell, J., Ramsay, L., Stein, N., Ganal, M., Shaw, P., Bayer, M.,
- Thomas, W., Marshall, D., Hedley, P., Tondelli, A., Pecchioni, N., Francia, E., Korzun, V.,
- Walther, A., & Waugh, R. (2012). Natural variation in a homolog of Antirrhinum
- 37 CENTRORADIALIS contributed to spring growth habit and environmental adaptation in
- 38 cultivated barley. Nature Genetics, 44(12). https://doi.org/10.1038/ng.2447
- 39 Comadran, J., Ramsay, L., MacKenzie, K., Hayes, P., Close, T. J., Muehlbauer, G., Stein, N., &
- Waugh, R. (2011). Patterns of polymorphism and linkage disequilibrium in cultivated barley.
- 41 Theoretical and Applied Genetics, 122(3). https://doi.org/10.1007/s00122-010-1466-7

- 1 Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A.,
- 2 Keane, T., McCarthy, S. A., & Davies, R. M. (2021). Twelve years of SAMtools and BCFtools.
- 3 *GigaScience*, *10*(2). https://doi.org/10.1093/gigascience/giab008
- 4 Fang, Z., Gonzales, A. M., Clegg, M. T., Smith, K. P., Muehlbauer, G. J., Steffenson, B. J., &
- 5 Morrell, P. L. (2014). Two genomic regions contribute disproportionately to geographic
- 6 differentiation in wild barley. G3: Genes, Genomes, Genetics, 4(7).
- 7 https://doi.org/10.1534/g3.114.010561
- 8 FAO. (2017). FAOSTAT Crops. http://www.fao.org/faostat/en/#data/QC
- 9 Franckowiak, J. D., Lundqvist, U. (1997). New and revised names for barley genes. *Barley* 10 *Genetics Newsletter*. 26(209).
- 11 Guo, Y., Jayakodi, M., Himmelbach, A., Ben-Yosef, E., Davidovich, U., David, M., Hartmann-
- 12 Shenkman, A., Kislev, M. E., Fahima, T., Schuenemann, V. J., et al. (2025). A haplotype-
- based evolutionary history of barley domestication. *Nature* (accepted for publication, *in press*).
- Harlan, J. R., & Zohary, D. (1966). Distribution of wild wheats and barley. *Science*, *153*(3740).
 https://doi.org/10.1126/science.153.3740.1074
- Huang, M., Liu, X., Zhou, Y., Summers, R. M., & Zhang, Z. (2019). BLINK: A package for the next level of genome-wide association studies with both individuals and markers in the millions. *GigaScience*, 8(2). https://doi.org/10.1093/gigascience/giy154
- Jayakodi, M., Lu, Q., Pidon, H., Rabanus-Wallace, M. T., Bayer, M., Lux, T., Guo, Y., Jaegle, B.,
 Badea, A., Bekele, W., Brar, G. S., Braune, K., Bunk, B., Chalmers, K. J., Chapman, B.,
 Jørgensen, M. E., Feng, J.-W., Feser, M., Fiebig, A., ... Stein, N. (2024). Structural
 variation in the pangenome of wild and domesticated barley. *Nature*, *636*(8043), 654–662.
- 24 https://doi.org/10.1038/s41586-024-08187-1
- Jayakodi, M., Padmarasu, S., Haberer, G., Bonthala, V. S., Gundlach, H., Monat, C., Lux, T.,
- Kamal, N., Lang, D., Himmelbach, A., Ens, J., Zhang, X. Q., Angessa, T. T., Zhou, G., Tan,
- C., Hill, C., Wang, P., Schreiber, M., Boston, L. B., ... Stein, N. (2020). The barley pan-
- genome reveals the hidden legacy of mutation breeding. *Nature*, *588*(7837). https://doi.org/10.1038/s41586-020-2947-8
- Kono, T. J. Y., Fu, F., Mohammadi, M., Hoffman, P. J., Liu, C., Stupar, R. M., Smith, K. P., Tiffin, P., Fay, J. C., & Morrell, P. L. (2016). The role of deleterious substitutions in crop genomes. *Molecular Biology and Evolution*, *33*(9). https://doi.org/10.1093/molbev/msw102
- Kusmec, A., & Schnable, P. S. (2018). FarmCPUpp: Efficient large-scale genomewide association studies. *Plant Direct*, *2*(4). https://doi.org/10.1002/pld3.53
- Li, B., Jia, Y., Xu, L., Zhang, S., Long, Z., Wang, R., Guo, Y., Zhang, W., Jiao, C., Li, C., & Xu, Y. (2024). Transcriptional convergence after repeated duplication of an amino acid transporter gene leads to the independent emergence of the black husk/pericarp trait in
- barley and rice. *Plant Biotechnology Journal*, 22(5). https://doi.org/10.1111/pbi.14264
- Li, H. (2013). [Heng Li Compares BWA to other long read aligners like CUSHAW2] Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. *ArXiv Preprint ArXiv*.
- 42 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., &
- Durbin, R. (2009). The Sequence Alignment/Map format and SAMtools. *Bioinformatics*,
- 44 *25*(16). https://doi.org/10.1093/bioinformatics/btp352

