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Deep active optimization for  
complex systems
 

Ye Wei    1,2,3,10  , Bo Peng    4,10, Ruiwen Xie5,10, Yangtao Chen6,10, Yu Qin7,10, 
Peng Wen4,10, Stefan Bauer6,10, Po-Yen Tung8,10 & Dierk Raabe    9 

Inferring optimal solutions from limited data is considered the ultimate 
goal in scientific discovery. Artificial intelligence offers a promising 
avenue to greatly accelerate this process. Existing methods often depend 
on large datasets, strong assumptions about objective functions, and 
classic machine learning techniques, restricting their effectiveness to 
low-dimensional or data-rich problems. Here we introduce an optimization 
pipeline that can effectively tackle complex, high-dimensional problems 
with limited data. This approach utilizes a deep neural surrogate to 
iteratively find optimal solutions and introduces additional mechanisms to 
avoid local optima, thereby minimizing the required samples. Our method 
finds superior solutions in problems with up to 2,000 dimensions, whereas 
existing approaches are confined to 100 dimensions and need considerably 
more data. It excels across varied real-world systems, outperforming current 
algorithms and enabling efficient knowledge discovery. Although focused 
on scientific problems, its benefits extend to numerous quantitative fields, 
paving the way for advanced self-driving laboratories.

Modern society benefits tremendously from superior solutions in 
engineering control systems, materials science, physics, biology and 
computer science. These advancements improve infrastructure, health-
care and technology, enhancing quality of life and addressing global 
challenges. Examples include use of advanced engineering control for 
autonomous systems, the discovery of high-performance alloys for 
better and more sustainable building materials and the development 
of life-saving pharmaceuticals, including drugs optimized to combat 
diseases such as COVID-191. However, identifying such superior solu-
tions is challenging due to the vast size and often highly nonlinear 
nature of the search space.

Moreover, conducting experiments or simulations can be 
extremely costly, with processes such as synthesizing and charac-
terizing advanced alloys or drug-revelant molecules often costing 
millions of dollars and taking months or even years of intense labor. 

Optimization performed by human experts typically relies on educated 
trial-and-error navigation of the search space, often leading to substan-
tial expenditures of both resources and time, particularly in cases of 
highly nonlinear interactions. The rise of artificial intelligence (AI) offers 
a powerful alternative that can minimize human bias and achieve better 
solutions at minimal cost. Unlike traditional optimization algorithms, 
which are generally assessed on the basis of function evaluations, these 
data-driven AI algorithms operate in a closed loop to guide experiments 
or simulations, iteratively identifying and labeling the most informative 
data points to discover the next best candidates while minimizing data 
labeling efforts. This approach is known as active learning (AL)2–4, and 
there has been a surge of interest in developing AL-based self-driving 
laboratory in all areas of physical, chemical and biological science5–9.

As illustrated in Fig. 1, We designate our algorithm as active opti-
mization (AO), which aligns closely with Bayesian optimization (BO) in 
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Its tremendous success is exemplified by the superhuman performance 
of AI players such as AlphaGo, AlphaZero and AlphaStar in various board 
and strategy games22–24. Despite these considerable advancements, 
combining DNN with tree search methods to tackle complex problems 
with limited data availability and noncumulative objectives remains 
elusive. This challenge arises from two primary factors:

	(1)	 RL generally needs extensive access to reward functions or large 
datasets for training, whereas real-world problems often have 
limited, costly-to-collect data, making it difficult to train effec-
tive policy networks25,26.

	(2)	MCTS is mainly suited for cumulative reward maximization in 
sequential decision-making and is less naturally adapted for 
noncumulative objectives, despite its success in superhuman 
AI27–29.

Nevertheless, recent studies have utilized MCTS to iteratively 
partition the search space and select solutions based on upper con-
fidence bound (UCB) and classic learning models. These methods 
encounter challenges when addressing high-dimensional, nonlin-
ear distributions30,31. The number of partitions in high dimensions 
increases exponentially, and the local models struggle to generalize 
to the complex distribution, resulting in suboptimal performance in 
these tasks32.

In this work, we introduce deep active optimization with neural- 
surrogate-guided tree exploration (DANTE) for the accelerated  
discovery of superior solutions to real-world systems characterized by 
limited data availability (initial data points ~200 and sampling batch 
size ≤20) and noncumulative objectives. Our pipeline is rather general, 
capable of addressing a wide range of scenarios. The pipeline begins 
with a database used to train a DNN, which serves as a surrogate model. 
Subsequently, a proposed tree search, modulated by a data-driven UCB 
(DUCB) and the DNN, is used to explore the search space of the complex 
system through backpropagation method (Fig. 1). Top candidates are 
sampled and evaluated using validation sources, with the new labeled 
data being fed back into the database (Fig. 1d).

We benchmarked DANTE against various AL algorithms to evaluate 
its performance across these diverse settings. First, we evaluate DANTE’s 

terms of its objectives and overall framework. However, BO primarily 
utilizes kernel method and uncertainty-based acquisition function to 
identify ‘optimal’ candidates, whereas AO generalizes the application 
of surrogate models and search methodologies, allowing adaptation 
across a wider variety of method types, thereby enhancing its versatility 
and scope beyond traditional BO approaches. Furthermore, AO is akin 
to the AL framework but differs in terms of its goal—instead of improv-
ing the model predictivity, AO aims at finding the optimal solutions 
with a relatively small initial dataset (from a few dozen to hundreds).

It is well accepted that the knowledge of the internal interactions 
inherent in many complex systems (validation source) are usually not 
fully accessible and the structure, gradient and convexity of the objec-
tive function are unknown10. Therefore, a surrogate model is often used 
to treat such nonconvex, nondifferentiable systems as a ‘black box’ 
and approximate the solution space of the complex system through a 
learning model11,12. Some machine learning (ML) models, such as Bayes-
ian methods, heavily rely on assumptions about prior distributions or 
feature engineering13–15, while others, such as decision trees, are prone 
to overfitting and are limited to processing specific data types, such as 
tabular formats. Consequently, they often struggle to accurately cap-
ture intricate relationships and dependencies in high-dimensional big 
datasets, leading to poor generalization in unseen scenarios and slower 
convergence in high-dimensional spaces16,17. The advancements of deep 
neural networks (DNNs) present a compelling alternative for approxi-
mating high-dimensional nonlinear distributions of any data type18,19, 
and the effectiveness of this approach is indicated by its remarkable 
accomplishments across various fields, including image classification, 
natural language processing and autonomous vehicles20,21.

