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Inferring optimal solutions from limited data is considered the ultimate
goalinscientific discovery. Artificial intelligence offers a promising

avenue to greatly accelerate this process. Existing methods often depend
on large datasets, strong assumptions about objective functions, and
classic machine learning techniques, restricting their effectiveness to
low-dimensional or data-rich problems. Here we introduce an optimization
pipeline that can effectively tackle complex, high-dimensional problems
with limited data. This approach utilizes a deep neural surrogate to

iteratively find optimal solutions and introduces additional mechanisms to
avoid local optima, thereby minimizing the required samples. Our method
finds superior solutions in problems with up to 2,000 dimensions, whereas
existing approaches are confined to 100 dimensions and need considerably
more data. It excels across varied real-world systems, outperforming current
algorithms and enabling efficient knowledge discovery. Although focused
onscientific problems, its benefits extend to numerous quantitative fields,

paving the way for advanced self-driving laboratories.

Modern society benefits tremendously from superior solutions in
engineering control systems, materials science, physics, biology and
computer science. These advancementsimprove infrastructure, health-
care and technology, enhancing quality of life and addressing global
challenges. Examplesinclude use of advanced engineering control for
autonomous systems, the discovery of high-performance alloys for
better and more sustainable building materials and the development
of life-saving pharmaceuticals, including drugs optimized to combat
diseases such as COVID-19'. However, identifying such superior solu-
tions is challenging due to the vast size and often highly nonlinear
nature of the search space.

Moreover, conducting experiments or simulations can be
extremely costly, with processes such as synthesizing and charac-
terizing advanced alloys or drug-revelant molecules often costing
millions of dollars and taking months or even years of intense labor.

Optimization performed by human experts typically relies on educated
trial-and-error navigation of the search space, often leading to substan-
tial expenditures of both resources and time, particularly in cases of
highly nonlinearinteractions. The rise of artificial intelligence (Al) offers
apowerful alternative that can minimize humanbias and achieve better
solutions at minimal cost. Unlike traditional optimization algorithms,
which are generally assessed on the basis of function evaluations, these
data-driven Alalgorithms operateinaclosed loop to guide experiments
orsimulations, iteratively identifying and labeling the most informative
data points todiscover the next best candidates while minimizing data
labeling efforts. This approach is known as active learning (AL)**, and
there has been a surge of interest in developing AL-based self-driving
laboratory in all areas of physical, chemical and biological science’™’.
Asillustrated in Fig. 1, We designate our algorithm as active opti-
mization (AO), which aligns closely with Bayesian optimization (BO) in
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Fig.1|Deep AO with neural-surrogate-guided tree exploration (NTE).

a, Database of the complex system of interest. b, DNN that learns the input—
outputrelationship. ¢, NTE uses the DNN as the surrogate model to find the
optimal designs. Here, alloy compositions and protein sequences are used as
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examples, starting from random initial designs and converging to optimal ones.
d, The validation source provides ground truth for the top candidates. Here,
three examples are used: FE methods, DFT and AlphaFold.

terms of its objectives and overall framework. However, BO primarily
utilizes kernel method and uncertainty-based acquisition function to
identify ‘optimal’ candidates, whereas AO generalizes the application
of surrogate models and search methodologies, allowing adaptation
across awider variety of method types, thereby enhancingits versatility
and scope beyond traditional BO approaches. Furthermore, AOis akin
tothe AL framework but differsin terms of its goal—instead ofimprov-
ing the model predictivity, AO aims at finding the optimal solutions
with arelatively smallinitial dataset (from a few dozen to hundreds).

Itiswellaccepted that the knowledge of the internal interactions
inherentin many complex systems (validation source) are usually not
fully accessible and the structure, gradient and convexity of the objec-
tive functionare unknown'. Therefore, asurrogate modelis often used
to treat such nonconvex, nondifferentiable systems as a ‘black box’
and approximate the solution space of the complex system through a
learning model™ 2. Some machine learning (ML) models, such as Bayes-
ianmethods, heavily rely onassumptions about prior distributions or
feature engineering” ", while others, such as decision trees, are prone
tooverfittingand are limited to processing specific data types, suchas
tabular formats. Consequently, they often struggle to accurately cap-
tureintricate relationships and dependencies in high-dimensional big
datasets, leading to poor generalization in unseen scenarios and slower
convergencein high-dimensional spaces'®”. The advancements of deep
neural networks (DNNs) presenta compelling alternative for approxi-
mating high-dimensional nonlinear distributions of any data type'®",
and the effectiveness of this approach is indicated by its remarkable
accomplishments across various fields, including image classification,
natural language processing and autonomous vehicles***.

Another approach that could identify optimal solutions within
complex systemsis the so-called reinforcementlearning (RL), whichis
defined as an ML algorithm that searches for optimal solutions through
interactions with anenvironment. However, RL differs from ALin three
major aspects, asit often requires (1) easy access to reward functions, (2)
numerous training dataand (3) cumulative reward. In particular, the RL
that combines DNNs with the Monte Carlo tree search (MCTS) method
has demonstrated remarkable successinsuch tasks, particularly when
large datasets are accessible and cumulative objectives are considered.

Its tremendous success is exemplified by the superhuman performance
of Al players such as AlphaGo, AlphaZero and AlphaStar in various board
and strategy games® ‘. Despite these considerable advancements,
combining DNN with tree searchmethods to tackle complex problems
with limited data availability and noncumulative objectives remains
elusive. This challenge arises from two primary factors:

(1) RL generally needs extensive access to reward functions or large
datasets for training, whereas real-world problems often have
limited, costly-to-collect data, making it difficult to train effec-
tive policy networks>?,

(2) MCTS is mainly suited for cumulative reward maximization in
sequential decision-making and is less naturally adapted for
noncumulative objectives, despite its success in superhuman
AI27729.

Nevertheless, recent studies have utilized MCTS to iteratively
partition the search space and select solutions based on upper con-
fidence bound (UCB) and classic learning models. These methods
encounter challenges when addressing high-dimensional, nonlin-
ear distributions®**". The number of partitions in high dimensions
increases exponentially, and the local models struggle to generalize
to the complex distribution, resulting in suboptimal performance in
these tasks™.

In this work, we introduce deep active optimization with neural-
surrogate-guided tree exploration (DANTE) for the accelerated
discovery of superior solutions to real-world systems characterized by
limited data availability (initial data points ~200 and sampling batch
size<20) and noncumulative objectives. Our pipelineisrather general,
capable of addressing a wide range of scenarios. The pipeline begins
with adatabase used totraina DNN, which serves asasurrogate model.
Subsequently, a proposed tree search, modulated by a data-driven UCB
(DUCB) and the DNN, is used to explore the search space of the complex
system through backpropagation method (Fig.1). Top candidates are
sampled and evaluated using validation sources, with the new labeled
databeing fed back into the database (Fig. 1d).

Webenchmarked DANTE against various AL algorithms to evaluate
itsperformance across these diverse settings. First, we evaluate DANTE’s
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performance across six easily computable nonlinear synthetic functions
with known global optima, covering dimensionalities ranging from 20
t0 2,000. DANTE consistently outperforms all state-of-the-art (SOTA)
methods in these tests, achieving the global optimum in 80-100% of
cases while using as few as 500 data points. Second, we assess DANTE
onreal-world problems across various disciplines, including computer
science, physics, optimal control and materials science. In these sce-
narios, ground-truth labels are noise-free and obtainable at a reason-
able cost. Nonetheless, the search spaces are often constrained by
external nonlinear conditions, adding complexity to the tasks. DANTE
consistently identifies superior solutions, outperforming other SOTA
methods by 10-20% inbenchmark metrics, all while utilizing the same
number of data points. Finally, we apply DANTE to resource-intensive,
high-dimensional, noisy and complex tasks with unknown optima,
such ascomplexalloy design, architected materials design and peptide
binder design. In these cases, DANTE successfully identifies superior
candidates, achieving improvements of 9-33% while requiring fewer
data points relative to SOTA methods. Through extensive investiga-
tionsintothelearning process, we validate that theintegration of deep
learning and tree search is effective for discovering optimal solutions
across diverse disciplines, utilizing minimal data points.

