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Abstract

A general obstacle for clinical cell preparations is limited purity, which causes variability in the quality and potency of cell
products and might be responsible for negative side effects due to unwanted contaminants. Highly pure populations can
be obtained best using positive selection techniques. However, in many cases target cell populations need to be segregated
from other cells by combinations of multiple markers, which is still difficult to achieve – especially for clinical cell products.
Therefore, we have generated low-affinity antibody-derived Fab-fragments, which stain like parental antibodies when
multimerized via Strep-tag and Strep-Tactin, but can subsequently be removed entirely from the target cell population. Such
reagents can be generated for virtually any antigen and can be used for sequential positive enrichment steps via
paramagnetic beads. First protocols for multiparameter enrichment of two clinically relevant cell populations, CD4high/
CD25high/CD45RAhigh ‘regulatory T cells’ and CD8high/CD62Lhigh/CD45RAneg ‘central memory T cells’, have been established
to determine quality and efficacy parameters of this novel technology, which should have broad applicability for clinical cell
sorting as well as basic research.
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Introduction

Cell therapy has proven to be highly effective for the treatment

of a number of human diseases. For example, primary

immunodeficiencies can be cured by hematopoietic stem cell

transplantation (HSCT), and some patients with leukemia can be

brought to complete remission by allogeneic HSCT alone, or

combined with donor lymphocyte infusion (DLI). In some clinical

settings, the adoptive transfer of virus-specific T cells can very

effectively reconstitute immunity in immunocompromised pa-

tients, and prevent or treat life-threatening complications caused

by cytomegalovirus reactivation [1,2,3] or lymphoproliferative

diseases mediated by Epstein-Barr-Virus [4,5]. Similarly, tumor-

specific T cells, either from autologous tumor-infiltrating lympho-

cytes or engineered in vitro, are promising candidates for improved

therapies for cancer [6].

Despite these interesting clinical observations, a broader transfer

of cell therapy to clinical applications has remained a challenge.

This is in part due to the problem that cell populations known to

mediate clinical effects should best be enriched to high purities,

since ‘unwanted’ contaminating cells can cause harmful and

sometimes life-threatening side effects such as graft-versus-host-

diseases (GvHD) mediated by alloreactive T cells. Very low

numbers of adoptively transferred T cells can contribute to

beneficial clinical effects [7], and similar rules will also apply to cell

populations that mediate negative side effects. Therefore,

providing the highest possible purities of well-defined cell

preparations applicable for therapy is a key to making these

promising treatments more effective and predictable, as well as to

lower the risk of potential side effects.

Current methods for surface marker-mediated clinical cell

purification usually rely on single parameters (e.g. CD34, MHC-
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multimers). However, for most cell populations – either purified

directly ex vivo or expanded after in vitro cell culture – the use of a

combination of different surface markers is necessary to truly

segregate a defined subpopulation. For example, naturally

occurring regulatory T cells (nTregs) represent a promising cell

population for preventing acute GvHD after allogeneic HSCT

[8,9,10] or the development of several autoimmune diseases

[11,12]. Regulatory T cells lack a single cell-specific surface

marker, therefore most current protocols for enrichment of nTregs

from primary blood specimens or in vitro-expanded sources employ

multiple markers such as CD4 and the constitutively expressed

high-affinity IL-2 receptor a-chain (CD25), to reduce heterogene-

ity. However, CD25 is also expressed on many non-regulatory

cells, which include recently activated effector and memory T

cells. Therefore, complex combinatorial staining patterns, com-

prising combinations of CD4, CD25, CD127 and CD45RA

[13,14], have been necessary to more precisely identify and

separate this clinically relevant T cell subset. Similarly, T cells with

a central memory phenotype (TCM) can only be segregated from

other subsets by combinatorial surface marker expression patterns

(CD3+, CD62L+, CD45RO+, CD45RA2). TCM exhibit superb

characteristics for adoptive T cell transfer due to their longevity in

vivo, and cell cultures derived from highly purified TCM have

enhanced persistence after adoptive transfer [15]. Thus, the TCM

subset is an interesting source for adoptive transfer of primary

(unmanipulated) T cells as well as for genetic engineering to

express defined recombinant T cell receptors (TCRs) or chimeric

antigen-receptors (CARs) prior to administration [16,17].

