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Abstract

Background: Current measures of adiposity have limitations. Artificial intelligence (AI) models 

may accurately, and efficiently estimate body composition from routine imaging.

Objective: To assess the association of AI-derived body composition compartments from 

magnetic resonance imaging (MRI) with cardiometabolic outcomes.

Design: Prospective cohort study.

Setting: UK Biobank observational cohort study.

Participants: 33,539 UK Biobank participants without a history of diabetes, myocardial 

infarction, or ischemic stroke (65.0±7.8 years; BMI: 25.8±4.2 kg/m2, 52.8% female) who 

underwent whole-body MRI.

Measurements: An AI tool was applied to MRI to derive 3-dimensional (3D) BC measures, 

including subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), skeletal muscle 

(SM), and SM fat fraction (SMFF), and then calculate their relative distribution. Sex-stratified 

associations of these relative compartments with incident diabetes mellitus (DM) and major 

adverse cardiovascular events (MACE) were assessed using restricted cubic splines.

Results: Adipose tissue compartments and SMFF increased and SM decreased with age. After 

adjustment for age, smoking, and hypertension, greater adiposity and lower SM proportion were 

associated with higher incidence of DM and MACE after a median follow-up of 4.2 years in 

sex-stratified analyses; however, after additional adjustment for BMI and waist circumference 

(WC), only elevated VAT proportions and high SMFF were associated with increased risk for DM 

(respective adjusted hazard ratios [aHRs] for top fifth percentile of the cohort, 2.16 [95% CI, 1.59 

to 2.94] and 1.27 [CI, 0.89 to 1.80] in females and 1.84 [CI, 1.48 to 2.27] and 1.84 [CI, 1.43 to 

2.37] in males) and MACE (respective aHRs for top fifth percentile of the cohort, 1.37 [CI, 1.00 

to 1.88] and 1.72 [CI, 1.23 to 2.41] in females and 1.22 [CI, 0.99 to 1.50] and 1.25 [CI, 0.98 to 

1.60] in males). In addition, in males only, low SM proportion was associated with increased risk 

for DM (aHR for bottom fifth percentile of the cohort, 1.96 [CI, 1.45 to 2.65]) and MACE (aHR, 

1.55 [CI, 1.15 to 2.09]).

Limitations: Results may not generalize to non-whites or outside the UK.

Conclusion: Artificial intelligence–derived BC proportions were strongly associated with 

cardiometabolic risk, but after BMI and WC were accounted for, only VAT proportion and SMFF 

(both sexes) and SM proportion (males only) added prognostic information.

Primary Funding Source: None.

INTRODUCTION

Obesity is a global epidemic, estimated to have caused 4 million deaths in 2015, primarily 

driven by excess cardiometabolic disease(1). 40% of the global population is overweight 

or obese, and it is projected that >60% of US adults will be obese by 2050(1, 2). Current 
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obesity definitions rely on body mass index (BMI): >25-<30 for overweight or >30 for 

obese; however, this conflates excess adiposity with muscle mass and does not account for 

the location of body fat, critical factors to assess obesity-related cardiometabolic risk(3). 

Alternative definitions using waist circumference, anthropometric measures, or dual-energy 

absorptiometry may more directly assess adiposity but still cannot differentiate fat location 

and distribution (e.g., visceral [VAT] vs subcutaneous adipose tissue [SAT])(4-6).

Cross-sectional scans, such as magnetic resonance imaging (MRI) and computed 

tomography (CT), are a potential solution to improve adiposity assessment, as their 

availability is constantly increasing, with an 86% and 127% increase in MRI and CT 

volume in England over the last decade(7, 8). Despite the well-established link between 

adiposity and muscle with cardiometabolic and other diseases,(9-11) body composition (BC) 

measures derived from MRI and CT are not currently quantified in daily practice (9-11). 