Results
Neural-surrogate-guided tree exploration
The neural-surrogate-guided tree exploration (NTE) is the key com-
ponent of DANTE, aiming at optimizing exploration-exploitation
trade-offs through a number of visits and an ML model to deal with
noncumulative reward optimization problems. It resembles the setting
of RL, but without the need to train an actor policy network.
NTEisinherently afrequentist’s approach and uses the number of
visits to facilitate the exploration-exploitation trade-off. Unlike tradi-
tional Bayesian black-box optimization algorithms, which primarily use
uncertainty as the basis for this trade-off, NET treats the number of visits
to a particular state as a measure of uncertainty. The more frequently
astateisvisited, the lower its associated uncertainty. This approachis
common in MCTS-based methods. We have made some key modifica-
tions that deviate from traditional settings, enhancing our methodol-
ogy’s effectiveness. In the following sections, we explain the working
principles of NTE and therationale behind theintroduced mechanisms.

Conditional selection

Stochasticrolloutis composed of two subcomponents: (1) stochastic
expansion of the root nodes and 2) local backpropagation. The NTE
algorithm performs the search by iteratively executing conditional
selection and stochastic rollout until the stopping criteria are met.
In the first step, the root node initiates the generation of leaf nodes,
whichinvolves applying stochastic variations to the feature vector—a
process termed stochastic expansion (see ‘Technical details of NTE
sectioninthe Methods).

Figure 2d conceptuallyillustrates how conditional selection helps
to explore the search space by addressing the ‘value deterioration
problem’. A search tree without conditional selection often results
in lower-value leaf nodes being selected during expansion, leading
to arapid decline in value and ultimately hindering the discovery of
superior nodes. In NTE, if the DUCB of the root node exceeds that of
all leaf nodes, the search continues with the same root node in the
next round. If any leaf node has a higher DUCB, it becomes the new
root, proceeding to stochastic rollout. This mechanism encourages
the selection of higher-value nodes. As demonstrated in Fig. 3b, NTE
without conditional selection requires up to 50% more data points to
reach the global optimum (Supplementary Fig. 1).

Local backpropagation
In noncumulative objective problems, the aim is to find the optimal
single state rather than an optimal sequence of states. Conventional

backpropagation techniques update values and visitation counts along
the entire search path, which is suited for sequential optimization.
Meanwhile, local backpropagation updates only the visitation data
between the root and the selected leaf node, preventing irrelevant
nodes frominfluencing the present decision. This mechanismenables
DANTE to escape local optima by preventing repeated visits to the
same node.

Figure 2e conceptually illustrates how DANTE progressively
escapes local maximaby climbing aladder formed throughlocal back-
propagation. When DANTE is trapped in a local optimum, repeated
visits to the same node trigger updates in the DUCB values of the root
and neighboring nodes, generating a local DUCB gradient that helps
guide the algorithm away from the local optimum. Figure 3b shows
that, without local backpropagation, DANTE struggles to converge
even after 10,000 data points.

DUCB

The DUCB formula is a core component of the DANTE framework,
designed to dynamically balance the exploration-exploitation trade-off.
It can be expressed as follows:

2logN
DUCB = _— 1
UML+coxc(p)><\/n+1 ()

where vy, represents the value of the current node predicted by DNN.
Let prepresent the ground-truth distribution, and let c(p) be ascaling
factor that adjusts based on this distribution. Nis the number of visits
of current root node, and n is the number of visits of the current leaf
node. Without loss of generality, we assume that the goal is to search
for the global maximum; we define c(p) = max(p). c,isahyperparam-
eter constant that ranges from 0.01to 1. In the following, we provide
the rationale behind those terms.

The shift from UCB to DUCB is motivated by the challenges of
high-dimensional noncumulative objective problems. In these
high-dimensional search spaces, the vast majority of states remain
unexplored, leading to visit counts of n =0, resulting in infinite UCB
values. Consequently, atree search using UCB must visit all leaf nodes
at least once to obtain finite values for comparison, whichimposes a
high computationalburden.Inaddition, UCB typically relies on millions
of simulations to produce reliable estimates, further exacerbating the
computational cost. To address thisissue, DUCB modifies the original
UCB formulabyincorporating DNN predictions for node value estima-
tionand adding1to the denominator, effectively treating all nodes as
if they have been visited at least once. This adjustment ensures that
DUCB consistently yields finite values for every node, eliminating the
need for exhaustive stochastic rollouts at each leaf.

Adaptive exploration

Figure 2c illustrates the adaptive exploration mechanism used by
DANTE. This mechanism encourages a more aggressive exploration
strategy when high-value data points are discovered in the previous
iteration. Specifically, c(p) becomes larger as high-value data points
are identified, enhancing the exploration termin the DUCB formula.
This dynamicadjustmentintensifies exploration in promising regions,
enhancing exploration of valuable areas while maintaining sufficient
exploitation, thereby increasing the likelihood of identifying more
superior solutions. The ablation study shown in Fig. 3b indicates that
DANTE, when lacking adaptive exploration, requires 50% more data
points to reach the global optimum. Figure 3c qualitatively demon-
strates the efficiency of DANTE by visualizing the search history of
DANTE and its ablated variants using a two-dimensional uniform mani-
fold approximation and projection (UMAP) representation (a dimen-
sionality reduction technique®) applied to Rosenbrock-100d synthetic
tasks. The results clearly show that DANTE swiftly identifies the ‘hot-
spot’ region associated with the global optimum and subsequently
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concentrates its search efforts in that vicinity. By contrast, the other
variants fail to locate this hotspot, further reinforcing the findings
from the ablation study.

DNN s the key

Before undertaking expensive real-world tasks, it is crucial to bench-
mark various AO algorithms on both synthetic tasks with known global
optimaat various dimensions and low-cost, low-dimensional real-world
benchmark tasks, which can offer valuable insightsinto the algorithm’s
efficiency and effectiveness across different contexts. As shown in
Fig. 3a, the benchmark study demonstrates that, in comparison with
traditional AO pipelines, DANTE is capable of addressing awide range
of scenarios: low-to high-dimensional problems, from easy to hard data
acquisition tasks, and from simple to complex systems.

We use well-established high-dimensional, nonconvex synthetic
functions with known global optima for our benchmark tests, which
have been widely used to evaluate the performance of optimization
algorithms. Unlike traditional optimization algorithms, where the
process is often parallelizable and primarily focuses on the number
of function evaluations required to reach the global optimum, our
benchmark study uses these synthetic functions to mimic the com-
plex data distribution generated by various validation sources. Our
aimis to assess the number of data points an AO algorithm needed to
reach these optimaunder different scenarios. Specifically, to compare
the performance of DANTE with other AL algorithms regarding the

number of data points required to achieve the global optimumina
quantitative and cost-effective manner, we selected six widely used
synthetic functions (known for their difficulty in locating the global
optimum) as the validation source, with dimensions ranging from
20 to 2,000 (for example, Ackley, Rastrigin, Rosenbrock, Griewank,
Schwefel and Michalewicz functions; Methods, Supplementary Note
and Supplementary Table 1). We present and analyze the key resultsin
Table 1 and Extended Data Tables 1 and 2. For example, The Rastrigin
functionis highly multimodal, featuring numerous local maximain the
ground-truth landscape. The Rosenbrock function contains along val-
ley with multiple local maxima (Supplementary Fig. 2). These features
make these functionsideal benchmarks for assessing the performance
of AL algorithms.