Currently available surface marker-based cell separation

techniques usually utilize paramagnetic beads. Thereby, positive

enrichment strategies using directly labeled target populations give

the highest yields and purities. Yet, a more stringent purification

that requires the combination of several markers cannot be

achieved by positive selection alone. Therefore, protocols

combining initial depletion of most unwanted cell populations by

negative selection followed by a final positive enrichment step have

been developed, which in some cases provide quite pure cell

products. Unfortunately, the large number of surface markers and

corresponding clinical-grade reagents required for depletion

strongly interferes with the feasibility of this strategy for clinical

applications. In addition, after positive selection, both the labeling

reagents and the beads usually remain on the enriched cells,

potentially manipulating the isolated cell population or negatively

impacting its functionality and/or viability [18,19]. Particularly

with respect to clinical cell sorting, lingering cell labels pose

substantial regulatory hurdles for the treatment of patients with

such cell products. In order to circumvent the problems of positive

selection, many clinical cell-processing procedures have been

changed to exclusively employ depletion reagents. Unfortunately,

under such conditions target cell purities are often poor, and

depletion methods commonly require a complicated cocktail of

different antibodies, making their production and application

laborious and expensive.

We have recently introduced the MHC-Streptamer technology

for the positive selection of antigen-specific CD8+ T cells [18].

This simple cell purification procedure allows the release and

complete removal of all components of the selection marker from

the purified cell population. The major advantage of this strategy

is that positive cell purification can be applied to obtain highly

enriched antigen-specific T cells that have been classified by

regulatory authorities as minimally manipulated cell products,

which facilitates substantially the generation and usage of such

cells for clinical applications. We hypothesized that the removal of

positive selection labels after a purification step could be applied to

any cell surface marker, allowing purification of cell populations

that can only be defined by multiple parameters via serial positive

enrichment. Here we describe a novel method, so-called Fab-

Streptamers, which fulfills exactly these criteria.

Materials and Methods

Blood samples
Fresh PBMCs were generated from either peripheral blood or

buffy-coats by centrifugation over Biocoll separating solution.

Peripheral blood was obtained from healthy adult donors of both

sexes at the Institute of Medical Microbiology, Immunology and

Hygiene (Technical University Munich), and buffy-coats were

obtained from autologous male or female blood donors (17–82

years old) at the Institute for Anesthesiology, German Heart

Centre Munich (State of Bavaria and Technical University

Munich). Written informed consent was obtained from the donors,

and usage of the blood samples was approved according to

national law by the local Institutional Review Board (Ethikkom-

mission der Medizinischen Fakultät der Technischen Universität

München).

Production of Fab-multimers (Cloning, Expression,
Purification, Multimerization)

Monomeric Fab-fragments originating from monoclonal anti-

bodies [20] were generated by gene synthesis (Invitrogen) or by

PCR-based cloning of the variable region from hybridomas [21]

(parental clones aCD3: OKT3; aCD4: 13B8.2; aCD8: OKT8;

aCD25: FRT5; aCD62L: DREG56; aCD45RA: MEM56). After

generation of cDNA, the hypervariable sequences of heavy and

light chains were amplified as described before [21] and verified by

sequencing. The obtained variable (V) domains from the heavy

(VH) and light (VL) chains were cloned on a pENTRY-IBA50

StarGate vector allowing the combination with sequences coding

for the constant domains of human subclass IgG1/k [22] in a

subsequent recombination step. The heavy chains were carboxy-

terminally fused with a OneSTrEPtag affinity tag (IBA). All

combinatorial cloning was done using the StarGate cloning system

(IBA) with fusion vectors adapted for periplasmatic Fab expres-

sion. The cistron organization has been described before [23]; a

schematic overview is depicted in Fig. S1. In some cases

mutagenesis PCR was applied to introduce amino acid substitu-

tions within the non-hypervariable framework regions. Following

cloning, both the chimeric heavy and the light chain were

periplasmatically expressed in E. coli K-12 strain JM83 allowing

protein folding, disulfide bond formation and assembly of the Fab

heterodimer [24]. Fab fragments were produced in 2L LB shaking

cultures supplemented with 100 mg/ml ampicillin (Amp). Recom-

binant protein was harvested 3 hours post anhydrotretracyclin

(500 mg/ml) induced gene expression, periplasmic extract was

prepared as described before [25] and Fab-fragments were

purified by Strep-tag/Strep-Tactin affinity chromatography via a

Strep-Tactin Superflow column (IBA) and stored in PBS pH 7.5

[26].

One mg Fab-multimer consisting of monomeric Fab-OneS-

TrEPtagged fragment and Strep-Tactin labeled either with

phycoerythrine or allophycocyanin was used to stain up to

56106 cells.

