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Simple Summary

Deep learning-based image segmentation is increasingly being used for research and clin-
ical applications. However, quality control of segmentation results remains a challenge,
particularly in specialized large-scale applications such as cohort-studies. We evaluated
a visual approach to quality control of automated MRI-based left and right lung segmen-
tations using coronal and axial projection images. The method enabled quality control
within a matter of seconds per case and resulted in high diagnostic accuracy compared with
slice-based three-dimensional review of segmentations. The method could prove valuable
for future clinical and research applications and warrants further investigation.

Abstract

Background/Objectives: To assess diagnostic accuracy of two-dimensional (2D) projection
methods for rapid visual quality control of automated volumetric (3D) lung segmentations
compared with slice-based 3D review of segmentation results for application in large-
scale studies. Methods: Segmentation of right and left lungs on T1-weighted MRI of
300 participants of the German National Cohort (NAKO) study was performed using the
nnU-NET framework. Three variants of 2D projection images of segmentation masks
were created: maximum intensity projection (MIP) using pseudo-chromadepth encoding
with different color spectra for right and left lung (Colored_MIP) and standard deviation
projection of segmentation mask outlines, encoded in black-and-white (Gray_outline) or
using color-encoding (Colored_outline). The worst of two ratings by two independent
raters conducting slice-based review for segmentation errors on underlying imaging data
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and review for mislabeling errors served as the standard of reference. All variants were
evaluated by five raters each for identification of segmentation errors and the majority
rating was used as index test. The time required for review was recorded and diagnostic
accuracies were calculated. Results: Sensitivities of Colored_MIP, Colored_outline and
Gray_outline were 88.2% [95%-CI 78.7%; 94.4%], 89.5% [80.3%; 95.3%] and 78.9% [68.1%;
87.5%]; specificities were 98.7% [96.1%; 99.7%], 96.4% [93.1%; 98.5%] and 98.7% [96.1%;
99.7%]; and F1-scores were 0.918, 0.895 and 0.863, respectively. Mean time per case and rater
required for evaluation was 2.8 £ 0.9 s for Colored_outline, 1.7 + 0.1 s for Colored_MIP,
and 2.0 £ 0.4 s for Gray_outline. Conclusions: The 2D segmentation mask projection
images enabled the detection of segmentation errors of automated 3D segmentations of
left and right lungs based on MRI with high diagnostic accuracy, especially when using
color-encoding. The method enabled evaluation within a matter of seconds per case.
Segmentation mask projection images may assist in visual quality control of automated
segmentations in large-scale studies.

Keywords: magnetic resonance imaging; cohort study; lung; deep learning; image processing

1. Introduction

Automated deep learning-based volumetric (3D) medical image segmentation based
on a small number of expert-annotated ground truth datasets is increasingly being used
and has enabled semantic segmentation in large datasets, which would otherwise have
required extensive, time-consuming manual labor [1,2]. However, validating the resulting
automated segmentations, especially in large-scale datasets such as cohort studies, remains
challenging. Large publicly available annotated datasets exist for certain tasks, such as
CT-based lung segmentation, and can aid in external validation [3-5]. But these datasets
are frequently not available for specialized segmentation tasks, imaging modalities such
as certain MRI sequences or pathologies of interest. On the other hand, MRI is now in-
creasingly being used in large population-based cohort studies around the world [6-9].
Semantic segmentation plays a key role in answering imaging-based research questions in
these cases. However, visual quality control of every automated segmentation may not be
feasible in large-scale cohort studies, and quality control of select cases cannot rule out the
falsification of subsequent analyses by erroneous segmentations. Only few studies reported
on the use of visual quality control in large cohort studies [2,10,11]. Various algorithmic
approaches have been published in recent years to address this issue, for example, by
quantifying uncertainty within a segmentation algorithm or an ensemble of segmentation
algorithms [12,13]. While these may help identify potentially erroneous segmentations
and provide an indication of overall segmentation performance, significant segmentation
errors may still be missed. Visual quality control on a case-by-case basis, therefore, remains
desirable. Few previous publications presented and evaluated dedicated software tools
that streamline the process of loading imaging data and associated segmentation masks for
manual slice-based 3D quality control [2,14,15]. However, evaluation of numerous slices
per case still accumulates to a significant amount of time in large-scale studies like the
German National Cohort (NAKO) with ~30,000 participants undergoing MRI scans or the
UK Biobank imaging study which includes imaging of ~100,000 participants [6,7]. Two-
dimensional projection images for visualization and analysis of three-dimensional imaging
data, especially maximum intensity projections, are routinely used for visualization and aid
assessment of computed tomography and MRI examinations, especially angiographic ex-
aminations [16,17]. Standard deviation projection images have been previously reported to
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improve visualization and outlining of cells on microscopy images [18]. To our knowledge,
only one prior study reported on the use of projection images for visual quality control of
automated segmentations; however, the accuracy of the method compared to slice-based
review was not reported [2]. We, therefore, assessed the diagnostic accuracy of different 2D
projection images of 3D right and left lung segmentation masks based on MRI examinations
of a large-scale cohort study for rapid identification of segmentation errors compared with
slice-based review.