Wedemonstrate that DANTE is most effective when integrated with
the DNN. Figure 3d-f shows representative examples (Ackley-100d,
Rastrigin-100d and Rosenbrock-60d) comparing the performance
of the DNN with six mainstream regression models (that is, decision
trees, random forests, linear regression, kernel ridge regression,
Gaussian processes and support vector machines). The results indi-
catethat DANTE successfully converges to the global optimum onthe
Ackley-100d, Rastrigin-100d and Rosenbrock-60d tasks, requiring
approximately 500, 2,000 and 5,000 data points, respectively. Notably,
DANTE exhibits an exponential convergence rate, quickly approach-
ing near-optimal solutions after 100,1,500 and 2,000 data points. By
contrast, when DANTE is combined with other ML surrogate models,
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available. Data are presented as mean values +s.d., n =5. f(x) represents the
value of the function. b, An ablation study using the Rosenbrock-100d function,
evaluated by convergence ratio required to reach the global optimum. n =10.

¢, Asmaller sampling batch size leads to a faster convergence rate. Dataare
presented as mean values +s.d., n=5.d, UMAP visualization of the search
trajectories for DANTE and its ablated variants, demonstrating that DANTE
efficiently identifies and concentrates on the vicinity of the near-optimal region.
e-g, Thelearning progress of DANTE on the Rastrigin-100d (e), Ackley-100d

(f) and Rosenbrock-60d tasks (g), highlighting the performance of DANTE
equipped with various ML models. DNN consistently outperforms other models,

Number of data acquisition
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showcasing its superior ability to learn and adapt in these complex, high-
dimensional optimization landscapes. KRR, kernel ridge regression;

GP, Gaussian process; Lasso, least absolute shrinkage and selection operator;
RF, random forest; GBDT, gradient-boosted decision trees; SVM, support vector
machine. Data are presented as mean values *s.d., n=5.h-j, Thelearning
progress of various search methods on the Rastrigin-1,000d (h), Ackley-200d (i)
and Rosenbrock-100d (j) functions, highlighting DANTE'’s fast convergence rate
toward the global optimum. DOO, deterministic optimistic optimization; SOO,
simultaneous optimistic optimization; VOO, Voronoi optimistic optimization;
Diff-Evo; differential evolution; DA, dual annealing; LaMCTS, latent action
MCTS; TuRBO, trust region BO; CMA-ES, covariance matrix adaptation evolution
strategy. Data are presented as mean values +s.d., n=5.
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Table 1| Lowest value achieved by various AL methods on synthetic benchmarks

Ackley-20  Ackley-100 Rastrigin-20 Rastrigin-100 Rosenbrock-20 Rosenbrock-100 Schwefel-20 Griewank-20
Unit 1 1 x10? x10° x10* x10* x10° 1
Maximum 1,600 2,800 1,000 2,000 6,300 10,500 1,000 1,000
number of
samples
Random 759 £0.7 9.23+0.13 218+0.15 1.47+0.016 2.380+0.119 64.60+0.936 550+ 011 2331+25.49
TuRBO5 0.37+0.14 1.73+0.18 0.52 +0.04 0.40+0.034 0.003+0.000 0.127 + 0.066 2.84+0.79 1177 £ 0.049
LaMCTS 1.96 +0.75 5.05+0.73 0.80+0.30 0.82+0.044 0.008 + 0.005 0.652 +0.098 3.32+0.33 0.956 +0.047
CMS-ES 075+0.09 2.85+0.04 0.78+0.03 0.97 +0.017 0.006 + 0.004 0.037+0.004 5.28+0.44 236.7 + 45.85
Diff-Evo 6.43+0.16  813+0.19 1.88+£0.12 1.30+0.032 0.797 + 0.115 28.30 +2.690 510+0.17 1276 +12.25
DA 0.00+0.00 3.28+0.19 1.29+0.06 0.53+0.039 0.005 +0.003 0.908 +0.088 2.38+0.39 1.252 +0.264
Shiwa 443+0.07 578+0.52 2.48 +0.02 119+ 0.047 2.266 + 0146 0.240+0.022 5.49 +0.32 0.175+0.246
MCMC 0.00+0.00 4.79+0.16 0.89+0.27 0.73+0.038 0.011+0.006 0.088 + 0.036 211+0.86 5.858 + 8.782
DOO 717 £0.37 9.44 +0.09 2.22+014 1.50+0.044 1.640 + 0.456 72.22 +2.700 5.56 +0.29 164.2 +21.41
SO0 775+018 9.40 +017 2.24+0.08 1.54+0.027 2760+ 0.744 76.30+2.700 2.89+218 87.67+4.048
VOO 244+049 5.23+017 1.03+0.13 0.92+0.028 0.006 + 0.000 2107 £0.324 5.38+0.08 0121+ 0.091
DANTE 0.00+0.00 0.00+0.00 0.00+0.00 0.00 + 0.00 0.0003 +0.0005 0.002+0.004 1.20 + 0.49 0.000 + 0.000

Results are averaged over five trials, with + indicating the s.d. The global optimum for these functions is O. The bold font denotes the best results in this column.

it often becomes trapped in local optima, remaining notably distant
from the global optimum even after utilizing 10,000 data points. These
results suggest that the DNN is superior in learning and representing
the complexities of the nonlinear search space (our DNN comprises
a series of convolutional layers (more than 5), followed by pooling,
dropout and normalization layers; for further details, see the Methods,
Supplementary Note and Supplementary Fig. 3).

Overall, the evidence presented in Fig. 3a,e suggests that BO per-
forms wellinlow-dimensional settings, whereas DANTE excels at navi-
gating and locating optima within approximately high-dimensional
landscapes. These findings emphasize that selecting the most suitable
pairing of surrogate and search models—based on the problem’s dimen-
sionality and nonlinearity—is crucial for achieving optimal overall
performance.

From low to high dimensions, from easy to hard data
acquisition

We conduct a thorough ablation study and summarize our results in
the Methods. We demonstrate that DANTE consistently outperforms
other search methods. Specifically, we evaluate DANTE alongside 11
SOTA algorithms across various categories, including heuristic, Bayes-
ianand tree-based methods. For algorithms lacking a surrogate model,
we use DNN as the surrogate. Table 1and Extended Data Table 1 present
benchmark results for the best-achieved values and the number of
samplesrequiredto reach the global optimum across various synthetic
functions, each with a global optimum of 0. The data demonstrate
that DANTE consistently attains the global optimum with the fewest
data points in most tasks, whereas most competing methods fail to
achieve the global optimum altogether. As indicated in Fig. 3a, the
BO-based algorithm converges faster than DANTE at low dimensions
(<10) and with small initial datasets (<20), while DANTE shows a bet-
ter performance with higher dimensions and bigger initial datasets.
In addition, Fig. 3c shows that a smaller sampling batch size leads to
afaster convergence rate. More benchmark results are presented in
Supplementary Figs. 4-7.

Figure 3h-j depicts the learning progress of various methods
on three high-dimensional tasks: Rastrigin-1,000d, Ackley-200d and
Rosenbrock-100d, each tested five times with different random seeds.
Itis evident that DANTE converges notably faster than all baseline
algorithms, while some baselines fail to run due to memory constraints.

Notably, DANTE identifies the global optimum of Rastrigin-1,000d with
just 3,000 data points, whereas other baselines struggle with the vast
search space, showing minimal progress. A detailed summary of the
benchmarkresults regarding dataacquisition for optimal performance
is presented in Extended Data Table 1. Itis clear that most AL algorithms
failtoreach the global optimum for these tasks withinthe available data
limits (for additional results, see Supplementary Figs. 8-10).