FACS Analysis
For FACS analysis, 56106 PBMCs were incubated with the

multimeric Fab-Strep-Tactin-complexes (Fab-multimers) for

20 minutes at 4uC. Combined antibody stainings were performed

by concomitant application of the respective antibodies: anti-CD3

Clinical Multiparameter Cell Sorting

PLoS ONE | www.plosone.org 2 April 2012 | Volume 7 | Issue 4 | e35798



(OKT3), anti-CD4 (OKT4), anti-CD8 (OKT8), anti-CD45RA

(HI100) and anti-CD62L (DREG56, all from eBiosciences), anti-

CD25 (ACT-1), anti-CD45RO (UCHL1) and anti-CD69 (FN50,

all from Dako Cytomation) and anti-CD30 (Ber-H83, Becton

Dickinson). After surface staining, cells were washed and

subsequently stained with propidium iodide (Molecular Probes)

for live/dead cell discrimination.

For intranuclear FoxP3 staining, isolated cells were incubated

with EMA, permeabilized and fixated as recommended by the

manufacturer (eBioscience). Staining with anti-FoxP3 antibody

(PCH101, eBioscience) was performed for 30 min at 4uC. Data

were collected by flow cytometry on a CyAn ADP Lx (Beckman

Coulter) and analyzed with FlowJo software (TreeStar).

Sequential magnetic enrichment
For the sequential magnetic enrichment of CD4+CD25+CD45RA+

triple-positive cells, 16108 PBMCs were first incubated with Strep-

Tactin-functionalized (in total 15 mg Strep-Tactin was used) magnetic

beads (1 mm approximate diameter) coated overnight with the

reversible CD4 Fab-monomers. Subsequently, CD4+ cells were

isolated by retention on a NdFeB permanent magnet (Q-60-30-15-

N40 from Supermagnete, Gottmadingen, Germany). Non-retained

cells were removed, and the magnet was removed and then reapplied

after washing the retained cells in 5 ml heparinized PBS containing

0.5% BSA (w/v). This procedure was repeated five times and the

CD4+ cells were then completely liberated from the beads and Fab-

fragments by addition of 1 mM D-biotin (applied twice) and washing

(twice, including a 10 min incubation time). In two further consecutive

enrichment steps, CD25- or CD45RA-coated beads were used to

isolate either CD4+CD25+ or triple positive cells from the pre-

enriched CD4+ or CD4+CD25+ cell pool respectively, and further

processed as described above. CD8+ TCM (CD8+CD62L+CD45RA-
neg) were enriched with CD8- and CD62L Fab-functionalized beads as

described above. CD45RA Fab-beads were used as last step to deplete

CD45RA-positive cells in the CD8+CD62L+ pre-enriched prepara-

tion. For determination of the final yields, absolute cell numbers were

determined by counting appropriate dilutions of the final positive

fraction in a Neubauer counting chamber. Live/dead discrimination

was performed using Trypane blue staining.

Suppression assay
Suppression of effector T cell proliferation was determined in a

CFSE dilution assay after polyclonal anti-CD3 stimulation

(0.5 mg/ml, clone OKT3) at a Treg:T responder cell ratio of

2:1. For the proliferation assay effector cells were labeled with

2.5 mM CFSE (Molecular Probes), and 26104 effector T cells

(along with 46104 Treg cells and 16105 autologous irradiated

feeder cells) were plated in 96-well plates in supplemented RPMI

(Gibco). After 5 days, CFSE signal dilution was measured on a

CyAn ADP Lx cytometer (Beckman Coulter).

Results

Principle of reversible Fab-multimer staining
We hypothesized that multiparameter cell sorting by serial

positive enrichment could be achieved if the specific cell label used

for each enrichment step could be removed before entering the

next purification cycle (Fig. 1a). Since most approaches for specific

labeling of cell surface markers rely on antibody staining, we

developed reversible staining probes based on existing reagents.

Antigen specificity of an antibody is determined within the

variable region of its Fab portion, which contains identical binding

regions displayed in 2 (IgG, IgA, IgE) or 10 (IgM) copies,

indicating the role of multiple interactions with the antigen to

enhance binding avidity. We speculated that in cases where

monomeric Fab-molecules are of such low affinity that they alone

cannot stably bind to a given antigen, the associated avidity gain

by multimerization should enable such probes to be used for

specific cell labeling [27]. Furthermore, if multimerization of such

Fab-reagents could subsequently be reversed by targeted disrup-

tion of the complex, the low-affinity Fab-monomers should

spontaneously dissociate from the cell surface, leaving purified

cells fully liberated from all labeling components (Fig. 1b), thereby

allowing the transfer of these cells to additional (serial) positive

enrichment steps.