2. Materials and Methods
2.1. Patients

The lung segmentation algorithm was trained on MRI data of two national multicen-
ter studies: the imaging-based sub-study of the COSYCONET cohort study on chronic
obstructive pulmonary disease (“COPD and SYstemic consequences-COmorbidities NET-
work,” NCT01245933; “Image-based structural and functional phenotyping of the COSY-
CONET cohort using MRI and CT (MR-COPD),” NCT02629432) and the population-based
NAKO [19-21]. The present analysis was solely performed on lung segmentations of NAKO.
NAKO is an ongoing population-based study within a network of 25 institutions at 18 re-
gional examination sites. The main objective is the investigation of risk factors for chronic
diseases. The baseline assessment enrolled 205,415 participants from the general population
(age 19-74 years) between 2014 and 2019, of which 30,861 also participated in the NAKO
MRI study. This imaging sub-study was carried out at five imaging centers. For the present
analysis, automated lung segmentation was performed on MRI data of 11,190 participants
available at the time of the investigation, enrolled until 31 December 2016. Segmentation
visualization, as assessed in the present manuscript, was evaluated in 300 of these participants,
which were selected based on model uncertainty from the neural network ensemble used for
automatic segmentation. Uncertainty was quantified based on the volumetric disagreement
among model outputs: U(x,y) = 1 — %Zi# Dice(i, j) for binary segmentation y on image x,
Dice overlap of pairwise segmentation masks Dice(i, j) generated across all ensemble models,
and the number of mask combinations k. Three subsets of 100 cases were then selected,
representing the highest, lowest and median uncertainty measurements. The selection was
aimed at representing (1) cases with a high prevalence of salient errors, (2) cases with a low
prevalence of subtle errors, and (3) the most frequent cases within the underlying dataset.
The selection was not intended to represent the dataset as a whole. Written informed consent
was obtained from all study participants. The present analysis was approved by the NAKO
Use and Access Committee and the steering committee of the COSYCONET study. Ethical
approval was obtained from the Ethics Committee of the Medical Faculty of the University of
XXXX (5-193/2021).

2.2. MR Imaging

Whole-body MRI scans as part of NAKO were conducted at five study centers and
are described in detail elsewhere [6]. In brief, lungs were covered in an axially acquired
T1-weighted 3D VIBE two-point DIXON sequence of thorax and abdomen in inspiratory
breath-hold (slice thickness 3.0 mm, voxel size in-plane 1.4 x 1.4 mm) using 3T MRI
scanners (MAGNETOM Skyra, Siemens Healthineers AG, Forchheim, Germany). Examples
are provided in Figure 1.
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Figure 1. Examples of thoracic MRI data and overlying lung segmentation masks. Axial slices (left
column) and coronal views (right column) of the thoracic part of axially acquired T1-weighted 3D
VIBE two-point DIXON images of thorax and abdomen of two different participants of the NAKO
study. Translucent overlays of right (green) and left (red) lung segmentation masks as results of
deep learning-based automated segmentation are shown. The quality of the lung segmentation
of the participant in the top row was deemed sufficient for further analysis (reference positive).
The bottom row shows an example of erroneous segmentation according to the reference standard
(reference negative). Note the exclusion of consolidated parts of the lungs (arrows) and the spatial
inconsistencies (composing artifacts, arrowheads) resulting from the stitching of separate acqusitions
for the lower and upper part of the scan volume.

