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Abstract
The chromatophores of the cercozoan amoeba Paulinella are photosynthetic organelles that evolved from a cyanobacterial endosymbiont. 
Many nucleus-encoded chromatophore-targeted proteins carry unusual N-terminal targeting signals termed crTPs, which are bipartite. 
crTPpart1 likely mediates trafficking through the secretory pathway and is cleaved off during import, but crTPpart2 remains attached to its 
cargo protein and its function is unknown. To unravel the functional role of crTPpart2, here we elucidated the structures of crTPpart2 from 
two different chromatophore-targeted proteins by X-ray crystallography at ∼2.3 Å resolution. Interestingly, the crTPpart2 of both proteins 
adopts a structural fold. Both structures share a conserved structured core and a flexible N-terminal arm. The structured core resembles 
proteins of the γ-glutamyl cyclotransferase superfamily within which crTPpart2 structures form a protein (sub)-family. The proposed 
catalytic center typical for proteins with cyclotransferase activity is not conserved in crTPpart2. A Cys pair that is conserved in crTPpart2 

of many chromatophore-targeted proteins has been captured as a disulfide bridge. Together, our data suggest that chromatophore- 
targeted proteins are imported in their folded state and that the fold adopted by crTPpart2 plays a functional role during import. The 
characterization of its structure and flexibility provides important steps toward elucidating this protein translocation mechanism.
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Introduction
The transformation of bacterial endosymbionts into eukaryotic 
organelles has been a key process in eukaryote evolution. The 
only organelles identified so far that evolved by primary endosym
biosis events that were independent of the events that gave rise to 
mitochondria and plastids, are the photosynthetic “chromato
phores” of the cercozoan amoeba Paulinella and the nitrogen-fixing 
“nitroplasts” of the haptophyte Braarudosphaera. In both cases, fol
lowing the establishment of a cyanobacterial endosymbiont, the 
endosymbiont lost many functions by reductive genome evolu
tion that were compensated by the import of nucleus-encoded 
proteins (Nowack and Grossman 2012; Singer et al. 2017; Coale 
et al. 2024). Many of these organelle-targeted proteins carry con
served sequence extensions that apparently function as unique 
types of targeting signals (Singer et al. 2017; Coale et al. 2024). 
Their way of functioning is little understood.

In Paulinella chromatophora, the subject of this study, long 
chromatophore-targeted proteins [lCTPs; typically >250 amino 
acids (aa)] carry such N-terminal targeting signals that are re
ferred to as “chromatophore transit peptides’ (crTPs) (Singer 
et al. 2017). CrTPs are ∼200 aa long, contain conserved sequence 

elements, and are bipartite. Upon import, crTPpart1 is cleaved 
off, whereas crTPpart2 remains attached to the N-terminus of 
most lCTPs (Oberleitner et al. 2022) (Fig. 1A). It has been proposed 
that the conserved hydrophobic helix in crTPpart1 anchors 
crTP-carrying proteins cotranslationally in the ER membrane in 
an N-terminus out, C-terminus in conformation and that the 
N-terminal adaptor protein 1 complex binding site (AP-1 BS) is 
responsible for packaging lCTPs into clathrin-coated vesicles 
(Oberleitner et al. 2022). Although the exact timepoint at which 
crTPpart1 is cleaved off is unknown, it is reasonable to assume 
that cleavage happens after this sorting step, possibly following 
fusion of the vesicles with the outer (host-derived) chromato
phore membrane (Sørensen et al. 2025). This would result in a re
lease of the cargo proteins, still attached to crTPpart2, into the 
intermembrane space. The function of crTPpart2 is unclear, but 
it is likely involved in mediating protein translocation across 
the two remaining layers (i.e. peptidoglycan (PG) and inner 
membrane).

Interestingly, crTPpart2 contains conserved predicted secondary 
structure elements across proteins (Oberleitner et al. 2022), sug
gesting that, different from the N-terminal transit peptides of 
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mitochondrion and plastid-targeted proteins, which are generally 
unstructured, crTPpart2 adopts a structural fold. This hypothesis 
guided the experimentation in this study.

