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Abstract

The chromatophores of the cercozoan amoeba Paulinella are photosynthetic organelles that evolved from a cyanobacterial endosymbiont.
Many nucleus-encoded chromatophore-targeted proteins carry unusual N-terminal targeting signals termed crTPs, which are bipartite.
crTPpar likely mediates trafficking through the secretory pathway and is cleaved off during import, but cr TPy, remains attached toits
cargo protein and its function is unknown. To unravel the functional role of CrTPpares, here we elucidated the structures of crTPpar, from
two different chromatophore-targeted proteins by X-ray crystallography at ~2.3 A resolution. Interestingly, the crTPpq,, of both proteins
adopts a structural fold. Both structures share a conserved structured core and a flexible N-terminal arm. The structured core resembles
proteins of the y-glutamyl cyclotransferase superfamily within which crTPpa, structures form a protein (sub)-family. The proposed
catalytic center typical for proteins with cyclotransferase activity is not conserved in crTPparp. A Cys pair that is conserved in crTPpare,
of many chromatophore-targeted proteins has been captured as a disulfide bridge. Together, our data suggest that chromatophore-
targeted proteins are imported in their folded state and that the fold adopted by crTPpato plays a functional role during import. The
characterization of its structure and flexibility provides important steps toward elucidating this protein translocation mechanism.

Introduction elements, and are bipartite. Upon import, crTPpa; 1s cleaved
off, whereas crTPpa, remains attached to the N-terminus of

The transformation of bacterial endosymbionts into eukaryotic > -
most ICTPs (Oberleitner et al. 2022) (Fig. 1A). It has been proposed

organelles has been a key process in eukaryote evolution. The

only organelles identified so far that evolved by primary endosym-
biosis events that were independent of the events that gave rise to
mitochondria and plastids, are the photosynthetic “chromato-
phores” of the cercozoan amoeba Paulinella and the nitrogen-fixing
“nitroplasts” of the haptophyte Braarudosphaera. In both cases, fol-
lowing the establishment of a cyanobacterial endosymbiont, the
endosymbiont lost many functions by reductive genome evolu-
tion that were compensated by the import of nucleus-encoded
proteins (Nowack and Grossman 2012; Singer et al. 2017; Coale
et al. 2024). Many of these organelle-targeted proteins carry con-
served sequence extensions that apparently function as unique
types of targeting signals (Singer et al. 2017; Coale et al. 2024).
Their way of functioning is little understood.

In Paulinella chromatophora, the subject of this study, long
chromatophore-targeted proteins [ICTPs; typically >250 amino
acids (aa)] carry such N-terminal targeting signals that are re-
ferred to as “chromatophore transit peptides’ (crTPs) (Singer
et al. 2017). CrTPs are ~200 aa long, contain conserved sequence

that the conserved hydrophobic helix in crTPp,; anchors
crTP-carrying proteins cotranslationally in the ER membrane in
an N-terminus out, C-terminus in conformation and that the
N-terminal adaptor protein 1 complex binding site (AP-1 BS) is
responsible for packaging 1CTPs into clathrin-coated vesicles
(Oberleitner et al. 2022). Although the exact timepoint at which
CrTPpara 18 cleaved off is unknown, it is reasonable to assume
that cleavage happens after this sorting step, possibly following
fusion of the vesicles with the outer (host-derived) chromato-
phore membrane (Sgrensen et al. 2025). This would resultin are-
lease of the cargo proteins, still attached to crTPpa;, into the
intermembrane space. The function of crTPpar is unclear, but
it is likely involved in mediating protein translocation across
the two remaining layers (i.e. peptidoglycan (PG) and inner
membrane).