Advances in artificial intelligence have enabled automated, efficient three-dimensional (3D) 

segmentation of BC compartments, which are more strongly associated with mortality than 

surrogate 2D areas(12). However, the relationship between imaging-derived BC volumes 

with cardiometabolic outcomes is unknown.

Here, we used an open-source artificial intelligence model to estimate 3D BC volumes 

including SAT, VAT, skeletal muscle (SM), and SM fat fraction (SMFF) from whole-body 

MRIs of >30,000 individuals from the UK Biobank (UKB). We calculated relative adiposity 

and muscle (e.g., relative SAT is the ratio of SAT to total SAT, VAT, and SM volume) to 

control for disease-independent factors like sex and height that control total body size (10)

(13). Finally, we described age and sex-specific distributions of relative BC compartments 

across the lifespan and investigated the association between relative BC measures and future 

cardiometabolic disease risk (diabetes and major adverse cardiovascular events or MACE) 

beyond BMI, waist circumference, and other traditional risk factors.

MATERIAL AND METHODS

Data source

This study used data from the UKB, a large population-based cohort study from the general 

population(14, 15). Between 2006-2010, 500,000 individuals aged 40-69 (5.5% of invitees) 

joined the UKB after NHS invitation (16). Although the sampling is likely not representative 

of the full UK, the large sample size gives credence to exposure-outcome relationships(16).

A subgroup of participants has undergone a panel of imaging exams including MRI. All 

surviving UKB participants are invited to participate in this substudy, except for those who 

no longer wish to be contacted or now live outside the UK. The MRI protocol includes 

a whole-body T1-weighted 3D-VIBE two-point Dixon sequence. Dixon-MRI separates the 

MRI signals of water and fat, allowing accurate fat and muscle tissue segmentation. Further 

information is provided in Supplemental Methods. An overview of our study design is 

provided in Supplemental Figure 1, a flowchart in Supplemental Figure 2.
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Deep learning model and BC measures

We used a validated deep learning (DL) model to measure SAT, VAT, SM (volumes), 

and SMFF (%) from whole-body MRI (12). In brief, the model was trained on n=150 

random participants of the German National Cohort Study (NAKO; whole-body 3-Tesla 

Dixon-MRI)(17): SAT, VAT, and SM were manually annotated by a radiology resident (5 

years of experience in MRI) using a semi-automatic threshold-based 3D segmentation tool 

in an open-source imaging platform (https://www.nora-imaging.org). Initial segmentations 

were reviewed by a board-certified attending radiologist (10 years of experience in MR 

imaging) and flagged if errors were noted. Flagged exams were discussed by consensus 

between resident and attending, and segmentations were corrected when necessary (minor 

adjustments in about 10% of cases).

After training, the model was tested on n=50 independent manually segmented NAKO test 

MRIs not seen during training. These served as ground-truth to assess model performance 

using Dice scores (measures segmentation accuracy from 0-1: 1 represents perfect overlap 

between predicted and manual ground-truth segmentations). In our previous study, we 

reported high agreement between automatic and manual segmentations in the testing dataset, 

with dice scores of 0.95±0.02 for SAT, 0.92±0.03 for VAT, and 0.93±0.02 for SM (12). We 

retrained the model using a random sample of n=130 UKB-MRIs, allowing the model to 

learn nuances (fine-tuning) between the 1.5-Tesla compared to the 3-Tesla Dixon-MRIs used 

in NAKO. After fine-tuning, we reported dice scores of 0.93±0.01 for SAT, 0.90±0.01 for 

VAT, and 0.90±0.03 for SM on the UKB testing set (n=50) elsewhere (12).