Results
CrTPpart2 adopts a structured fold
To contribute to the understanding of the function of crTPpart2, we 
aimed to elucidate its 3D structure. For this purpose, we focused 
on crTPpart2 from three chromatophore-targeted proteins. These 
were derived from the transcripts scaffold2581, scaffold7023, 
and scaffold4337 (GenBank accessions: GEZN01002575.1, 
GEZN01007010.1, and GEZN01004327.1, (Nowack et al. 2016)) en
coding a predicted RNA helicase (RnaH), N-acetyl-gamma- 

glutamyl-phosphate reductase (ArgC), and cysteine synthase A 
(CysK); from here on crTPpart2_RnaH, crTPpart2_ArgC, and 
crTPpart2_CysK, respectively (Fig. 1A). Initial analyses of these pro
teins by AlphaFold3 (Abramson et al. 2024) predicted the struc
tures of the cargo proteins, RnaH, ArgC, and CysK, with high 
confidence; however, the crTP structures could not be modeled 
in high quality and resulted in largely unstructured domains 
(Supplementary Fig. S1). Hence, we aimed for structure character
ization by X-ray crystallography. To this end, we purified recombi
nant crTPpart2_RnaH, crTPpart2_ArgC, and crTPpart2_CysK-containing 
constructs following their overexpression in Escherichia coli 
(Supplementary Figs. S2 and S3). Two of these proteins, 
crTPpart2_RnaH and crTPpart2_ArgC, readily formed crystals of 
sufficient quality to determine their structure via X-ray 

Figure 1. CrTPpart2 adopts a structured fold. A) Multiple sequence alignment of 9 representative crTP sequences (ClustalX2, manually refined). 
Identifiers of proteins that were experimentally studied are highlighted in color. In crTPpart1, conserved hydrophobic helix and adapter protein complex 
1 binding site (AP-1 BS) are indicated. In crTPpart2, secondary structure elements resolved by X-ray crystallography are provided underneath the 
alignment. Interacting Cys residues are indicated by asterisks. Conserved hydrophobic aa involved in the interaction between arm and core are marked 
by arrow heads. B, C) Cartoon representation of crystal structure of crTPpart2_RnaH (B; pdb id 9I09) and crTPpart2_ArgC (C; pdb id 9I08). Flexible arm, blue; 
structured core, gold. D) Superposition of the cores of crTPpart2_RnaH (blue; Leu114 to Gln220) and crTPpart2_ArgC (green; Pro93 to Gln181). E) Disulfide 
bridge between Cys113 and Cys169 stabilizes the β-barrel of crTPpart2_RnaH. In the “open conformation”, extension of the flexible arm results in exposure 
of hydrophobic aas (F82, L88, W140, and Y142). F) In the “closed conformation” of crTPpart2_ArgC, the flexible arm interacts with the core via hydrophobic 
interactions.
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crystallography, at 2.4 Å and 2.2 Å resolution, respectively (for de
tails see Supplementary Text and Table S1). The quality of the 
electron density map is visualized in Supplementary Fig. S4.

Both structures contain a structured core (colored gold in Fig. 1, 
B and C) and a mostly unstructured N-terminal arm (blue in Fig. 1, 
B and C). The structured cores consist of a five-stranded antipar
allel β-barrel (β1-β3-β2-β4-β5) flanked by an α-helix (α2), decorated 
by connecting loops. In crTPpart2_RnaH, additional very short 
β-strands (β1′, β2′) and α-helical elements (α1′- α3′) are embedded 
into the connecting loops. The N-terminal arm clearly adopts a 
different conformation in both structures, indicating that this 
part might be flexible, whereas the structured core is almost iden
tical between crTPpart2_RnaH and crTPpart2_ArgC over a large part of 
the structure (rmsd 0.7 Å over 63 aligned Cα atoms, Fig. 1D). In 
crTPpart2_RnaH, the β-barrel is stabilized by a disulfide bridge 
formed between Cys113 and Cys169 (Fig. 1E). This Cys pair is con
served in many, but not in all crTP sequences, however, if Cys oc
curs in these positions, it occurs as a pair (see asterisks in Fig. 1A). 
The loop connecting helix α2 with β4 is much larger in 
crTPpart2_RnaH when compared to crTPpart2_ArgC. The loops con
necting β2 and β3 as well as α2 with β3 are similar in length but 
adopt different conformations in the two structures, hinting to
ward flexibility at these positions whereas the core is rigid.

