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Abstract

Analysis and interpretation of omics data largely benefit from the use of prior knowledge. However, this knowledge is fragmented across
resources and often is not directly accessible for analytical methods. We developed OmniPath (https://omnipathdb.org/), a database combining
diverse molecular knowledge from 168 resources. It covers causal protein—protein, gene regulatory, microRNA, and enzyme—post-translational
modification interactions, cell-cell communication, protein complexes, and information about the function, localization, structure, and many
other aspects of biomolecules. It prioritizes literature curated data, and complements it with predictions and large scale databases. To enable
interactive browsing of this large corpus of knowledge, we developed OmniPath Explorer, which also includes a large language model agent
that has direct access to the database. Python and R/Bioconductor client packages and a Cytoscape plugin create easy access to customized
prior knowledge for omics analysis environments, such as scverse. OmniPath can be broadly used for the analysis of bulk, single-cell, and spatial
multi-omics data, especially for mechanistic and causal modeling.
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Introduction

Bulk, single-cell, and spatial omics technologies provide rich
information for understanding biological processes, but inter-
preting molecular mechanisms and their deregulation in dis-
ease remains a challenge. The use of prior knowledge within
analytical methods largely expands the extractable informa-
tion and broadens the scope of testable hypotheses. In partic-
ular, by estimating the activity [1] of key processes using prior
knowledge of signatures—pathway [2], transcription factor
(TF) [2, 3], kinase [5], receptor [6], or ligand-receptor [7]
activities—the biological interpretability is greatly enhanced
and potential causal drivers can be more easily identified,
while the dimensionality of the data is reduced, increasing the
statistical power [8]. Furthermore, the integrated outcome of
these estimations can be connected by a variety of network in-
ference methods [9, 10] to derive context-specific mechanisms.
Databases of prior knowledge have therefore become essential
resources for omics data analysis.

Making prior knowledge available for analysis pipelines is
a challenge on its own: it is scattered across many databases
and it is not clear which ones are the best suited for the appli-
cation at hand. Furthermore, each requires different and of-
ten significant effort to input into the tools. Excellent origi-
nal [11-14] and combined [15] databases exist, each with a
different focus. Nevertheless these are often limited by var-
ious caveats, such as lack of domain knowledge, coverage
required by analysis workflows, in particular literature cu-
rated, as well as causal interactions, and ease of integration
to analysis tools. This challenge prompted us to develop Om-
niPath, a database combining a growing number of diverse,
curated and complementary resources. When first published
[16], it only covered causal signaling interactions, and over
the years it expanded to include TF-target (regulons) and
enzyme—post-translational modification (PTM) relationships,
molecular function and localization, intercellular communi-
cation, protein complexes, and various other types of molecu-
lar knowledge, as described in a subsequent publication [17].
Since then, we included 65 new resources, developed an in-
teractive web page, extended the features of the web API (in-
cluding provenance details and license support), implemented
a higher performance server and added numerous convenient
utilities to the Python and R client packages (e.g. identi-
fier and orthology translation). Here we present these nov-
elties and briefly outline our ongoing and future development
plans.

Data content

OmniPath consists of five major database domains: interac-
tions, enzyme—substrate, complexes, annotations, and inter-
cellular (Fig. 1A). These domains are integrated databases
that we build by combining source databases—what we re-
fer to as resources (for a complete list of resources, see
Supplementary Table S1); while within the domains we also
define application-specific subsets of resources, which we call
datasets. Licensing conditions are included for each resource,
with the majority of them being available for commercial use
(Fig. 1B-C and Supplementary Table S1). We also classified
resources by their maintenance status, i.e. updates happen-
ing frequently, infrequently or never. Strikingly, the majority
of interaction resources and literature references come from
databases which have been published only once without sub-
sequent updates (Fig. 1B-D and Supplementary Table S1).
In the integrated database multiple resources supporting the
same record suggest a higher confidence, while combining the
unique content from each resource increases the coverage. In
the interactions domain only 22% of the records are unique
to a single resource, while in the complexes domain >60%,
largely due to a lack of agreement between complex predic-
tion methods (Fig. 1E).