To demonstrate first ‘proof of concept’ of this reversible Fab-

multimer strategy, we used the well-characterized huHRS3 Fab-

fragment directed against CD30 [24]. This fragment was derived

from the parental monoclonal antibody HRS3 by grafting the

murine CDRs onto a human immunoglobulin consensus

sequence, which initially resulted in a functional binding site for

CD30 but was accompanied by a substantial loss in affinity

(KD = 278661 nM from equilibrium analysis) [24]. In order to

introduce a multimerization site, the heavy chain of the Fab-

fragment was genetically fused to the OneSTrEP-tag sequence

(Strep-tag), and expressed together with the light chain in the

periplasm of E. coli [24]. The functionally assembled Fab-

fragments were then purified by affinity chromatography on a

Strep-Tactin resin and subsequently multimerized in the presence

of phycoerythrin-labeled Strep-Tactin. Notably, this interaction is

reversible upon addition of D-biotin (or its derivatives) as a

competing ligand (Fig. 1b) [26].

As shown in Fig. 1c, CD30 Fab-multimers brightly stained cells

from the CD30-expressing L1236 cell line in a manner identical to

that of a commercially available anti-CD30 antibody. In order to

analyze the subsequent removal of cell-bound Fab-multimers, cells

were first treated with D-biotin to disrupt the binding between the

Strep-tag on the Fab-fragment and the Strep-Tactin ‘‘backbone’’.

FACS analysis of D-biotin-treated cells showed no remaining PE-

conjugated Strep-Tactin on the cells, indicating efficient and

complete dissociation of multimeric complexes. To visualize

potential residual cell-bound Fab-monomers, D-biotin-treated

cells were washed and subsequently incubated with fresh

(uncomplexed) Strep-Tactin-PE. Based on this sensitive detection

method, we could not identify any remaining Fab-fragments on

the cell surface, indicating that the cell labeling was fully reversible.

Efficient re-staining of liberated cells with anti-CD30 Fab-multi-

mers also excluded the possibility that remaining D-biotin

interfered with Strep-Tactin-PE rebinding through blockade of

Strep-tag binding sites in the subsequent detection steps. These data

demonstrate that multimerization of low affinity Fab-monomers

can be used to generate fully reversible staining probes.

Engineering of reversible Fab-multimers by mutations
In order to generate reversible staining reagents from a broad

spectrum of parental antibodies or for different antigens, it is

necessary to lower binding when monomeric Fab-fragments are of

too high affinity. In order to test whether this can be generally

achieved by the introduction of specific amino acid exchanges, we

generated recombinant Fab-fragments derived from an anti-CD4

antibody with a known high Fab binding affinity (KD value of

29 nM [13B8.2], as previously determined by surface plasmon

resonance [20]). In addition, we generated recombinant Fab-Strep-

tag fusion proteins containing mutations that have been described

to broadly change affinities (KDs ranging from low affinity,

KD = 16.9 mM [mutant 3], to intermediate KDs of 0.8 mM [for

mutant 1] and 6.3 mM [mutant 2]) [20]. Site directed amino acid

substitutions were only introduced within the framework of heavy
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and light chain variable regions without targeting the highly

variable CDR regions. For staining and dissociation experiments,

we incubated 56106 PBMCs with the respective anti-CD4 Fab-

multimer complexes or with the corresponding Fab-monomers

(the latter not complexed with Strep-Tactin). Whereas the Fab-

mutants showed essentially equal staining signals when multi-

merized, only the 13B8.2 Fab-fragment and to a minor extent,

mutant 1, which exhibited higher affinities, were able to bind to

their antigen in a monomeric state (Fig. 2, first column). After D-

biotin-mediated disruption of the multimeric complexes, the cells

were probed for residual surface-bound Fab-fragments. As

expected from the monomer staining experiments, no remaining

Fab-monomers could be detected for mutants 2 and 3, whereas

substantial residual cell surface presence of the wildtype and, to a

minor extent mutant 1 was observed. For mutants 2 and 3, cells

could be efficiently re-stained using secondary Fab-multimer

labeling.

