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Abstract 

Analysis and interpretation of omics data largely benefit from the use of prior kno wledge. Ho w e v er, this kno wledge is fragmented across 
resources and often is not directly accessible for analytical methods. We de v eloped OmniPath ( https:// omnipathdb.org/ ), a database combining 
diverse molecular knowledge from 168 resources. It covers causal protein–protein, gene regulatory, microRNA, and enzyme–post-translational 
modification interactions, cell–cell communication, protein comple x es, and inf ormation about the function, localization, str uct ure, and many 
other aspects of biomolecules. It prioritizes literature curated data, and complements it with predictions and large scale databases. To enable 
interactiv e bro wsing of this large corpus of kno wledge, w e de v eloped OmniPath Explorer, which also includes a large language model agent 
that has direct access to the database. Python and R/Bioconductor client packages and a Cytoscape plugin create easy access to customized 
prior knowledge for omics analysis environments, such as scverse. OmniPath can be broadly used for the analysis of bulk, single-cell, and spatial 
multi-omics data, especially for mechanistic and causal modeling. 
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Introduction 

Bulk, single-cell, and spatial omics technologies provide rich
information for understanding biological processes, but inter-
preting molecular mechanisms and their deregulation in dis-
ease remains a challenge. The use of prior knowledge within
analytical methods largely expands the extractable informa-
tion and broadens the scope of testable hypotheses. In partic-
ular, by estimating the activity [ 1 ] of key processes using prior
knowledge of signatures—pathway [ 2 ], transcription factor
(TF) [ 2 , 3 ], kinase [ 5 ], receptor [ 6 ], or ligand–receptor [ 7 ]
activities—the biological interpretability is greatly enhanced
and potential causal drivers can be more easily identified,
while the dimensionality of the data is reduced, increasing the
statistical power [ 8 ]. Furthermore, the integrated outcome of
these estimations can be connected by a variety of network in-
ference methods [ 9 , 10 ] to derive context-specific mechanisms.
Databases of prior knowledge have therefore become essential
resources for omics data analysis. 

Making prior knowledge available for analysis pipelines is
a challenge on its own: it is scattered across many databases
and it is not clear which ones are the best suited for the appli-
cation at hand. Furthermore, each requires different and of-
ten significant effort to input into the tools. Excellent origi-
nal [ 11–14 ] and combined [ 15 ] databases exist, each with a
different focus. Nevertheless these are often limited by var-
ious caveats, such as lack of domain knowledge, coverage
required by analysis workflows, in particular literature cu-
rated, as well as causal interactions, and ease of integration
to analysis tools. This challenge prompted us to develop Om-
niPath, a database combining a growing number of diverse,
curated and complementary resources. When first published
[ 16 ], it only covered causal signaling interactions, and over
the years it expanded to include TF–target (regulons) and
enzyme–post-translational modification (PTM) relationships,
molecular function and localization, intercellular communi-
cation, protein complexes, and various other types of molecu-
lar knowledge, as described in a subsequent publication [ 17 ].
Since then, we included 65 new resources, developed an in-
teractive web page, extended the features of the web API (in-
cluding provenance details and license support), implemented
a higher performance server and added numerous convenient
utilities to the Python and R client packages (e.g. identi-
fier and orthology translation). Here we present these nov-
elties and briefly outline our ongoing and future development
plans. 
Data content 

OmniPath consists of five major database domains: interac- 
tions, enzyme–substrate, complexes, annotations , and inter- 
cellular (Fig. 1 A). These domains are integrated databases 
that we build by combining source databases—what we re- 
fer to as resources (for a complete list of resources, see 
Supplementary Table S1 ); while within the domains we also 

define application-specific subsets of resources, which we call 
datasets. Licensing conditions are included for each resource,
with the majority of them being available for commercial use 
(Fig. 1 B–C and Supplementary Table S1 ). We also classified 

resources by their maintenance status, i.e. updates happen- 
ing frequently, infrequently or never. Strikingly, the majority 
of interaction resources and literature references come from 

databases which have been published only once without sub- 
sequent updates (Fig. 1 B–D and Supplementary Table S1 ).
In the integrated database multiple resources supporting the 
same record suggest a higher confidence, while combining the 
unique content from each resource increases the coverage. In 

the interactions domain only 22% of the records are unique 
to a single resource, while in the complexes domain > 60%,
largely due to a lack of agreement between complex predic- 
tion methods (Fig. 1 E). 