Weselect four noise-free, real-world tasks with relatively easy data
access: (1) neural network architecture search on CIFAR-10, aimed at
optimizing architecture for maximum test accuracy** on the CIFAR-10
dataset®; (2) optimization of complex concentrated alloys (CCAs) for
improved magnetic properties and resistivity; (3) the optimal control
problemof lunar landing, seeking to maximize landing reward; and (4)
resolution optimization of transmission electron microscopy (TEM)
images. Notably, the search space for these real-world tasks is often
constrained by nonlinear external conditions, adding complexity to
the learning process and limiting the selection of baseline methods.
Further technical details on these benchmarks are provided in the
Methods.

Figure 4 demonstrates that DANTE notably outperforms other
AL methods across these real-world tasks. While we consider DANTE
and RL (for example, policy proximal optimization (PPO)) to pertain
todistinct categories of methodologies interms of (1) quantity of data
needed, (2) data accessibility and (3) nature of reward (Fig. 4a), they
can still be compared under specific conditions in the lunar landing
task, such as a fixed initial position and random seeds. Under these
conditions, DANTE demonstrates comparable, or even better, perfor-
mance compared with PPO, particularly in the initial stages where PPO
essentially performs at arandom level, indicating its need for a large
amount of data (Fig. 4d). However, a notable advantage of PPO is its
adaptability, allowing it to be trained for varying environments, such
asdifferentinitial positions and speeds. Inthe neural network architec-
ture search task, it achieves near-optimal accuracy of 94.1% with only
200 data points, compared with the global optimum of 94.3%. In the
magnetic CCA task, it identifies compositions with 20% higher mag-
netic properties usingjust 140 data points. For the lunar landing task,
by converting the probleminto anoncumulative optimization through
fixating theinitial positions and predesigned actions at set time inter-
vals (Supplementary Note), DANTE achieves an average reward of 100
after10,000 samples, whereas other methods remain below 50. Inthe
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Fig. 4 |Real-world benchmark tasks. a, Deep AO is different from RL in terms
of quantity of dataneeded, data accessibility and nature of the reward. b, Neural
network architecture search on CIFAR-10. Data are presented as mean values,
n=5.c, Thelunarlanding problem. Data are presented as mean values, n = 5.

d, Inthe lunar landing problem, DANTE demonstrates comparable, or even
better, performance compared with PPO, particularly in the initial stages

where PPO essentially performs at arandom level, indicating its need for alarge

Magnetic moment (u;)

amount of data (fixed random seed). However, a notable advantage of PPO is its
adaptability, allowing it to be trained for varying environments, such as different
initial positions and speeds. Data are presented as mean values +s.d.,n=5.

e, Searching for soft magnetic alloy with high resistivity. f, Resolution
optimization of TEM images is guided by correlation index. DANTE framework
outperforms expert’s choice, BO and TuRBOS.

TEM resolution optimization task, reconstruction quality is evaluated
usinga correlationindex, which compares the phase of simulated and
reconstructed transmission functions (Supplementary Note). DANTE
achievesthe highest score of 0.958, surpassing even the human expert
(details in Supplementary Fig. 11 and Supplementary Table 2).

Morereal-world problems thatinvolve larger search spaces, more
external constraints, noisy labels and highly nonlinear input-output
relationships canbe found in Extended Data Fig.1and Supplementary
Note. In these cases, the labels may contain various forms of noise,
and acquiring them is both resource intensive and time-consuming,
with the optimum often remaining elusive. We demonstrate that the
DANTE framework can effectively address these complex tasks without
relying on large datasets.

Discussion

Looking ahead, the current bottleneck lies in the expressive power
of the surrogate model and available computer memory rather than
in DANTE’s inherent capacity. There is potential for DANTE to further
push the boundaries of dimensionality by using more sophisticated
surrogate models and leveraging larger computing resources, enabling
it to address extremely high-dimensional and nonlinear problems
beyond 2,000 dimensions inadata-driven manner. We envision numer-
ous opportunities to apply our method across various quantitative
sciences. One particularly promising avenue for future application is
theintegration of our approach with robotic systemsto facilitate auto-
mated experimental design, thereby accelerating materials discovery

and synthesis. Another interesting potential applicationlies in financial
optimization, where the objectiveis to allocate resources effectively to
maximize returns or achieve specific financial goals. We anticipate that
our algorithms will soon become standard practice, seamlessly inte-
grated with virtual or experimental setups across multiple disciplines
totackle high-dimensional and nonlinear optimization tasks that were
previously deemed intractable. This interdisciplinary approach holds
great promise for unlocking further solutions and advancing research
and practice in various fields.

Methods
Framework of AO
We summarize our key innovations as follows:
« Adata-driven formula that leverages the number of visits
and ML from a small initial dataset to effectively manage the
exploration-exploitation trade-off. This markedly differs from
the UCB formula utilized by MCTS, which relies on the average
node value and the number of visits derived from numerous
simulations.
Local backpropagation that ensures a balanced exploration-
exploitation trade-off for the noncumulative reward problems.
« Adaptive exploration mechanism that favors exploration over
exploitation under certain circumstances.
« Amodified epsilon-greedy sampling technique that samples
best-scored candidates and most-visited candidates at the same
time.
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While Fig. 1 provides the flowchartillustration of the AL loop, We
provide a mathematical formulation framework of the AL problem
(referring to materials science as a demonstrator).

Specifically, let X denote the input space (representing, for exam-
ple, materials such as chemical compositions, specific crystalline
structures and so on). Let Y represent the output space, whereye Y
(y < +e) denotes the specific property or property spectrum of interest
(for example, mechanical strength or resistivity) The goalis to identify
the optimal material x' € X that maximizes or minimizes a property
while minimizing the number of labeled data points required. Theinitial
labeled dataset L consists of D = {(x;, y,)};, where nis the number of initial
data points (n =200 in this study). xis the input vector, Xis defined as
thesearchspace, typically R¥,and Nis the dimension. fis the determin-
istic function that maps the input x to the ground-truth label y. The
surrogate modelfylearns theinput-label relation through the dataset
D = {(x,y)};, and nis the number of labels and y, is the label of x;.

The AL loop involves iteratively selecting the samples from X,
based onasearchalgorithm Q(x;f;), and retraining the surrogate model
fo-Ateachiterationt:

(1) Model training: train the modelf, using the current labeled
dataset D:

0" = argmingEy,)p[L(6: x, )],

where L is the loss function.
(2) Search and selection: select a subset of k samples x,.,, € X based
on f,using a search algorithm Q(x; f;) (k=20 in both benchmark
and real-world studies):

Xnew = argmaxxe)(fﬁ‘

(3) Labeling and updating: obtain the labels y,.,, for the selected
samples x,,.,, and add them to

D < D u{(XnewsYnew)}-

RL is another commonly used method for identifying optimal
solutions. Differences in AL and RL lie in three main aspects: (1) data
accessibility, (2) the quantity of data needed and (3) the nature of
rewards (noncumulative versus cumulative).

« Dataaccessibility: In typical RL settings, a policy network
interacts with the environment, requiring easy access to reward
functions. By contrast, AO, particularly in scientific contexts,
often deals with limited access to reward functions. For instance,
in materials science, it might take months to obtain just a few
labeled data points.

Quantity of data needed: RL training commonly demands large
amounts of labeled data or observations to develop an effec-
tive policy network. AL, however, operates in a low-data regime,
usually with fewer than 1,000 data points, and requires only a
value-estimation network.