Another approach that could identify optimal solutions within 
complex systems is the so-called reinforcement learning (RL), which is 
defined as an ML algorithm that searches for optimal solutions through 
interactions with an environment. However, RL differs from AL in three 
major aspects, as it often requires (1) easy access to reward functions, (2) 
numerous training data and (3) cumulative reward. In particular, the RL 
that combines DNNs with the Monte Carlo tree search (MCTS) method 
has demonstrated remarkable success in such tasks, particularly when 
large datasets are accessible and cumulative objectives are considered. 
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Fig. 1 | Deep AO with neural-surrogate-guided tree exploration (NTE).  
a, Database of the complex system of interest. b, DNN that learns the input–
output relationship. c, NTE uses the DNN as the surrogate model to find the 
optimal designs. Here, alloy compositions and protein sequences are used as 

examples, starting from random initial designs and converging to optimal ones. 
d, The validation source provides ground truth for the top candidates. Here, 
three examples are used: FE methods, DFT and AlphaFold.
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performance across six easily computable nonlinear synthetic functions 
with known global optima, covering dimensionalities ranging from 20 
to 2,000. DANTE consistently outperforms all state-of-the-art (SOTA) 
methods in these tests, achieving the global optimum in 80–100% of 
cases while using as few as 500 data points. Second, we assess DANTE 
on real-world problems across various disciplines, including computer 
science, physics, optimal control and materials science. In these sce-
narios, ground-truth labels are noise-free and obtainable at a reason-
able cost. Nonetheless, the search spaces are often constrained by 
external nonlinear conditions, adding complexity to the tasks. DANTE 
consistently identifies superior solutions, outperforming other SOTA 
methods by 10–20% in benchmark metrics, all while utilizing the same 
number of data points. Finally, we apply DANTE to resource-intensive, 
high-dimensional, noisy and complex tasks with unknown optima, 
such as complex alloy design, architected materials design and peptide 
binder design. In these cases, DANTE successfully identifies superior 
candidates, achieving improvements of 9–33% while requiring fewer 
data points relative to SOTA methods. Through extensive investiga-
tions into the learning process, we validate that the integration of deep 
learning and tree search is effective for discovering optimal solutions 
across diverse disciplines, utilizing minimal data points.

Results
Neural-surrogate-guided tree exploration
The neural-surrogate-guided tree exploration (NTE) is the key com-
ponent of DANTE, aiming at optimizing exploration–exploitation 
trade-offs through a number of visits and an ML model to deal with 
noncumulative reward optimization problems. It resembles the setting 
of RL, but without the need to train an actor policy network.

NTE is inherently a frequentist’s approach and uses the number of 
visits to facilitate the exploration–exploitation trade-off. Unlike tradi-
tional Bayesian black-box optimization algorithms, which primarily use 
uncertainty as the basis for this trade-off, NET treats the number of visits 
to a particular state as a measure of uncertainty. The more frequently 
a state is visited, the lower its associated uncertainty. This approach is 
common in MCTS-based methods. We have made some key modifica-
tions that deviate from traditional settings, enhancing our methodol-
ogy’s effectiveness. In the following sections, we explain the working 
principles of NTE and the rationale behind the introduced mechanisms.

Conditional selection
Stochastic rollout is composed of two subcomponents: (1) stochastic 
expansion of the root nodes and 2) local backpropagation. The NTE 
algorithm performs the search by iteratively executing conditional 
selection and stochastic rollout until the stopping criteria are met. 
In the first step, the root node initiates the generation of leaf nodes, 
which involves applying stochastic variations to the feature vector—a 
process termed stochastic expansion (see ‘Technical details of NTE’ 
section in the Methods).

Figure 2d conceptually illustrates how conditional selection helps 
to explore the search space by addressing the ‘value deterioration 
problem’. A search tree without conditional selection often results 
in lower-value leaf nodes being selected during expansion, leading 
to a rapid decline in value and ultimately hindering the discovery of 
superior nodes. In NTE, if the DUCB of the root node exceeds that of 
all leaf nodes, the search continues with the same root node in the 
next round. If any leaf node has a higher DUCB, it becomes the new 
root, proceeding to stochastic rollout. This mechanism encourages 
the selection of higher-value nodes. As demonstrated in Fig. 3b, NTE 
without conditional selection requires up to 50% more data points to 
reach the global optimum (Supplementary Fig. 1).

Local backpropagation
In noncumulative objective problems, the aim is to find the optimal 
single state rather than an optimal sequence of states. Conventional 

backpropagation techniques update values and visitation counts along 
the entire search path, which is suited for sequential optimization. 
Meanwhile, local backpropagation updates only the visitation data 
between the root and the selected leaf node, preventing irrelevant 
nodes from influencing the present decision. This mechanism enables 
DANTE to escape local optima by preventing repeated visits to the 
same node.

Figure 2e conceptually illustrates how DANTE progressively 
escapes local maxima by climbing a ladder formed through local back-
propagation. When DANTE is trapped in a local optimum, repeated 
visits to the same node trigger updates in the DUCB values of the root 
and neighboring nodes, generating a local DUCB gradient that helps 
guide the algorithm away from the local optimum. Figure 3b shows 
that, without local backpropagation, DANTE struggles to converge 
even after 10,000 data points.

DUCB
The DUCB formula is a core component of the DANTE framework, 
designed to dynamically balance the exploration-exploitation trade-off. 
It can be expressed as follows:

DUCB = vML + c0 × c(ρ) ×√
2logN
n + 1 , (1)

where vML represents the value of the current node predicted by DNN. 
Let ρ represent the ground-truth distribution, and let c(ρ) be a scaling 
factor that adjusts based on this distribution. N is the number of visits 
of current root node, and n is the number of visits of the current leaf 
node. Without loss of generality, we assume that the goal is to search 
for the global maximum; we define c(ρ) = max(ρ). c0 is a hyperparam-
eter constant that ranges from 0.01 to 1. In the following, we provide 
the rationale behind those terms.

The shift from UCB to DUCB is motivated by the challenges of 
high-dimensional noncumulative objective problems. In these 
high-dimensional search spaces, the vast majority of states remain 
unexplored, leading to visit counts of n = 0, resulting in infinite UCB 
values. Consequently, a tree search using UCB must visit all leaf nodes 
at least once to obtain finite values for comparison, which imposes a 
high computational burden. In addition, UCB typically relies on millions 
of simulations to produce reliable estimates, further exacerbating the 
computational cost. To address this issue, DUCB modifies the original 
UCB formula by incorporating DNN predictions for node value estima-
tion and adding 1 to the denominator, effectively treating all nodes as 
if they have been visited at least once. This adjustment ensures that 
DUCB consistently yields finite values for every node, eliminating the 
need for exhaustive stochastic rollouts at each leaf.

