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Abstract

Background: Current measures of adiposity have limitations. Artificial intelligence (Al) models
may accurately, and efficiently estimate body composition from routine imaging.

Objective: To assess the association of Al-derived body composition compartments from
magnetic resonance imaging (MRI) with cardiometabolic outcomes.

Design: Prospective cohort study.
Setting: UK Biobank observational cohort study.

Participants: 33,539 UK Biobank participants without a history of diabetes, myocardial
infarction, or ischemic stroke (65.0+7.8 years; BMI: 25.8+4.2 kg/m?, 52.8% female) who
underwent whole-body MRI.

Measurements: An Al tool was applied to MRI to derive 3-dimensional (3D) BC measures,
including subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), skeletal muscle
(SM), and SM fat fraction (SMFF), and then calculate their relative distribution. Sex-stratified
associations of these relative compartments with incident diabetes mellitus (DM) and major
adverse cardiovascular events (MACE) were assessed using restricted cubic splines.

Results: Adipose tissue compartments and SMFF increased and SM decreased with age. After
adjustment for age, smoking, and hypertension, greater adiposity and lower SM proportion were
associated with higher incidence of DM and MACE after a median follow-up of 4.2 years in
sex-stratified analyses; however, after additional adjustment for BMI and waist circumference
(WC), only elevated VAT proportions and high SMFF were associated with increased risk for DM
(respective adjusted hazard ratios [aHRs] for top fifth percentile of the cohort, 2.16 [95% CI, 1.59
to 2.94] and 1.27 [CI, 0.89 to 1.80] in females and 1.84 [CI, 1.48 to 2.27] and 1.84 [CI, 1.43 to
2.37] in males) and MACE (respective aHRs for top fifth percentile of the cohort, 1.37 [CI, 1.00
to 1.88] and 1.72 [CI, 1.23 to 2.41] in females and 1.22 [CI, 0.99 to 1.50] and 1.25 [CI, 0.98 to
1.60] in males). In addition, in males only, low SM proportion was associated with increased risk
for DM (aHR for bottom fifth percentile of the cohort, 1.96 [CI, 1.45 to 2.65]) and MACE (aHR,
1.55 [ClI, 1.15 to 2.09]).

Limitations: Results may not generalize to non-whites or outside the UK.

Conclusion: Atrtificial intelligence—derived BC proportions were strongly associated with
cardiometabolic risk, but after BMI and WC were accounted for, only VAT proportion and SMFF
(both sexes) and SM proportion (males only) added prognostic information.

Primary Funding Source: None.

INTRODUCTION

Obesity is a global epidemic, estimated to have caused 4 million deaths in 2015, primarily
driven by excess cardiometabolic disease(1). 40% of the global population is overweight
or obese, and it is projected that >60% of US adults will be obese by 2050(1, 2). Current
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obesity definitions rely on body mass index (BMI): >25-<30 for overweight or >30 for
obese; however, this conflates excess adiposity with muscle mass and does not account for
the location of body fat, critical factors to assess obesity-related cardiometabolic risk(3).
Alternative definitions using waist circumference, anthropometric measures, or dual-energy
absorptiometry may more directly assess adiposity but still cannot differentiate fat location
and distribution (e.g., visceral [VAT] vs subcutaneous adipose tissue [SAT])(4-6).

Cross-sectional scans, such as magnetic resonance imaging (MRI) and computed
tomography (CT), are a potential solution to improve adiposity assessment, as their
availability is constantly increasing, with an 86% and 127% increase in MRI and CT
volume in England over the last decade(7, 8). Despite the well-established link between
adiposity and muscle with cardiometabolic and other diseases,(9-11) body composition (BC)
measures derived from MRI and CT are not currently quantified in daily practice (9-11).
Advances in artificial intelligence have enabled automated, efficient three-dimensional (3D)
segmentation of BC compartments, which are more strongly associated with mortality than
surrogate 2D areas(12). However, the relationship between imaging-derived BC volumes
with cardiometabolic outcomes is unknown.

Here, we used an open-source artificial intelligence model to estimate 3D BC volumes
including SAT, VAT, skeletal muscle (SM), and SM fat fraction (SMFF) from whole-body
MRIs of >30,000 individuals from the UK Biobank (UKB). We calculated relative adiposity
and muscle (e.g., relative SAT is the ratio of SAT to total SAT, VAT, and SM volume) to
control for disease-independent factors like sex and height that control total body size (10)
(13). Finally, we described age and sex-specific distributions of relative BC compartments
across the lifespan and investigated the association between relative BC measures and future
cardiometabolic disease risk (diabetes and major adverse cardiovascular events or MACE)
beyond BMI, waist circumference, and other traditional risk factors.