Interestingly, cr TPpay2 cOntains conserved predicted secondary
structure elements across proteins (Oberleitner et al. 2022), sug-
gesting that, different from the N-terminal transit peptides of
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Figure 1. CrTPpao adopts a structured fold. A) Multiple sequence alignment of 9 representative crTP sequences (ClustalX2, manually refined).
Identifiers of proteins that were experimentally studied are highlighted in color. In crTPp.,1, conserved hydrophobic helix and adapter protein complex
1 binding site (AP-1 BS) are indicated. In crTPpq, secondary structure elements resolved by X-ray crystallography are provided underneath the
alignment. Interacting Cys residues are indicated by asterisks. Conserved hydrophobic aa involved in the interaction between arm and core are marked
by arrow heads. B, C) Cartoon representation of crystal structure of crTPparto_grnan (B; pdb id 9109) and crTPpares_arge (C; pdb id 9108). Flexible arm, blue;
structured core, gold. D) Superposition of the cores of crTPpart_rnan (blue; Leull4 to GIn220) and crTPparz_argc (green; Pro93 to Gln181). E) Disulfide
bridge between Cys113 and Cys169 stabilizes the f-barrel of crTPparts rnan- In the “open conformation”, extension of the flexible arm results in exposure
of hydrophobic aas (F82, L83, W140, and Y142). F) In the “closed conformation” of crTPpart_argc, the flexible arm interacts with the core via hydrophobic

interactions.

mitochondrion and plastid-targeted proteins, which are generally
unstructured, crTPpar, adopts a structural fold. This hypothesis
guided the experimentation in this study.

Results
CrTPpar> adopts a structured fold

To contribute to the understanding of the function of crTPpa, We
aimed to elucidate its 3D structure. For this purpose, we focused
on crTPpa, from three chromatophore-targeted proteins. These
were derived from the transcripts scaffold2581, scaffold7023,
and scaffold4337 (GenBank accessions: GEZN01002575.1,
GEZN01007010.1, and GEZN01004327.1, (Nowack et al. 2016)) en-
coding a predicted RNA helicase (RnaH), N-acetyl-gamma-

glutamyl-phosphate reductase (ArgC), and cysteine synthase A
(CysK); from here on crTPpart2 rnart, CITPparo arge, and
Cr'TPpart2_cysk, respectively (Fig. 1A). Initial analyses of these pro-
teins by AlphaFold3 (Abramson et al. 2024) predicted the struc-
tures of the cargo proteins, RnaH, ArgC, and CysK, with high
confidence; however, the crTP structures could not be modeled
in high quality and resulted in largely unstructured domains
(Supplementary Fig. S1). Hence, we aimed for structure character-
ization by X-ray crystallography. To this end, we purified recombi-
nant crTPpartz rnatt, C'TPpart2_arge, and CrTPpars cysk-containing
constructs following their overexpression in Escherichia coli
(Supplementary Figs. S2 and S3). Two of these proteins,
CrTPpart2_rnan aNd  Cr'TPpario_arge, readily formed crystals of
sufficient quality to determine their structure via X-ray
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crystallography, at 2.4 A and 2.2 A resolution, respectively (for de-
tails see Supplementary Text and Table S1). The quality of the
electron density map is visualized in Supplementary Fig. S4.

Both structures contain a structured core (colored gold in Fig. 1,
B and C) and a mostly unstructured N-terminal arm (blue in Fig. 1,
B and C). The structured cores consist of a five-stranded antipar-
allel -barrel (B1-p3-p2-p4-pS) flanked by an a-helix (02), decorated
by connecting loops. In crTPpars rnan, additional very short
B-strands (B1’, p2’) and a-helical elements (al’- a3’) are embedded
into the connecting loops. The N-terminal arm clearly adopts a
different conformation in both structures, indicating that this
part might be flexible, whereas the structured core is almost iden-
tical between crTPparto_rnan and CITPparto_argc OVer a large part of
the structure (rmsd 0.7 A over 63 aligned Ca atoms, Fig. 1D). In
CITPpart2_rnan, the P-barrel is stabilized by a disulfide bridge
formed between Cys113 and Cys169 (Fig. 1E). This Cys pair is con-
served in many, but not in all crTP sequences, however, if Cys oc-
curs in these positions, it occurs as a pair (see asterisks in Fig. 1A).
The loop connecting helix «2 with p4 is much larger in
CI'TPpart2_rnan When compared to crTPpars argc. The loops con-
necting p2 and B3 as well as a2 with B3 are similar in length but
adopt different conformations in the two structures, hinting to-
ward flexibility at these positions whereas the core is rigid.