2.3. Automated Lung Segmentation

Automated, deep learning-based lung segmentation was performed using the nnU-
NET framework in 3D full resolution mode [22]. Training of segmentation models was
based on manual ground truth segmentations of stratified samples from NAKO (n = 16) and
COSYCONET (n = 13) created by two medical experts. Right and left lungs were segmented
separately and the lung hili excluded. The cases used for training of nnU-NET were not
included in the present analysis of segmentation mask projection images. The training set
size was determined heuristically, guided by the observed difficulty of the lung bound-
ary delineation task. The objective was to establish reliable segmentation performance
for the majority of the dataset, while allowing effective sampling of error cases for the
presented quality control. Preprocessing was performed by nnU-Net. Specifically, images
were cropped to regions containing non-zero intensities, resampled to a voxel spacing of
14 x 1.4 x 3.0 mm, and subjected to z-score normalization. Data augmentation was
applied, comprising random rotation, scaling, elastic deformation, and gamma correction
during training, and mirroring during training and application. No post-processing was
performed. The U-Net architecture was configured using fundamental building blocks of
3 x 3 convolution, instance normalization and Leaky ReLU activations, with the number of
feature channels ranging from 32 to 320. Training was performed using stochastic gradient
descent with Nesterov momentum (0.99) and an initial learning rate of 0.01. The sum of
cross-entropy and Dice loss was used as loss function. An ensemble of five networks was
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trained on disjoint subsets created through 5-fold cross-validation of the annotated images
and subsequently used for inference. Train and test datasets were strictly separated on the
subject level using unique subject identifiers.

2.4. Segmentation Mask Projection Images

Three different variants of projection images were created (Colored_MIP, Col-
ored_outline, and Gray_outline), using either maximum intensity projection (MIP) of seg-
mentation masks (Colored_MIP) or standard deviation projection of the isosurface between
foreground and background voxels of the binary segmentation masks (Colored_outline,
Gray_outline) of right and left lungs in axial and coronal orientation. For Colored_MIP and
Colored_outline, a pseudo-chromadepth approach was chosen to improve depth percep-
tion [23-25]. In order to also color-encode the labeling of right and left lung, two different
color spectra for the right (mpl-viridis) and the left lung (mpl-plasma) were used in these
cases. For projection, only slices containing lung voxels were selected in coronal and axial
orientation. Resulting slice numbers were then linearly mapped to the respective color
spectra. For comparison with grayscale projection images (Gray_outline), segmentation
surface voxels were encoded in white and all other voxels in black. For subsequent z-stack
projections using maximum intensity projection, each pixel of the resulting 2D image rep-
resents the maximum intensity of all voxels in the same x,y-position along the z-stack. In
case of color-encoding, this refers to the maximum intensity per RGB-color channel. For
standard deviation projections, the pixel values were calculated to represent the standard
deviation of voxel intensities over the z-stack in the same position according to the formula

c o= \/ ﬁzilil(li — u)?, where I; is the pixel intensity in slice i of the current color
channel of the z-stack, y is the mean of the pixel intensities along the z-stack, and N is the
number of slices in the z-stack. Axial and coronal projections were composed side by side
to create a single panel for every segmentation mask. Projection images were created using
FIJI (version 2.1.0/1.53c) and the Z-stack Depth Color Code plugin (version 0.0.2) [26,27].
The corresponding macro script used to generate the projection images is provided as
Supplemental Material.

2.5. Visual Segmentation Quality Assessment

Five raters (C.M., Rv.K,, CS,, T.N., FA.), of which four were radiologists and one
(T.N.) a computer scientist with each at least 5 years of experience in lung imaging and
segmentation, independently evaluated lung segmentation mask projections. Images
were reviewed in random order in rapid succession using an in-house-developed web
browser-based software that displayed axial and coronal projection images side by side
on a 50% gray background, one case at a time. Left and right arrow keys on the computer
keyboard were then used to rate the segmentation as either successful or erroneous. The
next projection image was presented immediately after the rating of the last and respective
ratings were automatically recorded for later analysis. Raters always evaluated the 300
cases in one continuous session per projection method. The total time required for each
complete reading session was recorded manually by each rater and divided by 300 to
calculate the average read time per case. Colored_outline images were rated first. The
reads were repeated by all raters after a wash-out period of 1 week to assess intra-rater
reliability. Gray_outline and then Colored_MIP images were rated after another wash-out
interval of at least 2 weeks. The raters were blinded to any additional information and
specifically instructed to “identify cases with any significant error in lung segmentation
that hinders downstream analyses in the large MRI cohort study. Errors may include:
incorrect anatomical segmentation, segmentation error due to possibly inadequate image
quality, segmentation of non-lung structures (such as stomach), or the (partial) interchange



Tomography 2025, 11, 135

6 of 15

of right and left lung labels. Swipe left in case of significant segmentation error, otherwise
swipe right.”.