In addition to flow cytometry-based analysis, complete removal

of Fab-multimers was assessed by western blot analysis. Confirm-

ing the highly sensitive FACS results (Fig. S2), we could not detect

Fab-fragments in either the supernatant or the pellet fraction after

Figure 1. Principle of reversible Fab-multimer staining. (a) Schematic overview of sequential positive cell enrichment addressing a subset
within complex cell mixtures that can only be defined by combined expression of three markers ‘A’, ‘B’, and ‘C.’ Three serial enrichment steps allow
exclusive purification of the target population. (b) Illustration of the basic principle of reversible Fab-multimers. Low affinity-modified Fab fragments
are reversibly multimerized by Streptag-Strep-Tactin complexation. Subsequent treatment of stained cells with D-biotin mediates destruction of the
Fab-multimer complex and results in spontaneous dissociation and complete removal of all (monomeric) components from the target cell surface. (c)
Experimental proof-of-concept for fully reversible Fab-multimer staining. CD30-positive cells from the L1236 cell line were stained with either a
monoclonal antibody (left dot plot) or cognate PE-labeled Fab-multimers and analyzed either before (second left column) or after treatment with D-
biotin (middle column). Remaining Fab-monomers were then detected after subsequent washing steps using fresh PE-labeled Strep-Tactin (second
right column). Secondary Fab-multimer staining of reversibly stained cells served as control (right column). Only live (PInegative) L1236 cells are shown
(dead cell gating is shown in the bottom row). Numbers in dot plots indicate the percentage of cells within gates.
doi:10.1371/journal.pone.0035798.g001

Figure 2. Binding characteristics required for reversible Fab-multimer staining. FACS analysis of anti-CD4 Fab-multimer staining with
different anti-CD4 Fab mutants with decreasing affinities. PBMCs were stained with the respective PE-labeled anti-CD4 Fab-multimers and analyzed
either before (second column) or after treatment with D-biotin (third column). Remaining Fab-monomers were then detected after subsequent
washing steps using (uncomplexed) PE-labeled Strep-Tactin (fourth column). Secondary Fab-multimer staining of reversibly stained cells served as
control (right column). Alternatively, cells were incubated with monomeric Fab-fragments, washed and subsequently analyzed after staining with
Strep-Tactin (left-most column). Live CD3+ T cells are shown. Numbers in the dot plots indicate the percentage of cells within gates.
doi:10.1371/journal.pone.0035798.g002
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cell lysis, ruling out any significant internalization of surface-bound

reagents during the staining and release procedure.

In summary, these data demonstrate that engineering of Fabs

with variable binding affinities can be achieved by the introduction

of amino acid changes. Besides the shown CD4 Fab-fragments,

fully reversible Fab-fragments for all other target antigens used in

this manuscript could be generated as described above. In rare

occasions (monomeric) wildtype Fab-fragments already displayed a

sufficiently low intrinsic affinity resulting in their spontaneous

release. Fab-fragments – even when modified to have quite low

binding affinities – can preserve superb staining qualities as

multimers in a manner similar to the parental antibodies. Most

important and in contrast to monoclonal antibodies, low affine

Fabs can be completely removed from the surface of labeled cells.

Sequential magnetic enrichment of central memory T
cells

Reversible Fab staining was developed to enable positive

enrichment of cell populations that need to be defined via multiple

surface markers. To test this, we decided to establish a protocol for

the enrichment of CD8+ central memory T cell (TCM), which are

characterized by co-expression of CD8, CD62L and CD45RO

whilst being negative for CD45RA. An initial attempt by our

laboratories to enrich TCM used currently available non-reversible

reagents, and involved depletion of cells carrying a number of

exclusion markers (CD4, CD14, CD45RA) followed by a single

positive enrichment step for CD62L expressing cells (Fig. S4). The

yield of TCM (% of the number of purified target cells in relation to

the number of target cells in the original sample) in the final

product averaged 25%, which is expected when considering a cell

loss of approximately 50% for each processing step. Interestingly,

the yields varied substantially from donor to donor, which might

be explained by variable expression patterns (from bright to

intermediate to low/negative) of some markers, especially CD62L.

Unfortunately, the purities of TCM in the final cell product were

suboptimal (mean 36%), mainly due to contaminating CD13+

basophilic granulocytes of which the majority expresses CD62L

but lack the three markers that were targeted with the depleting

antibodies (Fig. S4). Therefore, further improvement of this

protocol for clinical TCM purification would require at least the

addition of anti-CD13 antibody into the depletion cocktail. For

clinical applications, all antibodies (here at least 5) have to be

generated under GMP conditions, illustrating the financial,

technical and regulatory limitations of current technologies even

for this relatively straightforward application.

To evaluate the potential to purify TCM using reversible staining

reagents, we generated Fab-Streptamers for the surface markers

CD8, CD62L and CD45RA that exhibited fully reversible staining

(Fig. S3). The purification procedure consisted of 3 steps, starting

with 2 positive enrichment cycles for CD8 and CD62L, followed

by one depletion cycle to eliminate CD45RA+ cells. The

performance of the purification for each single step (including all

negative and positive fractions) is summarized in Fig. 3a. In the

example, the final cell product reached a high purity of .95%

CD8+ CD45RO+/CD45RA2 CD62L+ TCM (Fig. 3a, b), and

these high purities of TCM were obtained in independent

experiments with PBMC derived from five different donors. The

cell yields were very similar to the ‘non-reversible’ protocol (Fig.