In crTPpart2_ArgC, the N-terminal arm interacts via hydrophobic 
interactions between Phe64 and Trp110 as well as Ile70 and 
Tyr112 with the structured core and hence, shows a “closed con
formation” (Fig. 1F). These hydrophobic residues are highly con
served between different crTP sequences (black arrowheads in 
Fig. 1A). In crTPpart2_RnaH, for which the “open conformation” of 
the N-terminal arm was captured, the hydrophobic residues are 
exposed (Fig. 1E). This open conformation appears to be stabilized 
by the formation of a crystallographic dimer (Supplementary Fig. 
S5). The N-terminal arm contains several proline residues, which 
give the arm a specific conformation. To verify the flexibility of the 
N-terminal arm, we applied molecular simulations using the pro
gram CABS Flex with the all-atom reconstruction implemented 
(Wróblewski et al. 2025). Here, crTPpart2_RnaH shows high flexibility 
at the N-terminus in comparison with the N-terminus of 
crTPpart2_ArgC (Supplementary Fig. S6). Interestingly, in both struc
tures, flexibility peaks in the proline-rich region, which might 
function as a hinge for flexibility. Together these results suggest 
that the N-terminal arm can adopt several conformations, how
ever, in the closed conformation is stabilized by the interactions 
described above.

Notably, N-terminal crTPs are also found in lCTPs of Paulinella 
micropora, a chromatophore-containing sister of P. chromatophora 
(Lhee et al. 2021). To assess whether the structural features iden
tified in crTPs of P. chromatophora are conserved across species, we 
aligned the sequences of the three crTPs studied here with those 
of crTPs from P. micropora (Supplementary Fig. S7A). Intriguingly, 
all important structural features identified in P. chromatophora 
are conserved in P. micropora including, in crTPpart1, the AP-1 BS 
and hydrophobic helix; and, in crTPpart2, the Cys-pair, the hydro
phobic residues supporting interactions between flexible arm 
and structured core, and the proline-rich region (Supplementary 
Fig. S7A). Furthermore, homology models obtained using the 
solved crystal structures of crTPpart2_RnaH and crTPpart2_ArgC as 
templates, suggest that crTPpart2 in P. micropora can adopt similar 
folds (Supplementary Fig. S7, B and C). However, the predictive 
value of these models is low, since—as observed before for 
AlphaFold3 (Supplementary Fig. S1)—the quality estimates for 
all homology models obtained were very low (see 
Supplementary Fig. S7, B and C and corresponding figure legend). 

To study crTPpart2 linked to their natural cargo proteins, we puri
fied recombinant crTPpart2_RnaH-RnaH and crTPpart2_ArgC-ArgC fol
lowing their production in E. coli (Supplementary Figs. S2 and S3). 
However, despite several attempts, these proteins did not form 
crystals.

Small angle X-ray scattering measurements 
indicate flexibility of the N-terminal arm 
and the linker to the cargo protein in solution
To investigate the flexibility of crTPpart2 in solution as well as the 
spatial arrangement between the crTPpart2 regions and their cargo 
proteins, we performed small angle X-ray scattering (SAXS) meas
urements. These measurements demonstrated that crTPpart2_ArgC, 
crTPpart2_RnaH, and crTPpart2_CysK alone are monomeric in solution 
(Supplementary Tables S2 and S3 and Text). For crTPpart2_RnaH, the 
“open conformation” of the flexible arm, found in the crystal 
dimer packing, is also present in solution. Here, the flexible arm 
adopts, as expected, multiple conformations (see 
Supplementary Text). Flexibility analyses of the termini with the 
ensemble optimization method (EOM) revealed four different con
formations that all represent different “open conformations,” but 
no indication for a “closed conformation” for crTPpart2_RnaH (Fig. 2, 
A and B and Supplementary Fig. S8). In comparison, neither 
crTPpart2_ArgC, nor crTPpart2_CysK showed flexible termini and 
show a more compact conformation (Supplementary Figs. S9
and S10 and Text).