MATERIAL AND METHODS

Data source

This study used data from the UKB, a large population-based cohort study from the general
population(14, 15). Between 2006-2010, 500,000 individuals aged 40-69 (5.5% of invitees)
joined the UKB after NHS invitation (16). Although the sampling is likely not representative
of the full UK, the large sample size gives credence to exposure-outcome relationships(16).

A subgroup of participants has undergone a panel of imaging exams including MRI. All
surviving UKB participants are invited to participate in this substudy, except for those who
no longer wish to be contacted or now live outside the UK. The MRI protocol includes

a whole-body Tq-weighted 3D-VIBE two-point Dixon sequence. Dixon-MRI separates the
MRI signals of water and fat, allowing accurate fat and muscle tissue segmentation. Further
information is provided in Supplemental Methods. An overview of our study design is
provided in Supplemental Figure 1, a flowchart in Supplemental Figure 2.
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Deep learning model and BC measures

We used a validated deep learning (DL) model to measure SAT, VAT, SM (volumes),

and SMFF (%) from whole-body MRI (12). In brief, the model was trained on n=150
random participants of the German National Cohort Study (NAKO; whole-body 3-Tesla
Dixon-MRI)(17): SAT, VAT, and SM were manually annotated by a radiology resident (5
years of experience in MRI) using a semi-automatic threshold-based 3D segmentation tool
in an open-source imaging platform (https://www.nora-imaging.org). Initial segmentations
were reviewed by a board-certified attending radiologist (10 years of experience in MR
imaging) and flagged if errors were noted. Flagged exams were discussed by consensus
between resident and attending, and segmentations were corrected when necessary (minor
adjustments in about 10% of cases).

After training, the model was tested on n=50 independent manually segmented NAKO test
MRIs not seen during training. These served as ground-truth to assess model performance
using Dice scores (measures segmentation accuracy from 0-1: 1 represents perfect overlap
between predicted and manual ground-truth segmentations). In our previous study, we
reported high agreement between automatic and manual segmentations in the testing dataset,
with dice scores of 0.95+0.02 for SAT, 0.92+0.03 for VAT, and 0.93+0.02 for SM (12). We
retrained the model using a random sample of n=130 UKB-MRISs, allowing the model to
learn nuances (fine-tuning) between the 1.5-Tesla compared to the 3-Tesla Dixon-MRIs used
in NAKO. After fine-tuning, we reported dice scores of 0.93+0.01 for SAT, 0.90+0.01 for
VAT, and 0.90+0.03 for SM on the UKB testing set (n=50) elsewhere (12).

Here, we provide Bland-Altman-plots to test the model performance in the UKB
(Supplemental Figure 3). Bland-Altman plots showed good agreement between manual

and deep learning-based segmentations. For SAT, the mean difference was —0.22L (limits
of agreement: —1.421-0.98L), indicating a slight underestimation of SAT (cohort median
14.9L [IQR 11.6-19.3L]; Table 1) by the DL model (Supplemental Figure 3A). VAT had

a mean difference of 0.37L, with differences tightly clustered around the mean (limits

of agreement: 0.03L-0.72L), reflecting slight overestimation of VAT (cohort median 3.4L
[IQR 2.0-5.3L]; Table 1) but strong concordance (Supplemental Figure 3B). Skeletal muscle
showed a mean difference of 0.5L, with slightly more variability but overall consistent
agreement (limits of agreement: —0.36L-1.36L, Supplemental Figure 3C; cohort mean and
standard deviation 11.4+3.0L, Table 1). Sample segmentation results illustrating the model's
performance across BMI categories and sex are shown in Supplemental Figure 4.