- Liu, C., Lei, L., Shao, M., Franckowiak, J. D., Pacheco, J. B., Scott, J. C., Gavin, R. T., Roy, J.
 K., Sallam, A. H., Steffenson, B. J., & Morrell, P. L. (2024). *Phenotypically wild barley*
- 3 shows evidence of introgression from cultivated barley. BioRxiv.
- 4 https://doi.org/10.1101/2024.07.01.601622
- Mahalingam, R., Sallam, A. H., Steffenson, B. J., Fiedler, J. D., & Walling, J. G. (2020).
 Genome-wide association analysis of natural variation in seed tocochromanols of barley.
- 7 Plant Genome, 13(3). https://doi.org/10.1002/tpg2.20039
- Mascher, M. (2020). Pseudomolecules and annotation of the third version of the reference genome sequence assembly of barley cv. Morex [Morex V3]. *E!DAL - Plant Genomics and Phenomics Research Data Repository (PGP)*.
- Mascher, M., Wicker, T., Jenkins, J., Plott, C., Lux, T., Koh, C. S., Ens, J., Gundlach, H.,
 Boston, L. B., Tulpová, Z., Holden, S., Hernández-Pinzón, I., Scholz, U., Mayer, K. F. X.,
 Spannagl, M., Pozniak, C. J., Sharpe, A. G., Simková, H., Moscou, M. J., ... Stein, N.
 (2021). Long-read sequence assembly: A technical evaluation in barley. *Plant Cell*, 33(6).
 https://doi.org/10.1093/plcell/koab077
- McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K.,
 Altshuler, D., Gabriel, S., Daly, M., & DePristo, M. A. (2010). The genome analysis toolkit:
 A MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Research*, 20(9). https://doi.org/10.1101/gr.107524.110
- McLaren, W., Gil, L., Hunt, S. E., Riat, H. S., Ritchie, G. R. S., Thormann, A., Flicek, P., &
 Cunningham, F. (2016). The Ensembl variant effect predictor. *Genome Biology*, *17*(1).
 https://doi.org/10.1186/s13059-016-0974-4
- Milner, S. G., Jost, M., Taketa, S., Mazón, E. R., Himmelbach, A., Oppermann, M., Weise, S., Knüpffer, H., Basterrechea, M., König, P., Schüler, D., Sharma, R., Pasam, R. K., Rutten, T., Guo, G., Xu, D., Zhang, J., Herren, G., Müller, T., ... Stein, N. (2019). Genebank genomics highlights the diversity of a global barley collection. *Nature Genetics*, *51*(2). https://doi.org/10.1038/s41588-018-0266-x
- Morrell, P. L., Toleno, D. M., Lundy, K. E., & Clegg, M. T. (2006). Estimating the contribution of mutation, recombination and gene conversion in the generation of haplotypic diversity. *Genetics*, *173*(3). https://doi.org/10.1534/genetics.105.054502
- Roy, J. K., Smith, K. P., Muehlbauer, G. J., Chao, S., Close, T. J., & Steffenson, B. J. (2010).
 Association mapping of spot blotch resistance in wild barley. *Molecular Breeding*, *26*(2).
 https://doi.org/10.1007/s11032-010-9402-8
- Russell, J., Mascher, M., Dawson, I. K., Kyriakidis, S., Calixto, C., Freund, F., Bayer, M., Milne,
 I., Marshall-Griffiths, T., Heinen, S., Hofstad, A., Sharma, R., Himmelbach, A., Knauft, M.,
 Van Zonneveld, M., Brown, J. W. S., Schmid, K., Kilian, B., Muehlbauer, G. J., ... Waugh,
 R. (2016). Exome sequencing of geographically diverse barley landraces and wild relatives
 gives insights into environmental adaptation. *Nature Genetics*, *48*(9).
 https://doi.org/10.1038/ng.3612
- Sallam, A. H., Tyagi, P., Brown-Guedira, G., Muehlbauer, G. J., Hulse, A., & Steffenson, B. J. (2017). Genome-wide association mapping of stem rust resistance in Hordeum vulgare subsp. spontaneum. *G3: Genes, Genomes, Genetics*, 7(10).
- 43 https://doi.org/10.1534/g3.117.300222

- Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch,
 S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein, V.,
 Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: An open-source platform for
 biological-image analysis. In *Nature Methods* (Vol. 9, Issue 7).
 https://doi.org/10.1038/nmeth.2019
- Schmid, K., Kilian, B., & Russell, J. (2018). Barley domestication, adaptation and population
 genomics. https://doi.org/10.1007/978-3-319-92528-8
- Steffenson, B. J., Olivera, P., Roy, J. K., Jin, Y., Smith, K. P., & Muehlbauer, G. J. (2007). A walk on the wild side: Mining wild wheat and barley collections for rust resistance genes.

 Australian Journal of Agricultural Research, 58(6). https://doi.org/10.1071/AR07123
 - Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. *Genetics*, *123*(3). https://doi.org/10.1093/genetics/123.3.585

- Velásquez-Zapata, V., Elmore, J. M., Fuerst, G., & Wise, R. P. (2022). An interolog-based
 barley interactome as an integration framework for immune signaling. *Genetics*, 221(2).
 https://doi.org/10.1093/genetics/iyac056
- Walling, J. G., Sallam, A. H., Steffenson, B. J., Henson, C., Vinje, M. A., & Mahalingam, R.
 (2022). Quantitative trait loci impacting grain β-glucan content in wild barley (Hordeum vulgare ssp. spontaneum) reveals genes associated with cell wall modification and carbohydrate metabolism. *Crop Science*, *62*(3), 1213–1227.
 https://doi.org/10.1002/csc2.20734
- Wang, J., & Zhang, Z. (2021). GAPIT Version 3: Boosting power and accuracy for genomic
 association and prediction. *Genomics, Proteomics and Bioinformatics*, *19*(4).
 https://doi.org/10.1016/j.gpb.2021.08.005
- Wang, X., Richards, J., Gross, T., Druka, A., Kleinhofs, A., Steffenson, B., Acevedo, M., &
 Brueggeman, R. (2013). The *rpg4*-mediated resistance to wheat stem rust (*Puccinia graminis*) in barley (*Hordeum vulgare*) requires *Rpg5*, a second NBS-LRR gene, and an actin depolymerization factor. *Molecular Plant-Microbe Interactions*, *26*(4).
 https://doi.org/10.1094/MPMI-06-12-0146-R
- Yao E., Blake, V., Cooper L., Wight, C., Michel, S., Cagirici, H., Lazo, G., Birkett, C., Waring, D.,
 Jannink, J., Holmes, I., Waters, A., Eickholt, D., Sen, T. (2022). GrainGenes: a data-rich
 repository for small grains genetics and genomics. Database.
 https://doi.org/10.1093/database/baac034
- Yu, G., Hatta, A., Periyannan, S., Lagudah, E., & Wulff, B. B. H. (2017). Isolation of wheat
 genomic DNA for gene mapping and cloning. In *Methods in Molecular Biology* (Vol. 1659).
 https://doi.org/10.1007/978-1-4939-7249-4_18
- Yu, J., Pressoir, G., Briggs, W. H., Bi, I. V., Yamasaki, M., Doebley, J. F., McMullen, M. D.,
 Gaut, B. S., Nielsen, D. M., Holland, J. B., Kresovich, S., & Buckler, E. S. (2006). A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. *Nature Genetics*, *38*(2). https://doi.org/10.1038/ng1702
- Zohary, D., Hopf, M., & Weiss, E. (2012). Domestication of plants in the Old World: The origin
 and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean
 Basin. In *Domestication of Plants in the Old World: The Origin and Spread of Domesticated*
- 43 Plants in Southwest Asia, Europe, and the Mediterranean Basin.
- 44 https://doi.org/10.1093/acprof:osobl/9780199549061.001.0001

