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A B S T R A C T

Accurate exposure assessment is crucial to understand linkages between ambient air pollution and cardiopul
monary disease. Air quality monitors (AQM) are widely used, but do not account for personal behaviors. We 
compare the exposure-response relationships between ambient air pollution (PM2.5 and O3) and cardiopulmo
nary biomarkers in a panel study using both stationary AQM and Exposure Model for Individuals (EMI). Par
ticipants (n = 28) underwent 3–5 sessions totaling 134 visits. Participants underwent spirometry and blood 
sampling. PM2.5 and O3 concentrations were calculated for each visit (lag0) and 4 preceding days (lag1–4) using 
AQM and EMI. A mixed-effects model was applied to examine the associations between exposure and outcomes. 
AQM and EMI were strongly correlated for PM2.5 (ρ = 0.89) and moderately correlated for O3 (ρ = 0.46). 
Exposure-response relationships for PM2.5 were similar, with PM2.5 associated with increased oxLDL at lag1 
(12.2 % (95 %CI: 4.5, 20.2) AQM, 17.9 % (95 %CI: 8.1, 27.8) EMI), increased vWF at lag0 (4.27 % (95 %CI: 0.15, 
8.39) AQM, 7.12 % (95 %CI: 2.57, 11.67) EMI) and decreased vWF at lag3 − 6.5 % (95 %CI: − 11.4, − 1.6) AQM, 
− 5.6 % (95 %CI: − 10.6, − 0.7) EMI) and lag4 (-5.4 % (95 %CI: − 10.2, − 0.7) AQM, − 6.7 % (95 %CI: − 12.1, 
− 1.3) EMI). O3 showed more variability, with positive associations with vWF at lag0 (12.9 % (95 %CI: 6.1, 19.7) 
AQM, − 2.77 % (95 %CI: − 8.1, 2.6) EMI) and D-dimer at lag1 27.0 % (95 %CI: 0.9, 53.0) AQM, − 6.86 % (95 %CI: 
− 26.3, 12.6) EMI), for AQM only, and negative associations with tPA at lag3 for EMI only (-10.0 % (95 %CI: 
− 21.5, 1.4) AQM, − 11.2 % (95 %CI: − 19.6, − 2.8) EMI). Our findings suggest that exposure-response associa
tions to short-term PM2.5 and oxLDL and markers of coagulation are consistent between the AMQ and EMI 
methods, implying increased risk for cardiovascular disease. For O3, AQM and EMI were less consistent, high
lighting the challenges of estimating and modeling O3 exposure.

1. Introduction

Ambient air pollution is a major environmental health risk factor that 
confers a large burden of disease (Cohen, 2017; Malashock, 2022), 
including increased risk of respiratory disease, cardiovascular disease, 
diabetes mellitus, low birth weight, and all-cause mortality 
(Schraufnagel, 2019). To understand and quantify the health effects 
caused by air pollution, it is critical to accurately estimate air pollution 

exposure (National Research Council, 2012). The gold standard of air 
pollution exposure assessment is personal air monitoring, in which high 
quality, portable monitors measure pollutant concentrations as in
dividuals move through various microenvironments (Larkin and Hystad, 
2017). While this approach more realistically accounts for individual 
variation, personal air monitoring is limited by cost of monitors, scale at 
which monitors can be deployed, and other logistic and methodological 
challenges (Larkin and Hystad, 2017). Instead of direct measurement, 
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many epidemiologic and panel studies rely on measurements from sta
tionary air quality monitors to serve as proxies for exposure (Yu et al., 
2024). There are, however, several criticisms with this approach, first, 
federal and state air quality monitors are limited in their distribution, 
thus coverage, particularly away from urban centers, can be limited. 
Second, data from stationary monitors assumes homogeneity in an 
airshed and cannot account for time spent in various microenviron
ments, such as proximity to busy roadways, which may confer greater 
exposure. Finally, in the US, individuals spend roughly 87 % of their 
time in an indoor environment (Klepeis, 2001), and thus the utilization 
of ambient air quality monitors data may result in overestimation of 
ambient air pollution.