In addition, we quantified the SM-derived fat fraction (SMFF), a marker of muscle quality
that captures metabolically active intramyocellular fat that is not visible macroscopically.
SMFF can be estimated from Dixon-MRI, which allows for voxel-wise extraction of water
and fat signals, enabling the calculation of a fat fraction (fat signal/[fat+water signal])

from BC segmentation masks. A common drawback of Dixon-MRI is "swap artifacts"
where fat signals are misrepresented as water signals, leading to incorrect fat fraction
calculations. Swap artifacts occurred in raw scan regions, such as the abdomen, where, e.g.,
fat was incorrectly displayed as water contrast. When fat and water images were stitched
into a whole-body MRI, this swapping caused some regions, e.g., the abdomen, to be
displayed incorrectly, e.g., as water contrast, while other regions, e.g., the chest and pelvis,
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remained correctly displayed as fat contrast. Therefore, we used a second open-source
model to correct for these region-wise swaps in the stitched whole-body MRIs before SMFF
quantification, as reported elsewhere(12). Briefly, the model was tested on 180 whole-body
MRIs with swaps, and performance was verified by visual review from the radiology
resident. All swaps were accurately corrected.

Primary outcomes were incident diabetes (ICD-10: E10-14; ICD-9: 250) and major
adverse cardiovascular events (MACE), defined as myocardial infarction or ischemic
stroke (ICD-10: 121-22; 163; 100-178; ICD-9: 410-411; 433-434), or mortality from major
cardiovascular diseases (ICD10: 11-6; 170-78). Outcomes were defined using UKB Data
Fields 41270 and 41271 which contain distinct International Classification of Disease

9 and 10 diagnosis codes through linkage to all hospital inpatient records (https://
biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=138483). Mortality from major cardiovascular
diseases was extracted through linkage to national death registries (Data-Field 40001).
Follow-up time was calculated as the interval between the date of MRI (start and origin
time) until earliest date among death, outcome, loss to follow-up, or October 31, 2022
(Censoring date for ICD-based outcomes).

Date of birth, sex, and race were extracted from baseline self-reports. Weight (kg) and
height (m) were obtained at the imaging visit. BMI (kg/m?) was categorized as established
(BMI<25, healthy weight; BM1=25-29.9, overweight; BMI>30, obese). BMI<18 was
included in the healthy weight group due to underrepresentation (n=230). Smoking was
categorized into "never”, "former," and "current" smokers. Prevalent hypertension was
defined as having ICD-10 codes 110-15 or ICD-9 codes 401-405 before the imaging visit.
Non-whites (n=1,193, 3% UKB) were excluded due to substantial heterogeneity in the
association of BC with disease across ethnic groups. Covariates were identified using a

modified disjunctive cause criterion.

Statistical Analysis

Baseline characteristics are presented as mean + standard deviation or median with
interquartile ranges (IQR) for continuous and absolute counts with percentages for
categorical variables.

After automatic extraction of SAT, VAT, and SM, we defined relative BC compartments to
adjust for disease-independent contributors to SAT, VAT, and SM volumes (e.g., sex, body
size). Relative compartments were defined as the ratio of each measure to the sum of all

BC measures, €.g., SAT (%) = SAT/(SAT+VAT+SM). SAT e of 60% indicates that 60% of
a person's total adiposity and muscle is SAT, with the remaining 40% comprising VAT and
SM.

Differences in relative BC compartments and SMFF across ages were visualized using
density plots.

Ann Intern Med. Author manuscript; available in PMC 2025 October 29.
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Outcome analyses were limited to individuals without a history of diabetes, myocardial
infarction, or ischemic stroke. To investigate time to outcome, sex-stratified natural cubic
splines with 3 knots were computed using the splines package V4.4.2. We calculated
sequential models to assess the association between relative BC measures and outcomes:
1) unadjusted model; 2) model adjusted for BMI categories and waist circumference, and
3) model adjusted for BMI categories, waist circumference, prevalent hypertension, and
smoking status. Results were additionally reported as adjusted hazard ratios (aHR) and
95% (2.5™ and 97.5™ percentiles) confidence intervals (CI) for the top and bottom 5%
and 20% of males and females, respectively. For the underlying sex-stratified Cox models,
proportional hazards assumptions were tested by computing scaled Schoenfeld residuals,
and linearity was assessed using martingale residuals. Both assumptions were met for all
models. Cox regressions were complete case analyses, excluding individuals with one or
more missing covariates.

Statistical analyses were performed using R V4.2.2 (R-Core-Team, www.r-project.org,
2024).

Role of funders

This study received no funding.

RESULTS

Study population and BC distribution by age

A total of 33 432 people (17 657 females; mean age, 65.0 years [SD, 7.8]; mean BMI,

25.8 kg/m? [SD, 4.2]) were included. The Table presents baseline characteristics of included
participants. Females had higher SAT and SMFF than males, whereas males had higher SM
and VAT (P< 0.001 for all; Table).