Here, we provide Bland-Altman-plots to test the model performance in the UKB 

(Supplemental Figure 3). Bland-Altman plots showed good agreement between manual 

and deep learning-based segmentations. For SAT, the mean difference was −0.22L (limits 

of agreement: −1.42L-0.98L), indicating a slight underestimation of SAT (cohort median 

14.9L [IQR 11.6-19.3L]; Table 1) by the DL model (Supplemental Figure 3A). VAT had 

a mean difference of 0.37L, with differences tightly clustered around the mean (limits 

of agreement: 0.03L-0.72L), reflecting slight overestimation of VAT (cohort median 3.4L 

[IQR 2.0-5.3L]; Table 1) but strong concordance (Supplemental Figure 3B). Skeletal muscle 

showed a mean difference of 0.5L, with slightly more variability but overall consistent 

agreement (limits of agreement: −0.36L-1.36L, Supplemental Figure 3C; cohort mean and 

standard deviation 11.4±3.0L, Table 1). Sample segmentation results illustrating the model's 

performance across BMI categories and sex are shown in Supplemental Figure 4.

In addition, we quantified the SM-derived fat fraction (SMFF), a marker of muscle quality 

that captures metabolically active intramyocellular fat that is not visible macroscopically. 

SMFF can be estimated from Dixon-MRI, which allows for voxel-wise extraction of water 

and fat signals, enabling the calculation of a fat fraction (fat signal/[fat+water signal]) 

from BC segmentation masks. A common drawback of Dixon-MRI is "swap artifacts" 

where fat signals are misrepresented as water signals, leading to incorrect fat fraction 

calculations. Swap artifacts occurred in raw scan regions, such as the abdomen, where, e.g., 

fat was incorrectly displayed as water contrast. When fat and water images were stitched 

into a whole-body MRI, this swapping caused some regions, e.g., the abdomen, to be 

displayed incorrectly, e.g., as water contrast, while other regions, e.g., the chest and pelvis, 
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remained correctly displayed as fat contrast. Therefore, we used a second open-source 

model to correct for these region-wise swaps in the stitched whole-body MRIs before SMFF 

quantification, as reported elsewhere(12). Briefly, the model was tested on 180 whole-body 

MRIs with swaps, and performance was verified by visual review from the radiology 

resident. All swaps were accurately corrected.

Outcomes

Primary outcomes were incident diabetes (ICD-10: E10-14; ICD-9: 250) and major 

adverse cardiovascular events (MACE), defined as myocardial infarction or ischemic 

stroke (ICD-10: I21-22; I63; I00-I78; ICD-9: 410-411; 433-434), or mortality from major 

cardiovascular diseases (ICD10: I1-6; I70-78). Outcomes were defined using UKB Data 

Fields 41270 and 41271 which contain distinct International Classification of Disease 

9 and 10 diagnosis codes through linkage to all hospital inpatient records (https://

biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=138483). Mortality from major cardiovascular 

diseases was extracted through linkage to national death registries (Data-Field 40001). 

Follow-up time was calculated as the interval between the date of MRI (start and origin 

time) until earliest date among death, outcome, loss to follow-up, or October 31, 2022 

(Censoring date for ICD-based outcomes).

Covariates

Date of birth, sex, and race were extracted from baseline self-reports. Weight (kg) and 

height (m) were obtained at the imaging visit. BMI (kg/m2) was categorized as established 

(BMI<25, healthy weight; BMI=25-29.9, overweight; BMI>30, obese). BMI<18 was 

included in the healthy weight group due to underrepresentation (n=230). Smoking was 

categorized into "never", "former," and "current" smokers. Prevalent hypertension was 

defined as having ICD-10 codes I10-15 or ICD-9 codes 401-405 before the imaging visit. 

Non-whites (n=1,193, 3% UKB) were excluded due to substantial heterogeneity in the 

association of BC with disease across ethnic groups. Covariates were identified using a 

modified disjunctive cause criterion.

Statistical Analysis

Baseline characteristics are presented as mean ± standard deviation or median with 

interquartile ranges (IQR) for continuous and absolute counts with percentages for 

categorical variables.