1 Tables

2

8 9

3 Table 1. Summary statistics for variants obtained after aligning whole-genome

- 4 sequencing reads from 281 individuals of the Wild Barley Diversity Collection to the
- 5 Morex V3 reference genome. Biallelic sites include positions with unique mutations and
- 6 no overlapping indels. Gene space includes coding regions and UTRs from Morex V3
- 7 gene annotation.

Data set	Variant #	Multiallelic	Ts/Tv	Proportion missing
SNPs	240,171,785	9,214,159	1.39	0.094 (+0.177) -0.018
Indels	24,387,195	6,493,811	1.07	0.148 (+0.217) - 0.039
Biallelic	59,520,067	-	1.47	0.083 (+0.166) -0.014
SNPs - Gene space	6,385,855	166,712	1.9	0.068 (+0.158) - 0.007

Table 2. Variant Effect Predictor (VeP) results for genome-wide SNPs and indels.

		SNPs	Indels		
Variant	Count	Proportion (%)	Count	Proportion (%)	
Splice acceptor	2,007	0.0008	986	0.00404	
Splice donor	1,747	0.0007	1,201	0.00492	
Stop gained	18,571	0.0077	2,329	0.00955	
Frameshift variant	-	-	74,148	0.30404	
Stop lost	1,520	0.0006	190	0.00078	
Start lost	1,507	0.0006	267	0.00109	
Inframe insertion	-	-	15,642	0.06414	
Inframe deletion	-	-	24,768	0.10156	
Missense	807,753	0.3363	334	0.00137	

Protein altering variant	-	-	1,163	0.00477
Splice donor 5th base	4,472	0.0019	1,248	0.00512
Splice region	47,271	0.0197	7,983	0.03273
Splice donor region	12,910	0.0054	2,225	0.00912
Splice polypyrimidine tract	46,258	0.0193	11,488	0.04711
Start retained	-	-	9	0.00004
Stop retained	989	0.0004	98	0.0004
Synonymous	685,452	0.2854	71	0.00029
Coding sequence variant	-	-	781	0.0032
5'UTR	96,094	0.04	36,888	0.15126
3'UTR	229,979	0.0958	56,752	0.23271
Intron	2,757,606	1.1482	554,672	2.27444
Upstream gene	9,135,842	3.8039	1,560,586	6.3992
Downstream gene	7,049,038	2.935	1,194,674	4.89878
Intergenic	219,000,000	91.2983	20,838,692	85.44932

Table 3. Single nucleotide polymorphism (SNP) markers significantly associated with lemma color and stem rust resistance in 281 *Hordeum vulgare* subsp. *spontaneum* accessions of the Wild Barley Diversity Collection.