A method that has been used to account for some of these limitations 
in stationary monitors is the incorporation of more personalized 
modeling. One such model, called the Exposure Model for Individuals 
(EMI), couples ambient air monitor data with a microenvironment- 
based multi-tiered exposure model. Specifically, EMI links data from a 
nearest ambient air monitor with a mechanistic air exchange rate (AER) 
model, a mass-balance PM2.5 and O3 building infiltration model, and a 
GPS-based microenvironment classification (MicroTrac) model to 
determine outdoor concentrations (Tier 1), residential air exchange 
rates (Tier 2), building infiltration factors (Tier 3), indoor concentra
tions (Tier 4), personal exposure factors (Tier 5), and personal exposures 
(Tier 6) (Breen, 2019). The incorporation of ambient air quality data 
with the multi-tiered model that accounts for building-specific infiltra
tion of ambient air pollutants, and time spent indoors and outdoors 
provides a more personalized approach to the estimation of individual 
air pollution exposure.

Despite advances in the modeling of ambient air pollution exposure, 
to date, few studies have directly compared how the usage of stationary 
air quality monitors or model-estimated air pollution exposure effect 
exposure-response relationships (Yu et al., 2024). Moreover, among 
studies that compare estimation models and stationary monitors, the 
primary outcome has typically been mortality (Yu et al., 2024). Thus, 
there is limited data on the exposure-response relationships between 
common air pollutants and readily obtainable biological markers.

In the present study, we compare how the usage of stationary air 
quality monitor (AQM), and EMI model exposure assessments perform 
when investigating exposure-response relationships for both PM2.5 and 
O3 and cardiopulmonary outcomes in participants enrolled in a panel 
study.

2. Methods

2.1. Study design

The study protocols, procedures, and participant demographics have 
been described in more detail elsewhere (Tong, 2022), briefly 28 
healthy participants between the ages of 25 and 55 years old were 
recruited from the region surrounding the U.S. Environmental Protec
tion Agency (EPA) Human Studies Facility (HSF) in Chapel Hill, North 
Carolina. These participants were part of a larger clinical trial evaluating 
the effects of omega-3 and omega-6 fatty acids on cardiopulmonary 
outcomes from ambient air pollution exposure (Tong, 2022). For this 
analysis, the low omega-3 group was solely used as they more accurately 
reflect the general US populace in terms of omega-3 status and fish 
consumption (Papanikolaou et al., 2014). Summary statistics for study 
participants are listed in Table 1. Participants visited the EPA HSF for 
two consecutive weekdays for three to five sessions, separated by at least 
7 days, amounting to a total of 134 visits. On the first day, the partici
pant was provided a GPS data logger (model BT-Q1000XT; Qstartz, In
ternational, Taipei, Taiwan), which they carried for the next 24 h. 
Various clinical measurements were collected at baseline and the 
following day. At each visit, participants were tested for spirometry and 
venous blood was collected. Participants gave informed consent and 
study protocol was approved by the Institutional Review Board of the 

University of North Carolina at Chapel Hill and the U.S. EPA and 
registered at ClinicalTrials.gov (Identifier: NCT02921048).

Input data for EMI were obtained from the participants for their 
home building characteristics, and street addresses for home and work. 
Daily questionnaires were used to collect occupant behavior related to 
building operation, including indoor temperature, open windows and 
doors, and operating window fans. The GPS data loggers were used to 
collect continuous participant locations. Before each 24-hour deploy
ment of the GPS data logger, the GPS memory was cleared using QTravel 
software (version 1.2; Qstartz International, Taipei, Taiwan) and the 
battery was fully charged. The GPS was programmed to sample every 5 s 
and to collect the date, time, position (latitude, longitude), speed, 
number of satellites used, and position dilution of precision (dimen
sionless value that indicates accuracy of GPS position due to the satellite 
geometry) (Breen, 2014). The sampled data were stored in the GPS 
memory during the 24-hour sampling period, and then downloaded and 
stored in a text file for the MicroTrac model described in the Supple
mental Materials.