2.6. Reference Standard

One rater (R.v.K.) with more than 5 years of experience in lung imaging and research
reviewed original DICOM data and an overlay of the corresponding segmentation masks
using dedicated software (NORA Medical Imaging Platform Project, University Medical
Center Freiburg, Freiburg, Germany). Slice-based review of the 3D segmentation masks
for segmentation errors was performed using axial, coronal and sagittal view planes, and
according to the same criteria used for projection images: errors that would significantly
impact further analyses. Additionally, a second rater (C.M.) reviewed segmentation masks
specifically for mislabeling of right and left lung, and any mislabeling was considered a
significant segmentation error. Both raters conducted the review in random order, indepen-
dently and blinded for the results of the other. Identified segmentation errors were assigned
to the following categories: over-/under-segmentation of lung boundaries, exclusion of
lung pathology, inclusion of distant organs, off-target stitching and partial or complete
left-right mislabeling of the lungs. The worst rating of both reads was used for each case
as the standard of reference. To avoid recall bias, as both raters were also involved in the
evaluation of the index test, the ratings for reference standard and index test were separated
by at least 6 months.

2.7. Statistical Analysis

Normal distribution was assessed using QQ-plots and the Kolmogorov—Smirnov test.
Group comparisons were performed using Student’s t-test or chi-squared test where appropri-
ate. A receiver operating characteristic curve (ROC) was created for each projection method
over the sum of ratings of the five individual raters and corresponding areas under the curve
(AUC) and corresponding 95% confidence intervals calculated according to the method by
DeLong. Measures of diagnostic accuracy (sensitivity, specificity, accuracy and F1-score) were
calculated and confidence intervals calculated according to the Clopper-Pearson method.
Sensitivities and specificities were compared using Cochran’s Q test for multiple classifiers
followed by post hoc pairwise McNemar tests with Bonferroni adjustment of p-values for
multiple comparisons. Inter-rater reliability was calculated using Fleiss” Kappa, and Co-
hen’s Kappa was used to assess intra-rater reliability. Kappa measures were interpreted as
follows [28]: <0.00 poor, 0.00-0.20 slight, 0.21-0.40 fair, 0.41-0.60 moderate, 0.61-0.80 substan-
tial, 0.81-1.00 almost perfect. All statistical analyses were performed using R Version 4.0.2
(R Foundation for Statistical Computing, Vienna, Austria).

3. Results
3.1. Study Sample

Demographics of the study sample are summarized in Table 1. Segmentation er-
rors were found in 76/300 (25.3%) cases. The types and frequencies of observed seg-
mentation errors according to the reference standard are shown in Table 2. Participants
with lung segmentation error according to the reference standard were slightly heavier
(82.8 £ 28.2 kg vs. 75.0 £ 17.1 kg, p = 0.024). Mean lung volume of the study sample based
on lung segmentations was 4139.1 £ 1096.2 mL (range 1630.4-8439.4 mL). Lung volumes
did not differ significantly between patients with and without lung segmentation error
(4045.9 £+ 1119.0 mL vs. 4170.8 £ 1089.1 mL, p = 0.40).
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Table 1. Characteristics of the study sample.
All Participants Lung Segmentation Error =~ No Lung Segmentation Error ~ p-Value
N 300 76 (25.3%) 224 (74.6%)
Age [years] 49.8 £12.0 494 +125 499 £11.8 0.40
Female 145 (48.3%) 33 (43.4%) 112 (50.0%) 0.39
Height [m] 1.73 £ 0.09 1.74 £ 0.09 1.73 £ 0.09 0.40
Weight [kg] 76.9 £20.7 82.8 £28.2 75.0+£17.1 0.024
BSA [m?] 1.90 +0.26 1.96 +0.33 1.88 +0.22 0.05
Mean lung volume * [mL] 4139.1 £ 1096.2 40459 +1119.0 4170.8 4+ 1089.1 0.40

Values are presented as mean & SD or number of participants with percentage in parentheses. p-values were
calculated using Student’s t-test for continuous variables and chi-squared test for categorical variables. *: Lung
volume based on automated lung segmentations. BSA = body surface area.