Nature of rewards: RL algorithms are primarily used for trajec-
tory planning and optimal control problems, involving sequen-
tial decisions and cumulative rewards. Conversely, AL typically
focuses on maximizing the current reward functions.

Technical details of NTE

There are three modes of action for the stochastic expansion, each
occurring with equal probability (that is, 1/3). (1) One-step move: this
mode represents the smallest possible change at a single position of
the feature vector. (2) Single mutation: in this mode, one position of
the feature vector randomly mutates to any value within the allowed
range. (3) Scaled random mutation: this mode involves a proportion
of the feature vector randomly mutating to any allowed values. The
number of leaf nodes equals the dimension of the feature vector.

A real-world complex system often can be represented as a vec-
tor or a matrix. For example, in materials science, searching for a
high-performance CCAs can be formulated as optimizing the proper-
ties by tuning the alloy compositions®; In biology, the protein design
can be approached as improving biofunctionalities by optimizing a
sequence consisting of 20 amino acids. Weimplement a convolutional
neural network for the deep learning surrogate model. It consists of
convolutionallayers and is followed by pooling, dropout and normali-
zationlayersto prevent overfitting. The network parameters are opti-
mized using Adam Optimizer, and the loss function is the mean-squared
error or mean absolute percentage error. More detailed parameters are
foundinthe Supplementary Note and Supplementary Fig. 3.

Standard MCTS consists of four major steps: selection, expan-
sion, simulation and backpropagation (Supplementary Fig. 12). We
summarize key differences between DANTE and MCTS.

(1) The MCTS backpropagation mechanism uses the result of the
rollout to update both value and visitation of the nodes along
the path, which affects all nodes (from root to end node) at a
global level. The local backpropagation updates only the visita-
tion information of the current root node and the subsequent
leaf nodes. We do not update the value information because our
optimization problem focuses solely on discovering a single
optimal state and retains little ‘memory’ of previous states.
Therefore, value information is not backpropagated, and visita-
tion backpropagation is short-ranged, relying only on nearby
visitation data to guide exploration.

(2) MCTS selection step chooses the leaf node with max UCB and
proceeds to the next expansion with the selected leaf node,
whereas the expansion of NTE is conditioned on an inequality of
the DUCB: the expansion proceeds with the leaf node that has
a higher DUCB than root node; otherwise, it proceeds with the
same root.

(3) Conventional rollout uses the simulation step to reach the end
state (for example, win or loss of a game) and uses the average
value as the current node value, while the stochastic rollout of
NTE does not need the simulation step to obtain the node value;
instead, it uses the surrogate model to estimate the node value.

Furthermore, Supplementary Fig.13 shows the difference between
UCB and DUCB.

Top-visit sampling

The sampling technique for selecting top candidates is a critical
component of the AO pipeline. An effective sampling method should
identify the most informative candidates while preserving datadiver-
sity, ensuring the surrogate model generalizes well to unseen data.
The widely used sampling approach is the epsilon-greedy method,
which combines greedy selection with random sampling. Toenhance
the generalization capability of the surrogate model, we extend the
epsilon-greedy strategy by implementing ‘top-visit sampling’, which
samples data that are frequently visited during rollouts. Figure 3b
demonstrates that DANTE, when lacking top-visit sampling, exhibits
a higher surrogate model loss and requires 30% more data points to
achieve the global optimum (as detailed in the Methods, Supplemen-
tary Note and Supplementary Fig.1).

Ablation study

We conducted an ablation study on the Rosenbrock-100d function
to analyze the impact of DANTE’s individual components on overall
performance (Fig. 3b; additional results are provided in Supplemen-
tary Fig. 1). The results clearly show that conditional selection and
local backpropagation are critical to DANTE’s effectiveness. Without
conditional selection, the tree search suffers from the value dete-
rioration problem and has a 0% convergence ratio, defined as the fre-
quency with which the algorithmidentifies the global optimumwithin
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agivennumber of data points. Withoutlocal backpropagation, DANTE
becomesagreedy stochastic tree search, leading to poor performance
andsimilarly a 0% convergence ratio. Moreover, omitting top-visit sam-
pling and adaptive exploration, while still allowing for convergence,
notably degrades performance. In such cases, the average best f(x)
remains distant from the global optimum, and the convergenceratios
drop to 60% and 30%, respectively.

We further assess the limits of DANTE by evaluating its perfor-
manceintackling high-dimensional problems with alimited number of
data points. Asshownin Extended Data Table 2, DANTE demonstrates
exceptional performance, successfully converging across various
synthetic functions ranging from 200 to 2,000 dimensions. By con-
trast, SOTA methods fail to converge to any functions beyond 100
dimensions. Notably, none of the baseline methods achieves global
convergence on the Rosenbrock function in dimensions exceeding
10, while DANTE successfully converges in dimensions as high as 200
(Supplementary Table 3).

Synthetic functions

The synthetic functions are designed for evaluating and analyzing
the computational optimization approaches. In total, six of them are
selected on the basis of their physical properties and shapes. Results
for the Ackley, Rosenbrock and Rastrigin functions are presented in
the main text because they are widely studied and relevant results
are extensively available in the literature. We also test three other
synthetic functions (Griewank, Schwefel and Michalewicz), and the
results are presented in Supplementary Fig. 10. The Ackley function
canbewrittenas

d d
foo)=—axexp(=b é D X2 —exp (cli > cos(cxi)) +a+expl), (2
P =1

wherea=20,b=0.2,c=2mnanddisthe dimension.
The Rosenbrock function can be written as

d-1

i) = 3 [100061 =) + 0~ 17].

3

The Rastrigin function can be written as

d-1
fi) =104 + 33 [} 10 cos(2mxy)]. @
i=1

The three functions are evaluated on the hypercube x; € [-5, 5], for all
i=1,...,dwithadiscrete searchspace of astep size of 0.1; we also show
thatdifferent step sizes (within a certainrange) do not affect the general
behavior of the algorithm (Supplementary Fig. 14). We sample 20 data
points per round when using neural networks as surrogate models.
More details and results can be found in the Supplementary Note.

Electron ptychography

Feature engineering. The feature vector consists of eight variables:
beam energy, defocus, maximum number of iterations, number of
iterations withidentical slices, probe-forming semi-angle, update step
size, slice thickness and number of slices. Detailed values and their
bounds arelisted in Supplementary Table 4.

Optimization target. The objective function NMSE is calculated
between the positive square root of the measured diffraction pattern
Iyand the modulus of the Fourier-transformed simulated exit-wave ¢,
which can be formulated as

,%i o - v )

whererandudenote thereal-andreciprocal-space coordinate vectors,
respectively, and Nis the total number of the measured diffraction
patterns.

Correlation index. The degree of matching for a given template Tby
intensity function Pis characterized by a correlationindex, which can
be defined by the following relation:
Tt PO YO0 30)
\/Z:il Pz(xi’yi)\/zzil 72(xi’yi)

(6)

where (x;,y,) is the coordinate of pixel i.

Dataset simulation. abTEM*, an open-source package, is used for the
simulation of a TEM experiment. For this case study, we simulated a
four-dimensional dataset of 18-nm-thick silicon along the [110] direc-
tion with Poisson noise.

Ptychographic reconstruction. The analysis is performed using
py4DSTEM?™, a versatile open-source package for different modes of
STEM dataanalysis. See Supplementary Figs. 11and 15 for more details
about the reconstruction process.

Architected materials

Feature engineering. In this study, the objective for architected mate-
rials optimization is a Gyroid triply periodic minimal surface struc-
ture, which naturally occurs in butterfly wings and is renowned for its
exceptional biological characteristics and mechanical performance.
The Gyroid scaffold to be optimized comprises 27 subunits with a
dimension of 2 x 2 x 2 mm, allowing for tuning its geometry features
and mechanical properties by adjusting each subunit’s density. The
density of each subunit can take discrete values from 10% to 80%,
with anincrement of 10%. The base material of the scaffold is Ti6Al4V
alloy. Three-dimensional convolutional neural networks are used to
accurately and rapidly assess the impact of the adjustments of the
subunit’s density onthe scaffold’s performance. Details about structure
generation are presented in ref. 39.