2.2. Air pollution exposure assessment

Hourly PM2.5 and O3 concentrations derived from a central air 
quality monitor (Millbrook NCore) located in Raleigh, NC approxi
mately 44 km (27 miles) from the HSF were used to calculate AQM 
exposure metrics: 24-hour average ambient concentration for PM2.5 and 
a daily maximum 8-hour concentration for O3, for each visit (lag0) and 
the 4 days preceding the visit (lag1–4), as well as a 5-day moving 
average (5MA). Hourly measurements of air temperature and relative 
humidity were also acquired from the Milbrook NCore.

In addition to the AQM, we modeled personal exposures using EMI 
(Breen, 2019), which was previously developed, evaluated, and applied 
in other panel studies (Breen, 2020; Breen et al., 2018; Breen, 2014; 
Breen, 2015; Breen et al., 2010). The details on the EMI model are 
provided in the Supplemental Materials. Briefly, hourly exposure met
rics for PM2.5 and O3 were calculated based on hourly air quality 
monitor concentrations, meteorological data, residential building char
acteristics and operating conditions, and time spent in different micro
environments. From these hourly exposure estimates, we determined 
EMI exposure metrics: 24-h average exposure for PM2.5 and a daily 
maximum 8-h exposure for O3, for each visit (lag0) and the 4 days 
preceding the visit (lag1–4), as well as a 5-day moving average (5MA).

2.3. Lung function and biomarker measurements

Biological outcomes have been described in more detail elsewhere 
(Tong, 2022), briefly lung function was measured via spirometry using a 
10.2-L dry seal digital spirometer (SensorMedics). The largest value 

Table 1 
Summary statistics of Study Participants.

Characteristic Study Participants (n ¼ 28)

Age, yr 37 ± 8
BMI, kg/m2 24.9 ± 3.3
Sex ​
Female 18 (64.3 %)
Male 10 (35.7 %)
Race ​
White 19 (67.9 %)
African American 9 (32.1 %)
Marital status ​
Single 13 (46.4 %)
Married 12 (42.9 %)
Separated/divorced 3 (10.7 %)
Education ​
Graduate degree 9 (32.1 %)
College degree 16 (57.1 %)
High school/trade school 3 (10.7 %)
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from at least three qualified maneuvers was selected for forced vital 
capacity (FVC), forced expiratory volume in 1 s (FEV1), and FEV1/FVC 
ratio as per American Thoracic Society guidelines (Miller, 2005). Lung 
function in all participants was measured by using one dedicated 
spirometer and was measured by the same technician to minimize 
variability. Venous blood samples were stored at − 80◦C before 
biomarker analysis. All measures were taken at the same time of day to 
minimize circadian variation. Plasma levels of ox-LDL (oxidized 
low-density lipoprotein), von Willebrand Factor (vWF), D-dimer, and 
tissue plasminogen activator (tPA) were measured by using commercial 
enzyme-linked immunosorbent assay (ELISA) kits.

2.4. Statistical analysis

Spearman correlation coefficients were calculated for the agreement 
between AQM and EMI exposure metrics for both PM2.5 and O3. A linear- 
mixed effect model with participant specific random intercepts was 
applied to examine the associations between air pollutants and health 
outcomes and assess differences in effect estimates. A two-pollutant 
model was used and the effects of immediate exposure, lag0, and days 
preceding measurement (lag1–4) and well as a 5MA were separately 
modelled. The model was adjusted a priori for body mass index (BMI), 
age, race, sex, and glutathione-S-transferase μ-1 (GSTM1) status, marital 
status, and educational attainment. BMI and age were incorporated as 
continuous variables, sex was categorized using binary sex categoriza
tion (male/female) of "sex assigned at birth", GSTM1 status was 
dichotomous (presence or absence of GSTM1 gene). Race included the 
following categories: White, Black, Asian. Marital status was stratified as 
“single”, “married”, “seperated/divorced”. Education was stratified as 
“graduate degree”, “college degree”, “high school/ trade school”. Rela
tive humidity and temperature corresponding to the air pollution lag 
were included as covariates and seasonal trends were adjusted for using 
a natural cubic spline. Effect estimates are presented as the percent 
change and 95 % confidence interval from the mean of health outcome 
per interquartile increase in air pollutant. All analyses were performed 
by using R (version 4.1.3, R Foundation for Statistical Computing) and 
the packages “lme4” and “splines.”

