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Abstract

Alzheimer’s disease (AD) risk and progression are significantly influenced by APOE genotype with APOE4 increasing
and APOE2 decreasing susceptibility compared to APOE3. While the effect of those genotypes was extensively
studied on blood metabolome, less is known about their impact in the brain. Here we investigated the impacts

of APOE genotypes and aging on brain metabolic profiles across the lifespan, using human APOE-targeted
replacement mice. Biocrates P180 targeted metabolomics platform was used to measure a broad range of
metabolites probing various metabolic processes. In all genotypes investigated we report changes in acylcarnitines,
biogenic amines, amino acids, phospholipids and sphingomyelins during aging. The decreased ratio of medium to
long-chain acylcarnitine suggests a reduced level of fatty acid 3-oxidation and thus the possibility of mitochondrial
dysfunction as these animals age. Additionally, aging APOE2/2 mice had altered branch-chain amino acids (BCAA)
profile and increased their downstream metabolite C5 acylcarnitine, indicating increased branched-chain amino
acid utilization in TCA cycle and better energetic profile endowed by this protective genotype. We compared
these results with human dorsolateral prefrontal cortex metabolomic data from the Religious Orders Study/
Memory and Aging Project, and we found that the carriers of APOE2/3 genotype had lower markers of impaired
BCAA katabolism, including tiglyl carnitine, methylmalonate and 3-methylglutaconate. In summary, these results
suggest a potential involvement of the APOE2 genotype in BCAA utilization in the TCA cycle and nominate these
humanized APOE mouse models for further study of APOE in AD, brain aging, and brain BCAA utilization for
energy. We have previously shown lower plasma BCAA to be associated with incident dementia, and their higher
levels in brain with AD pathology and cognitive impairment. Those findings together with our current results could
potentially explain the AD-protective effect of APOE2 genotype by enabling higher utilization of BCAA for energy
during the decline of fatty acid 3-oxidation.
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Introduction

APOE genotype, together with age, are major factors
contributing to Alzheimer’s disease (AD), with APOE4
increasing and APOE2 decreasing the likelihood of AD
development compared to the most common allele,
APOE3 [1-3]. The APOE genotypes are associated with
the trajectory of brain amyloid and tau pathologies devel-
opment [4, 5], brain structural atrophy [6, 7], and the
severity of cognitive decline [8, 9]. However, a compre-
hensive understanding of the metabolic pathways link-
ing APOE genotypes and AD pathogenesis is still largely
absent.

Metabolomics provides powerful tools to map dysregu-
lation in metabolic processes related to diseases, includ-
ing AD [10, 11]. The Alzheimer’s Disease Metabolomics
Consortium (ADMC) has pioneered metabolomic pro-
filing of large, well-characterized AD cohorts, including
the AD Neuroimaging Initiative (ADNI) and Religious
Orders Study/Memory and Aging Project (ROS-MAP)
and several animal models for AD, providing a com-
prehensive picture of central and peripheral metabolic
alteration across AD trajectories [12—15]. We have dem-
onstrated a strong connection between peripheral and
central metabolism and defined peripheral metabolic
pathways and health markers that influence central pro-
cesses in AD. Those include pathways related to amino
acids [16], branch-chain amino acids (BCAA) [17], oxy-
lipins and endocannabinoids [18, 19], ceramides and
sphingolipids that pointed to an important function for
S1P signaling [20], bile acids pointing to role for choles-
terol clearance and gut microbiome function [21] among
others [16, 17]. In large studies including the ADNI, the
Australian Imaging, Biomarkers and Lifestyle (AIBL) and
the Busselton Health Study (BHS) comprising of over
6,000 individuals, we defined plasma lipid signatures for
APOE genotypes, highlighting ether lipids as contributor
to protective properties of APOE2 genotype [22]. Fur-
thermore, we identified impaired energy metabolism in
APQOE4 carriers [23].

Five decades of research link mitochondria to AD [24].
Our own work led to development of a bioenergetic
capacity index that enables patient stratification, high-
lighting individuals who have low capacity and could
benefit from personalized approaches to improve mito-
chondrial function [25]. Differences between the sexes
and APOE genotypes in mitochondria energetics were
also noted [10]. Impaired B-oxidation can be assessed by
levels of fatty acids carnitines (AC), with the higher lev-
els of long-chain AC being associated with AD, possibly
involving compromised carnitine shuttle [26]. Among
other substrates for the TCA cycle, we have shown asso-
ciations of lower levels of BCAA with incident dementia
[17] and their higher levels in brain with AD pathology
and cognitive impairment [27]. Beyond association, a
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clinical trial including people with AD found that keto-
genic diet improved some aspects of cognition, but only
in APOE4 non-carriers, pointing to the APOE-specific
causative relationship between brain energetic metabo-
lism and AD [28]. Thus, understanding the involvement
of APOE genotypes in the metabolism of the aging brain
can help elucidate disease mechanisms and identify
potential therapeutic targets for AD [29]. Additionally,
the connection between aging brain metabolism and AD
is far from understood.