Adaptive exploration
Figure 2c illustrates the adaptive exploration mechanism used by 
DANTE. This mechanism encourages a more aggressive exploration 
strategy when high-value data points are discovered in the previous 
iteration. Specifically, c(ρ) becomes larger as high-value data points 
are identified, enhancing the exploration term in the DUCB formula. 
This dynamic adjustment intensifies exploration in promising regions, 
enhancing exploration of valuable areas while maintaining sufficient 
exploitation, thereby increasing the likelihood of identifying more 
superior solutions. The ablation study shown in Fig. 3b indicates that 
DANTE, when lacking adaptive exploration, requires 50% more data 
points to reach the global optimum. Figure 3c qualitatively demon-
strates the efficiency of DANTE by visualizing the search history of 
DANTE and its ablated variants using a two-dimensional uniform mani-
fold approximation and projection (UMAP) representation (a dimen-
sionality reduction technique33) applied to Rosenbrock-100d synthetic 
tasks. The results clearly show that DANTE swiftly identifies the ‘hot-
spot’ region associated with the global optimum and subsequently 
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concentrates its search efforts in that vicinity. By contrast, the other 
variants fail to locate this hotspot, further reinforcing the findings 
from the ablation study.

DNN is the key
Before undertaking expensive real-world tasks, it is crucial to bench-
mark various AO algorithms on both synthetic tasks with known global 
optima at various dimensions and low-cost, low-dimensional real-world 
benchmark tasks, which can offer valuable insights into the algorithm’s 
efficiency and effectiveness across different contexts. As shown in 
Fig. 3a, the benchmark study demonstrates that, in comparison with 
traditional AO pipelines, DANTE is capable of addressing a wide range 
of scenarios: low- to high-dimensional problems, from easy to hard data 
acquisition tasks, and from simple to complex systems.

We use well-established high-dimensional, nonconvex synthetic 
functions with known global optima for our benchmark tests, which 
have been widely used to evaluate the performance of optimization 
algorithms. Unlike traditional optimization algorithms, where the 
process is often parallelizable and primarily focuses on the number 
of function evaluations required to reach the global optimum, our 
benchmark study uses these synthetic functions to mimic the com-
plex data distribution generated by various validation sources. Our 
aim is to assess the number of data points an AO algorithm needed to 
reach these optima under different scenarios. Specifically, to compare 
the performance of DANTE with other AL algorithms regarding the 

number of data points required to achieve the global optimum in a 
quantitative and cost-effective manner, we selected six widely used 
synthetic functions (known for their difficulty in locating the global 
optimum) as the validation source, with dimensions ranging from 
20 to 2,000 (for example, Ackley, Rastrigin, Rosenbrock, Griewank, 
Schwefel and Michalewicz functions; Methods, Supplementary Note 
and Supplementary Table 1). We present and analyze the key results in 
Table 1 and Extended Data Tables 1 and 2. For example, The Rastrigin 
function is highly multimodal, featuring numerous local maxima in the 
ground-truth landscape. The Rosenbrock function contains a long val-
ley with multiple local maxima (Supplementary Fig. 2). These features 
make these functions ideal benchmarks for assessing the performance 
of AL algorithms.

We demonstrate that DANTE is most effective when integrated with 
the DNN. Figure 3d–f shows representative examples (Ackley-100d, 
Rastrigin-100d and Rosenbrock-60d) comparing the performance 
of the DNN with six mainstream regression models (that is, decision 
trees, random forests, linear regression, kernel ridge regression, 
Gaussian processes and support vector machines). The results indi-
cate that DANTE successfully converges to the global optimum on the 
Ackley-100d, Rastrigin-100d and Rosenbrock-60d tasks, requiring 
approximately 500, 2,000 and 5,000 data points, respectively. Notably, 
DANTE exhibits an exponential convergence rate, quickly approach-
ing near-optimal solutions after 100, 1,500 and 2,000 data points. By 
contrast, when DANTE is combined with other ML surrogate models, 
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Fig. 3 | Synthetic benchmark tasks and ablation study. a, BO and TuRBO5 
converge faster when less initial data (~20) are provided, whereas DANTE 
converges faster to the global optimum when more initial data (~200) are 
available. Data are presented as mean values ± s.d., n = 5. f(x) represents the 
value of the function. b, An ablation study using the Rosenbrock-100d function, 
evaluated by convergence ratio required to reach the global optimum. n = 10.  
c, A smaller sampling batch size leads to a faster convergence rate. Data are 
presented as mean values ± s.d., n = 5. d, UMAP visualization of the search 
trajectories for DANTE and its ablated variants, demonstrating that DANTE 
efficiently identifies and concentrates on the vicinity of the near-optimal region. 
e–g, The learning progress of DANTE on the Rastrigin-100d (e), Ackley-100d 
(f) and Rosenbrock-60d tasks (g), highlighting the performance of DANTE 
equipped with various ML models. DNN consistently outperforms other models, 

showcasing its superior ability to learn and adapt in these complex, high-
dimensional optimization landscapes. KRR, kernel ridge regression;  
GP, Gaussian process; Lasso, least absolute shrinkage and selection operator; 
RF, random forest; GBDT, gradient-boosted decision trees; SVM, support vector 
machine. Data are presented as mean values ± s.d., n = 5. h–j, The learning 
progress of various search methods on the Rastrigin-1,000d (h), Ackley-200d (i) 
and Rosenbrock-100d (j) functions, highlighting DANTE’s fast convergence rate 
toward the global optimum. DOO, deterministic optimistic optimization; SOO, 
simultaneous optimistic optimization; VOO, Voronoi optimistic optimization; 
Diff-Evo; differential evolution; DA, dual annealing; LaMCTS, latent action 
MCTS; TuRBO, trust region BO; CMA-ES, covariance matrix adaptation evolution 
strategy. Data are presented as mean values ± s.d., n = 5.
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it often becomes trapped in local optima, remaining notably distant 
from the global optimum even after utilizing 10,000 data points. These 
results suggest that the DNN is superior in learning and representing 
the complexities of the nonlinear search space (our DNN comprises 
a series of convolutional layers (more than 5), followed by pooling, 
dropout and normalization layers; for further details, see the Methods, 
Supplementary Note and Supplementary Fig. 3).

Overall, the evidence presented in Fig. 3a,e suggests that BO per-
forms well in low-dimensional settings, whereas DANTE excels at navi-
gating and locating optima within approximately high-dimensional 
landscapes. These findings emphasize that selecting the most suitable 
pairing of surrogate and search models—based on the problem’s dimen-
sionality and nonlinearity—is crucial for achieving optimal overall 
performance.