3. Results

The AQM and EMI exposure metrics for both PM2.5 and O3, are 
shown in Table 2. The ambient air pollution concentrations taken during 
the study period were below the National Ambient Air Quality Standards 
(NAAQS) 24-hour PM2.5 standard of 35 μg/m3 (National Ambient Air 
Quality Standards (NAAQS) for PM, 2024) and the NAAQS O3 8-hour 
average of 70 ppb (National Ambient Air Quality Standards (NAAQS) 
for Ozone, 2015). The mean values for AQM metrics are higher than for 
the EMI exposure metrics, as expected, as the EMI uses the ambient air 
pollutant concentrations from AQM as a starting point and subsequently 
models infiltration and exposure. Fig. 1 depicts the Spearman correla
tion coefficients between the AQM and EMI exposure metrics. For PM2.5, 
the AQM and EMI were highly correlated, with a Spearman correlation 
coefficient of 0.89. For O3, we observed a moderate correlation of 0.46 
between the AQM and EMI exposure metrics. Next, we compared these 
two exposure methods on the associations between ambient air pollu
tion and pulmonary function and cardiovascular markers. Full data ta
bles across pollutants and exposure methods and stratified by sex can be 

found in the Supplemental Materials.

3.1. PM2.5 exposure and health outcomes

PM2.5 was associated with a small increase in FVC at lag0 for AQM 
(1.18 %, 95 %CI: 0.23–2.13) and EMI (1.33 %, 95 %CI: 0.16–2.51) 
(Fig. 2A). Similarly, PM2.5 was associated with a small increase in FEV1 
at lag0 for AQM (1.03 %, 95 %CI: 0.03–2.04) and EMI (1.24 %, 95 %CI: 
0.01–2.48) (Fig. 2B). The association between PM2.5 and FEV1/FVC ratio 
was null at all lags. Additionally, PM2.5 was associated with an increase 
in ox-LDLs at lag 1 for AQM (12.24 %, 95 %CI: 4.26–20.21) and for EMI 
(17.94 %, 95 %CI: 8.07–27.82), and 5MA for AQM (9.03 %, 95 %CI: 
1.04–17.01) (Fig. 2C). We also observed a positive association between 
vWF and PM2.5 for lag0 for both AQM (4.27 %, 95 %CI: 0.15–8.39) and 
EMI (7.12 %, 95 %CI: 2.57–11.67) (Fig. 2D). Finally, we observed a 
negative association between PM2.5 and vWF at lag3 for AQM (-6.48 %, 
95 %CI: − 11.41 to − 1.55) and EMI (-5.63 %, 95 %CI: − 10.58 to − 0.68) 
and lag4 for AQM (-5.43 %, 95 %CI: − 10.16 to − 0.69) and EMI 
(-6.72 %, 95 %CI: − 12.12 to − 1.32) (Fig. 2D). The associations between 
PM2.5 and D-dimer and tPA were null (Supplemental Materials, Figure?).

3.2. O3 exposure and health outcomes

In contrast to PM2.5, O3 was not associated with changes in either 
FVC or FEV1. However, O3 was associated with a decrease in FE1/FVC 
ratio at lag3, but only when measured by AQM (-1.2 %, 95 %CI: − 2.12 
to − 0.27) compared to no change in EMI (-0.01 %, 95 %CI: − 0.78–0.76) 
(Fig. 3A). O3 exposure was not associated with changes in oxLDLs, 
however we did observe an association between O3 and vWF at lag0 
measured by AQM (12.87 %, 95 %CI: 6.05–19.7) (Fig. 3B). In contrast, 
when O3 was measured by EMI, the association was null (-2.77 %, 95 % 
CI: − 8.13–2.59). Similarly, O3 was associated with increased D-dimer at 
lag1 when measured by AQM (26.99 %, 95 %CI: 0.93–53.04) (Fig. 3C), 
but was null when measured via EMI (-6.86 %, 95 %CI: − 26.31–12.6). 
tPA showed a negative association with O3 at lag3 only when measured 
by EMI (-11.17 %, 95 %CI: − 19.57 to − 2.76) although AQM also tren
ded down (-10.04 %, 95 %CI: − 21.48–1.39) (Fig. 3D).