Due to the low abundance of APOE2/2 and APOE4/4
heterozygotes in human studies and challenges in sam-
pling the aging human brain, the utilization of animal
models on human APOE background is an attractive
alternative to human participants. Collective efforts are
being made to construct useful animal models under the
MODEL-AD initiative [30], and the relevance of findings
from these animal models to humans should be care-
fully evaluated. Our current work utilizes human APOE-
targeted replacement (TR) mice [31] and the Biocrates
P180 targeted metabolomics platform to investigate the
influence of APOE2/2, APOE3/3 and APOE4/4 on meta-
bolic trajectories of aging mice. The Biocrates P180 plat-
form provides an insight into several areas of metabolism
known to be affected in AD, including markers of fatty
acid p-oxidation, amino acids, amines, phospholipids,
and sphingomyelins (SMs) [32], with informative ratios
and summations approximating enzymatic activities. Our
Alzheimer Disease Metabolomics Consortium (ADMC)
demonstrated utility of this platform for AD and aging—
related biomarker discovery [17]. We have previously
reported APOE genotype and age—related metabolic per-
turbations in serum, where APOE2/2 mice manifested
greater levels of long-chain AC in older mice [33]. In the
current study, we describe the influence of APOE2/2,
APOE3/3 and APOE4/4 on age-related metabolic tra-
jectories of mice brain. Additionally, we used data from
the Religious Orders Study/Memory and Aging Project
(ROS-MAP), generated using the Metabolon™ platform,
to compare the relevance of the current mice model find-
ings to humans.

Materials and methods

Experimental mice

APOE-TR mice in which the murine Apoe gene is
replaced with the human APOE2, APOE3, or APOE4
gene [31] were obtained from Taconic Biosciences. These
animals were housed in environments with regulated
temperature and lighting and were provided ad libitum
access to food and water. The APOE-TR mice were har-
vested at 3, 12 and 24 months of age (n=8 mice/geno-
type/sex/age group) as described previously [33]. Those
time points correspond to adolescent; adult; old with the
mice life expectancy of 26—30 months. The cortex tissues
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from the brain were collected and snap-frozen in liquid
nitrogen, then stored at — 80 °C. All procedures involving
animals received approval from the Mayo Clinic Insti-
tutional Animal Care and Use Committee and adhered
strictly to the guidelines outlined in the National Insti-
tutes of Health Guide for the Care and Use of Labora-
tory Animals and Animal Research: Reporting of In Vitro
Experiments.

Brain metabolites detection

The metabolites in these cortical samples were analyzed
using the AbsoluteIDQ p180 kit (Biocrates Life Sciences
AG, Innsbruck, Austria) according to the user manual.
Briefly, weighed brain tissue samples were provided fro-
zen in Precellys soft tissue homogenizing CK14 tubes
(Bertin Technologies, Montigny-le-Bretonneux, France).
Each sample was diluted with 100 pL 1:1 v/v metha-
nol: water. Samples were then homogenized using three
10-second pulses in the Precellys Evolution between
which samples were chilled using the Cryolys cooling sys-
tem. After the first three cycles, 250 puL v/v 3:1 methanol:
chloroform were added to each sample followed by three
10-second pulses between which samples were again
chilled using the Cryolys cooling system. The homog-
enized samples were stored at -80 C until the day of
extraction with the p180 kits. On the day of p180 sample
extraction the samples were thawed and vortexed. The
samples were then centrifuged at 15,000 rpm for 10 min
in a refrigerated (4 C) centrifuge then stored on ice until
addition to the p180 kit plates. Samples were prepared
using the AbsoluteIDQ® p180 kit (Biocrates Innsbruck,
Austria) in accordance with their detailed protocol. After
the addition of 10 pL of the supplied internal standard
solution to each well of the 96-well extraction plate, 10
uL of each blank, calibration standard, and Biocrates
QC samples were added to the appropriate wells. For
the Brain SPQC and study samples 15 pL of each sam-
ple were added. The plate was then dried under a gentle
stream of nitrogen for 10 min. An additional 15 pL of
each SPQC and brain tissue homogenate sample were
added to the appropriate wells followed by an additional
20 min of drying. The samples were derivatized with phe-
nyl isothiocyanate then eluted with 5mM ammonium
acetate in methanol. Samples were diluted with either 1:1
methanol: water for the UPLC analysis (4:1) or running
solvent (a proprietary mixture provided by Biocrates) for
flow injection analysis (20:1).

A pool of equal volumes of all 76 samples analyzed
on the first plate was created (4920 Brain SPQC). The
pooled sample was prepared and analyzed in the same
way as the study samples on both plates. From each plate
this sample was injected once before, once during, and
once after the study samples to measure the performance
of the assay across the sample cohort.
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Data preprocessing

The raw metabolomics dataset had 182 metabolites
for 144 samples. We first aligned measurement batches
via sample-median quotient normalization. Next, we
removed 21 metabolites that had significant amounts of
missing data (>20% missing values). We then excluded
one additional metabolite (citrulline) because it had a
large coefficient of variation (0.359). Finally, metabo-
lite concentrations were log2-transformed and remain-
ing missing data was imputed using k-nearest neighbor
imputation (using both sample and metabolite vec-
tors with k=10). Multivariable analysis identified mea-
surements for one 3-month-old APOE4 female mouse
as probable sample outlier, which was subsequently
removed from the analysis. The final metabolomics
matrix used for analysis held data on 161 metabolites for
143 mouse samples.

Human data

Human dorsolateral prefrontal cortex (DLPFC) data from
the ROS-MAP cohort [34], generated using the metab-
olomics platform from Metabolon Inc., were used to
investigate the differences between the APOE2/3 (n=66),
APOE3/3 (n=304) and APOE 3/4 (n=112) genotypes.
The generation of metabolomic data for this analysis has
been previously described [16]. The demographics of the
cohort are provided in Supplementary Table S1.