From low to high dimensions, from easy to hard data 
acquisition
We conduct a thorough ablation study and summarize our results in 
the Methods. We demonstrate that DANTE consistently outperforms 
other search methods. Specifically, we evaluate DANTE alongside 11 
SOTA algorithms across various categories, including heuristic, Bayes-
ian and tree-based methods. For algorithms lacking a surrogate model, 
we use DNN as the surrogate. Table 1 and Extended Data Table 1 present 
benchmark results for the best-achieved values and the number of 
samples required to reach the global optimum across various synthetic 
functions, each with a global optimum of 0. The data demonstrate 
that DANTE consistently attains the global optimum with the fewest 
data points in most tasks, whereas most competing methods fail to 
achieve the global optimum altogether. As indicated in Fig. 3a, the 
BO-based algorithm converges faster than DANTE at low dimensions 
(<10) and with small initial datasets (<20), while DANTE shows a bet-
ter performance with higher dimensions and bigger initial datasets. 
In addition, Fig. 3c shows that a smaller sampling batch size leads to 
a faster convergence rate. More benchmark results are presented in 
Supplementary Figs. 4–7.

Figure 3h–j depicts the learning progress of various methods 
on three high-dimensional tasks: Rastrigin-1,000d, Ackley-200d and 
Rosenbrock-100d, each tested five times with different random seeds. 
It is evident that DANTE converges notably faster than all baseline 
algorithms, while some baselines fail to run due to memory constraints. 

Notably, DANTE identifies the global optimum of Rastrigin-1,000d with 
just 3,000 data points, whereas other baselines struggle with the vast 
search space, showing minimal progress. A detailed summary of the 
benchmark results regarding data acquisition for optimal performance 
is presented in Extended Data Table 1. It is clear that most AL algorithms 
fail to reach the global optimum for these tasks within the available data 
limits (for additional results, see Supplementary Figs. 8–10).

We select four noise-free, real-world tasks with relatively easy data 
access: (1) neural network architecture search on CIFAR-10, aimed at 
optimizing architecture for maximum test accuracy34 on the CIFAR-10 
dataset35; (2) optimization of complex concentrated alloys (CCAs) for 
improved magnetic properties and resistivity; (3) the optimal control 
problem of lunar landing, seeking to maximize landing reward; and (4) 
resolution optimization of transmission electron microscopy (TEM) 
images. Notably, the search space for these real-world tasks is often 
constrained by nonlinear external conditions, adding complexity to 
the learning process and limiting the selection of baseline methods. 
Further technical details on these benchmarks are provided in the 
Methods.

Figure 4 demonstrates that DANTE notably outperforms other 
AL methods across these real-world tasks. While we consider DANTE 
and RL (for example, policy proximal optimization (PPO)) to pertain 
to distinct categories of methodologies in terms of (1) quantity of data 
needed, (2) data accessibility and (3) nature of reward (Fig. 4a), they 
can still be compared under specific conditions in the lunar landing 
task, such as a fixed initial position and random seeds. Under these 
conditions, DANTE demonstrates comparable, or even better, perfor-
mance compared with PPO, particularly in the initial stages where PPO 
essentially performs at a random level, indicating its need for a large 
amount of data (Fig. 4d). However, a notable advantage of PPO is its 
adaptability, allowing it to be trained for varying environments, such 
as different initial positions and speeds. In the neural network architec-
ture search task, it achieves near-optimal accuracy of 94.1% with only 
200 data points, compared with the global optimum of 94.3%. In the 
magnetic CCA task, it identifies compositions with 20% higher mag-
netic properties using just 140 data points. For the lunar landing task, 
by converting the problem into a noncumulative optimization through 
fixating the initial positions and predesigned actions at set time inter-
vals (Supplementary Note), DANTE achieves an average reward of 100 
after 10,000 samples, whereas other methods remain below 50. In the 

Table 1 | Lowest value achieved by various AL methods on synthetic benchmarks

Ackley-20 Ackley-100 Rastrigin-20 Rastrigin-100 Rosenbrock-20 Rosenbrock-100 Schwefel-20 Griewank-20

Unit 1 1 ×102 ×103 ×104 ×104 ×103 1

Maximum 
number of 
samples

1,600 2,800 1,000 2,000 6,300 10,500 1,000 1,000

Random 7.59 ± 0.17 9.23 ± 0.13 2.18 ± 0.15 1.47 ± 0.016 2.380 ± 0.119 64.60 ± 0.936 5.50 ± 0.11 233.1 ± 25.49

TuRBO5 0.37 ± 0.14 1.73 ± 0.18 0.52 ± 0.04 0.40 ± 0.034 0.003 ± 0.000 0.127 ± 0.066 2.84 ± 0.79 1.177 ± 0.049

LaMCTS 1.96 ± 0.75 5.05 ± 0.73 0.80 ± 0.30 0.82 ± 0.044 0.008 ± 0.005 0.652 ± 0.098 3.32 ± 0.33 0.956 ± 0.047

CMS-ES 0.75 ± 0.09 2.85 ± 0.04 0.78 ± 0.03 0.97 ± 0.017 0.006 ± 0.004 0.037 ± 0.004 5.28 ± 0.44 236.7 ± 45.85

Diff-Evo 6.43 ± 0.16 8.13 ± 0.19 1.88 ± 0.12 1.30 ± 0.032 0.797 ± 0.115 28.30 ± 2.690 5.10 ± 0.17 127.6 ± 12.25

DA 0.00 ± 0.00 3.28 ± 0.19 1.29 ± 0.06 0.53 ± 0.039 0.005 ± 0.003 0.908 ± 0.088 2.38 ± 0.39 1.252 ± 0.264

Shiwa 4.43 ± 0.07 5.78 ± 0.52 2.48 ± 0.02 1.19 ± 0.047 2.266 ± 0.146 0.240 ± 0.022 5.49 ± 0.32 0.175 ± 0.246

MCMC 0.00 ± 0.00 4.79 ± 0.16 0.89 ± 0.27 0.73 ± 0.038 0.011 ± 0.006 0.088 ± 0.036 2.11 ± 0.86 5.858 ± 8.782

DOO 7.17 ± 0.37 9.44 ± 0.09 2.22 ± 0.14 1.50 ± 0.044 1.640 ± 0.456 72.22 ± 2.700 5.56 ± 0.29 164.2 ± 21.41

SOO 7.75 ± 0.18 9.40 ± 0.17 2.24 ± 0.08 1.54 ± 0.027 2.760 ± 0.744 76.30 ± 2.700 2.89 ± 2.18 87.67 ± 4.048

VOO 2.44 ± 0.49 5.23 ± 0.17 1.03 ± 0.13 0.92 ± 0.028 0.006 ± 0.000 2.107 ± 0.324 5.38 ± 0.08 0.121 ± 0.091

DANTE 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.0003 ± 0.0005 0.002 ± 0.004 1.20 ± 0.49 0.000 ± 0.000

Results are averaged over five trials, with ± indicating the s.d. The global optimum for these functions is 0. The bold font denotes the best results in this column.
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TEM resolution optimization task, reconstruction quality is evaluated 
using a correlation index, which compares the phase of simulated and 
reconstructed transmission functions (Supplementary Note). DANTE 
achieves the highest score of 0.958, surpassing even the human expert 
(details in Supplementary Fig. 11 and Supplementary Table 2).