The interactions domain contains 1419 006 unique molec-
ular interactions from 1135 different resources: it covers signal-
ing, gene regulatory (TF-target gene), microRNA (miRNA)-
gene, and a limited set of drug—target interactions. Within
these interaction types, various datasets are available: the
core ommipath dataset contains literature-curated, causal
protein—protein interactions (PPIs), while further interactions
without literature references are provided in separate datasets:
pathwayextra (causal), kinaseextra (kinase—substrate), and /i-
grecextra (ligand-receptor). The largest sources of curated
causal signaling interactions are the SIGNOR [11], SignaLink
[18], and SPIKE [19] databases (Fig. 1A). Within TF reg-
ulons, the #/_target dataset contains literature-curated TF-
target interactions, while collectri and dorothea datasets rep-
resent comprehensive gene regulatory networks from Collec-
TRI [3] and DoRothEA [4], respectively, compiled from sev-
eral curated, high-throughput and predicted sources. Each in-
teraction includes information about its direction and whether
it has a stimulatory or inhibitory effect. Hereafter, we refer to
this information as “causality”, as they are direct, physical in-
teractions with known biochemical background, though we
note that it reflects only putative causal effects.
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Figure 1. Data content of OmniPath. (A) Resource distribution across database categories—Treemap showing relative sizes of individual resources
within their database domain and subcategory. The size of each cell is proportional to the number of records. (B) Number of resources in each database
domain, by maintenance and license categories. (C) Percentage of records by database domain and by maintenance and license category. (D) Literature
reference count by database and maintenance status. (E) Resource overlap within the databases: percentage of entries appearingin 1, 2, 3, 4, or 5 +
resources. Interactive versions of these visualizations are available at https://explore.omnipathdb.org/.

The enzyme-substrate domain is a collection of 115 215
enzyme-PTM interactions from 18 resources. Each record de-
scribes the residue, site, and type of modification, most pre-
dominantly phosphorylation, followed by dephosphorylation
and acetylation. PhosphoSitePlus [20] contributes the major-
ity of curated evidence, complemented by further curated and
prediction-based resources.

The complexes database enumerates 52 086 human pro-
tein complexes, integrating 18 resources, annotated with sto-
ichiometry and literature references. CORUM [21] and Com-
plex Portal [22] are the primary sources of curated complexes,
accompanied by several smaller or prediction-based resources.

The largest database domain in OmniPath is the annota-
tions with its 5895 462 entries, providing a broad variety
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of protein and gene function, localization, structure, and ex-
pression information. This includes pathway memberships,
roles in biological processes and diseases, for example, the
functional gene sets from MSigDB [23]; various classifica-
tions, such as the protein families from HGNC [24]; protein
localizations—for example, CSPA [25] to annotate cell sur-
face proteins; and weighted functional signatures, such as the
pathway response scores from PROGENYy [2] or cytokine re-
sponses from CytoSig [26]. The data extracted from the 67
resources (Supplementary Table S1) is provided as it is, with-
out integration across resources.

The intercell domain integrates annotation resources into
a curated atlas of cell-cell communication. Using the func-
tion, localization and structure annotations described above,
it classifies proteins into categories such as ligand, receptor,
transporter, matrix protein, or secreted enzyme, and tags them
with membrane associations and subcellular localization [17].
In the R and Python clients, these annotations can be merged
with molecular interactions, enabling application-specific cus-
tomization, for example, by establishing tissue-specific ligand-
receptor networks [27].

The interactions and enzyme-substrate database domains,
built with human data, are translated to mouse and rat by or-
thologous gene pairs. For this translation, we used NCBI Ho-
moloGene [28], Ensembl [29], and the Orthologous Matrix
(OMA; 9). Our translation utilities are available in the py-
path and OmnipathR packages, allowing translation to other
organisms.

Web page

With the current update, we introduce OmniPath Explorer, an
interactive web application (https://explore.omnipathdb.org/)
to access the OmniPath resource. OmniPath Explorer consists
of browsable pages of database content and a chat assistant
(Fig. 2A—C).

The first allows users to search for protein and gene names
and explore the data through an easy-to-use but comprehen-
sive graphical interface. Contents of the five database do-
mains are presented in five different views. The left side con-
trol panel enables filtering by a broad range of variables,
for example, type, causality, amount of evidence for interac-
tions (Fig. 2A), or location, scope and causality for intercell.
In the interactions part, all partners of a given molecule ap-
pear as a list, with the interaction type and causality encoded
by colors and symbols. The provenances are also included
for each interaction, with links to the original databases
and articles in PubMed. The annotations part groups the re-
sources by topic, and presents data from the selected ones
in tabular format. Alternatively, free text search in annota-
tion records is also available (Fig. 2B). In all views, proteins
of interest are presented at the top, with a basic overview
from UniProt [31]: the organism, molecular weight, polypep-
tide length, and literature statements about the functions,
localization, function, classification, Gene Ontology, PTM
information, and links to PubMed and further resources
(Fig. 2D).

The chat part integrates an LLM assistant that accepts nat-
ural language questions, writes and executes SQL queries, and
interprets the results to provide answers. The generated SQL
queries and their output are shown alongside the answers,
these can be checked for correctness, edited, and exported as

tables (Fig. 2C). The LLM is provided with an expanding set of
query templates which guide it to formulate queries. This en-
ables noncomputational users to explore the database content
and flexibly access and integrate data across multiple tables or
resources.