In crTPpart2_arge, the N-terminal arm interacts via hydrophobic
interactions between Phe64 and Trpl10 as well as Ile70 and
Tyr112 with the structured core and hence, shows a “closed con-
formation” (Fig. 1F). These hydrophobic residues are highly con-
served between different crTP sequences (black arrowheads in
Fig. 1A). In crTPparto_rnan, for which the “open conformation” of
the N-terminal arm was captured, the hydrophobic residues are
exposed (Fig. 1E). This open conformation appears to be stabilized
by the formation of a crystallographic dimer (Supplementary Fig.
S5). The N-terminal arm contains several proline residues, which
give the arm a specific conformation. To verify the flexibility of the
N-terminal arm, we applied molecular simulations using the pro-
gram CABS Flex with the all-atom reconstruction implemented
(Wréblewski et al. 2025). Here, crTPpartz_rnan Shows high flexibility
at the N-terminus in comparison with the N-terminus of
Cr' TPpart2_arge (Supplementary Fig. S6). Interestingly, in both struc-
tures, flexibility peaks in the proline-rich region, which might
function as a hinge for flexibility. Together these results suggest
that the N-terminal arm can adopt several conformations, how-
ever, in the closed conformation is stabilized by the interactions
described above.

Notably, N-terminal crTPs are also found in 1ICTPs of Paulinella
micropora, a chromatophore-containing sister of P. chromatophora
(Lhee et al. 2021). To assess whether the structural features iden-
tified in crTPs of P. chromatophora are conserved across species, we
aligned the sequences of the three crTPs studied here with those
of crTPs from P. micropora (Supplementary Fig. S7A). Intriguingly,
all important structural features identified in P. chromatophora
are conserved in P. micropora including, in crTPpar1, the AP-1 BS
and hydrophobic helix; and, in crTPpar, the Cys-pair, the hydro-
phobic residues supporting interactions between flexible arm
and structured core, and the proline-rich region (Supplementary
Fig. S7A). Furthermore, homology models obtained using the
solved crystal structures of crTPpares rnan @nd CITPpare argc @S
templates, suggest that crTPpay, in P. micropora can adopt similar
folds (Supplementary Fig. S7, B and C). However, the predictive
value of these models is low, since—as observed before for
AlphaFold3 (Supplementary Fig. S1)—the quality estimates for
all homology models obtained were very low (see
Supplementary Fig. S7, B and C and corresponding figure legend).

Structure of the chromatophore transit peptide | 3

To study crTPpar, linked to their natural cargo proteins, we puri-
fied recombinant crTPparto rnan-RnaH and crTPparo_argc-ArgC fol-
lowing their production in E. coli (Supplementary Figs. S2 and S3).
However, despite several attempts, these proteins did not form
crystals.

Small angle X-ray scattering measurements
indicate flexibility of the N-terminal arm
and the linker to the cargo protein in solution

To investigate the flexibility of crTPpar in solution as well as the
spatial arrangement between the crTPpa.o regions and their cargo
proteins, we performed small angle X-ray scattering (SAXS) meas-
urements. These measurements demonstrated that crTPpare_arge,
Cr'TPpart2_rnatt, and Cr'TPpares_cysx alone are monomeric in solution
(Supplementary Tables S2 and S3 and Text). For crTPpari2_rnan, the
“open conformation” of the flexible arm, found in the crystal
dimer packing, is also present in solution. Here, the flexible arm
adopts, as  expected, multiple conformations (see
Supplementary Text). Flexibility analyses of the termini with the
ensemble optimization method (EOM) revealed four different con-
formations that all represent different “open conformations,” but
no indication for a “closed conformation” for crTPparts_rnan (Fig. 2,
A and B and Supplementary Fig. S8). In comparison, neither
CI'TPpart2_argc, NOT CrTPpars cysk showed flexible termini and
show a more compact conformation (Supplementary Figs. S9
and S10 and Text).

CrTPpart»_rnan-RnaH, too, is a monomer in solution
(Supplementary Table S2) and we recovered three distinct
conformations, indicating flexibility between the crTPpars rnan
domain and the attached cargo protein, RnaH (Fig. 2C and
Supplementary Fig. S11 and Text). In contrast, crTPpar_argc-
ArgC appears dimeric over the whole concentration range
(Supplementary Table S2) with the dimer interface predicted
within the cargo protein ArgC. The models obtained showed
that crTPparz_argc-ArgC forms an overall compact molecule, but,
again, reveals flexibility between the crTP,a;, domain and the at-
tached cargo protein (Fig. 2D and Supplementary Fig. S12).
Furthermore, the N-terminal arm of crTPpario_argc, Which ap-
peared “closed” in the monomer crystal and in-solution model of
CI'TPpart2_argc alone, now remains flexible, more in line with an
“open conformation” (for more details see Supplementary Text).