S4), averaging 25% although with high variability in different

donors (Fig. 3b). This demonstrates that reversible Fab-multimers

can be effectively implemented into serial enrichment procedures

to reliably enrich TCM to very high purities using only 3 reagents

that fulfill already the criteria for cell separation under GMP

conditions.

Sequential magnetic enrichment of regulatory T cells
Naturally occurring regulatory T cells (nTregs) have emerged as

a promising population for therapy of autoimmune and alloim-

mune diseases. Therefore, isolation of minimally manipulated and

highly functional Tregs represents a major goal for cell therapeutic

approaches. Although there is debate on which marker combina-

tion is best for clinical nTreg purification, it is clear that only a

combination of multiple markers can define this relatively rare cell

subset. We generated extensive data demonstrating that the

staining combination of CD4+, CD25+, CD45RA+ defines a highly

pure nTreg population that maintains its phenotype and function

even upon in vitro expansion to large cell numbers14. Currently,

procedures for nTreg enrichment (for research use only) are based

on the depletion of non-Treg cells using a complex antibody

cocktail (including anti-CD8, CD14, CD16, CD19, CD36, CD56,

CD123, TCRcd, Glycophorin A, CD45RO, CD49d, CD127),

followed by positive enrichment for CD25+ cells within the

remaining cell population. Moreover, the large number of

required antibodies makes transfer of this approach to clinical

applications difficult. We speculated that serial positive enrichment

could limit the reagents required for nTreg purification to just

three (CD4, CD25, CD45RA). In addition to the already

described reversible reagents for CD4 and CD45RA (Fig. 2 and

3), we completed the panel by generation of a reversible anti-

CD25 Fab-fragment (Fig. S3b). Fig. 4a summarizes the first serial

positive enrichment protocol with reversible reagents for these

three different markers (including all negative and positive

fractions). The panel of control stainings nicely demonstrates that

after each purification step the positive selection marker must have

been completely removed, as the following enrichment does not

show any enrichment bias towards the previously used marker. In

the example, a high purity of .90% CD4+ CD45RA+ CD25+ cells

was achieved in the final product (Fig. 4a, d), and these cells

homogeneously expressed Foxp3 (Fig. 4b). Such high purities of

nTreg preparations were reproducibly obtained in independent

experiments using PBMCs derived from five different donors.

Yields often exceeded the expectation of 12.5% when considering

Figure 3. Serial magnetic cell enrichment of central memory T cells. (a) Serial magnetic enrichment of CD8+CD62L+CD45RAneg central
memory T cells from fresh PBMCs. Cells were first incubated with anti-CD8 Fab-multimers conjugated with Strep-Tactin-functionalized magnetic
beads in order to pre-select CD8+ cells. The resulting positive fraction was then treated with D-biotin and washed to remove all anti-CD8 reagents. In
a second step, CD62L positive T cells were enriched from the pre-selected CD8+ T cell pool via specific anti-CD62L Fab bound to Strep-Tactin coated
magnetic beads and subsequently liberated from the selection reagents as described above. In a final step CD45RA+ cells were depleted from the
pre-enriched CD8+CD62L+ cell population using CD45RA specific Fab-multimers conjugated to Strep-Tactin-coated beads. Living lymphocytes in the
respective fractions of each selection step are shown. One representative experiment from five independent blood donors is shown. (b) Overlay of
the enriched CD8+CD62L+CD45RAneg cell population (black dots) derived from serial magnetic selection as shown in (a) and the corresponding
starting population (underlying grey dots). (c) Summary of cell purities obtained within each purification step of multiparameter magnetic bead-
based TCM purifications as performed in (a) with PBMCs derived from 5 different blood donors (left graph, mean values are indicated). In the right
graph, yields (in %) of the target TCMs are shown; mean value is indicated. For all samples analyzed by flow cytometry, at least 50.000 events have
been acquired.
doi:10.1371/journal.pone.0035798.g003
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Figure 4. Serial magnetic cell enrichment of naturally occurring regulatory T cells. (a) Serial positive magnetic enrichment of
CD4+CD25+CD45RA+ regulatory T cells (nTregs) from PBMCs. For pre-selection of CD4+ cells, PBMCs were first incubated with anti-CD4 Fab-multimers
conjugated with Strep-Tactin-functionalized magnetic beads. The resulting positive fraction was then liberated from surface-bound label by D-biotin
treatment and washed to remove anti-CD4 reagents. The second purification step comprised the selection for CD25 positive cells from the pre-
selected CD4+ cell pool via specific anti-CD25 Fab bound to Strep-Tactin coated magnetic beads. Cell bound reagents were again removed from the
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a cell loss of approximately 50% per enrichment step (Fig. 4).