After automatic extraction of SAT, VAT, and SM, we defined relative BC compartments to 

adjust for disease-independent contributors to SAT, VAT, and SM volumes (e.g., sex, body 

size). Relative compartments were defined as the ratio of each measure to the sum of all 

BC measures, e.g., SATrel(%) = SAT/(SAT+VAT+SM). SATrel of 60% indicates that 60% of 

a person's total adiposity and muscle is SAT, with the remaining 40% comprising VAT and 

SM.

Differences in relative BC compartments and SMFF across ages were visualized using 

density plots.

Jung et al. Page 5

Ann Intern Med. Author manuscript; available in PMC 2025 October 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=138483
https://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=138483


Outcome analyses were limited to individuals without a history of diabetes, myocardial 

infarction, or ischemic stroke. To investigate time to outcome, sex-stratified natural cubic 

splines with 3 knots were computed using the splines package V4.4.2. We calculated 

sequential models to assess the association between relative BC measures and outcomes: 

1) unadjusted model; 2) model adjusted for BMI categories and waist circumference, and 

3) model adjusted for BMI categories, waist circumference, prevalent hypertension, and 

smoking status. Results were additionally reported as adjusted hazard ratios (aHR) and 

95% (2.5th and 97.5th percentiles) confidence intervals (CI) for the top and bottom 5% 

and 20% of males and females, respectively. For the underlying sex-stratified Cox models, 

proportional hazards assumptions were tested by computing scaled Schoenfeld residuals, 

and linearity was assessed using martingale residuals. Both assumptions were met for all 

models. Cox regressions were complete case analyses, excluding individuals with one or 

more missing covariates.

Statistical analyses were performed using R V4.2.2 (R-Core-Team, www.r-project.org, 

2024).

Role of funders

This study received no funding.

RESULTS

Study population and BC distribution by age

A total of 33 432 people (17 657 females; mean age, 65.0 years [SD, 7.8]; mean BMI, 

25.8 kg/m2 [SD, 4.2]) were included. The Table presents baseline characteristics of included 

participants. Females had higher SAT and SMFF than males, whereas males had higher SM 

and VAT (P < 0.001 for all; Table).

Across all age groups, SAT was the predominant compartment in females, comprising 

58.1% of total BC at age 40 to 49 years and increasing to 60.1% above age 70 years 

compared with 40.0% and 41.5%, respectively, in males (Figure 1). Skeletal muscle was 

the predominant compartment in males, peaking at age 40 to 49 years (45.3% in males vs. 

35.5% in females) and decreasing thereafter. In both sexes, VAT proportion and SMFF were 

also higher with increased age.

Relative BC measures and incident DM and MACE

Over 4.2 years (IQR 3.4-5.6 years), 187/17657 females (1.1%) and 344/15775 males (2.2%) 

were diagnosed with incident diabetes, and 177/17657 females (1.0%) and 365/15775 males 

(2.3%) had a major adverse cardiovascular event (MACE). Figures 2 & 3 show results for 

the sex-stratified association of relative BC measures and future risk for DM and MACE 

after adjustment for age, smoking status, and hypertension and with additional adjustment 

for BMI categories and WC.

In models adjusted for age, smoking, and hypertension, greater adiposity measures (SAT 

proportion, VAT proportion, and SMFF) and low SM proportion were associated with 

higher incidence of DM and MACE in both sexes (Figures 2 and 3 [upper rows]). These 
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relationships were consistent with those in unadjusted analyses (Supplement Figures 5 and 

6).

After additional adjustment for BMI and WC, the associations between SAT proportion and 

DM and MACE were attenuated in males (Figure 2 [B] and Figure 3 [B], lower rows), while 

we observed a negative association between relative SAT and future diabetes risk in females. 

Females in the bottom 20th percentile of relative SAT (<54.4%) had an aHR of 1.46 (95% 

CI, 1.23 to 1.72), while females in the top 20th percentile (>64.6%) had an aHR of 0.71 (CI, 

0.59 to 0.84) (Figure 2 [A], lower row).