The interactions domain contains 1419 006 unique molec- 
ular interactions from 115 different resources: it covers signal- 
ing, gene regulatory (TF–target gene), microRNA (miRNA)–
gene, and a limited set of drug–target interactions. Within 

these interaction types, various datasets are available: the 
core omnipath dataset contains literature-curated, causal 
protein–protein interactions (PPIs), while further interactions 
without literature references are provided in separate datasets: 
pathwayextr a (causal) , kinaseextr a (kinase–substrate), and li- 
grecextra (ligand–receptor). The largest sources of curated 

causal signaling interactions are the SIGNOR [ 11 ], SignaLink 

[ 18 ], and SPIKE [ 19 ] databases (Fig. 1 A). Within TF reg- 
ulons, the tf_target dataset contains literature-curated TF–
target interactions, while collectri and dorothea datasets rep- 
resent comprehensive gene regulatory networks from Collec- 
TRI [ 3 ] and DoRothEA [ 4 ], respectively, compiled from sev- 
eral curated, high-throughput and predicted sources. Each in- 
teraction includes information about its direction and whether 
it has a stimulatory or inhibitory effect. Hereafter, we refer to 

this information as “causality”, as they are direct, physical in- 
teractions with known biochemical background, though we 
note that it reflects only putative causal effects. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1126#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1126#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1126#supplementary-data
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Figure 1. Data content of OmniPath. ( A ) Resource distribution across database categories—Treemap showing relative sizes of individual resources 
within their database domain and subcategory. The size of each cell is proportional to the number of records. ( B ) Number of resources in each database 
domain, by maintenance and license categories. ( C ) Percentage of records by database domain and by maintenance and license category. ( D ) Literature 
reference count by database and maintenance status. ( E ) Resource overlap within the databases: percentage of entries appearing in 1, 2, 3, 4, or 5 + 

resources. Interactive versions of these visualizations are available at https:// explore.omnipathdb.org / . 
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The enzyme–substrate domain is a collection of 115 215

nzyme–PTM interactions from 18 resources. Each record de-
cribes the residue, site, and type of modification, most pre-
ominantly phosphorylation, followed by dephosphorylation
nd acetylation. PhosphoSitePlus [ 20 ] contributes the major-
ty of curated evidence, complemented by further curated and
rediction-based resources. 
The complexes database enumerates 52 086 human pro-
tein complexes, integrating 18 resources, annotated with sto-
ichiometry and literature references. CORUM [ 21 ] and Com-
plex Portal [ 22 ] are the primary sources of curated complexes,
accompanied by several smaller or prediction-based resources.

The largest database domain in OmniPath is the annota-
tions with its 5895 462 entries, providing a broad variety

https://explore.omnipathdb.org
https://web.powerxeditor.com/
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of protein and gene function, localization, structure, and ex-
pression information. This includes pathway memberships,
roles in biological processes and diseases, for example, the
functional gene sets from MSigDB [ 23 ]; various classifica-
tions, such as the protein families from HGNC [ 24 ]; protein
localizations—for example, CSPA [ 25 ] to annotate cell sur-
face proteins; and weighted functional signatures, such as the
pathway response scores from PROGENy [ 2 ] or cytokine re-
sponses from CytoSig [ 26 ]. The data extracted from the 67
resources ( Supplementary Table S1 ) is provided as it is, with-
out integration across resources. 

The intercell domain integrates annotation resources into
a curated atlas of cell–cell communication. Using the func-
tion, localization and structure annotations described above,
it classifies proteins into categories such as ligand, receptor,
transporter, matrix protein, or secreted enzyme, and tags them
with membrane associations and subcellular localization [ 17 ].
In the R and Python clients, these annotations can be merged
with molecular interactions, enabling application-specific cus-
tomization, for example, by establishing tissue-specific ligand–
receptor networks [ 27 ]. 

The interactions and enzyme–substrate database domains,
built with human data, are translated to mouse and rat by or-
thologous gene pairs. For this translation, we used NCBI Ho-
moloGene [ 28 ], Ensembl [ 29 ], and the Orthologous Matrix
(OMA; 9). Our translation utilities are available in the py-
path and OmnipathR packages, allowing translation to other
organisms. 

Web page 

With the current update, we introduce OmniPath Explorer, an
interactive web application ( https:// explore.omnipathdb.org/ )
to access the OmniPath resource. OmniPath Explorer consists
of browsable pages of database content and a chat assistant
(Fig. 2 A–C). 