More real-world problems that involve larger search spaces, more 
external constraints, noisy labels and highly nonlinear input–output 
relationships can be found in Extended Data Fig. 1 and Supplementary 
Note. In these cases, the labels may contain various forms of noise, 
and acquiring them is both resource intensive and time-consuming, 
with the optimum often remaining elusive. We demonstrate that the 
DANTE framework can effectively address these complex tasks without 
relying on large datasets.

Discussion
Looking ahead, the current bottleneck lies in the expressive power 
of the surrogate model and available computer memory rather than 
in DANTE’s inherent capacity. There is potential for DANTE to further 
push the boundaries of dimensionality by using more sophisticated 
surrogate models and leveraging larger computing resources, enabling 
it to address extremely high-dimensional and nonlinear problems 
beyond 2,000 dimensions in a data-driven manner. We envision numer-
ous opportunities to apply our method across various quantitative 
sciences. One particularly promising avenue for future application is 
the integration of our approach with robotic systems to facilitate auto-
mated experimental design, thereby accelerating materials discovery 

and synthesis. Another interesting potential application lies in financial 
optimization, where the objective is to allocate resources effectively to 
maximize returns or achieve specific financial goals. We anticipate that 
our algorithms will soon become standard practice, seamlessly inte-
grated with virtual or experimental setups across multiple disciplines 
to tackle high-dimensional and nonlinear optimization tasks that were 
previously deemed intractable. This interdisciplinary approach holds 
great promise for unlocking further solutions and advancing research 
and practice in various fields.

Methods
Framework of AO
We summarize our key innovations as follows:

•	 A data-driven formula that leverages the number of visits  
and ML from a small initial dataset to effectively manage the 
exploration–exploitation trade-off. This markedly differs from 
the UCB formula utilized by MCTS, which relies on the average 
node value and the number of visits derived from numerous 
simulations.

•	 Local backpropagation that ensures a balanced exploration–
exploitation trade-off for the noncumulative reward problems.

•	 Adaptive exploration mechanism that favors exploration over 
exploitation under certain circumstances.

•	 A modified epsilon-greedy sampling technique that samples 
best-scored candidates and most-visited candidates at the same 
time.
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Fig. 4 | Real-world benchmark tasks. a, Deep AO is different from RL in terms  
of quantity of data needed, data accessibility and nature of the reward. b, Neural 
network architecture search on CIFAR-10. Data are presented as mean values, 
n = 5. c, The lunar landing problem. Data are presented as mean values, n = 5.  
d, In the lunar landing problem, DANTE demonstrates comparable, or even 
better, performance compared with PPO, particularly in the initial stages 
where PPO essentially performs at a random level, indicating its need for a large 

amount of data (fixed random seed). However, a notable advantage of PPO is its 
adaptability, allowing it to be trained for varying environments, such as different 
initial positions and speeds. Data are presented as mean values ± s.d., n = 5.  
e, Searching for soft magnetic alloy with high resistivity. f, Resolution 
optimization of TEM images is guided by correlation index. DANTE framework 
outperforms expert’s choice, BO and TuRBO5.
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While Fig. 1 provides the flowchart illustration of the AL loop, We 
provide a mathematical formulation framework of the AL problem 
(referring to materials science as a demonstrator).

Specifically, let X denote the input space (representing, for exam-
ple, materials such as chemical compositions, specific crystalline 
structures and so on). Let Y represent the output space, where y ∈ Y 
(y < +∞) denotes the specific property or property spectrum of interest 
(for example, mechanical strength or resistivity) The goal is to identify 
the optimal material x* ∈ X that maximizes or minimizes a property 
while minimizing the number of labeled data points required. The initial 
labeled dataset L consists of D = {(xi, yi)}

n
i, where n is the number of initial 

data points (n = 200 in this study). x is the input vector, X is defined as 
the search space, typically ℝN, and N is the dimension. f is the determin-
istic function that maps the input x to the ground-truth label y. The 
surrogate model fθ learns the input-label relation through the dataset 
D = {(xi, yi)}

n
i , and n is the number of labels and yi is the label of xi.

The AL loop involves iteratively selecting the samples from X, 
based on a search algorithm Q(x; fθ), and retraining the surrogate model 
fθ. At each iteration t:

	 (1)	Model training: train the model fθ using the current labeled 
dataset D:

θt = argminθ𝔼𝔼(x,y)D[L(θ; x, y)],

where L is the loss function.
	 (2)	Search and selection: select a subset of k samples xnew ∈ X based 

on fθ using a search algorithm Q(x; fθ) (k = 20 in both benchmark 
and real-world studies):

xnew = argmaxx∈X fθ.

	 (3)	Labeling and updating: obtain the labels ynew for the selected 
samples xnew, and add them to

D← D ∪ {(xnew, ynew)}.

RL is another commonly used method for identifying optimal 
solutions. Differences in AL and RL lie in three main aspects: (1) data 
accessibility, (2) the quantity of data needed and (3) the nature of 
rewards (noncumulative versus cumulative).

•	 Data accessibility: In typical RL settings, a policy network 
interacts with the environment, requiring easy access to reward 
functions. By contrast, AO, particularly in scientific contexts, 
often deals with limited access to reward functions. For instance, 
in materials science, it might take months to obtain just a few 
labeled data points.

•	 Quantity of data needed: RL training commonly demands large 
amounts of labeled data or observations to develop an effec-
tive policy network. AL, however, operates in a low-data regime, 
usually with fewer than 1,000 data points, and requires only a 
value-estimation network.

•	 Nature of rewards: RL algorithms are primarily used for trajec-
tory planning and optimal control problems, involving sequen-
tial decisions and cumulative rewards. Conversely, AL typically 
focuses on maximizing the current reward functions.

Technical details of NTE
There are three modes of action for the stochastic expansion, each 
occurring with equal probability (that is, 1/3). (1) One-step move: this 
mode represents the smallest possible change at a single position of 
the feature vector. (2) Single mutation: in this mode, one position of 
the feature vector randomly mutates to any value within the allowed 
range. (3) Scaled random mutation: this mode involves a proportion 
of the feature vector randomly mutating to any allowed values. The 
number of leaf nodes equals the dimension of the feature vector.