Web API

The web service serves data in tabular or JSON format, and
consists of five main endpoints (query types), corresponding
to the five database domains of OmniPath. It supports the fil-
tering of records by practically any of the variables: by re-
sources, molecules, organisms, and other variables specific for
the database domains, for example, filter TF regulons accord-
ing to specific confidence levels [4], or PTM residues at the
enzyme—substrate domain, or cell-cell communication roles at
the intercell domain. Optional columns can be selected by the
fields parameter. Annotations are returned as a long-format
data frame and require pivoting into wide format, which is
supported by the client packages.

We recently added two new columns to the interaction
records, both containing JSON blobs. The extra_attrs column
includes resource-specific interaction attributes, such as the
mechanism or detection method of the interaction. The client
packages are able to extract specific variables from the JSON
blob to data frame columns. The evidences column contains
the provenance information in full detail. This enables the
client packages to do precise filtering, for example, discard-
ing all information that is not licensed for commercial use.
License-based filtering is also supported by the web APDs [i-
cense parameter.

Causality of interactions is represented by three columns
(is_directed, is_stimulation, is_inhibition); in addition, “con-
sensus” alternatives of these columns provide a majority vote
across all resources.

The web service also features a few auxiliary queries that
provide meta-information about the contents. The databases
and datasets queries return the list of resources and datasets
in the interactions domain, the gueries query returns the list
of valid parameters for each query, while the resources query
maps the use of resources within the databases, and also in-
cludes license information. The annotations_summary and in-
tercell_summary queries, for each resource, list all variables
and all possible values.

Python, R, and Cytoscape clients

The ommnipath Python package is available in the PyPI
repository (https://pypi.org/project/omnipath/), while the
OmmnipathR R package (https://bioconductor.org/packages/
OmnipathR) is part of Bioconductor [33]. Query types, inter-
action types and interaction datasets are represented in the
Python package by classes, in the R package by functions. All
web service query parameters can be provided as arguments
to the “get” method of the Python classes and similarly to
the functions in the R package. The results are returned as
data frames. Both packages provide utilities to pivot the
annotation data frames from long to wide format, combine
networks and annotations, translate data to other organisms
by orthologous gene pairs, and update the causality of inter-
actions based on detailed provenance data in the evidences
column.
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Figure 2. The OmniPath Explorer web application. (A) Interaction browser. (B) Annotation browser. (C) Chat interface to the OmniPath large language
model (LLM) agent. (D) Main page search and menu; protein datasheet.

Besides the OmniPath client functionalities, OmnipathR ~ for 102 identifier types, orthologous gene pair translation
provides direct access to 26 resources (Supplementary Table (by HomoloGene, Ensembl [29], and OMA [30]), transla-

S1), among them several metabolomics related ones, such tion ambiguity analysis, handling of organism names, traver-
as MetalinksDB [34], a network of annotated metabolite- sal of the Gene Ontology [36] tree, full featured clients
protein interactions combining 14 resources, or RaMP- to the Ensembl BioMart [29], KEGG [37], and UniProt
DB [35], a comprehensive resource of metabolite identi- [32] APIs. It is able to convert interaction data frames to
fiers and structures. OmmnipathR also comes with a prior  igraph [38] networks or deliver them to Bio Model Analyzer

knowledge processing toolkit, including translation utilities [39].
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available through the HTTP API at https://omnnipathdb.org/. The OmniPath Explorer web app allows interactive browsing with LLM assistance, while
client packages for R, Python, and Cytoscape provide convenient access and utilities for seamless integration into analysis workflows. The components
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The OmmniPath Cytoscape app [40] supports the interac-
tions, enzyme—substrate, and a limited set of the annotations
database domains. It imports the data directly into Cytoscape
from the datasets and resources specified by the user.

Implementation

The database build and the web API of OmniPath are im-
plemented in a suite of Python packages (Fig. 3). The py-
path package is responsible for resource-specific parsing and
compiling the combined databases. It features a number of
processing utilities, most importantly, the identifier and or-
thologous gene pair translation. The pypath.inputs module
is a collection of clients for 200 original resources. These
clients use the download-manager and cache-manager pack-
ages for robust network transactions and local caching.
The pypath.core module builds the OmniPath databases. All
clients and the complete database build are tested daily by an
automated pipeline and a status report is published at https:
/Istatus.omnipathdb.org/. For original resources that became
temporarily or permanently inaccessible, we host these on
our own server at https://rescued.omnipathdb.org/. Another
Python package, the ommnipath-server loads the databases into
PostgreSQL and operates the web service. OmniPath Ex-
plorer is a TypeScript application built with the Next.js frame-
work, and uses the same PostgreSQL database as the web API
(Fig. 3). The database is updated periodically, with the old
versions archived at https://archive.omnipathdb.org/. By de-

fault, the LLM agent uses the openly-accessible Google Gem-
ini Flash 2.5 model.