Optimization target. To mechanically stimulate bone reconstructionin
bonedefects, itis well recognized that the elastic modulus of bone grafits
should be equivalent to that of the replaced bone, which ranges from
0.03to3 GPafor cancellousbone and 3 to 30 GPafor corticalbone, while
there are specific modulus demands for different anatomical locations*.
Moreover, it requires the optimization of load-bearing capacity to prevent
damage during implantation. Here, we establish the modulus require-
ment for the implanted site at 2.5 GPa. Consequently, the optimization
target is to maximize the yield strength of the scaffold while ensuring
the elastic modulus remains within aspecified range (2,500 + 200 MPa).

Finite element simulation. Finite element (FE) simulations of the
compressive stress—strain curves of scaffolds are conducted using
ABAQUS 2018. The FE simulations utilize the same rigid-cylinder and
deformable-implant-structure model. The material propertyisset tobe
homogeneous with a Poisson’s ratio of 0.25; more details in the calibra-
tion protocol were developedinref. 39. Ductile damage is used to simu-
late plastic deformation up to the failure stage, with afracture strainset
at0.03. Theeffects of triaxiality deviation and strain rate are disregarded.
Displacement and force are extracted during postprocessing and subse-
quently converted to strainand stress, respectively. FE simulation agrees
well with the experiment compression curves (Supplementary Fig.16).

ML model. The initial dataset (100 density matrices) is consistent
with our previous work®, and the corresponding elastic modulus and
yield strength are calculated by FE simulations. Three-dimensional
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convolutional neural networks are used to predict the elastic modulus
andyield strength of the scaffolds with varying density matrices. The
model architecture comprises an input layer, convolutional layers,
fully connected layers and an output layer (refer to the Supplementary
Note and Supplementary Fig.17 for detailed parameters). Intheinput
layer, the scaffold structure is voxelized into 60 x 60 x 60 pixels, where
each pixel denotes either the solid phase (1) or void phase (0) within
the scaffold. The convolutional layers are designed with a series of
three-dimensional convolution kernels to extract high-dimension
information about the scaffold, while the output layer delivers the
final prediction.

Compositionally complex alloys

Feature engineering. We adopt 27 elements: Fe, Co, Ni, Ta, Al, Ti, Nb,
Ge, Au, Pd, Zn, Ga,Mo, Cu, Pt, Sn, Cr, Mn, Mg, Si, Ru, Rh, Hf, W, Re, Ir and
Bi, to design six-element CCAs with either bcc or fcc structures. For Fe,
Co and Ni, the atomic ratio ranges from 0 at.% to 100 at.%, while for
otherelements, itrangesfrom 0 at.%to 40 at.%, with 0.5 at.% intervals.
Inaddition, the total atomic percentage of Fe, Co and Niis designed to
fall between 60 at.% to 80 at.%. For CCAs with abcc crystal structure,
the Fe/(Co + Ni) ratio is required to be greater than or equal to 1.5,
whereas for fcc structures, it is required to be less than or equal to 1.5.

Optimization target for magnetic and electric properties. The opti-
mization target is to maximize the following target:

Target = M x p, 7)

where M stands for magnetic moment and p for resistivity.

Optimization target for transport properties. The optimization target
is to maximize the following target:

Target = AHC x AHA, (8)

while keeping the formation energy under the upper limit of 0.02.

Density functional calculation. The transport properties are
described by the conductivity tensor o,, (v, 4 = x, y,z). The anomalous
Hall conductivity (AHC, g,,) and anomalous Hall angle (AHA, o,,/0,,)
are determinedin the frame of Kubo-Bastin linear response formalism
withinrelativistic multiple-scattering Korringa-Kohn-Rostoker (KKR)
Green'’s function (GF) method*, which has been implemented in the
MUNICH SPR-KKR package*. The Kubo-Bastin formalism includes
both the Fermi-surface and Fermi-sea contributions to equal footing, in
which the Fermi-surface term contains only contribution from states at
the Fermienergy (£;) while the Fermi-seaterminvolves all the occupied
states (with energy F) below the Fermi energy, that is,

O = Oy + Oy )

n 2 At s At o At A
o;w:mrr(,ﬂ(c -6)j,6 -j,67j,(¢ —G>> (10)
Er dé¢* s At
” anzf T</GJ” jl‘dE ¢
(11
s A= dG s d6 & A
_<ij Joar o 0 >>
Theelectric currentoperatorlsglven b)/jﬂ(u) = —|e|ca, withe> 0 being

the elementary charge. ¢ and ¢~ denote the retarded and advanced
GFs, respectively. The representation of the GFs for the first-principles
treatment of equations (10) and (11) leads to a product expression
containing matrix elements of the current operators with the basis

functionsand k-space integrals over scattering path operators. In this
averaging procedure, the chemical disorder and vertex corrections
aretreated by means of coherent potential approximation®., For both
Fermi surface and surface terms, the conductivity tensor partitions
into an on-site term ¢ involving regular andirregular solutionsand an
off-site term ¢’ containing only regular solutions. This formalism has
been validated to provide consistent residual and anomalous Hall
resistivities with experiments*; more details can be found in the Sup-
plementary Note.

ML model. Initial 200 CCAs are randomly generated following the pre-
viously described design rules, and their corresponding AHA, AHC and
formation energy are calculated by density functional theory (DFT).For
CCAswithbccgrainstructures, 154 configurations ultimately converge
in the DFT calculations, whereas for fcc structures, there are 178. We
train one-dimensional convolutional neural networks to predict the
AHA, AHC and formation energy of the CCAs. The model architecture
includes an input layer, convolutional layers, fully connected layers
and anoutputlayer (see the Supplementary Note and Supplementary
Fig.18 for detailed parameters).

Cyclic peptide binder

Feature engineering. We represent the cyclic peptide as a sequence
of integers that range from 0 to 19, with each number corresponding
to a distinct type of canonical amino acid. The leaf node within the
DANTE framework is obtained through stochastic expansion. In this
process, two complementary strategies are used: one that introduces
random mutations in existing sequences and another that generates
entirely new sequences, ensuring acomprehensive exploration of the
sequence space.

Optimization target. The optimization target of cyclic peptide binder
is defined as follows:

Target = SC x dSASA/100, (12)

where SC stands for shape complementarity, and dSASA represents
the changeinsolvent-accessible surface areabefore and afterinterface
formation. The SC value ranges from O to 1, referring to how well the
surfaces of two proteins fit geometrically together at their interface;
dSASA measures the size of the interface (in units of A%). Both metrics
are essential to assess the quality of the interface. Therefore, we mul-
tiply these two metrics to formulate a multiobjective optimization
problem, whichis used to evaluate the performance of DANTE.

Dataset. Fourteen unique protein and canonical cyclic peptide com-
plexes are sourced from the Protein Data Bank, with peptide lengths
ranging from7to 14 amino acids. We perform three different optimiza-
tion tasks using DANTE, gradient descent (GD) and Markov chain Monte
Carlo (MCMC). The tasks start from a random initial sequence. The
structure with the highest target value is selected as the best structure.
For each task, we performed three independent tests.