A real-world complex system often can be represented as a vec-
tor or a matrix. For example, in materials science, searching for a 
high-performance CCAs can be formulated as optimizing the proper-
ties by tuning the alloy compositions36; In biology, the protein design 
can be approached as improving biofunctionalities by optimizing a 
sequence consisting of 20 amino acids. We implement a convolutional 
neural network for the deep learning surrogate model. It consists of 
convolutional layers and is followed by pooling, dropout and normali-
zation layers to prevent overfitting. The network parameters are opti-
mized using Adam Optimizer, and the loss function is the mean-squared 
error or mean absolute percentage error. More detailed parameters are 
found in the Supplementary Note and Supplementary Fig. 3.

Standard MCTS consists of four major steps: selection, expan-
sion, simulation and backpropagation (Supplementary Fig. 12). We 
summarize key differences between DANTE and MCTS.

	 (1)	The MCTS backpropagation mechanism uses the result of the 
rollout to update both value and visitation of the nodes along 
the path, which affects all nodes (from root to end node) at a 
global level. The local backpropagation updates only the visita-
tion information of the current root node and the subsequent 
leaf nodes. We do not update the value information because our 
optimization problem focuses solely on discovering a single 
optimal state and retains little ‘memory’ of previous states. 
Therefore, value information is not backpropagated, and visita-
tion backpropagation is short-ranged, relying only on nearby 
visitation data to guide exploration.

	 (2)	MCTS selection step chooses the leaf node with max UCB and 
proceeds to the next expansion with the selected leaf node, 
whereas the expansion of NTE is conditioned on an inequality of 
the DUCB: the expansion proceeds with the leaf node that has 
a higher DUCB than root node; otherwise, it proceeds with the 
same root.

	 (3)	Conventional rollout uses the simulation step to reach the end 
state (for example, win or loss of a game) and uses the average 
value as the current node value, while the stochastic rollout of 
NTE does not need the simulation step to obtain the node value; 
instead, it uses the surrogate model to estimate the node value.

Furthermore, Supplementary Fig. 13 shows the difference between 
UCB and DUCB.

Top-visit sampling
The sampling technique for selecting top candidates is a critical 
component of the AO pipeline. An effective sampling method should 
identify the most informative candidates while preserving data diver-
sity, ensuring the surrogate model generalizes well to unseen data. 
The widely used sampling approach is the epsilon-greedy method, 
which combines greedy selection with random sampling. To enhance 
the generalization capability of the surrogate model, we extend the 
epsilon-greedy strategy by implementing ‘top-visit sampling’, which 
samples data that are frequently visited during rollouts. Figure 3b 
demonstrates that DANTE, when lacking top-visit sampling, exhibits 
a higher surrogate model loss and requires 30% more data points to 
achieve the global optimum (as detailed in the Methods, Supplemen-
tary Note and Supplementary Fig. 1).

Ablation study
We conducted an ablation study on the Rosenbrock-100d function 
to analyze the impact of DANTE’s individual components on overall 
performance (Fig. 3b; additional results are provided in Supplemen-
tary Fig. 1). The results clearly show that conditional selection and 
local backpropagation are critical to DANTE’s effectiveness. Without 
conditional selection, the tree search suffers from the value dete-
rioration problem and has a 0% convergence ratio, defined as the fre-
quency with which the algorithm identifies the global optimum within 
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a given number of data points. Without local backpropagation, DANTE 
becomes a greedy stochastic tree search, leading to poor performance 
and similarly a 0% convergence ratio. Moreover, omitting top-visit sam-
pling and adaptive exploration, while still allowing for convergence, 
notably degrades performance. In such cases, the average best f(x) 
remains distant from the global optimum, and the convergence ratios 
drop to 60% and 30%, respectively.

We further assess the limits of DANTE by evaluating its perfor-
mance in tackling high-dimensional problems with a limited number of 
data points. As shown in Extended Data Table 2, DANTE demonstrates 
exceptional performance, successfully converging across various 
synthetic functions ranging from 200 to 2,000 dimensions. By con-
trast, SOTA methods fail to converge to any functions beyond 100 
dimensions. Notably, none of the baseline methods achieves global 
convergence on the Rosenbrock function in dimensions exceeding 
10, while DANTE successfully converges in dimensions as high as 200 
(Supplementary Table 3).

Synthetic functions
The synthetic functions are designed for evaluating and analyzing 
the computational optimization approaches. In total, six of them are 
selected on the basis of their physical properties and shapes. Results 
for the Ackley, Rosenbrock and Rastrigin functions are presented in 
the main text because they are widely studied and relevant results 
are extensively available in the literature. We also test three other 
synthetic functions (Griewank, Schwefel and Michalewicz), and the 
results are presented in Supplementary Fig. 10. The Ackley function 
can be written as

f(x) = −a × exp (−b
√√√
√

1
d

d
∑
i=1
x2i − exp(

1
d

d
∑
i=1
cos(cxi)) + a + exp(1), (2)

where a = 20, b = 0.2, c = 2π and d is the dimension.
The Rosenbrock function can be written as

f(x) =
d−1
∑
i=1

[100(xi+1 − x2i )
2 + (xi − 1)

2] . (3)

The Rastrigin function can be written as

f(x) = 10d +
d−1
∑
i=1

[x2i − 10 cos(2πxi)] . (4)

The three functions are evaluated on the hypercube xi ∈ [−5, 5], for all 
i = 1, …, d with a discrete search space of a step size of 0.1; we also show 
that different step sizes (within a certain range) do not affect the general 
behavior of the algorithm (Supplementary Fig. 14). We sample 20 data 
points per round when using neural networks as surrogate models. 
More details and results can be found in the Supplementary Note.

Electron ptychography
Feature engineering. The feature vector consists of eight variables: 
beam energy, defocus, maximum number of iterations, number of 
iterations with identical slices, probe-forming semi-angle, update step 
size, slice thickness and number of slices. Detailed values and their 
bounds are listed in Supplementary Table 4.

Optimization target. The objective function NMSE is calculated 
between the positive square root of the measured diffraction pattern 
IM and the modulus of the Fourier-transformed simulated exit-wave Ψ, 
which can be formulated as

1
N

N
∑
i

|||√IM(i)(u) − |ℱ[Ψi(r)]||||
2
, (5)

where r and u denote the real- and reciprocal-space coordinate vectors, 
respectively, and N is the total number of the measured diffraction 
patterns.

Correlation index. The degree of matching for a given template T by 
intensity function P is characterized by a correlation index, which can 
be defined by the following relation:

∑m
i=1 P(xi, yi)T(xi, yi)

√∑m
i=1 P2(xi, yi)√∑m

i=1 T2(xi, yi)
, (6)

where (xi, yi) is the coordinate of pixel i.