CrTPpart2_RnaH-RnaH, too, is a monomer in solution 
(Supplementary Table S2) and we recovered three distinct 
conformations, indicating flexibility between the crTPpart2_RnaH 

domain and the attached cargo protein, RnaH (Fig. 2C and 
Supplementary Fig. S11 and Text). In contrast, crTPpart2_ArgC- 
ArgC appears dimeric over the whole concentration range 
(Supplementary Table S2) with the dimer interface predicted 
within the cargo protein ArgC. The models obtained showed 
that crTPpart2_ArgC-ArgC forms an overall compact molecule, but, 
again, reveals flexibility between the crTPpart2 domain and the at
tached cargo protein (Fig. 2D and Supplementary Fig. S12). 
Furthermore, the N-terminal arm of crTPpart2_ArgC, which ap
peared “closed” in the monomer crystal and in-solution model of 
crTPpart2_ArgC alone, now remains flexible, more in line with an 
“open conformation” (for more details see Supplementary Text).

The structured core of crTPpart2 shows similarity 
to γ-glutamyl cyclotransferase fold proteins
Searching the coordinates of the solved crTPpart2 structures 
against the PDB database using the DALI server (http://ekhidna2. 
biocenter.helsinki.fi/dali/) revealed similarity of both structures 
to members of the γ-glutamyl cyclotransferase-like superfamily 
(InterPro entry IPR036568) (Supplementary Table S4). This super
family contains five protein families, the γ-glutamyl cyclotrans
ferase (GGCT), the γ-glutamylamine cyclotransferase (GGACT), 
the glutathione-specific GGCT (GCG or ChaC), the BrtG-like, and 
the plant-specific GGCT-like family (Fig. 3; Kumar et al. 2015).

For 10 members of the GGCT-like superfamily structures have 
been experimentally solved (Fig. 3A and Supplementary Table S5). 
Highest similarity scores were obtained for the S. cerevisiae 
glutathione-specific GGCT ChaC (pdb id: 5hwi, z-scores = 10.3 
and 9.3, sequence identities = 13% and 17%), the human GGCT 
(pdb id: 2i5t, z-scores = 9.1 and 8.6, sequence identities = 15% 
and 23%), and the B. subtilis protein YkqA (pdb id: 2qik, 
z-scores = 9.2 and 8.0, sequence identities 18% and 23%) (values 
for crTPpart2_RnaH and crTPpart2_ArgC, respectively). Thus, structure 
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comparison did not reveal affiliation of the crTPpart2 structures to 
any particular family within the superfamily. In line with this re
sult, a maximum likelihood (ML) phylogenetic analysis of a 
structure-guided alignment resolves crTPpart2 sequences as a 
unique family within IPR036568 that forms a short common 
branch with the plant-specific GGCT-like family (Fig. 3A).

For several proteins of the superfamily, enzymatic activities 
have been characterized and a common function of many is the 
cleavage of diverse γ-glutamyl derivatives by cyclotransferase ac
tivity (Supplementary Text). Despite their low sequence identities, 
catalysis is based on a similar structural fold, which includes a 
cavity between the β-barrel and adjacent helix that contains a 
conserved YGSL motif and a Glu residue that likely represents 
the active site (Oakley et al. 2010; Chi et al. 2014). The crTPpart2 

structures form a similar cavity build by strand β1 and β5, helix 
α2, and the loop between β1 and β2 that aligns with the proposed 
substrate-binding cavity in the human GGACT (3jub, 3juc) (Oakley 
et al. 2010) (Fig. 3B). The YGSL motif is partly conserved in 
crTPpart2. Tyr99 of crTPpart2_ArgC at the N-terminal end of the 

loop connecting β1 and β2 corresponds to Tyr7 in the YGSL motif 
of the human GGACT. This Tyr residue is conserved throughout 
different crTPpart2 sequences (Supplementary Fig. S13) and its 
side chain is orientated toward the inside of the cavity (Fig. 3C). 
The following Gly is found only in around half of the crTPpart2 se
quences and is replaced in the remaining sequences mostly by 
other small amino acids (A, S, T, and P). Ser and Leu of the YGSL 
motif are conserved in crTPpart2_RnaH but nonconservatively re
placed in crTPpart2_ArgC by Glu and Asp. Finally, Glu82 of the hu
man GGACT that sits at the C-terminal end of cavity-delimiting 
helix with its side chain oriented toward the inside of the cavity 
has been proposed to form the catalytic center (Oakley et al. 
2010). Glu in this position is highly conserved in many proteins 
of the superfamily (Supplementary Fig. S13). Interestingly, in 
crTPpart2_ArgC and crTPpart2_RnaH this catalytic Glu is replaced by 
a Tyr and an Arg, respectively (Fig. 3D and Supplementary Fig. 
S13). In other crTPpart2 sequences, this site harbors several other 
aa residues (see alignment position 192 in Fig. 1A). Hence, it ap
pears unlikely that crTPpart2 has cylotransferase activity.