Discussion

OmniPath is an integrated database combining 168 molecular
resources into a single, continuously updated framework, in-
cluding signed and directed PPIs, enzyme-PTM relationships,
ligand-receptor pairs, protein complexes, and extensive func-
tional annotations. By harmonizing data from all these diverse
resources, OmniPath facilitates access to prior-knowledge for
a broad range of use cases. The OmniPath Explorer presents
all evidence for molecular interactions and comprehensive an-
notations in one place. This allows users to explore interac-
tively the complete knowledgebase and quickly look up spe-
cific information and find the most suitable resources for their
analysis. The web API and its clients for popular bioinfor-
matics environments (Python, R, Cytoscape) enable effort-
less creation of customized prior knowledge for diverse ap-
plications. With its coverage of small and curated resources,
OmniPath also fills a critical gap among other large meta-
resources, such as STRING [13] or PathwayCommons [15],
and major interaction or pathway databases with original cu-
ration effort, like IntAct [12] or Reactome [14]. The heteroge-
neous curation protocols and quality of constituting resources
can be seen as a potential weakness of OmniPath as an inte-
grated database; however, alternatives—literature mined net-
works [41], high-throughput screens [12], correlation-based
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approaches [13]—come with their own limitations, while an
integrated database creates new opportunities to search for
potentially erroneous records, and also to compile on demand
any custom combination of the resources.

Integrating a multitude of resources in a uniform format
opens the way towards their benchmarking, as it is done,
for example, in NetworkCommons [10] to evaluate the per-
formance of network inference methods. Including various
interaction types—signaling pathways, transcriptional, and
miRNA regulation, ligand-receptor, etc—in a uniform net-
work, together with the annotations and the above mentioned
inference methods, enables the generation and investigation
of complex, multilayered hypotheses that would be limitedly
possible with other resources.

The integrative design of OmniPath translates into prac-
tical impact across diverse tasks in the analysis of omics
data. The client packages feature integrations with several
downstream analysis tools. For example, integration with
the enrichment package Decoupler [1] enables seamless use
of signature-based TF, pathway, kinase, and cytokine activ-
ity estimations in bulk and single-cell workflows, including
within scverse [42], as well as automated cell type anno-
tations using PanglaoDB [43]. Similarly, OmniPath delivers
highly customizable ligand-receptor networks directly into
the LIANA+ [7] cell-cell communication inference frame-
work, also part of the scverse ecosystem. Networks from Om-
niPath are readily available in the CORNETO [44] network
optimization framework, its multi-omics causal variant COS-
MOS [45], and further network inference methods in Net-
workCommons [10], to derive context-specific mechanisms
from omics data. For metabolism, OmniPath not only deliv-
ers prior knowledge in the MetaProViz R package [46], but
also enables connecting knowledge and metabolomics fea-
tures with its extensive identifier translation utilities. Omni-
Path is also connected to other prior-knowledge processing
systems: the curated knowledge from OmniPath is presented
in the INDRA natural language processing system for molec-
ular interactions [41]; a script is available to write OmniPath
interactions into neo4j importable CSV using the BioCypher
library [47]; while OmniPath’s prior-knowledge processing
toolkit is used in building the CROssBARv2 database [48].

The server-client architecture isolates resource-specific
download and processing from analysis workflows, for a re-
duced complexity and enhanced robustness. Built-in support
for resource license constraints facilitates applications in com-
mercial settings by keeping compliance straightforward. Om-
niPath Explorer’s LLM agent turns text-based questions into
SQL queries. This user-friendly mode of operation assists both
new and advanced users to design database queries, while di-
rectly answering natural language questions for noncompu-
tational users. We are integrating OmniPath into BioContex-
tAl a collection of biomedical LLM agents [49], to facilitate
integration with LLMs via the model context protocol. We
consider the current implementation to be only a first step to-
wards LLM assistance. Through an improved integration with
the knowledge contained in OmniPath, and access to addi-
tional computational tools, our LLM agent may evolve to an-
swer more complex questions and contribute to larger tasks
together with other LLMs. We aim to iterate on our imple-
mentation by continuously learning about its current utility
and limitations from user feedback.

In our future work, we also plan covering more metabolite,
drug, and microbiome-related knowledge, with special focus

on causal relationships and functional annotations. We intend
to further develop OmniPath Explorer with more views, richer
interactivity, and information presented in each view. In the
Python client side, we have plans to further improve the in-
tegration with network inference methods in NetworkCom-
mons and single-cell workflows of the scverse ecosystem.

We remain committed to developing OmniPath as a free
open-source resource for the community, particularly for re-
searchers analyzing omics data. We welcome feedback, con-
tent suggestions, feature requests, and bug reports, which can
be submitted via GitHub (https://github.com/saezlab) or email
(omnipathdb@gmail.com).
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