Performing suppression assays as described previously [14],

nTregs purified with reversible reagents were characterized by

potent suppressive activity on in vitro stimulated responder T cells

(Fig. S5). We believe that this first example of a triple serial positive

enrichment protocol demonstrates the potential of the novel

reversible Fab-mutlimer technology for isolation of low frequency

cell subsets that can only be distinguished by multiple markers.

Discussion

We describe here the development of a novel, fully reversible

cell staining platform that enables serial positive enrichment over

multiple cell surface markers. Our data shows the utility of this

platform for the purification of CD8+ central memory T cells

(TCM) and naturally occurring regulatory T cells (nTregs),

illustrating the potential of Fab-multimers for clinical cell

separation in immunotherapy, and to overcome limitations of

current techniques.

Most clinical cell sorting applications are currently based on

reagents conjugated to paramagnetic beads. Very small beads, in

the nano-particle range, are used for positive enrichment of

desired cell populations for clinical application, the best example

being CD34+ stem cells [28]. However, the relatively long

duration of these processing procedures, the requirement for

specialized equipment (reagents, columns, instruments), and

potential problems caused by remaining bead conjugates on

positively enriched cell populations are limitations. Larger beads

(in the mm range), which can be used with technically less

complicated and rapid cell processing procedures, are currently in

clinical use only for cell depletion, because the co-transfer of larger

beads into patients entails significant risk. The reversible multimer

technology overcomes this problem, since the bead conjugates can

be readily and fully removed from the purified cell population,

independent of their size. In fact, all purification procedures

described in this report were performed with paramagnetic beads

of 1 mm in diameter, and marker/bead binding cells were retained

using a permanent magnet in close proximity to the cell solution.

This procedure can easily be transferred to different cell processing

devices, including collection bags that are often used for clinical

cell therapy. Therefore, we believe that the ‘‘Streptamers’’ not only

provides a novel option for purifying defined cell populations by

serial positive enrichment, but also has the potential to vastly

simplify and accelerate clinical cell processing procedures.

Multiparameter cell selection is a domain of flow cytometry-

based cell sorting, but there is still a lack of routine applicability for

clinical use. In a few locations worldwide, scientific groups and

companies in close exchange with local authorities are currently

installing flow cytometry cell sorters into GMP facilities (e.g. the

Influx from BD) paving the way for upcoming first clinical trials.

However, there are still many technical obstacles for bringing flow

cytometry into clinical cell sorting, with one of the most prominent

being remaining surface bound fluorochrome-conjugated staining

reagents left on the purified cell population. A major advantage of

reversible staining for clinical applications is that it avoids the co-

infusion of labeling reagents such as monoclonal antibodies,

fluorochromes or magnetic beads into patients. The recent

fatalities that occurred following administration of a stimulatory

CD28 superagonist illustrate the potential for unanticipated

adverse events, and have made it essential that reagents with the

potential to bind cell surface molecules that can alter cell function

undergo laborious and costly pre-clinical in vivo testing for

regulatory approval [29]. Reversible staining with Fab-multimers

can also overcome side effects that might be mediated by the

labeling regents themselves, even when signaling molecules are the

targets for cell selection ([30,31] and data not shown). The

prevention of cell changes as a consequence of binding cell surface

markers, which are even more difficult to monitor and predict

when various labels are combined and bound to cells, is of general

importance not only for clinical cell sorting, but also for

interpreting the results of basic research studies that involve the

transfer of functional cell populations. The (one dimensional)

reversible MHC-Streptamer [3] purification of antigen-specific T

cells for clinical adoptive therapy was recently approved by

European (European Medicines Agency) and German (Paul-

Ehrlich-Institute) regulatory authorities as ‘minimally manipulat-

ed’, because when used under quality-controlled cell processing

protocols, complete removal of the labeling reagents from the cell

product was reliably demonstrated. Since the novel Fab-multimers

described in the present study fulfill identical criteria, it is very

likely that cell populations purified by serial positive enrichment

will similarly be classified as ‘minimally manipulated’. This would

substantially facilitate the implementation of multiparameter cell

selection by serial positive enrichment into clinical applications.

Supporting Information

Figure S1 Organization of the Fab encoding operon.
Schematic overview of the operon encoding antibody Fab-

fragments. The first cistron encodes the chimeric heavy chain,

consisting of the respective VH fragment, the human IgG1

constant domain and the C-terminal OneSTrEPtag. The VH

domain is N-terminally fused to the ompA signal peptide. The

second cistron encodes the VL domain N-terminally fused to the

phoA leader peptide and C-terminally followed by the human k
constant domain.