Figure 2. SAXS refined models of the analyzed proteins. A) The crTPpart2_RnaH core from the crystal structure is shown as orange cartoon and the solved 
part of the N-terminal arm as blue sphere representation. The core remained rigid for the EOM analysis and only the N and C-terminal parts were 
completed and used as flexible tails for the modeling. For clarity, only the N-terminal part is shown in sphere representations (volume fractions in green 
22%, yellow 56%, cyan 11%, and magenta 11%). B) Volume fractions from the crTPpart2_RnaH EOM analysis in the corresponding color code shown as 
spheres in (A). C) EOM models of crTPpart2_RnaH-RnaH. The RnaH core (orange) was used as rigid body. The solved crystal structure of crTPpart2 was used 
as flexible template and the missing linker regions were remodeled with EOM. D) Dimer model of crTPpart2_ArgC-ArgC. The ArgC protomer dimer 
interface (gray and orange) was used as rigid body and the solved crTPpart2 as flexible template. The flexible linkers and crTPpart2 are colored in green and 
cyan for each protomer. The corresponding volume fractions are indicated below of each model in (C) and (D).
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Figure 3. The structured core of crTPpart2 forms a subfamily within the γ-glutamyl cyclotransferase-like superfamily. A) ML tree depicting the inferred 
phylogenetic relationship between the structured core of crTPpart2 and members of the GGCT-like superfamily. Ultrafast bootstrap values ≥95 are 
shown at branches. Eukaryotic sequences are in black, bacterial in orange, archaeal in blue. Protein structures available are represented as cartoon 
models in which the part that is structurally similar to the crTPpart2 structured core is highlighted in colors. Note that the B. subtilis homolog of BtrG 
(named YkqA, of unknown function; pdb id 2qik) contains two cyclotransferase domains within one polypeptide chain. Only the second is shown here 
and in Supplementary Fig. S13. Species abbreviations: At, A. thaliana; Bs, B. subtilis; Ce, C. elegans; Dm, Drosophila melanogaster; Dr, Danio rerio; Ec, E. coli; Gg, 
Gallus gallus; Hs, H. sapiens; Mj, Methanocaldococcus jannaschii DSM; Mm, Mus musculus; Nc, Niallia circulans; Os, Oryza sativa; Pf, Pyrococcus furiosus; Ph, 
Pyrococcus horikoshii; Sc, S. cerevisiae; Vc, Vibrio cholerae; Xl, Xenopus laevis; Yp, Yersinia pestis. B, D) Superposition of the substrate-binding pocket of the 
human GGACT (pdb id: 3juc, violet with single residues highlighted in magenta) in complex with the product 5-oxoproline (shown in blue) and the one of 
crTPpart2_ArgC (green with single residues highlighted in light green). C) Detail showing the conserved Tyr and Gly of the YGSL motif highlighted as well as 
other conserved or conservatively replaced hydrophobic side chains facing the substrate-binding pocket. D) Detail showing the replacement of the 
catalytic Glu82 typical for GGCT-like proteins by a Tyr in crTPpart2_ArgC.
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Discussion
Here, we showed that crTPpart2 domains of lCTPs in P. chromato
phora adopt a structured fold that consists of a structured core 
with similarity to GGCT-like proteins and an N-terminal flexible 
arm that can interact via conserved hydrophobic residues with 
the structured core (see arrow heads in Fig. 1A). The proline-rich 
region in the N-terminal arm may represent an anchor for an in
teraction partner, since proline-rich regions within other proteins 
are known to form interaction surfaces that are responsible for in
teractions with e.g. elements of the cytoskeleton, peptidoglycan or 
biological membranes (Williamson 1994). Interaction with a po
tential partner would be facilitated by the inferred flexibility of 
the N-terminal arm as well as the linker between crTPpart2 and 
its cargo protein (Fig. 2). The disulfide bridge in crTPpart2_RnaH 

that has been captured by crystallography (Fig. 1E) is formed by 
a Cys pair that is conserved across crTPpart2 domains of diverse 
lCTPs, which suggests that the oxidized state is biologically rele
vant. This assumption is in line with the oxidizing conditions in 
the ER lumen (Margittai et al. 2015) that has been suggested as in
termediate station in the lCTP import pathway (Oberleitner et al. 
2022).