Dataset simulation. abTEM37, an open-source package, is used for the 
simulation of a TEM experiment. For this case study, we simulated a 
four-dimensional dataset of 18-nm-thick silicon along the [110] direc-
tion with Poisson noise.

Ptychographic reconstruction. The analysis is performed using 
py4DSTEM38, a versatile open-source package for different modes of 
STEM data analysis. See Supplementary Figs. 11 and 15 for more details 
about the reconstruction process.

Architected materials
Feature engineering. In this study, the objective for architected mate-
rials optimization is a Gyroid triply periodic minimal surface struc-
ture, which naturally occurs in butterfly wings and is renowned for its 
exceptional biological characteristics and mechanical performance. 
The Gyroid scaffold to be optimized comprises 27 subunits with a 
dimension of 2 × 2 × 2 mm, allowing for tuning its geometry features 
and mechanical properties by adjusting each subunit’s density. The 
density of each subunit can take discrete values from 10% to 80%, 
with an increment of 10%. The base material of the scaffold is Ti6Al4V 
alloy. Three-dimensional convolutional neural networks are used to 
accurately and rapidly assess the impact of the adjustments of the 
subunit’s density on the scaffold’s performance. Details about structure 
generation are presented in ref. 39.

Optimization target. To mechanically stimulate bone reconstruction in 
bone defects, it is well recognized that the elastic modulus of bone grafts 
should be equivalent to that of the replaced bone, which ranges from 
0.03 to 3 GPa for cancellous bone and 3 to 30 GPa for cortical bone, while 
there are specific modulus demands for different anatomical locations40. 
Moreover, it requires the optimization of load-bearing capacity to prevent 
damage during implantation. Here, we establish the modulus require-
ment for the implanted site at 2.5 GPa. Consequently, the optimization 
target is to maximize the yield strength of the scaffold while ensuring 
the elastic modulus remains within a specified range (2,500 ± 200 MPa).

Finite element simulation. Finite element (FE) simulations of the 
compressive stress–strain curves of scaffolds are conducted using 
ABAQUS 2018. The FE simulations utilize the same rigid-cylinder and 
deformable-implant-structure model. The material property is set to be 
homogeneous with a Poisson’s ratio of 0.25; more details in the calibra-
tion protocol were developed in ref. 39. Ductile damage is used to simu-
late plastic deformation up to the failure stage, with a fracture strain set 
at 0.03. The effects of triaxiality deviation and strain rate are disregarded. 
Displacement and force are extracted during postprocessing and subse-
quently converted to strain and stress, respectively. FE simulation agrees 
well with the experiment compression curves (Supplementary Fig. 16).

ML model. The initial dataset (100 density matrices) is consistent 
with our previous work39, and the corresponding elastic modulus and 
yield strength are calculated by FE simulations. Three-dimensional 
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convolutional neural networks are used to predict the elastic modulus 
and yield strength of the scaffolds with varying density matrices. The 
model architecture comprises an input layer, convolutional layers, 
fully connected layers and an output layer (refer to the Supplementary 
Note and Supplementary Fig. 17 for detailed parameters). In the input 
layer, the scaffold structure is voxelized into 60 × 60 × 60 pixels, where 
each pixel denotes either the solid phase (1) or void phase (0) within 
the scaffold. The convolutional layers are designed with a series of 
three-dimensional convolution kernels to extract high-dimension 
information about the scaffold, while the output layer delivers the 
final prediction.

Compositionally complex alloys
Feature engineering. We adopt 27 elements: Fe, Co, Ni, Ta, Al, Ti, Nb, 
Ge, Au, Pd, Zn, Ga, Mo, Cu, Pt, Sn, Cr, Mn, Mg, Si, Ru, Rh, Hf, W, Re, Ir and 
Bi, to design six-element CCAs with either bcc or fcc structures. For Fe, 
Co and Ni, the atomic ratio ranges from 0 at.% to 100 at.%, while for 
other elements, it ranges from 0 at.% to 40 at.%, with 0.5 at.% intervals. 
In addition, the total atomic percentage of Fe, Co and Ni is designed to 
fall between 60 at.% to 80 at.%. For CCAs with a bcc crystal structure, 
the Fe/(Co + Ni) ratio is required to be greater than or equal to 1.5, 
whereas for fcc structures, it is required to be less than or equal to 1.5.

Optimization target for magnetic and electric properties. The opti-
mization target is to maximize the following target:

Target = M × ρ, (7)

where M stands for magnetic moment and ρ for resistivity.

Optimization target for transport properties. The optimization target 
is to maximize the following target:

Target = AHC × AHA, (8)

while keeping the formation energy under the upper limit of 0.02.

Density functional calculation. The transport properties are 
described by the conductivity tensor σνμ (ν, μ = x, y, z). The anomalous 
Hall conductivity (AHC, σxy) and anomalous Hall angle (AHA, σxy/σxx) 
are determined in the frame of Kubo–Bastin linear response formalism 
within relativistic multiple-scattering Korringa–Kohn–Rostoker (KKR) 
Green’s function (GF) method41, which has been implemented in the 
MUNICH SPR-KKR package42. The Kubo–Bastin formalism includes 
both the Fermi-surface and Fermi-sea contributions to equal footing, in 
which the Fermi-surface term contains only contribution from states at 
the Fermi energy (EF) while the Fermi-sea term involves all the occupied 
states (with energy E) below the Fermi energy, that is,

σμυ = σIμυ + σIIμυ (9)

σIμυ =
ℏ

2πΩ Tr ⟨ ̂jμ ( ̂G
+
− ̂G

−
) ̂jv ̂G

−
− ̂jμ ̂G

+ ̂jv ( ̂G
+
− ̂G

−
)⟩ (10)

σIIμυ =
ℏ

2πΩ
∫EF−∞ Tr ⟨ ̂jμ ̂G

+ ̂jv
d ̂G

+

dE
− ̂jμ

d ̂G
+

dE
̂jv ̂G

+

− ( ̂jμ ̂G
− ̂jv

d ̂G
−

dE
− ̂jμ

d ̂G
−

dE
̂jv ̂G

−
)⟩ .

(11)

The electric current operator is given by ̂jμ(v) = −|e|cα, with e > 0 being 
the elementary charge. ̂G

+
 and ̂G

−
 denote the retarded and advanced 

GFs, respectively. The representation of the GFs for the first-principles 
treatment of equations (10) and (11) leads to a product expression 
containing matrix elements of the current operators with the basis 

functions and k-space integrals over scattering path operators. In this 
averaging procedure, the chemical disorder and vertex corrections 
are treated by means of coherent potential approximation43. For both 
Fermi surface and surface terms, the conductivity tensor partitions 
into an on-site term σ0 involving regular and irregular solutions and an 
off-site term σ1 containing only regular solutions. This formalism has 
been validated to provide consistent residual and anomalous Hall 
resistivities with experiments41; more details can be found in the Sup-
plementary Note.

