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Psychiatric disorders display high levels of comorbidity and genetic overlap'?,
challenging current diagnostic boundaries. For disorders for which diagnostic
separation has been most debated, such as schizophrenia and bipolar disorder?,
genomic methods have revealed that the majority of genetic signal is shared*.
While over ahundred pleiotropic loci have been identified by recent cross-disorder
analyses’, the full scope of shared and disorder-specific genetic influences remains
poorly defined. Here we addressed this gap by triangulating across a suite of cutting-

edge statistical and functional genomic analyses applied to 14 childhood- and adult-
onset psychiatric disorders (1,056,201 cases). Using genetic association data from
common variants, we identified and characterized five underlying genomic factors
that explained the majority of the genetic variance of the individual disorders
(around 66% on average) and were associated with 238 pleiotropic loci. The two
factors defined by (1) Schizophrenia and bipolar disorders (SB factor); and (2) major
depression, PTSD and anxiety (Internalizing factor) showed high levels of polygenic
overlap®and local genetic correlation and very few disorder-specific loci. The genetic
signal shared across all 14 disorders was enriched for broad biological processes

(for example, transcriptional regulation), while more specific pathways were shared
atthelevel of the individual factors. The shared genetic signal across the SB factor
was substantially enriched in genes expressed in excitatory neurons, whereas the
Internalizing factor was associated with oligodendrocyte biology. These observations
may inform a more neurobiologically valid psychiatric nosology and implicate targets
for therapeutic development designed to treat commonly occurring comorbid

presentations.

Half of the population will meet criteria for at least one psychiatric
disorder during their lifetime’, with many meeting criteria for multiple
disorders'. High levels of psychiatric comorbidity complicate efforts
to differentiate among psychiatric disorders. These challenges are
heightened because psychiatric disorders are defined by signs and
symptoms, as the underlying pathophysiologies remain largely unclear.
Rapid progress in psychiatric genomics has identified hundreds of
associated loci (genetic variants), many of which exhibit pleiotropic
(shared) associations across disorders, and revealed high correlations
in genetic liability across disorders®.

The present analyses represent the third major study from the Psy-
chiatric Genomics Consortium Cross-Disorder working group® (CDG3).
Here we examined the shared and unique influences of common genetic
variants across 14 psychiatric disorders. Triangulating across multiple,
complementary analytic approaches, we dissected the genetic archi-
tecture across disorders at the genome-wide, regional, functional
and individual genetic variant levels. Our results have implications
for refining clinical nosology and repurposing and developing novel
treatments.

GWAS datafor 14 psychiatric disorders

Asummary of the datasetsis provided in Extended Data Table 1. Psychi-
atric disorders were included if described in a psychiatric diagnostic

manual'®"and power was sufficient to interpret genetic correlations®.
This reflects a major update relative to previous CDGI (ref. 12) and
CDG2 (ref. 5) analyses (average case increase of around 165% above
CDG2; Supplementary Fig. 1), with new genome-wide association
studies (GWASs) for all eight disorders from CDG2: attention-deficit/
hyperactivity disorder (ADHD), anorexia nervosa (AN), autism spec-
trum disorder (ASD), bipolar disorder (BIP), major depression (MD),
obsessive-compulsive disorder (OCD), schizophrenia (SCZ) and Tou-
rette’ssyndrome (TS)"2°. We added six additional disorders: alcohol-
use disorder (AUD)”, anxiety disorders (ANX)?, post-traumatic stress
disorder (PTSD)?, nicotine dependence assessed using the Fagerstrom
test for nicotine dependence (NIC)*, opioid-use disorder (OUD)* and
cannabis-use disorder (CUD)?. The three substance-use disorders
(SUDs) are novel relative to a more recent cross-disorder analysis?,
and sample size increases were significant for previously included
disorders (average case increase of around 287%). The sample sizes,
and therefore the power of the disorder GWAS, differed (Extended
Data Table 1 (N gective))-

Owing to an uneven representation of ancestral groups, the full set
of cross-disorder analyses was restricted to GWAS summary statis-
tics from a single genetic ancestry group—European-like (EUR-like)—
defined onthe basis of genetic similarity to European descentin global
reference panels®. We also report bivariate results for MD* and SCZ*°
in East-Asian-like (EAS-like) genetic ancestry groups and AUD*, CUD?,