In both sexes, high VAT proportions and high SMFF remained associated with higher risk 

for DM and MACE. For DM, aHRs for the top fifth percentile were 2.16 (CI, 1.59 to 2.94) 

and 1.27 (CI, 0.89 to 1.80) in females (Figure 2 [A]) and 1.84 (CI, 1.48 to 2.27) and 1.84 

(CI, 1.43 to 2.37) in males (Figure 2 [B]), respectively. For MACE, aHRs were 1.37 (CI, 

1.00 to 1.88) and 1.72 (CI, 1.23 to 2.41) in females (Figure 3 [A]) and 1.22 (CI, 0.99 to 1.50) 

and 1.25 (CI, 0.98 to 1.60) in males (Figure 3 [B]), respectively.

In males only, low SM proportions remained associated with increased risk for DM (aHR for 

bottom fifth percentile, 1.96 [CI, 1.45 to 2.65]; Figure 2 [B]) and MACE (aHR for bottom 

fifth percentile, 1.55 [CI, 1.15 to 2.09]; Figure 3 [B]) after adjustment for BMI and WC.

Results were consistent across BMI subgroups (Supplemental Figures 7-9).

DISCUSSION

Excess adiposity is a key driver of cardiometabolic disease, but current definitions of 

obesity rely on BMI, an accessible but poor surrogate (3). Here, we applied an artificial 

intelligence segmentation tool to whole-body MRIs from >30,000 UK Biobank participants 

to extract 3D BC compartments, including subcutaneous adipose tissue (SAT), visceral 

adipose tissue (VAT), skeletal muscle (SM), and skeletal muscle fat fraction (SMFF). We 

found that the tool accurately extracted 3D BC volumes from whole-body MRIs in <3 

minute per scan. We then used these measures to describe how relative proportions of each 

compartment change across the lifespan. We found that as both sexes age, adipose tissue 

compartments and myosteatosis (SMFF) increases while SM decreases. Lastly, we found 

that high VAT proportions and myosteatosis were associated with incident diabetes risk in 

both sexes, low SM was associated with higher risk in males, and SAT proportions were 

not associated with higher risk in either sex. We found similar but weaker associations with 

incident cardiovascular events, and all associations were robust to adjustment for BMI, waist 

circumference, and clinical risk factors.

These results corroborate evidence that VAT, but not SAT, is a key driver of adiposity-related 

cardiometabolic risk (18-20). We also confirm findings that ectopic fat in the muscle leads to 

insulin resistance and cardiovascular risk (21, 22). Contrary to emerging evidence, we found 

that low skeletal muscle proportions were more strongly associated with cardiometabolic 

risk in men than in women (23). Counterintuitively, we noted a small protective effect of 

high SAT proportion and volume in women after adjustment for waist circumference. SAT 

may confer metabolic protection compared to visceral fat, particularly in women (24, 25), 
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and thus may serve as a proxy for low visceral adiposity. However, we did not observe this 

protective effect for cardiovascular outcomes, and it may also reflect residual confounding. 

(26)

BMI has known limitations and is only recommended as a population-based measure for 

epidemiological studies or as a screening tool (3). Cardiometabolic disease guidelines 

suggest more direct measurement of adiposity using anthropometric metrics like waist 

circumference and waist-to-hip ratio or dual-energy x-ray absorptiometry (27, 28). These 

measures are more closely related to abdominal adiposity than BMI but are unable to assess 

relative BC proportions (correlation to VAT/SAT ratio~0.1), suggesting that they may be 

proxies of total adiposity/size (29). The model used in this study enables direct measurement 

of BC compartments and relative proportions, which are shown here to be associated with 

cardiometabolic risk beyond BMI and waist circumference.