ML model. Initial 200 CCAs are randomly generated following the pre-
viously described design rules, and their corresponding AHA, AHC and 
formation energy are calculated by density functional theory (DFT). For 
CCAs with bcc grain structures, 154 configurations ultimately converge 
in the DFT calculations, whereas for fcc structures, there are 178. We 
train one-dimensional convolutional neural networks to predict the 
AHA, AHC and formation energy of the CCAs. The model architecture 
includes an input layer, convolutional layers, fully connected layers 
and an output layer (see the Supplementary Note and Supplementary 
Fig. 18 for detailed parameters).

Cyclic peptide binder
Feature engineering. We represent the cyclic peptide as a sequence 
of integers that range from 0 to 19, with each number corresponding 
to a distinct type of canonical amino acid. The leaf node within the 
DANTE framework is obtained through stochastic expansion. In this 
process, two complementary strategies are used: one that introduces 
random mutations in existing sequences and another that generates 
entirely new sequences, ensuring a comprehensive exploration of the 
sequence space.

Optimization target. The optimization target of cyclic peptide binder 
is defined as follows:

Target = SC × dSASA/100, (12)

where SC stands for shape complementarity, and dSASA represents 
the change in solvent-accessible surface area before and after interface 
formation. The SC value ranges from 0 to 1, referring to how well the 
surfaces of two proteins fit geometrically together at their interface; 
dSASA measures the size of the interface (in units of Å2). Both metrics 
are essential to assess the quality of the interface. Therefore, we mul-
tiply these two metrics to formulate a multiobjective optimization 
problem, which is used to evaluate the performance of DANTE.

Dataset. Fourteen unique protein and canonical cyclic peptide com-
plexes are sourced from the Protein Data Bank, with peptide lengths 
ranging from 7 to 14 amino acids. We perform three different optimiza-
tion tasks using DANTE, gradient descent (GD) and Markov chain Monte 
Carlo (MCMC). The tasks start from a random initial sequence. The 
structure with the highest target value is selected as the best structure. 
For each task, we performed three independent tests.

Alphafold2 settings. The structure of protein and cyclic peptide 
binder complex is predicted by Alphafold2-multimer implemented 
in ColabDesign. A modified offset matrix for the relative positional 
encoding of a target protein and cyclic peptide complex is adapted to 
give the structure with high accuracy44. For designing a cyclic peptide 
binder, the binder hallucination protocol is utilized for both GD and 
MCMC methods. In this study, we maintain the length of the cyclic 
binder and the interaction site hotspots consistent with those found 
in nature. For GD, the method ‘design_pssm_semigreedy()’ is used, set-
ting soft_iter to 120 and hard_iter to 32. The loss function is a weighted 
sum of pLDDT (predicted local distance difference test) and interface 
contact loss, with other parameters left at their default settings. For 
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the MCMC method, a total of 1,000 steps are executed to find the 
sequence achieving the highest pLDDT. More detail can be found in 
the Supplementary Note.

Rosetta interface analyzer. The SC and dSASA values for the predicted 
structure of the protein and cyclic peptide complex are computed using 
the Rosetta Interface Analyzer. Initially, the Rosetta minimize protocol 
is applied to obtain the structure with minimum energy proximal to the 
initial conformation. To ensure that cyclic peptides within the complex 
retain their cyclic nature and do not become linear, the options ‘-use_
truncated_termini’ and ‘-relax:bb_move false’ are used. Subsequently, 
the minimized complex serves as the input for the interface analyzer.

Data availability
Source data are provided with this paper. All initial datasets in this 
work are randomly generated. Source data are also available via GitHub 
at https://github.com/Bop2000/DANTE/, as well as via Zenodo at  
https://doi.org/10.5281/zenodo.16225698 (ref. 45).

Code availability
Code for DANTE is available at via GitHub at https://github.com/
Bop2000/DANTE/, as well as via Zenodo at https://doi.org/10.5281/
zenodo.16225698 (ref. 45).
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Extended Data Table 1 | Number of data points needed to achieve the global optimum

Ackley-20 Ackley-100 Rastrigin-20 Rastrigin-100 Rosenbrock-20 Rosenbrock-100 Schwefel-20 Griewank-20

Max # of 
samples

1,600 2,800 1,000 2,000 6,300 10,500 1,000 1,000

Random N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.

TuRBO5 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.

LaMCTS N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.

CMS-ES N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.

Diff-Evo N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.

DA 428 ± 114 N.A. N.A. N.A. N.A. N.A. N.A. N.A.

Shiwa N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.

MCMC 408 ± 65 N.A. N.A. N.A. N.A. N.A. N.A. N.A.

DOO N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.

SOO N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.

VOO N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.

DANTE 292 ± 65 1788 ± 139 220 ± 74 444 ± 55 4263 ± 1111 3098 ± 1031 N.A. 860 ± 115

Results are averaged over 5 trials, and ± denotes the standard deviation. N.A. (Not Available) indicates that it does not reach the global optimum.
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Extended Data Table 2 | The max convergence dimensions on synthetic functions

Ackley Rastrigin Rosenbrock Griewank

DANTE 1500 2000 200 500

SOTA 100 100 10 60

This table shows the highest dimension at which DANTE and SOTA methods (Random search, DOO, SOO, VOO, Shiwa, differential evolution, dual annealing, MCMC, LAMCTS, CMA-ES, 
TuRBO5) achieve global convergence, with DANTE outperforming SOTA on higher-dimensional tasks.
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Extended Data Fig. 1 | High-dimensional, high-cost real-world tasks.  
(a) Optimizing the mechanical properties of architected materials by DANTE 
and generative architecture design (GAD, baseline). (b) Uniform manifold 
approximation and projection (U-MAP) 2D representation of results from 
two methods. (c) Stimulated strain-stress curve of both methods. The inlet 
shows the density matrix. (d) Optimizing the electronic properties of complex 
concentrated alloys (CCAs) by DANTE and MCMC (baseline). (e) U-MAP 2D 
representation of input distribution from both methods. (f) The curves along 

a selected momentum path on the Fermi surface, a quantitative measure for 
describing the smearing. (g) Optimizing the protein-protein interactions (PPIs) 
using DANTE and other two methods. Box plots indicate median (middle line), 
25th, 75th percentile (box), and 1.5 × interquartile range (whiskers). n = 41 for 
1st and 2nd iterations, n = 42 for 3rd iteration, Native, GD (gradient descent), and 
MCMC. (h) An example of Alphafold2 predicted complex (pdbid: 4ib5). The cyclic 
peptide is designed by DANTE. (i) Interaction diagram of DANTE peptide with the 
target protein.
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