The first allows users to search for protein and gene names
and explore the data through an easy-to-use but comprehen-
sive graphical interface. Contents of the five database do-
mains are presented in five different views. The left side con-
trol panel enables filtering by a broad range of variables,
for example, type, causality, amount of evidence for interac-
tions (Fig. 2 A), or location, scope and causality for intercell.
In the interactions part, all partners of a given molecule ap-
pear as a list, with the interaction type and causality encoded
by colors and symbols. The provenances are also included
for each interaction, with links to the original databases
and articles in PubMed. The annotations part groups the re-
sources by topic, and presents data from the selected ones
in tabular format. Alternatively, free text search in annota-
tion records is also available (Fig. 2 B). In all views, proteins
of interest are presented at the top, with a basic overview
from UniProt [ 31 ]: the organism, molecular weight, polypep-
tide length, and literature statements about the functions,
localization, function, classification, Gene Ontology, PTM
information, and links to PubMed and further resources
(Fig. 2 D). 

The chat part integrates an LLM assistant that accepts nat-
ural language questions, writes and executes SQL queries, and
interprets the results to provide answers. The generated SQL
queries and their output are shown alongside the answers,
these can be checked for correctness, edited, and exported as
tables (Fig. 2 C). The LLM is provided with an expanding set of 
query templates which guide it to formulate queries. This en- 
ables noncomputational users to explore the database content 
and flexibly access and integrate data across multiple tables or 
resources. 

Web API 

The web service serves data in tabular or JSON format, and 

consists of five main endpoints (query types), corresponding 
to the five database domains of OmniPath. It supports the fil- 
tering of records by practically any of the variables: by re- 
sources, molecules, organisms, and other variables specific for 
the database domains, for example, filter TF regulons accord- 
ing to specific confidence levels [ 4 ], or PTM residues at the 
enzyme–substrate domain, or cell–cell communication roles at 
the intercell domain. Optional columns can be selected by the 
fields parameter. Annotations are returned as a long-format 
data frame and require pivoting into wide format, which is 
supported by the client packages. 

We recently added two new columns to the interaction 

records, both containing JSON blobs. The extra_attrs column 

includes resource-specific interaction attributes, such as the 
mechanism or detection method of the interaction. The client 
packages are able to extract specific variables from the JSON 

blob to data frame columns. The evidences column contains 
the provenance information in full detail. This enables the 
client packages to do precise filtering, for example, discard- 
ing all information that is not licensed for commercial use.
License-based filtering is also supported by the web API’s li- 
cense parameter. 

Causality of interactions is represented by three columns 
(is_directed, is_stimulation, is_inhibition) ; in addition, “con- 
sensus” alternatives of these columns provide a majority vote 
across all resources. 

The web service also features a few auxiliary queries that 
provide meta-information about the contents. The databases 
and datasets queries return the list of resources and datasets 
in the interactions domain, the queries query returns the list 
of valid parameters for each query, while the resources query 
maps the use of resources within the databases, and also in- 
cludes license information. The annotations_summary and in- 
tercell_summary queries, for each resource, list all variables 
and all possible values. 

Python, R, and Cytoscape clients 

The omnipath Python package is available in the PyPI 
repository ( https:// pypi.org/ project/ omnipath/ ), while the 
OmnipathR R package ( https:// bioconductor.org/ packages/ 
OmnipathR ) is part of Bioconductor [ 33 ]. Query types, inter- 
action types and interaction datasets are represented in the 
Python package by classes, in the R package by functions. All 
web service query parameters can be provided as arguments 
to the “get” method of the Python classes and similarly to 

the functions in the R package. The results are returned as 
data frames. Both packages provide utilities to pivot the 
annotation data frames from long to wide format, combine 
networks and annotations, translate data to other organisms 
by orthologous gene pairs, and update the causality of inter- 
actions based on detailed provenance data in the evidences 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1126#supplementary-data
https://explore.omnipathdb.org/
https://pypi.org/project/omnipath/
https://bioconductor.org/packages/OmnipathR
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(A)

(C)

(D)

(B)

Figure 2. The OmniPath Explorer web application. ( A ) Interaction browser. ( B ) Annotation browser. ( C ) Chat interface to the OmniPath large language 
model (LLM) agent. ( D ) Main page search and menu; protein datasheet. 