A list of authors and their affiliations appears at the end of the paper.
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Fig.1|Genome-wide structural models. a, Heatmap of r,sacross the 14
disorders as estimated using LDSC on the lower diagonal and the correlations
among the psychiatric factors as estimated using GenomicSEM above the
diagonal. Two-sided Pvalues were derived from the Z-statistics, calculated as
the pointestimate of ther,divided by itss.e. Cells depicted with an asterisk
reflect values that were significant at aBonferroni-corrected threshold for
multiple comparisons. Exact values are reported in Supplementary Table 1.
Disordersthatload on the same factor are shownin the same colour. Per the
legend atthe bottom of the panel, darker blue shading indicates larger, positive
r,s.LDSC estimates were used as theinput to genomic SEM to produce the
resultsinband c. b, Estimates from the five-factor model along with standard

OUD? and PTSD? in African-like (AFR-like) genetic ancestry groups
similarly defined based on reference panels.

Genome-wide genetic correlations

Genetic correlations (r,s) estimated using linkage disequilibrium (LD)
score regression (LDSC)* revealed pervasive genetic overlap across
disorders at the genome-wide level, with clusters of disorders dem-
onstrating particularly high genetic overlap inindividuals of EUR-like
genetic ancestry (Fig. 1; Supplementary Table 1; see Supplementary
Figs. 2-4 for consideration of high r,across PTSD and MD). The LDSC
estimates within AFR-like participants were not significant, due to
limited power (Supplementary Table 4). The r, between MD and SCZ
in EAS-like participants (r,= 0.45, s.e. = 0.09) was double that observed
in EUR-like participants (r, = 0.22,s.e. = 0.04), which has been shown®
to be driven by asingle cohort of severe and recurrent MD*2,

Asthe majority of analyses were restricted to participants of EUR-like
genetic ancestry, we sought to gauge how generalizable our findings
were across ancestral groups. We achieved this using Popcorn®, which
canestimater,s for the same trait across ancestral groups. We estimated
the genetic impact correlation (p,;), which considers different allele
frequencies across populations by calculating the correlation between
the population-specific, allele-variance-normalized single-nucleotide
polymorphism (SNP) effect sizes. The results were underpowered for
many comparisons, butincluded astrong EAS-EUR correlation for SCZ
(pgi=0.85,s.e.=0.04), followed by lower correlations between EAS-like
and EUR-like for MD (p,; = 0.67,s.e.=0.16) and for AFR-like and EUR-like
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errorsin parentheses. Estimates are standardized relative to SNP-based
heritabilities, where thisis equal to the sum of the squared factor loading
(thesingle-headed arrow(s) from the factor to the disorder) and the residual
variance (the values on the double-headed arrows on the single-colour
circleswith textlabels that begin with u). Disorders are shown as pie charts; the
proportion of residual varianceis shaded in purple and the variance explained
by the psychiatric factorsis shaded in the colour of the corresponding factor.
c,Standardized estimates from the p-factor model. The disorders are colour
coded asinb, and the first-order factors (F1-F5) are also colour coded to show
variance explained by the second-order p-factorinyellow.

PTSD (pg;=0.59,s.e. = 0.27; Supplementary Table 4). While these results
suggest that the findings that follow for EUR-like ancestry groups may
generalize better for some disorders (such as SCZ) than for others (for
example, PTSD and MD), that conclusion awaits replication in more
highly powered analyses.

MiXeRreveals pervasive genetic overlap

Genome-wide r,s from LDSC indicate shared genetic risk across psy-
chiatric disorders. However, LDSC may underestimate the extent of
genetic overlapifshared causal variants reflect amixture of direction-
ally concordant and discordant associations. We applied bivariate
causal mixture modelling (MiXeR) to quantify the degree of genome-
wide polygenic overlap reflecting the total number of shared causal
variants regardless of magnitude or directionality®. Cross-trait analyses
were limited to MD, SCZ, BIP, ANX, ADHD, PTSD, AUD and AN, because
other disorders were underpowered (Methods; results for univari-
ate MiXeR are reported in Supplementary Table 5 and Extended Data
Fig.1). Supplementary Fig. 5 displays cross-trait MiXeR results for pair-
wise overlap across four particularly well-powered disorder samples:
ADHD, SCZ, BIP and MD (complete results are shown in Supplementary
Figs. 6-9 and Supplementary Table 6). There was greater polygenic
overlap across psychiatric disorders than suggested by the r,s from
LDSC. Overall, MiXeR results suggested that the shared genetic signal
for psychiatric disorders primarily reflects variants with concordant
effects across disorders, while differentiation in genetic risk is driven
by fewer shared discordant or unique variants.