Interestingly, whereas lCTPs apparently require a crTP for im
port, short chromatophore-targeted proteins (sCTPs; typically 
<90 aa) that also apparently traffic into the chromatophore via 
the Golgi (Nowack and Grossman 2012) lack similar targeting sig
nals (Singer et al. 2017). Since lCTPs and sCTPs comprise overlap
ping functions (e.g. cytosolic metabolic enzymes, diverse 
DNA-binding proteins; Singer et al. 2017; Oberleitner et al. 2020; 
Macorano et al. 2023), requirement of a crTP does not seem to 
be tied to a specific function or final localization of the cargo pro
tein but rather its size. This size cutoff could be set by the—so far 
unknown—import gate in the inner chromatophore membrane or 
the mesh size of the PG sacculus.

In E. coli, a size cutoff of ∼50 kDa has been estimated for globu
lar proteins to be able to diffuse through the stretched PG sacculus 
(Demchick and Koch 1996). Cyanobacteria generally feature a 
thicker PG with a much higher degree of crosslinking (Hoiczyk 
and Hansel 2000). Hence, although PG composition and crosslink
ing has not been analyzed for chromatophores yet, it might repre
sent an important hurdle for the transport of folded lCTPs, which 
reach sizes >100 kDa (Singer et al. 2017). Also the plastids of 
Glaucophytes retained a pronounced PG layer; however, they 
use a TIC/TOC translocon-based mechanism for importing 
plastid-targeted preproteins in an unfolded state and only the ma
ture stromal proteins fold into their functional conformation 
(Steiner and Löffelhardt 2002). Hence, the PG does not represent 
a relevant size cutoff here.

Since many GGCT-family proteins cleave γ-glutamyl-contain
ing peptides, the γ-glutamyl-containing muropeptides that cross 
link the PG appeared as possible ligands of crTPpart2. Although 
cleavage of these peptides by crTPpart2 appears unlikely due to 
the lack of conservation of the proposed catalytic center 
(Fig. 3D), we hypothesized that the binding to muropeptide deriv
atives could be involved in recognition of noncrosslinked areas in 
the PG and/or result in a conformational change enabling interac
tion with interaction partners at the inner membrane. However, 
we could not experimentally confirm binding of crTPpart2 to the 
E. coli PG penta or tetrapeptide. Hence, if muropeptides are the 
natural ligands of crTPpart2, we could not identify the exact ligand 
and/or correct conditions yet under which binding occurs.

In sum, our data suggests that lCTPs are imported in their 
folded state and that the fold adopted by crTPpart2 plays an as of 

yet unknown functional role in the import process that appears 
to be conserved cross chromatophore-containing Paulinella spe
cies. The characterization of its structure and flexibility provides 
important steps toward unraveling this protein translocation 
mechanism.

Materials and methods
Cultivation of P. chromatophora and synthesis 
of complementary DNA (cDNA)
P. chromatophora CCAC0185 was grown as described before 
(Nowack et al. 2016). Total RNA was extracted and cDNA prepared 
as described in (Macorano et al. 2023).

Construction of expression plasmids
The crTPpart2 domains alone or crTPpart2 domains plus their cargo 
proteins were cloned into the expression vector GPN131. This vec
tor is a derivative of the plasmid pET-22b(+) (Novagene; 69744), in 
which the pelB sequence and C-terminal His6-tag were replaced 
by an N-terminal His6-tag, thrombin cleavage site, and 
SUMO-tag. For details see the Supplementary Text, Fig. S14, and 
Table S6.