Alphafold2 settings. The structure of protein and cyclic peptide
binder complex is predicted by Alphafold2-multimer implemented
in ColabDesign. A modified offset matrix for the relative positional
encoding of atarget protein and cyclic peptide complexisadapted to
give the structure with high accuracy*'. For designinga cyclic peptide
binder, the binder hallucination protocol is utilized for both GD and
MCMC methods. In this study, we maintain the length of the cyclic
binder and the interaction site hotspots consistent with those found
innature. For GD, the method ‘design_pssm_semigreedy()’is used, set-
ting soft_iter to 120 and hard_iter to 32. The loss functionis a weighted
sum of pLDDT (predicted local distance difference test) and interface
contact loss, with other parameters left at their default settings. For
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the MCMC method, a total of 1,000 steps are executed to find the
sequence achieving the highest pLDDT. More detail can be found in
the Supplementary Note.

Rosettainterface analyzer. The SCand dSASA values for the predicted
structure of the proteinand cyclic peptide complex are computed using
the Rosetta Interface Analyzer. Initially, the Rosetta minimize protocol
isapplied to obtain the structure with minimum energy proximal to the
initial conformation. To ensure that cyclic peptides within the complex
retain their cyclic nature and do not become linear, the options ‘-use_
truncated_termini’ and ‘-relax:bb_move false’ are used. Subsequently,
the minimized complex serves as the input for the interface analyzer.

Data availability

Source data are provided with this paper. All initial datasets in this
workare randomly generated. Source dataare also available via GitHub
at https://github.com/Bop2000/DANTE/, as well as via Zenodo at
https://doi.org/10.5281/zenod0.16225698 (ref. 45).

Code availability

Code for DANTE is available at via GitHub at https://github.com/
Bop2000/DANTE/, as well as via Zenodo at https://doi.org/10.5281/
zenodo.16225698 (ref. 45).

References

1. Li, G, Hilgenfeld, R., Whitley, R. & Clercq, E. D. Therapeutic
strategies for COVID-19: progress and lessons learned. Nat. Rev.
Drug Discov. 22, 449-475 (2023).

2. Cohn, D. A., Ghahramani, Z. & Jordan, M. |. Active learning with
statistical models. J. Artif. Intell. Res. 4, 129-145 (1996).

3. Settles, B. From theories to queries: active learning in practice. In
Active Learning and Experimental Design Workshop in Conjunction
with AISTATS 2010 (eds Guyon, |. et al.) 1-18 (PMLR, 2011).

4. Tong, S. & Koller, D. Support vector machine active learning with
applications to text classification. J. Mach. Learn. Res. 2, 45-66
(2001).

5. Coley, C. W. et al. A robotic platform for flow synthesis of organic
compounds informed by ai planning. Science 365, eaax1566 (2019).

6. Seifrid, M. et al. Autonomous chemical experiments: challenges
and perspectives on establishing a self-driving lab. Acc. Chem.
Res. 55, 2454-2466 (2022).

7. Angello, N. H. et al. Closed-loop optimization of general reaction
conditions for heteroaryl Suzuki-Miyaura coupling. Science 378,
399-405 (2022).

8. Manzano, J. S. et al. An autonomous portable platform for
universal chemical synthesis. Nat. Chem. 14, 1311-1318 (2022).

9. Merchant, A. et al. Scaling deep learning for materials discovery.

Nature 624, 80-85 (2023).

Brockhoff, D., Auger, A., Hansen, N. & Tusar, T. Using well-

understood single-objective functions in multiobjective black-box

optimization test suites. Evol. Comput. 30, 165-193 (2022).

1. Conn, A.R., Scheinberg, K. & Vicente, L. N. Introduction to
Derivative-Free Optimization (Society for Industrial and Applied
Mathematics, 2009).

12. Larson, J., Menickelly, M. & Wild, S. M. Derivative-free optimization
methods. Acta Numer. 28, 287-404 (2019).

13. Shahriari, B., Swersky, K., Wang, Z., Adams, R. P. & de Freitas,

N. Taking the human out of the loop: a review of Bayesian
optimization. Proc. IEEE 104, 148-175 (2016).

14. Bubeck, S., Munos, R., Stoltz, G. & Szepesvari, C. X-armed bandits.
J. Mach. Learn. Res. 12, 1655-1695 (2011).

15. Springenberg, J. T., Klein, A., Falkner, S. & Hutter, F. Bayesian
optimization with robust Bayesian neural networks. In Advances in
Neural Information Processing Systems (eds Lee, D. et al.) (Curran
Associates, 2016).

10.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Bishop, C. M. Pattern Recognition and Machine Learning (Springer,
2006).

Snoek, J., Larochelle, H. & Adams, R. P. Practical Bayesian
optimization of machine learning algorithms. In Advances in
Neural Information Processing Systems (eds Pereira, F. et al.)
(Curran Associates, 2012).

Lecun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521,
436-444 (2015).

Bengio, Y. Learning deep architectures for Al. Found. Trends Mach.
Learn. 2,1-127 (2009).

Krizhevsky, A., Sutskever, |. & Hinton, G. E. ImageNet classification
with deep convolutional neural networks. In Advances in Neural
Information Processing Systems (eds Pereira, F. et al.) (Curran
Associates, 2012).

Grigorescu, S., Trasnea, B., Cocias, T. & Macesanu, G. A survey of
deep learning techniques for autonomous driving. J. Field Robot.
37, 362-386 (2019).

Silver, D. et al. Mastering the game of go with deep neural
networks and tree search. Nature 529, 484-489 (2016).

Silver, D. et al. A general reinforcement learning algorithm that
masters chess, shogi, and go through self-play. Science 362,
1140-1144 (2018).

Vinyals, O. et al. Grandmaster level in StarCraft Il using
multi-agent reinforcement learning. Nature 575, 350-354 (2019).
Haarnoja, T., Zhou, A., Abbeel, P. & Levine, S. Soft actor-critic:
off-policy maximum entropy deep reinforcement learning with a
stochastic actor. Proc. 35th International Conference on Machine
Learning (eds Dy, J. & Krause, A.) 1861-1870 (PMLR, 2018).
Kulichenko, M. et al. Uncertainty-driven dynamics for active
learning of interatomic potentials. Nat. Comput. Sci. 3, 230-239
(2023).

Auer, P. & Fischer, P. Finite-time analysis of the multiarmed bandit
problem. Mach. Learn. 47, 235-256 (2002).

Auer, P. Using confidence bounds for exploitation-exploration
trade-offs. J. Mach. Learn. Res. 3, 397-422 (2002).

Kocsis, L. & Szepesvari, C. Bandit based Monte-Carlo planning.
In Proc. 17th European Conference on Machine Learning (eds
Flrnkranz, J. et al.) 282-293 (Springer, 2006).

Kim, B., Lee, K., Lim, S., Kaelbling, L. & Lozano-Perez, T. Monte
Carlo tree search in continuous spaces using voronoi optimistic
optimization with regret bounds. Proc. AAAI Conf. Artif. Intell. 34,
9916-9924 (2020).

Eriksson, D., Pearce, M., Gardner, J. R., Turner, R. & Poloczek, M.
Scalable global optimization via local Bayesian optimization. In
Advances in Neural Information Processing Systems (eds Wallach,
H. etal.) (Curran Associates, 2019).

Wang, L., Fonseca, R. & Tian, Y. Learning search space partition
for black-box optimization using Monte Carlo tree search.

In Advances in Neural Information Processing Systems (eds
Larochelle, H. et al.) 19511-19522 (Curran Associates, 2020).
Mcinnes, L., Healy, J. & Melville, J. UMAP: uniform manifold
approximation and projection for dimension reduction. Preprint at
https://arxiv.org/abs/1802.03426 (2020).

Zoph, B. & Le, Q. V. Neural architecture search with reinforcement
learning. Preprint at https://arxiv.org/abs/1611.01578 (2016).
Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, |. &
Salakhutdinov, R. R. Improving neural networks by preventing
co-adaptation of feature detectors. Preprint at https://arxiv.org/
abs/1207.0580 (2012).