Statistical analysis

All statistical tests were performed using JMP Pro 16
(JMP, SAS Institute, Carry, NC). Prior to analysis, data
were tested for outliers using the robust Huber M test,
and missing data were imputed using multivariate nor-
mal imputation for variables which were at least 75%
complete. Additionally, variables were normalized, cen-
tered, and scaled using Johnson’s transformation, with
normality verification using the Shapiro—Wilk test. To
facilitate interpretation, we reduced the dimensionality
of the data using unsupervised variable clustering and
generating a single cluster component value for variables
within each cluster. Cluster components were generated
using the JMP variable clustering algorithm, which uses
the first principal component of the variables in that clus-
ter. Clustering was performed separately for each metab-
olite chemical class. Factorial analysis was performed to
evaluate the age, genotype, sex, and the age x genotype
interaction effects on the levels of brain metabolites.
Additionally, analysis of covariance (ANCOVA) with con-
trast post-test was applied to determine the differences
in means between each time point within each genotype
and between the genotypes (sex was used as a covariate).
The above analysis was performed on both cluster com-
ponents and individual metabolites to ensure that the
cluster components result represented the behavior of all
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metabolites within the cluster. For the phospholipids, the
differences in the mean of each timepoint were analyzed
using ANCOVA, with the genotype and sex as covariates
and contrast post-test. Multiple comparison control was
accomplished using the false discovery rate method of
Benjamini and Hochberg with a q=0.2 [35]. The experi-
mental design is presented in Supplementary Figure SI.
Human data was adjusted for medication and the dif-
ferences in mean between the genotypes were assessed
using ANCOVA, controlling for body mass index, post-
mortem interval, age, education, sex, cognitive diagno-
sis, and beta-hydroxyisovaleroylcarnitine (selected as the
measured acylcarnitines (AC) not influenced by APOE
genotypes, to correct for general levels of acylcarni-
tines). The Tukey post-test was used to assess differences
between genotypes. Significant variables were combined
into cluster components as described above. ANCOVA
analysis was performed on both individual variables and
cluster components. Additionally, we used contrast post-
test to investigate APOE genotype differences between
individual metabolites in BCAA metabolic pathway.

Results

APOE genotypes influence the aging pattern of branch
chain amino acids in mice brains

Metabolomic data show a high level of intercorrelation.
To reveal the intercorrelation structure and to facilitate
interpretation, data from each metabolite class were
reduced using unsupervised variable clustering and con-
verted into cluster components.

Variable clustering assigned 20 measured amino
acids into 5 clusters. Supplementary Table S2 contains
a detailed cluster description, including the correlation
between metabolites within each cluster. The age and
APOE genotype-related differences in amino acid levels
were not influenced by sex, which was tested using fac-
torial models with sex x age and sex x genotype interac-
tions. Therefore, further factorial analysis was performed
with age, APOE genotype, and age x genotype interac-
tion as main effects and sex as a covariate. The results
from the factorial analysis are provided in Supplemen-
tary Table S2. Three clusters decreased with age: Cluster
1 containing alanine, asparagine, aspartic acid, glutamic
acid, and threonine; Cluster 3 containing methionine,
proline, and tyrosine; and Cluster 4 containing glycine,
lysine, and serine (Fig. 1). Clusters 3 and 4 showed an
earlier decrease among APOE3/3 genotypes compared
to the APOE2/2 and APOE4/4 genotypes, with the age x
genotype interaction p=0.014 and p = 0.09, respectively.

Cluster 2 containing glutamine, histidine, phenylala-
nine, and tryptophan, and Cluster 5 containing arginine,
isoleucine, and valine, showed differential aging patterns
among the genotypes (age x genotype, Pinteraction=0-034
and  Piyreraction=0-0002, respectively). In both clusters,
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the APOE2/2 genotype showed an increase from 3 to
12 months (contrast post-test p=0.006 and p=0.006,
respectively), followed by a decrease from 12 to 24
months (p=0.08 and p=0.0007, respectively). On the
other hand, in Cluster 2, the APOE3/3 genotype showed
no difference between 3 and 12 months and an increase
from 12 to 24 months (p=0.02), and in Cluster 5, a
decrease from 3 to 12 months (p=0.01) and then a res-
toration to the level of 3 months (p=0.004 for 12 vs. 24
months comparison). The APOE4/4 genotype showed no
age-related changes in either cluster.

APOE genotypes influence the aging pattern of odd-chain
ACin mice brains

Variable clustering assigned 35 measured AC and 29 cal-
culated informative ratios and summations into 9 clus-
ters, largely along their acyl chain length (Supplementary
Table S2). Eight of those clusters showed age differences,
and APOE genotype influenced the aging pattern of 5
clusters (significant age x genotype interaction) (Fig. 2).
Similar to the section above, no sex x age nor sex x gen-
otype interactions were detected, and sex was used as a
covariate for this analysis.

In general, the long-chain AC (LCAC, C12-C18, Clus-
ters 2 and 3) increased with age, and medium-chain AC
(MCAC, C6-C12, Cluster 1) decreased with age. Simi-
larly, the ratio of MCAC to LCAC (Cluster 8) decreased
with age. Additionally, LCAC were lower in the APOE3/3
genotype compared to the APOE2/2 and APOE4/4 geno-
types; however, the ratio of MCAC to LCAC (Cluster 8)
and short-chain to LCAC (Cluster 10) did not show dif-
ferences between genotypes.