Across all age groups, SAT was the predominant compartment in females, comprising
58.1% of total BC at age 40 to 49 years and increasing to 60.1% above age 70 years
compared with 40.0% and 41.5%, respectively, in males (Figure 1). Skeletal muscle was
the predominant compartment in males, peaking at age 40 to 49 years (45.3% in males vs.
35.5% in females) and decreasing thereafter. In both sexes, VAT proportion and SMFF were
also higher with increased age.

Relative BC measures and incident DM and MACE

Over 4.2 years (IQR 3.4-5.6 years), 187/17657 females (1.1%) and 344/15775 males (2.2%)
were diagnosed with incident diabetes, and 177/17657 females (1.0%) and 365/15775 males
(2.3%) had a major adverse cardiovascular event (MACE). Figures 2 & 3 show results for
the sex-stratified association of relative BC measures and future risk for DM and MACE
after adjustment for age, smoking status, and hypertension and with additional adjustment
for BMI categories and WC.

In models adjusted for age, smoking, and hypertension, greater adiposity measures (SAT
proportion, VAT proportion, and SMFF) and low SM proportion were associated with
higher incidence of DM and MACE in both sexes (Figures 2 and 3 [upper rows]). These

Ann Intern Med. Author manuscript; available in PMC 2025 October 29.
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relationships were consistent with those in unadjusted analyses (Supplement Figures 5 and
6).

After additional adjustment for BMI and WC, the associations between SAT proportion and
DM and MACE were attenuated in males (Figure 2 [B] and Figure 3 [B], lower rows), while
we observed a negative association between relative SAT and future diabetes risk in females.
Females in the bottom 20th percentile of relative SAT (<54.4%) had an aHR of 1.46 (95%
Cl, 1.23 to 1.72), while females in the top 20th percentile (>64.6%) had an aHR of 0.71 (ClI,
0.59 to 0.84) (Figure 2 [A], lower row).

In both sexes, high VAT proportions and high SMFF remained associated with higher risk
for DM and MACE. For DM, aHRs for the top fifth percentile were 2.16 (CI, 1.59 to 2.94)
and 1.27 (Cl, 0.89 to 1.80) in females (Figure 2 [A]) and 1.84 (Cl, 1.48 t0 2.27) and 1.84
(Cl, 1.43 to0 2.37) in males (Figure 2 [B]), respectively. For MACE, aHRs were 1.37 (Cl,
1.00 to 1.88) and 1.72 (Cl, 1.23 to 2.41) in females (Figure 3 [A]) and 1.22 (CI, 0.99 to 1.50)
and 1.25 (Cl, 0.98 to 1.60) in males (Figure 3 [B]), respectively.

In males only, low SM proportions remained associated with increased risk for DM (aHR for
bottom fifth percentile, 1.96 [CI, 1.45 to 2.65]; Figure 2 [B]) and MACE (aHR for bottom
fifth percentile, 1.55 [CI, 1.15 to 2.09]; Figure 3 [B]) after adjustment for BMI and WC.

Results were consistent across BMI subgroups (Supplemental Figures 7-9).

DISCUSSION

Excess adiposity is a key driver of cardiometabolic disease, but current definitions of
obesity rely on BMI, an accessible but poor surrogate (3). Here, we applied an artificial
intelligence segmentation tool to whole-body MRIs from >30,000 UK Biobank participants
to extract 3D BC compartments, including subcutaneous adipose tissue (SAT), visceral
adipose tissue (VAT), skeletal muscle (SM), and skeletal muscle fat fraction (SMFF). We
found that the tool accurately extracted 3D BC volumes from whole-body MRIs in <3
minute per scan. We then used these measures to describe how relative proportions of each
compartment change across the lifespan. We found that as both sexes age, adipose tissue
compartments and myosteatosis (SMFF) increases while SM decreases. Lastly, we found
that high VAT proportions and myosteatosis were associated with incident diabetes risk in
both sexes, low SM was associated with higher risk in males, and SAT proportions were
not associated with higher risk in either sex. We found similar but weaker associations with
incident cardiovascular events, and all associations were robust to adjustment for BMI, waist
circumference, and clinical risk factors.