Zhang, Y., Yang, X. & Liaw, P. K. Alloy design and properties
optimization of high-entropy alloys. JOM 64, 830-838 (2012).
Madsen, J. & Susi, T. The abTEM code: transmission electron
microscopy from first principles [version 2; peer review:

2 approved]. Open Res. Eur. https://doi.org/10.12688/
openreseurope.13015.2 (2021).

Nature Computational Science | Volume 5 | September 2025 | 801-812

8n


http://www.nature.com/natcomputsci
https://github.com/Bop2000/DANTE/
https://doi.org/10.5281/zenodo.16225698
https://github.com/Bop2000/DANTE/
https://github.com/Bop2000/DANTE/
https://doi.org/10.5281/zenodo.16225698
https://doi.org/10.5281/zenodo.16225698
https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1207.0580
https://arxiv.org/abs/1207.0580
https://doi.org/10.12688/openreseurope.13015.2
https://doi.org/10.12688/openreseurope.13015.2

Article

https://doi.org/10.1038/s43588-025-00858-x

38. Savitzky, B. H. et al. py4DSTEM: a software package for
four-dimensional scanning transmission electron microscopy
data analysis. Microsc. Microanal. 27, 712-743 (2021).

Peng, B. et al. Machine learning-enabled constrained

multi-objective design of architected materials. Nat. Commun. 14,

6630 (2023).

Wang, X. et al. Topological design and additive manufacturing

of porous metals for bone scaffolds and orthopaedic implants: a

review. Biomaterials 83, 127-141 (2016).

41. Kodderitzsch, D., Chadova, K. & Ebert, H. Linear response Kubo-
Bastin formalism with application to the anomalous and spin Hall
effects: a first-principles approach. Phys. Rev. B 92, 184415
(2015).

42. Ebert, H., Kodderitzsch, D. & Minar, J. Calculating condensed

matter properties using the KKR-Green'’s function method—recent

developments and applications. Rep. Prog. Phys. 74, 096501

(20M).

Butler, W. H. Theory of electronic transport in random alloys:

Korringa-Kohn-Rostoker coherent-potential approximation. Phys.

Rev. B 31, 3260-3277 (1985).

Kosugi, T. & Ohue, M. Design of cyclic peptides targeting protein-

protein interactions using AlphaFold. Int. J. Mol. Sci. 24,13257

(2023).

45. Peng, B., Heisenberg, D., Cytwyatt & Tung, P.-Y. B. Bop2000/
DANTE: code and data for DANTE. Zenodo https://doi.org/10.5281/
zen0do.16225698 (2025).

39.

40.

43.

44,

Acknowledgements

This work is funded by Tsinghua-Toyota Joint Research Fund; National
Natural Science Foundation of China (grant number 52175274);
CityUHK start-up fund (grant number 9382006); National Natural
Science Foundation of China (grant number 52301302); and

Beijing Natural Science Foundation (grant number L244002). We
acknowledge the computing time provided to them at the NHR
Center NHR4CES at RWTH Aachen University (project number
p0024007). This is funded by the Federal Ministry of Education and
Research and the state governments participating on the basis of the
resolutions of the Gemeinsame Wissenschafts Konferenz for national
high-performance computing at universities (www.nhr-verein.de/
unsere-partner).

Author contributions

Y.W. conceived the idea; Y.W. and B.P. developed the theory and
methods. B.P. and Y.W. implemented the algorithms. B.P., YW., R.X.,
P.-YT, Y.Q., Y.C. and S.B. carried out the numerical studies and analysis;
R.X. performed the DFT calculations; Y.Q. performed the FE methods
analysis; Y.C. built the cyclic peptide design pipeline; P.-YT. developed
the electron ptychography simulation pipeline; P.-Y.T., B.P. and YW.

produced the final figures; Y.W. and B.P. wrote the original draft; all
authors contributed to data analysis, discussions and manuscript
preparation.

Funding
Open access funding provided by Max Planck Society.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information Extended data is available for this paper
at https://doi.org/10.1038/s43588-025-00858-x.

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s43588-025-00858-x.

Correspondence and requests for materials should be addressed to
Ye Wei or Dierk Raabe.

Peer review information Nature Computational Science thanks Marco
Maurizi, Diwakar Shukla and the other, anonymous, reviewer(s) for
their contribution to the peer review of this work. Peer reviewer reports
are available. Primary Handling Editor: Jie Pan, in collaboration with
the Nature Computational Science team.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2025

Nature Computational Science | Volume 5 | September 2025 | 801-812

812


http://www.nature.com/natcomputsci
https://doi.org/10.5281/zenodo.16225698
https://doi.org/10.5281/zenodo.16225698
http://www.nhr-verein.de/unsere-partner
http://www.nhr-verein.de/unsere-partner
https://doi.org/10.1038/s43588-025-00858-x
https://doi.org/10.1038/s43588-025-00858-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Article https://doi.org/10.1038/s43588-025-00858-x

Extended Data Table 1| Number of data points needed to achieve the global optimum

Ackley-20  Ackley-100 Rastrigin-20 Rastrigin-100 Rosenbrock-20 Rosenbrock-100 Schwefel-20 Griewank-20

Max # of 1,600 2,800 1,000 2,000 6,300 10,500 1,000 1,000
samples

Random N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
TuRBO5 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
LaMCTS N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
CMS-ES N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
Diff-Evo N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
DA 428 + 14 N.A. N.A. N.A. N.A. N.A. N.A. N.A.
Shiwa N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
MCMC 408 + 65 N.A. N.A. N.A. N.A. N.A. N.A. N.A.
DOO N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
SO0 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
VOO N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
DANTE 292 + 65 1788 +139 220+74 444 +55 4263 + 1111 3098 +1031 N.A. 860 +115

Results are averaged over 5 trials, and + denotes the standard deviation. N.A. (Not Available) indicates that it does not reach the global optimum.
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Extended Data Table 2 | The max convergence dimensions on synthetic functions

Ackley Rastrigin Rosenbrock Griewank
DANTE 1500 2000 200 500
SOTA 100 100 10 60

This table shows the highest dimension at which DANTE and SOTA methods (Random search, DOO, SOO, VOO, Shiwa, differential evolution, dual annealing, MCMC, LAMCTS, CMA-ES,
TuRBO5) achieve global convergence, with DANTE outperforming SOTA on higher-dimensional tasks.
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Extended Data Fig. 1| High-dimensional, high-cost real-world tasks.

(a) Optimizing the mechanical properties of architected materials by DANTE
and generative architecture design (GAD, baseline). (b) Uniform manifold
approximation and projection (U-MAP) 2D representation of results from

two methods. (c) Stimulated strain-stress curve of both methods. The inlet
shows the density matrix. (d) Optimizing the electronic properties of complex
concentrated alloys (CCAs) by DANTE and MCMC (baseline). (e) U-MAP 2D
representation of input distribution from both methods. (f) The curves along

430

Number of iterations

)
&2
AN_C13
P
.

Interaction diagram

aselected momentum path on the Fermi surface, a quantitative measure for
describing the smearing. (g) Optimizing the protein-protein interactions (PPIs)
using DANTE and other two methods. Box plots indicate median (middle line),
25th, 75th percentile (box), and 1.5 x interquartile range (whiskers). n = 41 for
1*and 2" iterations, n =42 for 3" iteration, Native, GD (gradient descent), and
MCMC. (h) An example of Alphafold2 predicted complex (pdbid: 4ibS). The cyclic
peptide is designed by DANTE. (i) Interaction diagram of DANTE peptide with the

target protein.
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