Table 2. Type and frequency of segmentation errors according to the reference standard.

Error Type n Frequency
Left-right mislabeling 61/76 80.3%
Over-/Under-segmentation of lung 34/76 44.7%

boundary

Exclusion of lung pathology 5/76 6.6%
Off-target stitching 4/76 5.3%
Inclusion of distant organs 3/76 3.9%
Failed separation of right and left lung 1/76 1.3%

Values represent number of cases with observed segmentation error type in relation to number of cases with any
segmentation error and corresponding frequency in percent.

3.2. Accuracy

Accuracies of the five individual raters for the detection of segmentation errors is
summarized in Table 3.

Table 3. Accuracy of individual raters for detection of segmentation errors.

Rater 1 Rater 2 Rater 3 Rater 4 Rater 5
Colored_MIP
Sensitivity 90.8% 88.2% 82.9% 85.5% 86.8%
Specificity 92.4% 98.7% 99.1% 96.9% 94.6%
Accuracy 92.0% 96.0% 95.0% 94.0% 92.7%
Fl-score 0.852 0.918 0.894 0.878 0.857
Colored_outline
Sensitivity 88.2% 90.8% 78.9% 82.9% 92.1%
Specificity 94.6% 92.9% 99.1% 93.8% 90.6%
Accuracy 93.0% 92.3% 94.0% 91.0% 91.0%
Fl-score 0.865 0.857 0.870 0.824 0.838
Gray_outline
Sensitivity 23.7% 78.9% 77.6% 38.2% 78.9%
Specificity 95.1% 99.1% 94.6% 3.1% 96.0%
Accuracy 77.0% 94.0% 90.3% 12.0% 91.7%
Fl-score 0.343 0.870 0.803 0.180 0.828

Sensitivity, specificity and accuracy are presented as percentages. MIP: maximum intensity projection.

An ROC analysis was conducted for each projection method over the corresponding
sum of the binary ratings of the five independent raters (Figure 2). Resulting AUCs were
0.941 (95%-CI0.904-0.979), 0.947 (95%-CI 0.911-0.982) and 0.916 (95%-CI 0.874-0.959) for
Colored_MIP, Colored_outline and Gray_outline, respectively. The maximum Youden-
index was reached at a threshold of >/ < 2.5 positive ratings with Youden-indices of 186.8,
185.9 and 177.6 for Colored_MIP, Colored_outline and Gray_outline, respectively.



Tomography 2025, 11, 135

8 of 15

1.00 -

0.75-

0.50-

True Positive Rate

0.25-

0.00- -

ROC Curves for All Projections

0.25 0.50 0.75 1.00
False Positive Rate

color_mip
AUC=0.941

color_outline
AUC=0.947

gray_outline
AUC=0.916

Projection — =
Figure 2. Receiver operating characteristic (ROC) curves and corresponding areas under the curve
(AUC) for three different projection methods over the sum of ratings of five individual raters for the
identification of segmentation errors.

Consequently, the majority rating of the five raters was used to assess accuracies of
the three projection methods; see examples provided in Figure 3. Examples of a potential
color-vision-deficiency-safe version using yellow and cyan palettes for right and left lung
are provided in Figure 52. This version was, however, not evaluated in the present analysis.
Accuracies of majority ratings are summarized in Table 4. Sensitivity was highest for
the Colored_outline method (89.5%, 95% confidence interval (CI) 80.3-95.3%), followed
by Colored_MIP (88.2%, CI 78.7-94.4%) and Gray_outline (78.9%, CI 68.1-87.5%). The
differences in sensitivity between the three projection methods were statistically significant
(p = 0.006) and pairwise post hoc tests revealed a statistically significant difference between
Colored_outline and Gray_outline (p = 0.04).

The highest specificity was observed for Colored_MIP (98.7%, CI 96.1-99.7%) and
Gray_outline images (98.7%, CI 96.1-99.7%). Differences in specificity between the three
methods were significant (p = 0.03); however, pairwise post hoc tests were not significant
(all p > 0.05).

Table 4. Diagnostic accuracy of majority rating from five raters, employing different segmentation
mask projection methods, for detecting segmentation errors.