The structured core of crTP,,+» shows similarity
to y-glutamyl cyclotransferase fold proteins
Searching the coordinates of the solved crTPp., structures
against the PDB database using the DALI server (http:/ekhidna?.
biocenter.helsinki.fi/dali/) revealed similarity of both structures
to members of the y-glutamyl cyclotransferase-like superfamily
(InterPro entry IPR036568) (Supplementary Table S4). This super-
family contains five protein families, the y-glutamyl cyclotrans-
ferase (GGCT), the y-glutamylamine cyclotransferase (GGACT),
the glutathione-specific GGCT (GCG or ChaC), the BrtG-like, and
the plant-specific GGCT-like family (Fig. 3; Kumar et al. 2015).
For 10 members of the GGCT-like superfamily structures have
been experimentally solved (Fig. 3A and Supplementary Table S5).
Highest similarity scores were obtained for the S. cerevisiae
glutathione-specific GGCT ChaC (pdb id: Shwi, z-scores=10.3
and 9.3, sequence identities=13% and 17%), the human GGCT
(pdb id: 2i5t, z-scores=9.1 and 8.6, sequence identities=15%
and 23%), and the B. subtilis protein YkgA (pdb id: 2qik,
z-scores = 9.2 and 8.0, sequence identities 18% and 23%) (values
for crTPpart2_rnan aNd CITPpars_arge, Tespectively). Thus, structure

G20z Joquiavaq G0 uo 1sanb Aq 9¢/ 1 8Z8/¥0SHeN/2/66/a1o1e/sAyd]d/woo dno-owepede/:sdpy wolj papeojumoq


http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiaf504#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiaf504#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiaf504#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiaf504#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiaf504#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiaf504#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiaf504#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiaf504#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiaf504#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiaf504#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiaf504#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiaf504#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiaf504#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiaf504#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiaf504#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiaf504#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiaf504#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiaf504#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiaf504#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiaf504#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiaf504#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiaf504#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiaf504#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiaf504#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiaf504#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiaf504#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiaf504#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiaf504#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiaf504#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiaf504#supplementary-data
http://ekhidna2.biocenter.helsinki.fi/dali/
http://ekhidna2.biocenter.helsinki.fi/dali/
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiaf504#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiaf504#supplementary-data

4 | Plant Physiology, 2025, Vol. 199, No. 2

@
=1
L |

Y
o
1

204

Volumne fraction [%]

]
=

Figure 2. SAXSrefined models of the analyzed proteins. A) The crTPpars_rnan cOre from the crystal structure is shown as orange cartoon and the solved
part of the N-terminal arm as blue sphere representation. The core remained rigid for the EOM analysis and only the N and C-terminal parts were
completed and used as flexible tails for the modeling. For clarity, only the N-terminal partis shown in sphere representations (volume fractions in green
22%, yellow 56%, cyan 11%, and magenta 11%). B) Volume fractions from the crTPpart2_rna EOM analysis in the corresponding color code shown as
spheres in (A). C) EOM models of crTPpartz_rnan-RnaH. The RnaH core (orange) was used as rigid body. The solved crystal structure of crTPpa,, was used
as flexible template and the missing linker regions were remodeled with EOM. D) Dimer model of crTPpars_argc-ArgC. The ArgC protomer dimer
interface (gray and orange) was used as rigid body and the solved cr TP, as flexible template. The flexible linkers and crTPpa, are colored in green and
cyan for each protomer. The corresponding volume fractions are indicated below of each model in (C) and (D).

comparison did not reveal affiliation of the crTPpay, structures to
any particular family within the superfamily. In line with this re-
sult, a maximum likelihood (ML) phylogenetic analysis of a
structure-guided alignment resolves crTPpar; Sequences as a
unique family within IPR036568 that forms a short common
branch with the plant-specific GGCT-like family (Fig. 3A).