APOE genotype influenced the aging pattern of short-
chain AC (Clusters 7, 11, and 4). In Cluster 7, represented
by CO and C2, the APOE3/3 genotype was higher at 24
months compared to 3 and 12 months (p =0.004), with
the other two genotypes showed no age-related differ-
ences. In Cluster 11, containing C3 and C4, the APOE3/3
and APOE2/2 genotypes were higher at 24 months com-
pared to 3 months (p=0.0006). On the other hand, the
APOE4/4 genotype showed U-shaped age changes (3 vs.
12 months, p=0.0003; 12 vs. 24 months, p=0.002).

Cluster 4, containing C5 and the C5/C2 ratio, did not
differ between genotypes at 3 months. It increased with
age in the APOE2/2 genotype with a significant differ-
ence between 3 and 12 months (p <0.0001) and between
12 and 24 months (p<0.0001). The APOE4/4 genotype
also showed an increase with age, with levels at 12 and
24 months higher than at 3 months (p=0.0014); how-
ever, this increase was of a lesser magnitude than the
one observed in the APOE2/2 genotype, with APOE2/2
showing higher levels than APOE4/4 at 12 and 24
months (p=0.003 and p<0.0001, respectively). The
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Fig. 1 Differences in brain amino acids between mouse age groups, stra

tified by APOE genotype. Variables were converted into cluster components,

with the members of each cluster indicated in each graph. Detailed description of each cluster is provided in Supplementary Table S2. Both males and
females were used in the analysis. N=16 per genotype per time point (8 females and 8 males). Error bars represent standard errors. The indicated p-values

were derived from a full factorial model testing for age, genotype, and age
gine; Asp: Aspartic Acid; Gen: Genotype; GIn: Glutamine; Glu: Glutamic Aci
Phenylalanine; Pro: Proline; Ser: Serine; Thr: Threonine; Trp: Tryptophan; Tyr:

APOE3/3 genotype did not show differences between the
age groups.

C5 AC is derived from BCAA isoleucine (Ile), Leucine
(Leu) and Valine (Val). To further investigate this part of
metabolism, we calculated a product-to-substrate ratio
(C5/(Ile + Val) as an insight into the performance of the
metabolic pathway (Fig. 2). The current Biocrates plat-
form cannot distinguish between different C5 isoforms
(i.e. valerylcarnitine, isovalerylcarnitine or 2-methylbu-
tyrylcarnitine), products of different BCAA. Therefore,
the sum of detected BCAA (Leu was not detected) was
used in the calculation. The three genotypes showed
no difference at 3 and 12 months. However, differen-
tial changes from 12 to 24 months were observed, with
APOE2/2 showing an increase (p<0.0001), APOE3/3
showing a decrease (p=0.007), and APOE4/4 showing no
change.

x genotype interaction. Abbreviations: Arg: Arginine; Ala: Alanine; Asn: Aspara-
d; Gly: Glycine; His: Histadine; lle: Isoleucine; Lys: Lysine; Met: Methionine; Phe:
Tyrosine; Val: Valine

Biogenic amines show a uniform aging pattern among
APOE genotypes

Variable clustering assigned 8 of the measured biogenic
amines into 3 clusters (Supplementary Table S2). Two
of those clusters (Cluster 1, containing the polyamines
spermidine, spermine and putrescine; Cluster 3, contain-
ing symmetric dimethylarginine (SDMA) and carnosine)
increased with age, and one cluster (Cluster 2, contain-
ing taurine, creatinine, and serotonin) decreased with
age (Fig. 3). Additionally, APOE genotype did not sig-
nificantly influence the aging pattern of the clusters (no
significant age x genotype interaction); however, signifi-
cant differences between genotypes were detected at the
12-month time point for cluster 1 (APOE2/2 vs. APOE
4/4, p=0.001; APOE3/3 vs. APOE 4/4, p=0.003) and
at the 24-month time point for cluster 2 (APOE2/2 vs.
APOE 4/4, p=0.04; APOE2/2 vs. APOE 3/3, p=0.001).
Similar to the section above, no sex x age and sex x gen-
otype interactions were detected, and sex was used as a
covariate for this analysis.
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Fig. 2 Differences in brain AC between mouse age groups, stratified by APOE genotype. Variables were converted into cluster components, with the
members of each cluster indicated on each graph. Detailed description of each cluster is provided in Supplementary Table S2. Both males and females
were used in the analysis. N=16 per genotype per time point (8 females and 8 males). Error bars represent standard errors. The indicated p-values were
derived from a full factorial model testing for age, genotype, and age x genotype interaction. Abbreviations: AC: AC; Gen: Genotype; lle: Isoleucine

Phosphatidylcholines show a uniform aging pattern
among APOE genotypes

To better understand the changes in phosphatidylcho-
lines (PC) in the aging brain, the age-related changes in
83 measured PC species were presented as a function

of the sum of fatty acyl chains length and the number
of unsaturated double bonds (Fig. 4). For this analy-
sis, we excluded a small number of species that showed
genotype x age interaction (n=6) and the model was
adjusted by sex and the APOE genotype. In general, the
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Fig. 3 Differences in brain biogenic amines between mouse age groups, stratified by APOE genotype. Variables were converted into cluster components,
with the members of each cluster indicated on each graph. Detailed description of each cluster is provided in Supplementary Table S2. Both males and
females were used in the analysis. N=16 per genotype per time point (8 females and 8 males). Error bars represent standard errors. The indicated p-values
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difference between the 3-month and 12-month time
points was characterized by an increase in species with
sum of carbons (C36-C40) and low unsaturated (1-3
double bonds). In contrast, there was a decrease in spe-
cies that are highly unsaturated (>4 double bonds) or
have sum>C42 or sum<C32. The difference between
the 12-month and 24-month time points was charac-
terized by a further increase in low unsaturated species
(1-2 double bonds), including species with a sum of C42
acyl chains, which decreased from the 3-month to the

12-month time point. This U-shaped age change is also
shown in the cluster analysis (Supplementary Figure S2).