	Association	Treatment	eatment GWAS detection							
Phenotype Lemma w	designation ^a	or Trait ^b Lemma color	SNP ^C	Chr ^d	Pos ^e	MAF ^f 0.06	method ^g	<i>p</i> -value range ^h		R ²ⁱ
	WBDC_LC_1H_499.0		S1H_499023721	1H	499.0 Mbp		MLM/FarmCPU/BLINK	9.78×10 ⁻	1.36×10 ⁻	17.51%
Stem rust resistance	WBDC_SR_1H_11.7	MCCFC	S1H_11651434	1H	11.7 Mbp	0.07	MLM/FarmCPU	9.83×10 ⁻	1.81×10 ⁻	20.02%
		QCCJB	S1H_11651434	1H	11.7 Mbp	0.07	MLM/FarmCPU	2.17×10 ⁻	5.76×10 ⁻	14.86%
	WBDC_SR_1H_67.4- 71.5	MCCFC	S1H_67388912, S1H_71536803	1H	67.4 – 71.5 Mbp	0.07	MLM MLM/FarmCPU/BLINK	1.50×10 ⁻	1.87×10 ⁻	22.46 – 31.03%
		QCCJB	S1H_67388912	1H	67.4 Mbp	0.07	BLINK	5.77×10 ⁻		18.71%
	WBDC_SR_5H_562.9	MCCFC	S5H_562922829	5H	562.9 Mbp	0.07	MLM/FarmCPU/BLINK	3.25×10 ⁻	3.49×10 ⁻	22.38%
		QCCJB	S5H_562922829	5H	562.9 Mbp	0.07	MLM/FarmCPU/BLINK	7.98×10 ⁻	3.77×10 ⁻	24.08%
		92-MN-90	S5H_562922829	5H	562.9 Mbp	0.07	MLM/FarmCPU/BLINK	2.89×10 ⁻	5.09×10 ⁻	32.28%
	WBDC_SR_6H_501.8	MCCFC	S6H_501789703	6H	501.8 Mbp	0.08	MLM	1.84×10 ⁻		15.80%
		QCCJB	S6H_501789703	6H	501.8 Mbp	0.08	MLM/FarmCPU	9.49×10 ⁻	2.60×10 ⁻	15.43%

^a Association designation is based on the germplasm (WBDC), trait abbreviation (e.g. lemma color), chromosome location (1H), and physical position from the Morex (V3) genome assembly.

b Treatment or Trait includes lemma color, reaction to races MCCFC and QCCJB of the wheat stem rust pathogen (*Puccinia graminis* f. sp. *tritici*) and reaction to isolate 92-MN-90 of the rye stem rust pathogen (*P. graminis* f. sp. *secalis*).

- ^C SNP designation is based on the chromosome and physical position from the Morex (V3) genome assembly.
- ^d Barley chromosome and arm designation: S = short or L = Long.
- ^e Physical position based on the Morex (V3) genome assembly.
- f Minimum allele frequency
- ⁹ Only associations detected with two or more methods or with a single method but in more than one dataset are shown. MLM denotes Mixed Linear Model (MLM); FarmCPU denotes fixed and random model Circulating Probability Unification; and BLINK denotes Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway.
- ^h Range of p-values for the associations identified through different models.
- ¹ R² values for the SNP marker found significantly associated with the trait.

Figure Legends

- 2 Figure 1. A) Geographic distribution of 281 Hordeum vulgare subsp. spontaneum
- 3 accessions of the Wild Barley Diversity Collection (WBDC) and **B**) Principal component
- 4 analysis determined from ~1.3 million single nucleotide polymorphisms (SNPs).
- 5 Accessions are color-coded by sub-population, defined by *k*-means clustering.
- 6 **Figure 2.** Folded site frequency spectrum for genome-wide biallelic SNPs. The plot
- 7 includes all biallelic sites, synonymous sites, and variants simulated under a neutral
- 8 coalescent history.
- 9 **Figure 3. A)** Examples of different lemma colors in the Wild Barley Diversity Collection;
- 10 from left to right: yellow (straw) from WBDC045, brown from WBDC204, diffuse black
- 11 from WBDC014, and dark black from WBDC355. B) Manhattan plots displaying single
- 12 nucleotide polymorphism (SNP) markers significantly associated with lemma color in the
- 13 Wild Barley Diversity Collection. Three models were used in the analysis: 1) a Mixed
- Linear Model (MLM), 2) a Fixed and random model Circulating Probability Unification
- 15 (FarmCPU), and 3) a Bayesian-information and Linkage-disequilibrium Iteratively Nested
- 16 Keyway (BLINK). Bonferroni significance threshold is shown with a horizontal solid green
- 17 line.
- 18 **Figure 4.** Manhattan plots displaying single nucleotide polymorphism (SNP) markers
- significantly associated with resistance to the wheat stem rust (*Puccinia graminis* f. sp.
- 20 tritici, Pgt) and rye stem rust (P. graminis f. sp. secalis, Pgs) pathogens: (A) race Pgt-
- 21 MCCFC, (**B**) race *Pgt*-QCCJB, and (**C**) isolate *Pgs*-92-MN-90 in the Wild Barley Diversity
- 22 Collection. Three models were used in the analysis: 1) a Mixed Linear Model (MLM), 2)
- 23 a Fixed and random model Circulating Probability Unification (FarmCPU), and 3) a
- 24 Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK). The
- 25 Bonferroni significance threshold is shown with a horizontal solid green line. The vertical
- 26 blue, purple, yellow and green lines show the significant associations consistently
- identified for resistance to two cultures of *P. graminis* with at least one or two models or