These results corroborate evidence that VAT, but not SAT, is a key driver of adiposity-related
cardiometabolic risk (18-20). We also confirm findings that ectopic fat in the muscle leads to
insulin resistance and cardiovascular risk (21, 22). Contrary to emerging evidence, we found
that low skeletal muscle proportions were more strongly associated with cardiometabolic
risk in men than in women (23). Counterintuitively, we noted a small protective effect of
high SAT proportion and volume in women after adjustment for waist circumference. SAT
may confer metabolic protection compared to visceral fat, particularly in women (24, 25),
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and thus may serve as a proxy for low visceral adiposity. However, we did not observe this
protective effect for cardiovascular outcomes, and it may also reflect residual confounding.
(26)

BMI has known limitations and is only recommended as a population-based measure for
epidemiological studies or as a screening tool (3). Cardiometabolic disease guidelines
suggest more direct measurement of adiposity using anthropometric metrics like waist
circumference and waist-to-hip ratio or dual-energy x-ray absorptiometry (27, 28). These
measures are more closely related to abdominal adiposity than BMI but are unable to assess
relative BC proportions (correlation to VAT/SAT ratio~0.1), suggesting that they may be
proxies of total adiposity/size (29). The model used in this study enables direct measurement
of BC compartments and relative proportions, which are shown here to be associated with
cardiometabolic risk beyond BMI and waist circumference.

The benefit of anthropometric metrics are their ease of use. Whole-body MRI is becoming
increasingly popular as a direct-to-consumer screening tool but is not performed in clinical
routine. Though we do not recommend specifically ordering whole-body MRIs to assess
BC, a pragmatic clinical implementation may be an opportunistic screening strategy, where
BC data is automatically extracted from routine clinical MRI or CT scans, regardless of
their initial indication. A critical next step towards this paradigm is to test whether BC
proportions extracted from common clinical scan regions (liver, kidney, etc.) produce similar
estimates as our whole-body approach. If successful, this model could be implemented

in the Electronic Medical Record (EMR) without disrupting established workflows to
automatically quantify potentially prognostic body composition measurements from routine
MRIs or CTs that would otherwise be missed. Our model was trained on a T1-weighted
Dixon sequence, which is widely used in daily routine and comparable to other commonly
used Tq-weighted sequences (30).

Growing evidence suggests that BC plays a key role not only in cardiometabolic but also
oncologic diseases to personalize risk estimation (31-33). In addition, BC could also play a
crucial role in estimating treatment tolerability and the risk of treatment-related toxicity. In
this context, beyond defining excess adiposity, our DL model and relative BC profiles could
be used as a frailty or overall health measure to improve treatment decisions for accurate,
personalized dosing of systemic drug therapies, including chemotherapy and immunotherapy
(33-35).

This study has limitations. First, the study population is non-Hispanic white adults >45
years old and the results may not generalize to other demographic groups (16). A major
challenge in obesity management is that BMI and waist circumference require specific
thresholds and have variable accuracy to identify excess adiposity in individuals of different
race/ethnicity. MRI has potential to address this issue with direct measurement of BC (36);
however, further testing is needed to determine whether the DL-model generalizes to diverse
populations. We did not assess test-retest reliability of the DL segmentations here; however,
Bland-Altman analysis showed that DL-segmentations were robust despite the rather small
testing cohort. Third, Dixon-swap artifacts are common errors in clinical routine, meaning
that a fat-only signal can be erroneously displayed in parts where a water-only signal

Ann Intern Med. Author manuscript; available in PMC 2025 October 29.
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is expected, resulting in incorrect Dixon-derived SMFF calculations (37, 38). While we
corrected swap-artifacts in our study before SMFF extraction, this may be a barrier to the
translation of SMFF into practice. Furthermore, future studies need to investigate whether
the model generalizes to non-Siemens scans and different field-strengths. Fourth, granular
information on smoking history (e.g., pack-years), physical activity, and socioeconomic
status was not available for most of our cohort and may introduce residual confounding.
Last, we used thoracoabdominal SAT, VAT, and SM to define thresholds; however,

fat location (e.g. ectopic or gluteofemoral fat) may play different roles in conferring
cardiometabolic risk. Future studies will focus on anatomic region-specific measurements
to further refine our high-risk definition and improve its clinical utility.