Colored_MIP

Colored_Outline

Gray_Outline

Sensitivity 88.2% [78.7%; 94.4%]  89.5% [80.3%; 95.3%]  78.9% [68.1%; 87.5%]
Specificity 98.7% [96.1%; 99.7%]  96.4% [93.1%; 98.5%]  98.7% [96.1%; 99.7%]
Accuracy 96.0% [93.1%; 97.9%]  94.7% [91.5%; 96.9%]  93.7% [90.3%; 96.1%]
PPV 95.7% [88.0%; 99.1%]  89.5% [80.3%; 95.3%]  95.2% [86.7%; 99.0%]
NPV 96.1% [92.7%; 98.2%]  96.4% [93.1%; 98.4%]  93.2% [89.3%; 96.1%]
F1-score 0.918 0.895 0.863

Sensitivity, specificity and accuracy are presented as percentages with 95% confidence intervals in square brackets.

MIP: maximum intensity projection, NPV: negative predictive value, PPV: positive predictive value.
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Reference

Reference

positive

negative

Overall accuracy and F1-score were highest for Colored_MIP (96.0%, CI 93.1-97.9%;
F1-score 0.918), followed by Colored_outline (94.7%, CI 91.5-96.9%; F1-score 0.895) and
Gray_outline (93.7%, CI 90.3-96.1%; F1-score 0.863).

Colored_MIP Colored_outline Gray_outline

Pos. Ratings: 5/5

Pos. Ratings: 5/5

Pos. Ratings: 1/5

Pos. Ratings: 0/5

Pos. Ratings: 0/5 Pos. Ratings: 1/5

Right lung:

close

distant close distant

Figure 3. Examples of projection images and observed segmentation errors. Three segmentation
mask projections were evaluated: solid segmentation mask projection using maximum intensity
projection (MIP) and color-coding of left and right lung as well as depth along the respective z-axis
(left column “Colored MIP”), standard deviation projection of the isosurface between foreground and
background voxels of the binary segmentation masks using either color-coding of left and right lung
as well as depth along the respective z-axis (middle column “Colored outline”) or binary encoding
with lung voxels represented in white and all other voxels represented in black (right column “Gray
outline”). The first and third row are based on the segmentation masks shown in Figure 1. The top
row demonstrates a segmentation without significant errors according to the reference standard.
The lower three rows show examples of segmentation errors, highlighted by bounding boxes in
the middle column: over-/under-segmentation of parts of the lung (row two), exclusion of lung
pathology (consolidation) and off-target stitching (third row) and right-left mislabeling of parts of
the lung (bottom row).

Accuracy of the majority rating was also analyzed separately for the three different
strata of the algorithm uncertainty metric that the study sample was based on (Table 5). Off
100 cases included in each stratum, 63% in the stratum with maximum uncertainty had
segmentation errors according to the reference standard, whereas error rates of 6% and 7%
were found for the median and minimum uncertainty strata, respectively. Distribution of
the uncertainty metric in the study sample is shown in Figure S1.
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Table 5. Diagnostic accuracy of majority rating from five raters, employing different segmentation
mask projection methods, for detecting segmentation errors, stratified by algorithm uncertainty score.

Projection Method Uncertainty Score Stratum Sensitivity Specificity
Colored_MIP Max 58/63 (92.1%) 35/37 (94.6%)
Colored_outline Max 59/63 (93.7%) 31/37 (83.8%)
Gray_outline Max 54/63 (85.7%) 34/37 (91.9%)
Colored_MIP Median 4/6 (66.7%) 93/94 (98.9%)
Colored_outline Median 4/6 (66.7%) 93/94 (98.9%)
Gray_outline Median 3/6 (50.0%) 94/94 (100.0%)
Colored_MIP Min 5/7 (71.4%) 93/93 (100.0%)
Colored_outline Min 5/7 (71.4%) 92/93 (98.9%)
Gray_outline Min 3/7 (42.9%) 93/93 (100.0%)

Sensitivity and specificity are presented as number of cases with segmentation errors identified in relation to all
cases with segmentation error per stratum and percentages in parentheses. MIP: maximum intensity projection.

Finally, sensitivity of majority ratings for different error categories were calculated
(Table 6). Sensitivity for left-right mislabeling was 100% for both color-coding meth-
ods and 88.5% for Gray_outline. Sensitivities for other error categories varied between
50 and 100% and minor differences between the projection methods were found only
for the category over-/under-segmentation of lung boundaries with slightly lower sen-
sitivity for Gray_outline (79.4%) compared with 82.4% and 85.3% for Colored_MIP and
Colored_outline, respectively.