 

p  

S  

a  

p  

D  

fi  

k  

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkaf1126/8326458 by G

SF H
aem

atologikum
 user on 19 N

ovem
ber 2025
Besides the OmniPath client functionalities, OmnipathR

rovides direct access to 26 resources ( Supplementary Table
1 ), among them several metabolomics related ones, such
s MetalinksDB [ 34 ], a network of annotated metabolite-
rotein interactions combining 14 resources, or RaMP-
B [ 35 ], a comprehensive resource of metabolite identi-
ers and structures. OmnipathR also comes with a prior
nowledge processing toolkit, including translation utilities
for 102 identifier types, orthologous gene pair translation
(by HomoloGene, Ensembl [ 29 ], and OMA [ 30 ]), transla-
tion ambiguity analysis, handling of organism names, traver-
sal of the Gene Ontology [ 36 ] tree, full featured clients
to the Ensembl BioMart [ 29 ], KEGG [ 37 ], and UniProt
[ 32 ] APIs. It is able to convert interaction data frames to
igraph [ 38 ] networks or deliver them to Bio Model Analyzer
[ 39 ]. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1126#supplementary-data
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Figure 3. Technical architecture of OmniPath. The combined database, built from 168 different resources by the pypath Python software suite, is publicly 
a v ailable through the HTTP API at https:// omnnipathdb.org/ . The OmniPath Explorer web app allows interactive browsing with LLM assistance, while 
client packages for R, Python, and Cytoscape provide convenient access and utilities for seamless integration into analysis workflows. The components 
new or largely renewed in the current update are highlighted in orange boxes and marked with orange stars. 
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The OmniPath Cytoscape app [ 40 ] supports the interac-
tions, enzyme–substrate, and a limited set of the annotations
database domains. It imports the data directly into Cytoscape
from the datasets and resources specified by the user. 

Implementation 

The database build and the web API of OmniPath are im-
plemented in a suite of Python packages (Fig. 3 ). The py-
path package is responsible for resource-specific parsing and
compiling the combined databases. It features a number of
processing utilities, most importantly, the identifier and or-
thologous gene pair translation. The pypath.inputs module
is a collection of clients for 200 original resources. These
clients use the download-manager and cache-manager pack-
ages for robust network transactions and local caching.
The pypath.core module builds the OmniPath databases. All
clients and the complete database build are tested daily by an
automated pipeline and a status report is published at https:
// status.omnipathdb.org/ . For original resources that became
temporarily or permanently inaccessible, we host these on
our own server at https:// rescued.omnipathdb.org/ . Another
Python package, the omnipath-server loads the databases into
PostgreSQL and operates the web service. OmniPath Ex-
plorer is a TypeScript application built with the Next.js frame-
work, and uses the same PostgreSQL database as the web API
(Fig. 3 ). The database is updated periodically, with the old
versions archived at https:// archive.omnipathdb.org/ . By de-
fault, the LLM agent uses the openly-accessible Google Gem- 
ini Flash 2.5 model. 

Discussion 

OmniPath is an integrated database combining 168 molecular 
resources into a single, continuously updated framework, in- 
cluding signed and directed PPIs, enzyme–PTM relationships,
ligand–receptor pairs, protein complexes, and extensive func- 
tional annotations. By harmonizing data from all these diverse 
resources, OmniPath facilitates access to prior-knowledge for 
a broad range of use cases. The OmniPath Explorer presents 
all evidence for molecular interactions and comprehensive an- 
notations in one place. This allows users to explore interac- 
tively the complete knowledgebase and quickly look up spe- 
cific information and find the most suitable resources for their 
analysis. The web API and its clients for popular bioinfor- 
matics environments (Python, R, Cytoscape) enable effort- 
less creation of customized prior knowledge for diverse ap- 
plications. With its coverage of small and curated resources,
OmniPath also fills a critical gap among other large meta- 
resources, such as STRING [ 13 ] or PathwayCommons [ 15 ],
and major interaction or pathway databases with original cu- 
ration effort, like IntAct [ 12 ] or Reactome [ 14 ]. The heteroge- 
neous curation protocols and quality of constituting resources 
can be seen as a potential weakness of OmniPath as an inte- 
grated database; however, alternatives—literature mined net- 
works [ 41 ], high-throughput screens [ 12 ], correlation-based 

https://omnnipathdb.org/
https://status.omnipathdb.org/
https://rescued.omnipathdb.org/
https://archive.omnipathdb.org/
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pproaches [ 13 ]—come with their own limitations, while an
ntegrated database creates new opportunities to search for
otentially erroneous records, and also to compile on demand
ny custom combination of the resources. 