Sphingomyelins show a sex-specific aging pattern

To facilitate data interpretation, SMs were clustered
using the semi-unsupervised approach, with cluster-
ing performed separately for species that manifest simi-
lar age-related trends. This approach was applied since
highly correlated metabolites were showing opposite
aging trends. Out of 14 measured species, 10 species
showed age-related differences and were converted into
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two clusters (Fig. 5 and Supplementary Table S2). The
Biocrates SM annotations were aligned with more in-
depth SM species identification by targeted complex lipid
platform generated by the Baker institute (both Baker
and Biocrates annotations are present in the Fig. 5) [10,
36]. Baker SM annotations are used in the below results.
Cluster 1, containing species with C18:0, C18:1 and C20:0
acyl chains decreased with age, and cluster 2 containing
species with C16:0, C24:1 and 23:0 acyl chains increased
with age. In addition, 5 species showed age x sex interac-
tions, which warranted sex stratification of the analysis.

In general, in females, a decrease in cluster 1 and an
increase in cluster 2 occurred between 3 and 12 months,
with no further differences between 12 and 24 months
(post-test on the age effect 3 vs. 12 months, p<0.0001
for both clusters; 12 vs. 24 months, p=0.07 and p=0.1,
respectively). On the other hand, age-related differences
in males were observed between 3 and 12 months and
between 12 and 24 months (3 vs. 12 months, p<0.0001
for both clusters; 12 vs. 24 months, p<0.0001 for both
clusters). Neither cluster 1 nor cluster 2 showed age x
genotype interaction.
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Relevance to human metabolism

Next, we used previously published [16] human brain
data from the ROS-MAP cohort, generated using the
Metabolon platform, to investigate similarities between
the current mouse model and human brain metabolism
in the context of APOE genotype (ANCOVA results for
all metabolites are presented in Supplemental Table S3).
For clarity of presentation, variable clustering was applied
(Fig. 6A and Supplemental Table S4). ROS-MAP brain
metabolomic data were analyzed among the three most
abundant APOE genotypes (APOE2/3, n=66; APOE3/3,
n=304; and APOE3/4, n=112). Overall, we noticed
the impact of APOE genotype on potential products of
B-oxidation and relevant BCAA metabolism. Compared
to APOE3/3 and/or APOE3/4 carriers, APOE2/3 carri-
ers had a lower level of carnitine and AC, including (S)-
3-hydroxybutyrylcarnitine, eicosenoylcarnitine (C20:1),
arachidonoylcarnitine (C20:4), acetylcarnitine (C2), and
tiglyl carnitine (C5:1) (an intermediate in BCAA metabo-
lism [37]). In addition, compared to APOE3/3, APOE2/3
carriers had lower levels of a cluster composed of several
markers of impaired BCAA utilization for energy, includ-
ing methylmalonate and 3-methylglutaconate (inversely
correlated with BCAA utilization in the TCA cycle [38])

o— ApoE 2/2 e— ApoE3/3 e— ApoE 4/4

CLUSTER 1 Females Males
Baker Biocrates Age: p<0.0001 Age: p<0.0001
SM(d18:1/180)  SM C18:0 N e
/SM(d16:1/20:0)
SM(d18:2/18:1) SM C20:2 A
SM(43:1) sM(oH) c24:1|g [T
SM(44:1) SM C26:0 5], T
SM(d18:2/18:0) SM C18:1 g )

CLUSTER 2 :2: Age: p<0.0001 Age: p<0.0001
Baker Biocrates 5 Gen: p=0.002 Gen: p=0.006
SM(44:2) SM C26:1 & o Age x gen: p=0.01 Age x gen: p=0.1
SM(d18:1/24:1) SM C24:1 o
SM(d18:2/23:0) SM (OH) €22:2| |- /;:7,:::“;
SM(d18:1/23:0) SM (OH) C22:1 /’\i
/SM(d17:1/24:0) AL A : : :
SM(d18:1/16:0) SM C16:0 0 10 20 30 0 10 20 30

Time (Months)

Fig. 5 Differences in brain sphingomyelins between mouse age groups, stratified by sex and APOE genotype. Variables were converted into cluster
components, with the members of each cluster indicated on each graph. Detailed descriptions of each cluster are provided in Supplementary Table S2.
N=8 per genotype, sex, and time point. The indicated p-values were derived from a full factorial model testing for age, genotype, and age x genotype
interaction. Error bars represent standard errors. The Biocrates SM annotations were aligned with more in-depth SM species identification by targeted

complex lipid platform generated by the Baker institute [10, 36]
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and alpha-hydroxyisovalerate produced by incomplete
catabolism of BCAA [39]).