Table 6. Sensitivity of majority rating from five raters, employing different segmentation mask
projection methods, for detection of specific segmentation error categories.

Colored_MIP
61/61 (100%)

Error Category Colored_Outline

61/61 (100%)

Gray_Outline
54/61 (88.5%)

Left-right mislabeling

Over-/Under-segmentation of lung boundaries 28/34 (82.4%) 29/34 (85.3%) 27 /34 (79.4%)
Exclusion of lung pathology 4/5 (80%) 4/5 (80%) 4/5 (80%)
Off-target stitching 2/4 (50%) 2/4 (50%) 2/4 (50%)
Inclusion of distant organs 3/3 (100%) 3/3 (100%) 3/3 (100%)

Failed separation of right and left lung 1/1 (100%) 1/1 (100%) 1/1 (100%)

Sensitivities are presented as number of cases with segmentation errors identified in relation to all cases with the
respective segmentation error category and percentages in parentheses. MIP: maximum intensity projection.

3.3. Inter- and Intra-Rater Reliability

Inter-rater reliabilities based on Fleiss” Kappa were almost perfect for Colored_outline
and Colored_MIP (Kappa 0.82 and 0.87) and poor for Gray_outline (Kappa —0.01).
Intra-rater reliability was assessed for Colored_outline images based on Cohen’s

Kappa. The Kappa values of all five raters were almost perfect with values ranging
between 0.82 and 0.95.

3.4. Evaluation Time

Mean time required per case and rater for the evaluation of segmentations was
1.7 £ 0.1 5 (1.6-1.9 s) for Colored_MIP projections, 2.8 & 0.9 s (range 2.0-4.0 s) for Col-
ored_outline images, and 2.0 &= 0.4 s (1.7-2.4 s) for Gray_outline images. Differences in
evaluation time between the three projection methods were not statistically significant
(p =0.15).

4. Discussion

We evaluated three 2D visualization techniques for visual quality control of deep
learning-based 3D segmentations of the right and left lungs on whole-body MRI scans.
Accuracies were highest for the methods using color-coding for right and left lung segmen-
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tation and depth along the z-axis with accuracies of 96.0% and 94.7% for Colored_MIP and
Colored_outline images, respectively, based on five raters’ readings. Inter-rater reliability
was almost perfect for both color-coding methods (0.87 and 0.82) and poor for Gray_outline
(—0.01). Intra-rater reliability, assessed for the Colored_outline method, was also almost
perfect for all 5 raters. The mean time required per case and rater varied between 1.7 s and
2.8s.

Our observation, that color-coding resulted in higher accuracy compared to black-and-
white coding for the detection of semantic segmentation errors when assessing a multilabel
segmentation (left lung, right lung, background), was to be expected. This was further
supported by our observation that 100% of cases with left-right mislabeling error were
detected by the methods using color-coding, whereas Gray_outline only detected 88.5%
of these cases. Of course, these errors can only be identified if the quality control method
allows differentiation of the corresponding labels. However, we observed a large variability
in the accuracy of Gray_outline images among the raters, with two raters performing
notably worse. We hypothesize this may be related to a priori knowledge about the
possibility of partially mislabeled right and left lung, leading to islands of left lung labels
inside the right lung mask and vice versa. While the lack of color-coding prohibits direct
identification of the assigned label, the segmentation mask outlines highlight these areas.
Therefore, related to the predefined order in which the projection methods were evaluated,
some raters possibly interpreted them as mislabeling. On the other hand, sensitivities for
non-left-right mislabeling errors were still high in the majority of categories, especially for
the second most frequent error type “over-/under-segmentation of lung boundaries”, with
sensitivities between 79.4% and 85.3%.

Based on the sampling strategy used in our study, we found a much higher error rate
of 63% in the sample stratum with the highest algorithm uncertainty and associated high
sensitivities and specificities of the projection methods between 85.7-92.1% and 83.8-94.6%,
respectively. In comparison, accuracy was lower in the strata with the majority of cases
according to the uncertainty metric (median uncertainty) and those with the lowest uncer-
tainty and correspondingly expectedly low error prevalence of 7%. However, sensitivities
of 71.4% each and specificities of 100% and 98.9% for Colored_MIP and Colored_outline
were still high in these scenarios and may still provide added benefit for identification of
significant errors.