Heterologous expression of recombinant proteins
For overexpression of the constructs His6-SUMO-TEV- 
crTPpart2_RnaH, His6-SUMO-TEV-crTPpart2_ArgC, His6-SUMO-TEV- 
crTPpart2_CysK, His6-SUMO-TEV-crTPpart2_ArgC-ArgC, and 
His6-SUMO-TEV-crTPpart2_RnaH-RnaH (see Supplementary Fig. 
S2A), plasmids GPN142, GPN167, GPN168, GPN195, and GPN194, 
respectively, were individually transformed into E. coli strain 
LOBSTR-BL21(DE3)-RIL (Kerafast, Boston, MA) (Andersen et al. 
2013) and proteins were expressed under conditions detailed in 
the Supplementary Text. Finally, cells were harvested, pellets 
flash frozen and stored at −80 °C until use.

Protein purification
Frozen cells from expression cultures were lysed and the 
His6-SUMO-tagged proteins of interest isolated by immobilized 
metal ion chromatography (IMAC). The His6-SUMO tag was 
cleaved of by TEV protease and the proteins of interest purified 
by reverse IMAC followed by size exclusion chromatography 
(SEC). For details see the Supplementary Text. Protein amounts 
were determined by a nanophotometer (NP80, Implen). Obtained 
fractions were analyzed by SDS-PAGE under denaturing condi
tions on 12.5% polyacrylamide (ROTIPHORESE 30; 29:1; Roth) 
Tris-glycine gels (Schägger 2006) (Supplementary Fig. S2) and 
BN PAGE on 4%–16% gels (SERVA, SERVAGel N 4—16 Cat. No. 
43204) according to the manufacturer’s recommendations 
(Supplementary Fig. S3), both stained with Coomassie Brilliant 
Blue R250.

Protein crystallization and 3D structure 
determination by X-ray crystallography
CrTPpart2_RnaH was crystallized at 12 °C with 1.5 µl of 12 mg/ml 
protein in buffer A (see Supplementary Text), mixed with 1.5 µl 
23% PEG 3350 in 0.1 M HEPES pH 8.5. CrTPpart2_ArgC was crystallized 
at 12 °C with 0.1 µl of 12 mg/ml protein in buffer A mixed with 
0.1 µl 0.1 M HEPES pH 6.5, 2.4 M AmSO4 (final pH 7). Diffraction 
data from obtained crystals of both proteins were collected at 
the P13 beamline (PETRA III, DESY Hamburg) (Cianci et al. 2017). 
More details on experimentation, data collection, and refinement 
statistics are reported in Supplementary Table S1 and Text. 
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Figures were generated using PyMOL (Schrodinger LLC; www. 
pymol.org).

Small-angle X-ray scattering
SAXS data of crTPpart2_RnaH, crTPpart2_ArgC, and crTPpart2_CysK were 
collected on the P12 beamline at PETRA III, DESY, Hamburg) 
(Blanchet et al. 2015), and of crTPpart2_ArgC-ArgC and 
crTPpart2_RnaH-RnaH on our Xeuss 2.0 Q-Xoom system from 
Xenocs. Primary data reduction was performed with the program 
PRIMUS (Konarev et al. 2003). With the Guinier approximation 
(Guinier 1939) implemented in PRIMUS, we determine the forward 
scattering I(0) and the radius of gyration (Rg) and used the program 
GNOM (Svergun 1992) to estimate the maximum particle dimen
sion (Dmax) with the pair-distribution function p(r). Comparison 
of the theoretical scattering intensity of the solved crystal struc
tures against the experimental scattering data was done with 
CRYSOL (Svergun et al. 1995). Flexible parts of the proteins were 
analyzed using EOM (Bernadó et al. 2007; Tria et al. 2015) and rigid 
body modeling with CORAL (Petoukhov et al. 2012). Details are 
provided in the Supplementary Text and Table S2.

Phylogenetic analysis
Sequences of crTPpart2 from indicated transcripts were aligned 
with diverse GGCT-like superfamily proteins downloaded from 
NCBI. A structure-guided alignment was generated using 
PROMALS3D (Pei et al. 2008). The ML tree was inferred with iqtree2 
(Nguyen et al. 2015; Minh et al. 2020) using automatic model selec
tion and 1000 ultrafast bootstrap replicates.

Accession numbers
Sequence data from this article can be found in the GenBank/ 
EMBL data libraries under accession numbers _GEZN01002575.1, 
GEZN01007010.1, and GEZN01004327.1.
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