There are several metabolic pathways that can bring
carbon from BCAA to the TCA cycle (pathways reviewed
and illustrated in [37, 40]). Therefore, in addition to
cluster analysis, we analyzed APOE genotype differ-
ences in levels of individual markers of BCAA metabo-
lism (Fig. 6B). In general, we observed two patterns of
differential metabolite levels among APOE genotypes.
First, the tiglyl carnitine and 3-methylglutaconate were
lower in APOE2/3 carriers, compared to both APOE3/3
and APOE3/4 (p,,.es as follow for tiglyl carnitine and
3-methylglutaconate: 2/3 vs. 33=0.008 and 0.02; 2/3 vs.
3/4=0.03 and 0.03. The p,,,. was derived using con-
trast post-test). Second, the alpha-hydroxyisovalerate
and methylmalonate were lower in both APOE2/3 and
APOE3/4 carriers, when compared to APOE3/3 (p,,jyes S
follow for alpha-hydroxyisovalerate and methylmalonate:
2/3 vs. 33=0.02 and 0.05; 3/4 vs. 3/3=0.06 and 0.003. The
Pyalue Was derived using contrast post-test).

In contrast to the mouse model, BCAA levels remained
the same among all human genotypes (data not shown).
Furthermore, APOE2/3 carriers had lower levels of
kynurenate and kynurenine, part of the tryptophan
metabolism via the kynurenine pathway (Supplemen-
tary Table S3, Fig. 7), however tryptophan did not dif-
fer among genotypes (data not shown). Relevantly,

N-acetylglucosamine/N-acetylgalactosamine was higher
in APOE2/3 carriers compared to APOE3/4 carriers; it
also showed a higher trend compared to APOE3/3 carri-
ers, though it was not significant.

Discussion

In the current manuscript, we conducted targeted
metabolomics to characterize the aging brain metabo-
lism of the mice model that carries human APOE2/2,
APOE3/3, and APOE4/4 genes. Using the Biocrates
P180 platform, we provided absolute quantifications of
~150 metabolites and informative ratios, broadly cover-
ing phospholipids, sphingolipids, acylcarnitines, biogenic
amines and amino acids. Our analysis identified that the
AD protective APOE2/2 genotype manifests elevated
markers of branch chain amino acid utilization in the
TCA cycle in the mice brain. Additionally, we showed
evidence that the APOE2/3 and APOE3/4 genotypes
influence B-oxidation and BCAA-TCA cycle metabolism
in the human brain, although the phenotypic manifesta-
tions of this involvement were different. Moreover, we
described lipidomic and metabolomic aging patterns
of the current mice model, with several key metabo-
lites serving as aging markers in humans, also linked to
AD. Together, these results suggest a potential involve-
ment of the APOE2 genotype in energy metabolism and
characterize the current mice model for future study of
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APOE in AD, brain aging, and brain BCAA utilization for
energy. The observed age and APOE genotype differences
and their connection to energy metabolism are summa-
rized in Fig. 7.

APOE4 is associated with hypometabolism of glucose
in the brain, possibly occurring well before disease onset
[41]. Together with other metabolic alterations, such as
accumulation of lactate observed in human AD brains
[42-45], and decreased transport of pyruvate to the mito-
chondria, low TCA cycle productivity is expected [26],
causing mitochondrial dysfunction and energy deficits.
Such circumstances trigger compensatory metabolism
seeking alternative energy sources. Such a phenomenon
may be reflected in various metabolites that can con-
tribute substrates to the TCA cycle, such as amino acids,
keto-acid derivatives, ketone bodies, fatty acids, and acyl
carnitines. TCA cycle deficits can also affect phospholip-
ids synthesis and other anabolic processes relying on its
functioning.

In the current mouse model, only those with the
APOE2/2 genotype had brain levels of BCAA and tryp-
tophan showing a parabolic association with age, poten-
tially suggesting an increase in BCAA and tryptophan
utilization in older age. This contrasts with the gradu-
ally increasing level of these amino acids with age in
the brains of APOE3/3 and APOE4/4 mice. BCAA can

be oxidized into BC-keto acids, further transformed
into BC-acylCoAs, then to acetylCoA that can enter the
TCA cycle. Interestingly, the first conversion step can be
coupled with alpha-ketoglutarate (from TCA cycle) and
produce glutamate [46]. Such a reaction does not only
consume TCA cycle intermediates, but may also interfere
with the balance of the excitotoxic glutamate. In addition,
BCAA compete on transfer through the blood brain bar-
rier (BBB) with other large neutral amino acids, namely
aromatic amino acids (Trp, Phe, Tyr). BCAA are involved
in synthesis of neurotransmitters, proteins and energy
production, therefore their effects reach farther than the
described here and have greater implications in AD [47].
Lower blood levels of BCAA were a main contributor to
predicted risk of dementia and AD in several cohorts,
even 10 years before disease onset [48—51]. On the con-
trary, high brain BCAA levels were associated with AD
pathology and cognitive impairment [27], suggesting the
importance of their utilization by brain. For tryptophan,
the above results partially align with human findings
demonstrating decreased blood levels in people with AD
[52-54], and with aging [55, 56]. In a small study, trypto-
phan was increased in five brain regions in people with
AD compared to control (n=9 [43]).

Similarly, mice with the APOE2/2 genotype showed an
increase in the ratio C5 AC/(Ile + Val) (product to indirect
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precursor), further supporting the potential increase in
utilization of BCAA in TCA. In comparison, mice with
APOE4/4 genotype had milder increases in short-chain
acyl carnitines at the age of 12 months, suggesting that
protein catabolism and oxidation of amino acids (or fatty
acids) was less pronounced, hypothetically less successful
in compensating the already reduced energy production.