In conclusion, automated MRI-based body composition analysis is accurate and feasible.
Automated body composition measurements are associated with cardiometabolic risk
beyond BMI, waist circumference, and traditional risk factors. Upon further validation
in diverse populations, this approach may enable opportunistic assessment of body
composition from routine imaging to identify patients at high cardiometabolic risk.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Change in relative body composition across age in decades
Density plots illustrate the change in relative body composition measures SAT ¢ (blue),

VAT, (orange), SM, (green), and SMFF (red) across age decades. While there is an
increase in relative adipose tissue volume (SAT ), VAT ¢) across age decades, there is a
decrease in SM,g accompanied by an increase in SMFF. Sex-stratified median (IQR) relative
body composition measures are provided in the tables below the plots.
IQR, interquartile range. SAT, subcutaneous adipose tissue. SM, skeletal muscle. SMFF,
skeletal muscle fat fraction. VAT, visceral adipose tissue. rel, body composition measure

relative to the sum of all body composition measures
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Figure 2: Multivariable adjusted spline curves for incident diabetes
Sex-stratified multivariable adjusted spline plots (A, females; B, males) show the

relationship between relative body composition measures and incident diabetes risk. The
tables below each graph show the adjusted hazard ratios (HRs) and 95% confidence intervals
(Cls) for the bottom and top 5% and 20% of the cohort. Dashed lines, 95% confidence
interval. The models are adjusted for age, BMI categories, waist circumference, prevalent
hypertension, and smoking status.

Cl, confidence interval. SAT, subcutaneous adipose tissue. SM, skeletal muscle. SMFF,
skeletal muscle fat fraction. VAT, visceral adipose tissue. rel, body composition measure
relative to the sum of all body composition measures
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Figure 3: Multivariable adjusted spline curves for incident MACE
Sex-stratified multivariable adjusted spline plots (A, females; B, males) show the

relationship between relative body composition measures and incident MACE risk. The
tables below each graph show the adjusted hazard ratios (HRs) and 95% confidence intervals
(Cls) for the bottom and top 5% and 20% of the cohort. Dashed lines, 95% confidence
interval. The models are adjusted for age, BMI categories, waist circumference, prevalent
hypertension, and smoking status.

Cl, confidence interval. SAT, subcutaneous adipose tissue. SM, skeletal muscle. SMFF,
skeletal muscle fat fraction. VAT, visceral adipose tissue. rel, body composition measure
relative to the sum of all body composition measures
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Table 1: Cohort characteristics

Characteristic
Age,y
Mean + SD
Median (IQR)
BMI, n (%)
< 25 kg/m?
25-29.9 kg/m?
> 30 kg/m?

Waist circumference, cm

Mean + SD
Median (IQR)
SAT, L
Median (IQR)
VAT, L
Median (IQR)
SM, L

Mean + SD
SMFF, %
Mean + SD

History of Hypertension, n (%)

Smoking status™™, n (%)

never
former

current

Incident Diabetes

Incident MACE

Follow up time, y

Mean + SD
Median (IQR)

Overall,
N = 33,432

65.0+7.8
65.4 (59.0, 71.0)

16,022 (48%)
12,657 (38%)
4,753 (14%)

88.1+125
88.0 (79.0, 96.0)

14.9 (11.6, 19.3)

3.4(2.0,5.3)

11.4+3.0

16.0+£3.2
4,293 (13%)

15,431 (47%)
17,023 (51%)
634 (1.9%)
531 (1.6%)
542 (1.6%)

45+18
4.2 (3.3,5.6)

Female,
N = 17,657

64.4+76
64.6 (58.5, 70.3)

9,708 (55%)
5,474 (31%)
2,475 (14%)

82.6+11.6
81.0 (74.0, 90.0)

17.0 (13.4, 21.6)

2.4 (1.4, 3.6)

9.1+13

17.1£3.0
1,852 (10%)

8,671 (50%)
8,478 (49%)
297 (L.7%)
187 (1.1%)
177 (1.0%)

45+18
4.2 (3.4,5.6)

Male,
N = 15,775

65.6+7.9
66.4 (59.6, 71.8)

6,314 (40%)
7,183 (46%)
2,278 (14%)

94.2£105
93.0 (87.0, 100.0)

13.0 (10.4, 16.3)

5.0 (3.4, 6.6)

140+21

147+29
2,441 (15%)

6,760 (43%)
8,545 (55%)
337 (2.2%)
344 (2.2%)
365 (2.3%)

44+18
4.2 (3.3,55)

Ak
n=33088 for smoking status

Page 15

BMI, body mass index. L, liters SAT, subcutaneous adipose tissue. SM, skeletal muscle. SMFF, skeletal muscle fat fraction. VAT, visceral adipose

tissue. Y, years
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