4. Discussion

The goal of this study was to evaluate how usage of a stationary air 
quality monitor (AQM) and the more personalized Exposure Model for 
Individuals (EMI) perform when estimating the exposure-response 
relationship to PM2.5 and O3 on cardiopulmonary biomarkers. AQM 
and EMI exposure metrics displayed a strong positive correlation for 
PM2.5, with average EMI exposure roughly 64 % of the average AQM 
estimate. In contrast, we observed a moderate positive correlation for 
O3, with the average EMI exposure approximately 25 % of the average 
AQM estimate. As EMI is derivative of AQM, we expected a positive 
correlation for both pollutants, however the agreement for PM2.5 was 
particularly robust. Furthermore, we observed consistent associations 
between short-term PM2.5 exposure and health endpoints with both 
exposure assessment methods. Specifically, we observed a positive as
sociation between PM2.5 and oxidized low-density lipoprotein (oxLDL) 
at lag1. The oxidation of lipoproteins, including the generation of 
oxLDL, occurs as a byproduct of oxidative stress, as such, circulating 
oxLDLs are a marker of systemic oxidative stress and an established 

Table 2 
Summary statistics of AQM and EMI exposure metrics on visit days.

Metric Pollutant n Missing (%) Mean SD Min P25 Median P75 Max IQR
AQM PM2.5 (µg/m3) 133 0.8 9.9 3.8 1.8 7.4 9.2 11.9 22 4.4
EMI PM2.5 (µg/m3) 114 13.9 6.3 2.5 2.4 4.6 5.9 7.8 14.5 3.2
AQM O3 (ppb) 134 0.0 42.3 10.6 17 35 42.5 49.8 68 14.8
EMI O3 (ppb) 112 19.6 10.8 6.0 2.0 6.4 9.6 14.3 31.1 7.9

AQM = air quality monitor-based exposure metric, EMI = Exposure Model for Individuals based exposure metric.

J. Pulczinski et al.                                                                                                                                                                                                                              Ecotoxicology and Environmental Safety 307 (2025) 119422 

3 



marker for atherosclerosis (Gradinaru et al., 2015). OxLDLs are mech
anistically involved in all stages of atherosclerotic disease progression 
(Hong et al., 2023) and they promote expression of adhesion molecules 
on the endothelium, inhibit nitric oxide signaling, induce endothelial 
dysfunction, promote inflammation and foam cell formation (Poznyak 
et al., 2021). OxLDLs in plasma have been previously found to be 
positively associated with roadway proximity and with carbon load in 
airway macrophages among individuals with diabetes (Jacobs, 2011). 
Animal models have also demonstrated a link between PM2.5 and 
oxLDLs, specifically mice exposed to ambient levels of PM2.5 and fed a 
high fat diet displayed elevated oxLDLs in serum (Chen, 2024). How
ever, to our knowledge this is the first instance of a linkage between 
PM2.5 and elevated oxLDLs among otherwise healthy individuals. In 
addition to oxLDL, we further observed associations between PM2.5 and 
levels of vWF, with a positive association at lag0 and a negative asso
ciation at lag3 and lag4. vWF is normally tightly regulated and consti
tutively produced and released, maintaining a balance between clotting 
and bleeding (Xiang and Hwa, 2016). During endothelial injury, addi
tional vWF is released, where it can bind platelets, promoting their 
adhesion and aggregation (Hantrakool et al., 2022). vWF can also bind 
and stabilize Factor VIII, promoting the coagulation cascade (Cortes 
et al., 2020). The binding of platelets with vWF promotes release of 
platelet granules, which contain a wide range of products including 
additional vWF and other adhesive glycoproteins (Yun et al., 2016). 
Short term PM2.5 exposure, even at relatively low levels have been 
shown to be associated with increased vWF (Liang, 2020). Furthermore, 
elevated vWF is associated with risk of cardiovascular disease (Xiang 
and Hwa, 2016). The biphasic response, with an increase at lag0 and 
subsequent decrease at lag3 and lag4 days should be interpreted with 
caution, but we speculate it may be indicative of acute endothelial 
injury, most evident at lag0, followed by down-regulation of vWF or 
consumption of vWF via platelet adhesion and aggregation, which 