Analysis of human brain DLPFC data has consis-
tently shown that APOE2/3 genotype has lower levels
of the above markers of alternative energy production.
These included acetylcarnitine (C2), the terminal prod-
uct of beta oxidation and the main shuttle of fatty acids
(can cross the BBB and has other functions/effects [57]).
Importantly, APOE2/3 genotype also had lower levels of
several markers and intermediates in BCAA metabolism
(pathways of BCAA metabolism leading to the TCA cycle
are reviewed in [37, 40]). Those included the tiglyl car-
nitine, an intermediate in BCAA metabolism [37], with
plasma and urine levels positively associated with inborn
error of isoleucine metabolism and resulting neurode-
generation [58]; 3-methylglutaconate, inversely corre-
lated with BCAA utilization in the TCA cycle [38] with
elevated urine levels positively associated with inborn
error of leucine metabolism and resulting neurodegen-
eration [59]. On the other hand, methylmalonate and
alpha-hydroxyisovalerate were lower in both APOE2/3
and APOE3/4, compared to APOE3/3. Methylmalonate
CoA is one of the final steps in valine and some branch
chain fatty acids metabolism, and inborn errors in this
pathway result in elevated methylmalonate levels [38].
Alpha-hydroxyisovalerate was inversely associated with
dietary BCAA intake [39]. BCAA can enter TCA cycle
along three enzymatic pathways, with methylmalonate-
CoA or acetyl-CoA as the final products, ready to be
incorporated into the TCA [37, 40].

Leucine enters TCA cycle through acetyl-CoA, valine
through methylmalonate CoA and isoleucine through
both. The above results could suggest that in the human
brain, the APOE2 allele elevates metabolism of all
three BCAA (and potentially branch chain fatty acids),
whereas APOE4 allele elevates metabolism of only
valine (or branch chain fatty acids). As those results do
not explain the negative effect of APOE4 allele, they
may suggest how APOE2 allele can be protective against
neurodegeneration.

Human APOE2/3 carriers also had lower brain levels
of tryptophan metabolites (i.e., kynurenate and kynuren-
ine in DLPFC), a pathway that is implicated in cognitive
decline [60]. Kynurenine can cross the BBB while kyn-
urenic acid cannot, and both can be produced in the
brain from Trp [61]. Like other metabolites in the kyn-
urenine pathway, their neuroactivity mainly stems from
modulation of inflammation via activation of the aryl
hydrocarbon receptor (AhR) [62]. While evidence of

Page 11 of 17

link to AD in human CSF and blood are inconsistent,
kynurenine was elevated in the frontal cortex of people
who died with AD, compared to controls [42]. Another
metabolic perturbation observed in human APOE2/3
carriers included higher levels of N-acetylglucosamine
or N-acetylgalactosamine (those metabolites cannot
be distinguished with the current Biocrates platform)
in DLPFC, a human or microbial precursor of uridine-
diphosphate-N-acetylglucosamine (UDP-GIcNAc), which
also modulates the uptake of acetyl-CoA via the hexos-
amine biosynthetic pathway [63, 64]. However, DLPFC
brain levels of N-Acetyl-glucosamine 1-phosphate (UDP-
GlcNAc direct precursor) are strongly associated with
cognitive decline and Tau tangles in the same cohort [26].
It is also important to mention numerous similarities in
metabolic manifestation between e2 and e4 in the current
mice model. As there are many differences between the
two genotypes reported, the similarity of e3 and e4, when
compared to e3 has been reported [65]. For example, e2
seemed to increase risks of cerebral amyloid angiopathy,
a common comorbidity of AD [65-67]. While acknowl-
edging those commonalities, the above findings in both
rodents and humans suggested that APOE2 increases the
level of brain energy metabolism compared to other gen-
otypes in older ages, while also highlighting differentially
regulated processes.

Additionally, in the current manuscript, we report that
the metabolic signature of aging mice brain with alterna-
tion of these aging signatures is linked to susceptibility/
resistance to cognitive decline in humans. For example,
our findings indicate that in the current mouse model,
long-chain phospholipids (C36-42) and highly unsatu-
rated phospholipids (4—6 double bonds) tend to decrease
with age. Consistently, in human brain DLPFC, the highly
unsaturated long-chain phospholipids — such as 1-lino-
leoyl-2-arachidonoyl-GPC (18:2/20:4n6) (PC C38:6) and
1-oleoyl-2-docosahexaenoyl-GPC (18:1/22:6) (PC C40:7)
— showed a strong negative association with cognitive
decline [15]. Therefore, data in both mice and humans
support that a higher level of these phospholipids per-
sisting in brains is associated with resilience to metabolic
aging. This could be related to the reduced TCA produc-
tivity affecting phospholipid synthesis, resulting in low
neurogenesis and decreased synaptic plasticity.