Few publications have previously reported on the use of visualization techniques for
quality control of 3D biomedical image segmentation. Volume rendering has been used
previously to improve the validation of automated semantic segmentation of confocal
microscopy imaging data [29]. However, the diagnostic performance of the resulting visual-
izations was not assessed. A recent publication on abdominal organ segmentation on MRI
in two of the largest cohort studies, NAKO and UK Biobank, employed a similar approach
to visual quality control, also incorporating MIP images of color-coded organ segmentation
masks and underlying imaging data in axial, coronal and sagittal orientation [2]. The
images for quality control of 20.000 study participants were all reviewed by one rater. The
authors did not report on the accuracy of the chosen approach compared to a slice-based
review of the segmentations [2]. Algorithm-derived methods for automated quality control
of deep learning-based segmentations are being intensively investigated [30-32]. These
approaches depend on large training datasets and demonstrated high performance espe-
cially in cases of severe segmentation errors. But smaller segmentation errors may not be
detected as effectively, which supports the notion of a multimodal approach to quality
control [33,34]. Specifically, ensemble uncertainty-based metrics appear promising; how-
ever, this has so far been primarily demonstrated for non-segmentation approaches or with
limited predictive value for the actual segmentation accuracy [35,36]. Some publications
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have reported on algorithmic approaches investigating anatomic plausibility of resulting
segmentations to detect segmentation errors [37] and point to an approach for segmentation
quality control independent of underlying raw data, similar to the visual approach chosen
in our study [38,39].

A recent publication presenting a new software tool for streamlined 3D slice-based
review of medical imaging segmentations reported a review time for brain tumor seg-
mentations on MRI of 11 s per case for one experienced radiation oncologist [15]. While
not directly comparable due to different organ and segmentation tasks, this indicates the
potential time savings of the presented 2D projection methods. We used the majority
rating of five raters to finally decide on the quality of the segmentation, which prolongs
the overall time invested per case. However, manual 3D segmentation and review of
automated segmentations also frequently involve more than one rater due to unavoidable
inter-rater variability [40]. Nevertheless, inter-rater reliability and accuracy were high
for our proposed method and the investigated scenario and we believe the number of
raters and potential correction-re-segmentation-re-evaluation cycles should be adjusted
according to the specific use case.

A few limitations of this study have to be considered. The present evaluation of
2D projection images is limited to MRI-based segmentations of one pairwise organ of
relatively simple shape. Diagnostic accuracy of the method may of course vary based on
the specific segmentation task, anatomical region, segmentation algorithm and underlying
imaging data. Generalizability of our findings is therefore limited. However, we feel
color-coded projection images may be of potential use for any multilabel semantic seg-
mentation task. Similarly, the variety of segmentation errors encountered will likely vary.
While the observed sensitivity for non-left-right mislabeling errors varied between 50 and
100%, it has to be taken into account that some error categories were represented by only
very few cases in our sample. Finally, we did not include the underlying imaging data in
the visualizations and based our visual quality control approach solely on the subjective
anatomical plausibility of the segmentation masks. This decision was based on a few
example cases that led the authors to the impression that inclusion of the underlying
imaging data in the projection images may not improve the process of visual quality control
due to the increased complexity of the resulting images. Therefore, we believe the presented
approach should not be interpreted as a single solution to the overall segmentation quality
control problem of large-scale studies. Instead, a multi-rater visual quality control should
complement algorithmically derived measures of segmentation accuracy and potentially
slice-based spot-checking of segmentation results in small subsamples.

5. Conclusions

In conclusion, 2D segmentation mask projection images allowed for rapid quality
control of automated volumetric segmentations of left and right lungs based on T1-weighted
MRI in an uncertainty metric-based stratified sample with moderate to high diagnostic
accuracies compared with slice-based review as a standard of reference, especially when
using color-coding. Accuracy varied with algorithm uncertainty and type of segmentation
error. The method demonstrated high inter-rater reliabilities and enabled evaluation within
a matter of seconds per case. Segmentation mask projection images may be potentially
useful in large-scale studies and external validation of semantic segmentation algorithms in
general. However, evaluation of the method in other segmentation scenarios and imaging
modalities as well as larger datasets is desirable.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/tomography11120135/s1, Figure S1: Violin plot illustrating the
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