would lead to an inverse association at later lags (Liang, 2020). Lastly, 
we observed an association between PM2.5 and increased FVC and FEV1 
at lag0 for both AQM and EMI. The increase in pulmonary function was 
unexpected, as short-term exposure to PM2.5 is associated with pulmo
nary function declines (Dales et al., 2009; Edginton et al., 2019; Zhou, 
2022). The increase was small, corresponding to about a 1 % increase in 
lung function, and transient, as the associations at later lags were null. 
Of interest, the pulmonary function outcomes displayed similar tem
poral trends with vWF. Conventionally, elevated vWF is thought to be 
associated with reduced lung function, however the majority of these 
findings occur among populations with severe lung impairments 
(Langholm, 2020). In contrast, in a controlled human exposure study to 
low levels of PM2.5, particle exposure resulted in decrements in both 
FEV1 and vWF (Wyatt et al., 2020), similar to our findings at later lag 
days. While these findings hint at a potential relationship, additional 
research will be required to tease out associations between PM2.5 
exposure and interrelated biomarkers. Taken together, these data indi
cate that in our study region, AQM and EMI perform similarly for the 
evaluation of short-term PM2.5 exposure associated health outcomes. 
Additionally, these findings imply that low levels of ambient PM2.5 
exposure are associated with risk of atherosclerosis and endothelial 
injury as evidenced by the changes of circulating oxLDL and vWF.

In contrast to PM2.5, the associations between short-term O3 expo
sure and health outcomes were dependent on the exposure assessment 
method. We observed a negative association between O3 and FEV1/FVC 
ratio only when measured by AQM. Similarly, we observed perturba
tions in hemostatic regulation, specifically elevated levels of vWF and D- 
dimer when O3 was measured using AQM. In contrast, we observed a 
negative association between O3 and tissue plasminogen activator (tPA) 
when O3 was measured with EMI, although AQM trended in the same 
direction, with similar effect estimates. These biomarkers are interre
lated, as vWF is released during endothelial activation and binds fibrin, 

Fig. 1. Correlation plot (with Spearman’s rho) of air pollution exposure metrics for all participant visits (n = 134). PM2.5 (A) is shown as 24-hour average con
centration (μg/m3). Ozone (B) is shown as the maximum 8-hour concentration (ppb). AQM = Air Quality Monitor based exposure metric, EMI = Exposure Model for 
Individuals based exposure metric.
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which is involved in blood clotting (Reininger, 2008). TPA is a protease 
involved in the fibrinolysis process, promoting the breakdown of fibrin, 
which leads to fibrin degradation products, including D-dimer. 
Together, these biomarkers indicate activated endothelium (vWF), 
decreased fibrinolysis (tPA), and the presence of blood clots (D-dimer), 
thus linking O3 exposure to altered hemostasis. These findings are 
similar to those reported by us and others after controlled human 
exposure to ozone, specifically increased coagulation, and decreased 
fibrinolysis, including decreased tPA and elevated D-Dimer (Devlin 
et al., 2012; Kahle, 2015; Niu, 2022). While the overall 
exposure-response relationships point to altered hemostasis, there were 
considerable discrepancies between exposure-response relationships 
depending on the measurement tool used. We postulate that these dif
ferences are driven primarily by how O3 infiltration is modeled in EMI, 
as well as the relationship between ambient O3 and O3-secondary re
action products. Since AQM does not account for personal behaviors, 
such as spending time indoors, AQM is prone to overestimating personal 
O3 exposure. EMI, on the other hand, accounts for time spent indoors in 
part by applying an infiltration factor to the outdoor concentration. 
Neither measurement accounts for the contribution of O3 infiltration on 
the production of O3-reaction products. O3 lost to secondary reactions 
during infiltration is not innocuous and has biological relevance. O3 can 
react with lipids from skins oils, such as squalene, generating secondary 
volatile organic compounds (VOCs) (Coffaro and Weisel, 2022). It can 
also react with VOCs present in the indoor environment from varied 
sources such as paints, carpets, furniture, cleaning products, personal 
care products, and cooking emissions (Davies, 2023; Nazaroff, 2006). 