For several proteins of the superfamily, enzymatic activities
have been characterized and a common function of many is the
cleavage of diverse y-glutamyl derivatives by cyclotransferase ac-
tivity (Supplementary Text). Despite their low sequence identities,
catalysis is based on a similar structural fold, which includes a
cavity between the B-barrel and adjacent helix that contains a
conserved YGSL motif and a Glu residue that likely represents
the active site (Oakley et al. 2010; Chi et al. 2014). The crTPpare
structures form a similar cavity build by strand p1 and B5, helix
a2, and the loop between p1 and B2 that aligns with the proposed
substrate-binding cavity in the human GGACT (3jub, 3juc) (Oakley
et al. 2010) (Fig. 3B). The YGSL motif is partly conserved in
CrTPparta. Tyr99 of crTPpares arge at the N-terminal end of the

loop connecting 1 and B2 corresponds to Tyr7 in the YGSL motif
of the human GGACT. This Tyr residue is conserved throughout
different crTPpar, sequences (Supplementary Fig. S13) and its
side chain is orientated toward the inside of the cavity (Fig. 3C).
The following Gly is found only in around half of the crTPpq, se-
quences and is replaced in the remaining sequences mostly by
other small amino acids (A, S, T, and P). Ser and Leu of the YGSL
motif are conserved in crTPpars rnan DUt nonconservatively re-
placed in crTPparts arge by Glu and Asp. Finally, Glu82 of the hu-
man GGACT that sits at the C-terminal end of cavity-delimiting
helix with its side chain oriented toward the inside of the cavity
has been proposed to form the catalytic center (Oakley et al.
2010). Glu in this position is highly conserved in many proteins
of the superfamily (Supplementary Fig. S13). Interestingly, in
Cr'TPpart2_arge @nd CrTPpars rnan this catalytic Glu is replaced by
a Tyr and an Arg, respectively (Fig. 3D and Supplementary Fig.
S13). In other crTPp..r, sequences, this site harbors several other
aa residues (see alignment position 192 in Fig. 1A). Hence, it ap-
pears unlikely that crTPpa, has cylotransferase activity.
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Figure 3. The structured core of cr'TPpq,, forms a subfamily within the y-glutamyl cyclotransferase-like superfamily. A) ML tree depicting the inferred
phylogenetic relationship between the structured core of crTPpar, and members of the GGCT-like superfamily. Ultrafast bootstrap values >95 are
shown at branches. Eukaryotic sequences are in black, bacterial in orange, archaeal in blue. Protein structures available are represented as cartoon
models in which the part that is structurally similar to the crTPpar, structured core is highlighted in colors. Note that the B. subtilis homolog of BtrG
(named YkgA, of unknown function; pdb id 2qik) contains two cyclotransferase domains within one polypeptide chain. Only the second is shown here
and in Supplementary Fig. S13. Species abbreviations: At, A. thaliana; Bs, B. subtilis; Ce, C. elegans; Dm, Drosophila melanogaster; Dr, Danio rerio; Ec, E. coli; Gg,
Gallus gallus; Hs, H. sapiens; Mj, Methanocaldococcus jannaschii DSM; Mm, Mus musculus; Nc, Niallia circulans; Os, Oryza sativa; Pf, Pyrococcus furiosus; Ph,
Pyrococcus horikoshii; Sc, S. cerevisiae; Ve, Vibrio cholerae; X1, Xenopus laevis; Yp, Yersinia pestis. B, D) Superposition of the substrate-binding pocket of the
human GGACT (pdbid: 3juc, violet with single residues highlighted in magenta) in complex with the product 5-oxoproline (shown in blue) and the one of
Cr'TPpart2_argc (green with single residues highlighted in light green). C) Detail showing the conserved Tyr and Gly of the YGSL motif highlighted as well as
other conserved or conservatively replaced hydrophobic side chains facing the substrate-binding pocket. D) Detail showing the replacement of the
catalytic Glu82 typical for GGCT-like proteins by a Tyr in crTPpartz_argc-
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Discussion