The benefit of anthropometric metrics are their ease of use. Whole-body MRI is becoming 

increasingly popular as a direct-to-consumer screening tool but is not performed in clinical 

routine. Though we do not recommend specifically ordering whole-body MRIs to assess 

BC, a pragmatic clinical implementation may be an opportunistic screening strategy, where 

BC data is automatically extracted from routine clinical MRI or CT scans, regardless of 

their initial indication. A critical next step towards this paradigm is to test whether BC 

proportions extracted from common clinical scan regions (liver, kidney, etc.) produce similar 

estimates as our whole-body approach. If successful, this model could be implemented 

in the Electronic Medical Record (EMR) without disrupting established workflows to 

automatically quantify potentially prognostic body composition measurements from routine 

MRIs or CTs that would otherwise be missed. Our model was trained on a T1-weighted 

Dixon sequence, which is widely used in daily routine and comparable to other commonly 

used T1-weighted sequences (30).

Growing evidence suggests that BC plays a key role not only in cardiometabolic but also 

oncologic diseases to personalize risk estimation (31-33). In addition, BC could also play a 

crucial role in estimating treatment tolerability and the risk of treatment-related toxicity. In 

this context, beyond defining excess adiposity, our DL model and relative BC profiles could 

be used as a frailty or overall health measure to improve treatment decisions for accurate, 

personalized dosing of systemic drug therapies, including chemotherapy and immunotherapy 

(33-35).

This study has limitations. First, the study population is non-Hispanic white adults >45 

years old and the results may not generalize to other demographic groups (16). A major 

challenge in obesity management is that BMI and waist circumference require specific 

thresholds and have variable accuracy to identify excess adiposity in individuals of different 

race/ethnicity. MRI has potential to address this issue with direct measurement of BC (36); 

however, further testing is needed to determine whether the DL-model generalizes to diverse 

populations. We did not assess test-retest reliability of the DL segmentations here; however, 

Bland-Altman analysis showed that DL-segmentations were robust despite the rather small 

testing cohort. Third, Dixon-swap artifacts are common errors in clinical routine, meaning 

that a fat-only signal can be erroneously displayed in parts where a water-only signal 
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is expected, resulting in incorrect Dixon-derived SMFF calculations (37, 38). While we 

corrected swap-artifacts in our study before SMFF extraction, this may be a barrier to the 

translation of SMFF into practice. Furthermore, future studies need to investigate whether 

the model generalizes to non-Siemens scans and different field-strengths. Fourth, granular 

information on smoking history (e.g., pack-years), physical activity, and socioeconomic 

status was not available for most of our cohort and may introduce residual confounding. 

Last, we used thoracoabdominal SAT, VAT, and SM to define thresholds; however, 

fat location (e.g. ectopic or gluteofemoral fat) may play different roles in conferring 

cardiometabolic risk. Future studies will focus on anatomic region-specific measurements 

to further refine our high-risk definition and improve its clinical utility.

In conclusion, automated MRI-based body composition analysis is accurate and feasible. 

Automated body composition measurements are associated with cardiometabolic risk 

beyond BMI, waist circumference, and traditional risk factors. Upon further validation 

in diverse populations, this approach may enable opportunistic assessment of body 

composition from routine imaging to identify patients at high cardiometabolic risk.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Change in relative body composition across age in decades
Density plots illustrate the change in relative body composition measures SATrel (blue), 

VATrel (orange), SMrel (green), and SMFF (red) across age decades. While there is an 

increase in relative adipose tissue volume (SATrel, VATrel) across age decades, there is a 

decrease in SMrel accompanied by an increase in SMFF. Sex-stratified median (IQR) relative 

body composition measures are provided in the tables below the plots.

IQR, interquartile range. SAT, subcutaneous adipose tissue. SM, skeletal muscle. SMFF, 

skeletal muscle fat fraction. VAT, visceral adipose tissue. rel, body composition measure 

relative to the sum of all body composition measures
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Figure 2: Multivariable adjusted spline curves for incident diabetes
Sex-stratified multivariable adjusted spline plots (A, females; B, males) show the 

relationship between relative body composition measures and incident diabetes risk. The 

tables below each graph show the adjusted hazard ratios (HRs) and 95% confidence intervals 

(CIs) for the bottom and top 5% and 20% of the cohort. Dashed lines, 95% confidence 

interval. The models are adjusted for age, BMI categories, waist circumference, prevalent 

hypertension, and smoking status.