It is well established that oxidative stress and inflam-
mation are part of the deleterious processes involved in
neurodegeneration. Oxidative stress affects the TCA
cycle and can be linked to increased brain fructose
metabolism [68, 69], which is affected by impaired glu-
cose metabolism in APOE4 carriers [70, 71]. Moreover,
mouse model of AD showed higher vulnerability to amy-
loid-beta induced oxidative stress in carriers of APOE4
isoform, since they lack strategic Cys residues (replaced
by Arg) in the APOE protein, which can attack free
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radicals and limits lipid peroxidation [72, 73]. Thus, it
increases the rate of neuronal modification, damage, and
death. An environment of oxidative stress and inflamma-
tion increases post-translational modification of proteins
and accelerates proteolysis and release of modified amino
acid residues. For example, SDMA is formed via meth-
ylation of the arginine residue of a protein and as such,
could increase with oxidative stress and cellular dam-
age. We observed that brain SDMA is positively associ-
ated with age in our mouse model, and SDMA content
in human brain DLPFC was also positively associated
with cognitive decline [15]. SDMA also increased in the
frontal cortex brain tissue of people who died with AD
[42]. Therefore, the additional accumulation of SDMA
in brain may indicate a high level of susceptibility to
metabolic aging in addition to the process of normal
aging, which may have implications in neurogenerative
diseases at advanced ages. Indeed, SDMA was associ-
ated with an array of health conditions, including muscle
mass loss [74], renal failure [75], and neurodegeneration
[76] including vascular dementia and AD [77]. Enzy-
matic arginine metabolism is also altered in AD brains,
showing decreased activity and protein expression of
NO synthase and increased arginase [77, 78]. We found
that arginine metabolism into polyamines (putrescine,
spermidine, and spermine) increased with age in mice
brain (with earlier increase in APOE4 carriers). While
depending on the brain region measured, putrescine was
decreased in the brain of people with AD [78, 79], and
mice model of AD [80], while spermine and spermidine
increased in human AD brains [79, 81, 82]. Although
polyamines act as reactive oxygen species (ROS) scaven-
gers, they affect age-related conditions and can be toxic
[83]. In excess, spermidine and spermine may cause
NMDA receptor excitotoxicity. Also, they can be further
metabolized to aldehydes and then to the toxic acrolein,
which binds to proteins and nucleic acids with detrimen-
tal effects [83, 84]. Moreover, amyloid beta may cause
an increase in polyamine metabolism manifested by
up-regulated spermine uptake and increased ornithine
decarboxylase that converts ornithine to putrescine [85,
86]. Other amines also act as antioxidants, for example
taurine (decreased in our mice model with age and with
APOE2 genotype), an amino acid that can be endoge-
nously produced from cysteine using vitamin B6. It acts
as a non-excitatory neurotransmitter and may be neuro-
protective [87]. Another example is carnosine (decreased
in our mice model with age and with APOE2 genotype),
a dipeptide (beta-alanine - histidine) hence could on one
hand indicate post-translational modification, but on the
other hand is an antioxidant and provides intracellular
pH buffering [88]. The above findings highlight the simi-
larities of the human brain metabolome and the current
mice model brain metabolome, which both point to the
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potential pathways involved in the resilience/susceptibil-
ity to metabolic aging, a complicated process implicated
in neurodegenerative diseases [89].

In contrast, we have also noticed the differences
between the mice model and the human brain age-
related metabolome. For example, while biogenic amines
like the neurotransmitter serotonin decreased with age in
the current mouse model and other rodent models [90,
91], serotonin levels remained the same in aging human
brain [92]. Nevertheless, the serotonin/Trp ratio (marker
for serotonin synthesis) decreased in frontal cortex brain
tissue of people with AD, compared to controls [42]. In
the aging human brain, serotonin metabolism is impaired
by the altered activity levels of serotonin transporter and
receptor, both are further implicated in neurodegenera-
tive diseases [93-95].

Complex lipids also showed significant changes in
our study. PC and SM in the mouse model points to the
exchange of fatty acids between these two pools via the
ceramide pathway: SM C36:1 is a major SM species in the
mouse brain [96] and its high concentration is highly spe-
cific to the mouse brain compared to other tissues [97].
In the current mouse model, SM C36:1 decreased with
age and PC C36:1 increased with age. As SM is a major
component in neuronal myelin [97-99], our observation
of decreasing dominant SM species with age is consis-
tent with the “myelin hypothesis” of normal and abnor-
mal aging, in which the production and maintenance of
myelin are compromised over time during these pro-
cesses [100, 101]. The accompanying opposite trend of PC
C36:1 can reflect the reduced production of SM via the
ceramide pathway. In contrast, in aging human brains,
PC and SM - except for a few differences in PC — remain
largely unchanged with aging. These differences between
human and mouse data can be due to the species-specific
metabolism, or the fact that human brain samples are
limited to a narrower sample collection time frame and
to the brain regions available [102]. Despite these differ-
ences, compared to available human brain metabolome
data, our findings in the mice model point to shared
pathways of mice and human brain metabolome in terms
of normal and abnormal aging. This enables the further
utilization of this mouse model to investigate the nature
of metabolic aging and the age-associated diseases in the
human central nervous system.

In conclusion, findings here documented the APOE
and aging brain metabolic signatures of a mouse model
of AD, which highlighted the effects of APOE on brain
energy metabolism via regulation of amino acid and acyl
carnitine pathways. This model enables further stud-
ies on APOE'’s effect on age-related neurodegenerative
diseases of humans and on their potential treatments. It
is also important to acknowledge that our understand-
ing of brain energy metabolism in the context of those
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metabolic markers is very limited, and the current results
are only speculative. However, this manuscript points
towards a need for more in-depth analysis where the
impact of APOE genotype is understood on the cellular
level and can be further translated to the whole brain
metabolic alteration.

Limitations

The limited available human data allowed us to compare
only the haplotype for APOE isoforms. Additionally, all
results describe associations with causality to be further
confirmed. In addition, identified C5 acyl carnitine does
not distinguish between specific isoforms, limiting data
interpretation. Although this study utilizes a humanized
mice model, it is important to acknowledge the differ-
ences between mice and human ApoE and lipoprotein
metabolism, which could limit application of those find-
ings in humans. There is a body of literature describing
those differences [103-106].
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