Here, we showed that crTPpar, domains of ICTPs in P. chromato-
phora adopt a structured fold that consists of a structured core
with similarity to GGCT-like proteins and an N-terminal flexible
arm that can interact via conserved hydrophobic residues with
the structured core (see arrow heads in Fig. 1A). The proline-rich
region in the N-terminal arm may represent an anchor for an in-
teraction partner, since proline-rich regions within other proteins
are known to form interaction surfaces that are responsible for in-
teractions with e.g. elements of the cytoskeleton, peptidoglycan or
biological membranes (Williamson 1994). Interaction with a po-
tential partner would be facilitated by the inferred flexibility of
the N-terminal arm as well as the linker between crTPpar and
its cargo protein (Fig. 2). The disulfide bridge in crTPpartz rnant
that has been captured by crystallography (Fig. 1E) is formed by
a Cys pair that is conserved across crTPpa, domains of diverse
ICTPs, which suggests that the oxidized state is biologically rele-
vant. This assumption is in line with the oxidizing conditions in
the ER lumen (Margittai et al. 2015) that has been suggested as in-
termediate station in the ICTP import pathway (Oberleitner et al.
2022).

Interestingly, whereas 1CTPs apparently require a crTP for im-
port, short chromatophore-targeted proteins (sCTPs; typically
<90 aa) that also apparently traffic into the chromatophore via
the Golgi (Nowack and Grossman 2012) lack similar targeting sig-
nals (Singer et al. 2017). Since 1CTPs and sCTPs comprise overlap-
ping functions (e.g. cytosolic metabolic enzymes, diverse
DNA-binding proteins; Singer et al. 2017; Oberleitner et al. 2020;
Macorano et al. 2023), requirement of a cr'TP does not seem to
be tied to a specific function or final localization of the cargo pro-
tein but rather its size. This size cutoff could be set by the—so far
unknown—import gate in the inner chromatophore membrane or
the mesh size of the PG sacculus.

In E. coli, a size cutoff of ~50 kDa has been estimated for globu-
lar proteins to be able to diffuse through the stretched PG sacculus
(Demchick and Koch 1996). Cyanobacteria generally feature a
thicker PG with a much higher degree of crosslinking (Hoiczyk
and Hansel 2000). Hence, although PG composition and crosslink-
ing has not been analyzed for chromatophores yet, it might repre-
sent an important hurdle for the transport of folded ICTPs, which
reach sizes >100kDa (Singer et al. 2017). Also the plastids of
Glaucophytes retained a pronounced PG layer; however, they
use a TIC/TOC translocon-based mechanism for importing
plastid-targeted preproteinsin an unfolded state and only the ma-
ture stromal proteins fold into their functional conformation
(Steiner and Loffelhardt 2002). Hence, the PG does not represent
a relevant size cutoff here.

Since many GGCT-family proteins cleave y-glutamyl-contain-
ing peptides, the y-glutamyl-containing muropeptides that cross
link the PG appeared as possible ligands of crTPpar. Although
cleavage of these peptides by crTP., appears unlikely due to
the lack of conservation of the proposed catalytic center
(Fig. 3D), we hypothesized that the binding to muropeptide deriv-
atives could be involved in recognition of noncrosslinked areas in
the PG and/or resultin a conformational change enabling interac-
tion with interaction partners at the inner membrane. However,
we could not experimentally confirm binding of crTPpar, to the
E. coli PG penta or tetrapeptide. Hence, if muropeptides are the
natural ligands of crTPpa;t, we could not identify the exact ligand
and/or correct conditions yet under which binding occurs.

In sum, our data suggests that ICTPs are imported in their
folded state and that the fold adopted by crTPpar, plays an as of

yet unknown functional role in the import process that appears
to be conserved cross chromatophore-containing Paulinella spe-
cies. The characterization of its structure and flexibility provides
important steps toward unraveling this protein translocation
mechanism.

Materials and methods

Cultivation of P. chromatophora and synthesis

of complementary DNA (cDNA)

P. chromatophora CCAC0185 was grown as described before
(Nowack et al. 2016). Total RNA was extracted and cDNA prepared
as described in (Macorano et al. 2023).

Construction of expression plasmids

The crTPp4;r, domains alone or crTPpar» domains plus their cargo
proteins were cloned into the expression vector GPN131. This vec-
tor is a derivative of the plasmid pET-22b(+) (Novagene; 69744), in
which the pelB sequence and C-terminal Hise-tag were replaced
by an N-terminal Hise-tag, thrombin cleavage site, and
SUMO-tag. For details see the Supplementary Text, Fig. S14, and
Table S6.