CI, confidence interval. SAT, subcutaneous adipose tissue. SM, skeletal muscle. SMFF, 

skeletal muscle fat fraction. VAT, visceral adipose tissue. rel, body composition measure 

relative to the sum of all body composition measures
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Figure 3: Multivariable adjusted spline curves for incident MACE
Sex-stratified multivariable adjusted spline plots (A, females; B, males) show the 

relationship between relative body composition measures and incident MACE risk. The 

tables below each graph show the adjusted hazard ratios (HRs) and 95% confidence intervals 

(CIs) for the bottom and top 5% and 20% of the cohort. Dashed lines, 95% confidence 

interval. The models are adjusted for age, BMI categories, waist circumference, prevalent 

hypertension, and smoking status.

CI, confidence interval. SAT, subcutaneous adipose tissue. SM, skeletal muscle. SMFF, 

skeletal muscle fat fraction. VAT, visceral adipose tissue. rel, body composition measure 

relative to the sum of all body composition measures
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Table 1: Cohort characteristics

Characteristic
Overall,
N = 33,432

Female,
N = 17,657

Male,
N = 15,775

Age, y

Mean ± SD 65.0 ± 7.8 64.4 ± 7.6 65.6 ± 7.9

Median (IQR) 65.4 (59.0, 71.0) 64.6 (58.5, 70.3) 66.4 (59.6, 71.8)

BMI, n (%)

 < 25 kg/m2 16,022 (48%) 9,708 (55%) 6,314 (40%)

 25-29.9 kg/m2 12,657 (38%) 5,474 (31%) 7,183 (46%)

 ≥ 30 kg/m2 4,753 (14%) 2,475 (14%) 2,278 (14%)

Waist circumference, cm

Mean ± SD 88.1 ± 12.5 82.6 ± 11.6 94.2 ± 10.5

Median (IQR) 88.0 (79.0, 96.0) 81.0 (74.0, 90.0) 93.0 (87.0, 100.0)

SAT, L

Median (IQR) 14.9 (11.6, 19.3) 17.0 (13.4, 21.6) 13.0 (10.4, 16.3)

VAT, L

Median (IQR) 3.4 (2.0, 5.3) 2.4 (1.4, 3.6) 5.0 (3.4, 6.6)

SM, L

Mean ± SD 11.4 ± 3.0 9.1 ± 1.3 14.0 ± 2.1

SMFF, %

Mean ± SD 16.0 ± 3.2 17.1 ± 3.0 14.7 ± 2.9

History of Hypertension, n (%) 4,293 (13%) 1,852 (10%) 2,441 (15%)

Smoking status**, n (%)

 never 15,431 (47%) 8,671 (50%) 6,760 (43%)

 former 17,023 (51%) 8,478 (49%) 8,545 (55%)

 current 634 (1.9%) 297 (1.7%) 337 (2.2%)

Incident Diabetes 531 (1.6%) 187 (1.1%) 344 (2.2%)

Incident MACE 542 (1.6%) 177 (1.0%) 365 (2.3%)

Follow up time, y

Mean ± SD 4.5 ± 1.8 4.5 ± 1.8 4.4 ± 1.8

Median (IQR) 4.2 (3.3, 5.6) 4.2 (3.4, 5.6) 4.2 (3.3, 5.5)

**
n=33088 for smoking status

BMI, body mass index. L, liters SAT, subcutaneous adipose tissue. SM, skeletal muscle. SMFF, skeletal muscle fat fraction. VAT, visceral adipose 
tissue. Y, years
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