- to one culture with all three models. RMRL1/RMRL2 is a complex of several stem rust
- 2 resistance genes.

4

5 6

7

8 9

10

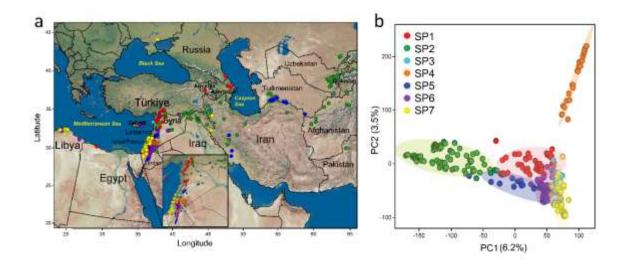


Figure 1 155x67 mm (x DPI)

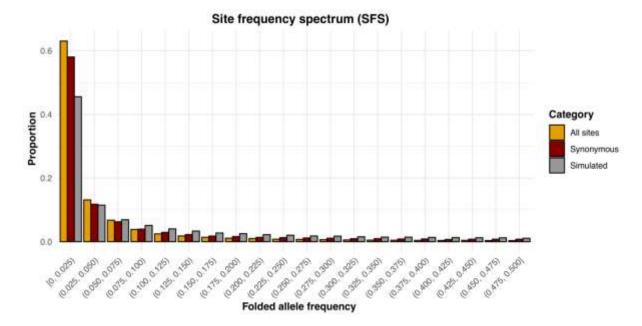


Figure 2 229x114 mm (x DPI)

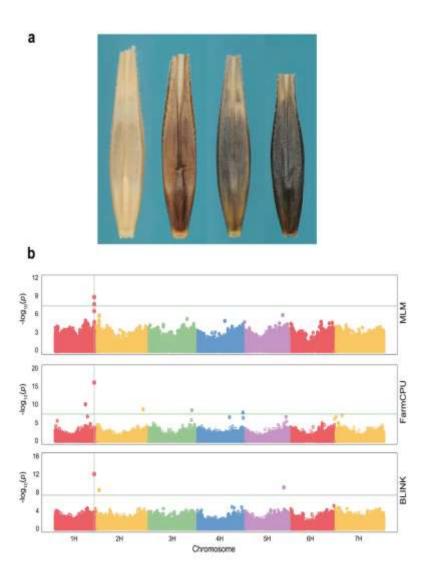


Figure 3 210x297 mm (x DPI)

1

2

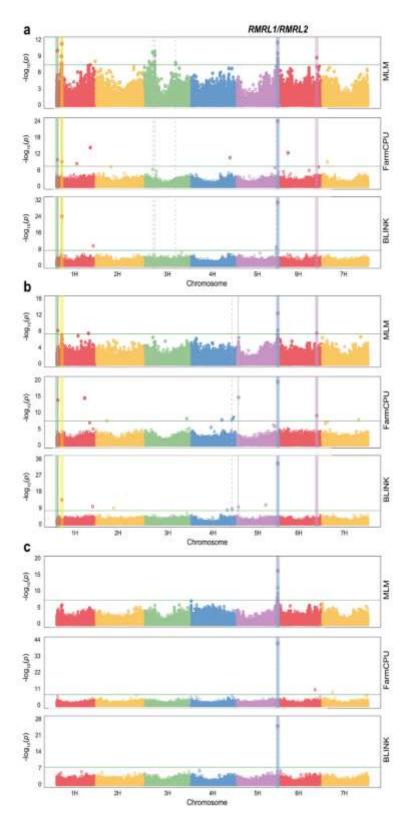


Figure 4 210x297 mm (x DPI)