(TIFF)

Figure S2 Reversibility of Fab-multimer staining. West-

ern blot analysis of the removal of Fab-multimers generated with

different anti-CD4 Fab-mutants (a) or the anti-CD25 Fab mutant

(b). PBMCs were incubated with the respective CD4 or CD25 Fab-

multimers, and following D-biotin treatment and subsequent

washing, the cells were lysed, and parts of the liquid and pellet

fractions were analyzed for remaining Fab-monomers using highly

specific anti-OneSTrEPtag antibodies. The direct application of

purified Fab-protein (a, first lane) served as a loading control. Flow

cytometry-based control multimer stainings (solid line) compared to

unstained cells (tinted histogram) are shown below to demonstrate

that cells had been properly stained before dissociation.

(TIFF)

resulting positive fraction by addition of D-biotin. In a third purification step, CD45RA+ cells were isolated from the enriched CD4+CD25+ cell
population by using CD45RA-specific Fab-multimers conjugated to Strep-Tactin-coated magnetic beads. Living lymphocytes in the respective
fractions of each selection step are shown. One representative experiment from five independent blood donors is shown. (b) Intracellular FoxP3
staining of triple positive enriched CD4+CD25+CD45RA+ regulatory T cells. (c) Overlay of the enriched CD4+CD25+CD45RA+ cell population (black
dots) derived from serial magnetic selection as shown in (a) and the corresponding starting population (underlying grey dots). (d) Summary of cell
purities obtained within each purification step of multiparameter magnetic bead-based nTregs purifications as performed in (a) with PBMCs derived
from 5 different blood donors (left graph, mean values are indicated). In the right graph, yields (in %) of the target nTregs are shown; mean value is
indicated. For all samples analyzed by flow cytometry, at least 50.000 events have been acquired.
doi:10.1371/journal.pone.0035798.g004
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Figure S3 Reversible staining by CD8, CD25, CD45RA
and CD62L Fab-multimers. FACS analysis of freshly isolated

PBMCs stained with PE-labeled anti- CD8 (a), anti-CD25 (b),

anti-CD45RA (c) and anti-CD62L Fab-multimers. Cells were

analyzed either before (first column) or after (second column)

treatment with D-biotin. After subsequent washing steps, remain-

ing Fab-monomers were detected using (uncomplexed) PE-labeled

Strep-Tactin (third column). Secondary Fab-multimer staining of

reversibly stained cells served as control for successful removal of

D-biotin (right column). Live CD3+ T cells (a, b and d) or

CD142CD192 cells (c) are shown. The numbers in dot plots

indicate the percentage of cells within gates.

(TIFF)

Figure S4 Enrichment of TCM using sequential deple-
tion and positive selection of cells with non-reversible
reagents. a). PBMC were labelled with clinical grade anti CD4,

CD45RA and anti CD14 mAb conjugated to paramagnetic beads

(Miltenyi Biotec), and the labelled cells were removed using the

AutoMACS or CliniMACS device. CD62L+ cells were then

enriched from the remaining depleted fraction by a subsequent

positive selection with a clinical grade biotin conjugated anti-

CD62L mAb (DREG56 clone, kindly provided by City of Hope

Cancer Research Center) and anti-biotin microbeads (Miltenyi

Biotec, Germany). The panels show staining of live cells for CD3,

CD8, CD62L, CD45RA, CD45RO, CD4, and CD14 in PBMC

(before), and in the depleted and positively selected fractions. In

the example, the depleting antibodies were highly effective in

removing CD4+, CD14+, and CD45RA+ cells, and CD8+ TCM

were enriched to 35% in the final cell product. The large fraction

(55%) of CD32CD82 cells in the final cell product (inset) are

CD13+CD62L+ cells that are not removed by the depletion

cocktail and are consistent with basophils based on staining with

an extended panel of antibodies. b) Overlay of the enriched

CD8+CD62L+CD45RAneg cell population (black dots) after the

two-step selection and the corresponding starting population

(underlying grey dots). c) Summary of purity and yield of CD8+

TCM from multiple experiments. The frequency of CD8+ TCM in

PBMC (bold) and after enrichment (open) for each donor is

indicated by a circle. The phenotype of the major contaminating

cells (CD8+CD62L2 and CD13+CD62L+) in the cell product is

shown.

(TIFF)

Figure S5 Functionality of Fab-multimer-isolated regu-
latory T cells. Suppressive activity of regulatory T cells enriched

by serial Fab-multimer staining (see Fig. 4). Suppression was

determined after polyclonal stimulation in a CFSE dilution assay

at a Treg:T responder cell ratio of 2:1, n = 3. Sort purities were

usually above 95%. The vertical line separates divided from

undivided cells.

(TIFF)
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