Heterologous expression of recombinant proteins

For overexpression of the constructs Hisg-SUMO-TEV-
Cr'TPpart2_rnat, HiSe-SUMO-TEV-CITPparts_arge, Hise-SUMO-TEV-
I TPpart2_cysk, Hisg-SUMO-TEV-Cr TPparo_argc-ArgC, and
His-SUMO-TEV-crTPpareo_rnan-RnaH (see Supplementary Fig.
S2A), plasmids GPN142, GPN167, GPN168, GPN195, and GPN194,
respectively, were individually transformed into E. coli strain
LOBSTR-BL21(DE3)-RIL (Kerafast, Boston, MA) (Andersen et al.
2013) and proteins were expressed under conditions detailed in
the Supplementary Text. Finally, cells were harvested, pellets
flash frozen and stored at —80 °C until use.

Protein purification

Frozen cells from expression cultures were lysed and the
Hise-SUMO-tagged proteins of interest isolated by immobilized
metal ion chromatography (IMAC). The Hise-SUMO tag was
cleaved of by TEV protease and the proteins of interest purified
by reverse IMAC followed by size exclusion chromatography
(SEQ). For details see the Supplementary Text. Protein amounts
were determined by a nanophotometer (NP80, Implen). Obtained
fractions were analyzed by SDS-PAGE under denaturing condi-
tions on 12.5% polyacrylamide (ROTIPHORESE 30; 29:1; Roth)
Tris-glycine gels (Schagger 2006) (Supplementary Fig. S2) and
BN PAGE on 4%-16% gels (SERVA, SERVAGel N 4—16 Cat. No.
43204) according to the manufacturer’'s recommendations
(Supplementary Fig. S3), both stained with Coomassie Brilliant
Blue R250.

Protein crystallization and 3D structure
determination by X-ray crystallography

CrTPpart2_rnan Was crystallized at 12 °C with 1.5 ul of 12 mg/ml
protein in buffer A (see Supplementary Text), mixed with 1.5yl
23%PEG 3350in 0.1 MHEPES pH 8.5. CrTPpareo_argc Was crystallized
at 12 °C with 0.1 ul of 12 mg/ml protein in buffer A mixed with
0.1l 0.1m HEPES pH 6.5, 2.4 m AmSO, (final pH 7). Diffraction
data from obtained crystals of both proteins were collected at
the P13 beamline (PETRA III, DESY Hamburg) (Cianci et al. 2017).
More details on experimentation, data collection, and refinement
statistics are reported in Supplementary Table S1 and Text.
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Figures were generated using PyMOL (Schrodinger LLC; www.
pymol.org).

Small-angle X-ray scattering

SAXS data of crTPpart2_rnat, CTTPpart2_arec, and crTPpareo_cysk Were
collected on the P12 beamline at PETRA III, DESY, Hamburg)
(Blanchet et al. 2015), and of crTPpar argc-ATgC  and
CI'TPpart2_rnan-RNaH on our Xeuss 2.0 Q-Xoom system from
Xenocs. Primary data reduction was performed with the program
PRIMUS (Konarev et al. 2003). With the Guinier approximation
(Guinier 1939) implemented in PRIMUS, we determine the forward
scatteringI(0) and the radius of gyration (R,) and used the program
GNOM (Svergun 1992) to estimate the maximum particle dimen-
sion (Dmax) With the pair-distribution function p(r). Comparison
of the theoretical scattering intensity of the solved crystal struc-
tures against the experimental scattering data was done with
CRYSOL (Svergun et al. 1995). Flexible parts of the proteins were
analyzed using EOM (Bernadé et al. 2007; Tria et al. 2015) and rigid
body modeling with CORAL (Petoukhov et al. 2012). Details are
provided in the Supplementary Text and Table S2.

Phylogenetic analysis

Sequences of crTPpa, from indicated transcripts were aligned
with diverse GGCT-like superfamily proteins downloaded from
NCBI. A structure-guided alignment was generated using
PROMALS3D (Peietal. 2008). The ML tree was inferred with igtree2
(Nguyen et al. 2015; Minh et al. 2020) using automatic model selec-
tion and 1000 ultrafast bootstrap replicates.

Accession numbers

Sequence data from this article can be found in the GenBank/
EMBL data libraries under accession numbers _GEZN01002575.1,
GEZNO01007010.1, and GEZN01004327.1.
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