The resulting reaction products are diverse and often lacking in toxi
cological data, however several products of ozonolysis have been 
demonstrated to induce adverse health effects (Coffaro and Weisel, 
2022; Zhou et al., 2023). Furthermore, the indoor concentration of 
secondary compounds generated by O3 has been shown to be strongly 
correlated with ambient O3, displaying similar temporal trends and 
peaks even at low O3 ambient concentrations (Liu et al., 2021). Curi
ously, certain biomarkers have been shown to respond differently to O3 
versus O3 generated secondary compounds (He, 2023). One of note is 
vWF, which was demonstrated to be positively associated with personal 
O3 exposure (both indoor and outdoor) but negatively associated with 
O3 reaction products (He, 2023). Similar to these data, we observed a 
positive association with vWF and ambient O3 measured by AQM, but a 
negative trend when measured by EMI. Such findings underscore the 
complex relationships between outdoor O3 concentration, indoor O3 
concentration, and O3 reaction products, and may in part explain vari
ations observed between AQM and EMI measures and health outcomes. 
Indoor air O3 concentrations, while highly dependent on ambient con
centrations, track better with personal exposure (Kim and Rohr, 2021). 
While our study was not designed to investigate the contribution of in
door versus outdoor exposure, indoor air quality remains an important 
variable when considering exposure assessment and thus a limitation of 
the present study.

Overall, we demonstrate a strong agreement between the AQM and 
EMI for PM2.5 when assessing associations between short-term PM2.5 
exposure and health endpoints. These findings echo the findings of a 
meta-analysis which demonstrated consistency in the risk estimates for 

Fig. 2. Associations between short-term PM2.5 exposure and cardiopulmonary markers. PM2.5 was associated with an increase in FVC at lag0 for both AQM and EMI 
(A) and an increase in FEV1 at lag0 both AQM and EMI (B). PM2.5 was associated with an increase in oxLDL at lag1 for both AQM and EMI (C) and at 5MA for AQM. 
PM2.5 was associated with increase in vWF at lag0 AQM and EMI (D) and a decrease at lag3 and lag4. Effect estimates are presented as the percent change and 95 % 
confidence interval from the mean of health outcome per interquartile increase in air pollutant. FEV1 = Forced Expiratory Volume in 1 s, FVC = Forced Vital Ca
pacity, oxLDL = oxidized low-density lipoprotein, vWF= von Willebrand Factor, tPA = tissue plasminogen activator, AQM = Air Quality Monitor, EMI = Exposure 
Model for Individuals.
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mortality after PM2.5 exposure for both model-estimated and station- 
observed PM2.5 (Yu et al., 2024). In future studies, it will be advanta
geous to incorporate additional tools that can be used to increase con
fidence in the air pollution estimates, such as remote-sensing products, 
the usage of more widely distributed low-cost ambient monitors net
works, or personal monitoring. While the addition of each of these tools 
has merits, they do not completely address the challenge of modeling 
exposure with regards to behaviors, indoor environments, and micro
environments, all of which modify exposure concentration and deliv
ered dose. Nonetheless, despite limitations in both models used, we find 
that for PM2.5, the overall direction and association of the 
exposure-response relationship remains consistent.

In contrast to PM2.5, the two methods for O3 exposure showed only 
moderate agreement. O3 exposure-response relationships were generally 
null, with the AQM showing more associations than EMI. Additionally, 
the two models did not show agreement when assessing associations 
between O3 and health endpoints. Additional research, including the 
deployment of low-cost O3 monitors, may be needed to better investi
gate the discrepancies between the two exposure assessment methods as 
well as examine the role of infiltration and O3-secondary reactions on 
biomarkers. To conclude, in our study area, both AQM and EMI per
formed similarly for the assessment for exposure-response relationships 
to PM2.5 and demonstrate associations between PM2.5 exposure and 
elevated oxLDL, implying increased oxidative stress. In contrast, AQM 
and EMI showed limited agreement for the assessment for exposure- 
response relationships to O3 but overall show markers of altered he
mostasis. Future studies should consider the importance of both O3 
exposure and the production of O3 reaction products estimating effects 

of exposure on biomarkers.
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