Integrating a multitude of resources in a uniform format
pens the way towards their benchmarking, as it is done,
or example, in NetworkCommons [ 10 ] to evaluate the per-
ormance of network inference methods. Including various
nteraction types—signaling pathways, transcriptional, and
iRNA regulation, ligand–receptor, etc—in a uniform net-
ork, together with the annotations and the above mentioned

nference methods, enables the generation and investigation
f complex, multilayered hypotheses that would be limitedly
ossible with other resources. 
The integrative design of OmniPath translates into prac-

ical impact across diverse tasks in the analysis of omics
ata. The client packages feature integrations with several
ownstream analysis tools. For example, integration with
he enrichment package Decoupler [ 1 ] enables seamless use
f signature-based TF, pathway, kinase, and cytokine activ-
ty estimations in bulk and single-cell workflows, including
ithin scverse [ 42 ], as well as automated cell type anno-

ations using PanglaoDB [ 43 ]. Similarly, OmniPath delivers
ighly customizable ligand–receptor networks directly into
he LIANA + [ 7 ] cell–cell communication inference frame-
ork, also part of the scverse ecosystem. Networks from Om-
iPath are readily available in the CORNETO [ 44 ] network
ptimization framework, its multi-omics causal variant COS-
OS [ 45 ], and further network inference methods in Net-
orkCommons [ 10 ], to derive context-specific mechanisms

rom omics data. For metabolism, OmniPath not only deliv-
rs prior knowledge in the MetaProViz R package [ 46 ], but
lso enables connecting knowledge and metabolomics fea-
ures with its extensive identifier translation utilities. Omni-
ath is also connected to other prior-knowledge processing
ystems: the curated knowledge from OmniPath is presented
n the INDRA natural language processing system for molec-
lar interactions [ 41 ]; a script is available to write OmniPath

nteractions into neo4j importable CSV using the BioCypher
ibrary [ 47 ]; while OmniPath’s prior-knowledge processing
oolkit is used in building the CROssBARv2 database [ 48 ]. 

The server-client architecture isolates resource-specific
ownload and processing from analysis workflows, for a re-
uced complexity and enhanced robustness. Built-in support
or resource license constraints facilitates applications in com-
ercial settings by keeping compliance straightforward. Om-
iPath Explorer’s LLM agent turns text-based questions into
QL queries. This user-friendly mode of operation assists both
ew and advanced users to design database queries, while di-
ectly answering natural language questions for noncompu-
ational users. We are integrating OmniPath into BioContex-
AI, a collection of biomedical LLM agents [ 49 ], to facilitate
ntegration with LLMs via the model context protocol. We
onsider the current implementation to be only a first step to-
ards LLM assistance. Through an improved integration with

he knowledge contained in OmniPath, and access to addi-
ional computational tools, our LLM agent may evolve to an-
wer more complex questions and contribute to larger tasks
ogether with other LLMs. We aim to iterate on our imple-
entation by continuously learning about its current utility

nd limitations from user feedback. 
In our future work, we also plan covering more metabolite,

rug, and microbiome-related knowledge, with special focus
on causal relationships and functional annotations. We intend
to further develop OmniPath Explorer with more views, richer
interactivity, and information presented in each view. In the
Python client side, we have plans to further improve the in-
tegration with network inference methods in NetworkCom-
mons and single-cell workflows of the scverse ecosystem. 

We remain committed to developing OmniPath as a free
open-source resource for the community, particularly for re-
searchers analyzing omics data. We welcome feedback, con-
tent suggestions, feature requests, and bug reports, which can
be submitted via GitHub ( https:// github.com/ saezlab ) or email
( omnipathdb@gmail.com ). 
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Data availability 

The pypath Python package is available at https://github.
com/ saezlab/ pypath , the auxiliary packages are linked from
this repository. The web API implementation is available at
https:// github.com/ saezlab/ omnipath-server , while the Omni-
Path Explorer app at https:// github.com/ saezlab/ omnipath- 
next . OmnipathR is provided at https:// github.com/ saezlab/
OmnipathR , the omnipath Python client at https://github.
com/ saezlab/ omnipath and the Cytoscape app at https://
github.com/ saezlab/ Omnipath _ Cytoscape . All these compo-
nents are free software, the database build, web app, server,
and Cytoscape app are distributed under GPLv3 license, while
OmnipathR and omnipath client packages under MIT license.

OmniPath data is available at https:// omnipathdb.org/ and
by the web app at https:// explore.omnipathdb.org/ , under the
licenses of the constituting resources. Old releases of Om-
niPath are accessible at https:// archive.omnipathdb.org/ , and
original resources hosted by OmniPath at https://rescued.
omnipathdb.org/. 

The code has been archived in the following Zenodo repos-
itories: 

pypath: https:// doi.org/ 10.5281/ zenodo.17294424 

omnipath-next: https:// doi.org/ 10.5281/ zenodo.17294409 

OmnipathR: https:// doi.org/ 10.5281/ zenodo.17294392 

omnipath (Python client): https:// doi.org/ 10.5281/ zenodo.
17294394 

omnipath-server: https:// doi.org/ 10.5281/ zenodo.
17294418 
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