Genomic SEM identifies five factors

We used genomic structural equation modelling (genomic SEM)***in
the EUR-like genetic ancestry datasets to model genetic overlap from
LDSCacross 14 disorders as latent factors representing dimensions of
shared genetic risk (Methods). A five-factor model (Supplementary
Tables 2 and 3) provided the best fit to the data (comparative fix index
(CFI) = 0.971, standard root mean square residual (SRMR) = 0.063).
These five latent genomic factors (capitalized throughout, to distin-
guish them from the psychiatric disorders that define them) (Fig. 1)
comprised: F1,a Compulsive disorders factor defined by AN, OCD and,
more weakly, TSand ANX; F2,aSB factor defined by SCZ and BIP; F3, a
Neurodevelopmental factor defined by ASD, ADHD and, more weakly,
TS; F4,anInternalizing disorders factor defined by PTSD, MD and ANX;
and F5, a SUD factor defined by OUD, CUD, AUD, NIC and, to alesser
extent, ADHD.

Withinthis five-factor model, Internalizing disorders and SUD factors
displayedthe highestinterfactor correlation (r,= 0.60;s.e. = 0.02). The
median residual genetic variance unexplained by the latent factors
was 33.5%, indicating that most genetic risk was shared among disor-
der subsets. TS displayed the most unique genetic signal, with 87% of
its genetic variance unexplained by the factors. The structure of the
first four factors was similar to that found by genomic SEM applied to
subsets of these disorders in previous work>?, indicating stability in
the underlying factor structure, even as sample sizes and the number
of disorders have increased. The newly added SUD traits formed the
fifth factor.

Evidence of moderate r,between factors suggests that a higher-order
factor may explain common variance across the correlated factors.
Consistent with this observation, a hierarchical model also fit the data
well (CFI=0.959, SRMR = 0.074). Werefer to this as the p-factor model,
whichincluded ahigher-order general psychopathology factor defined
by the five lower-order psychiatric factors (such as SUD). Internalizing
loaded most strongly on p (0.95), with the other 4 factors having mod-
erate loadings (0.50-0.63).

As some of the underlying data were obtained using brief,
self-reported diagnoses, we performed a sensitivity analysis in which
those data were excluded (Supplementary Note 1, Supplementary
Tables 7-11and Supplementary Figs.10-18). The r, matrix was largely
unchanged; the five-factor model identified in the full sample contin-
ued to provide good fit to the data and produced similar point esti-
mates, and downstream GWAS analyses (detailed below) identified
similar loci.

Genetic correlations with factors

We estimated r,s between the five correlated factors, hierarchical
p-factor and 31 complex traits (Supplementary Table 12) to place shared
genetic liability indexed by the factors in a broader clinical context.
These factors vary in their use for capturing shared genetic signal;
accordingly, we used the Q,,;; heterogeneity statistic to assess this
use at the genome-wide level. When Q. is significant, this indicates
atrait’s rydeviates from the factor structure. For example, if trait Xis
negatively correlated with SCZ but unrelated to BIP, Q;,,;; would prob-
ably be significant, suggesting that trait X lies outside the shared sig-
nal captured by the factor. Significant correlations were defined at a
Bonferroni-corrected threshold of P< 2.68 x 107, while not significant
for Qp., at this same threshold. This Qy,,;. exclusion criteria was relaxed
for the p-factor if that trait was significantly associated with the majority
(=3) of thefive correlated factors, as this indicates the traitis capturing
transdiagnostic associations the p-factoris intended to index.

The Internalizing disorders and SUD factors were the only factors
associated with household income (r, jnermalizing = —0.40, s.e. = 0.02;
rysup=—0.41,s.e. = 0.03; Fig. 2) and were the most pervasively associ-
ated with different cognitive outcomes, including childhood intel-
ligence (ry intermalizing = —0.27, 5.€. = 0.05; r, gup = —0.40, s.e. = 0.07). Only

the SUD factor was associated with adult intelligence (r, 5,p = —0.40,
s.e.=0.03) and verbal numerical reasoning (r, sup = —0.41,s.e.= 0.03).
This was compared to more circumscribed cognitive associations for
the Compulsive disorders and SB factors, including a large negative
correlation with the pairs matching test (potentially indexing memory;
Iy compuisive = —0.33,5.6.=0.03; r, 3 =—0.34,s.e. = 0.03). The SB and SUD
factors were the only ones associated with risk tolerance (r, ;3 = 0.31,
s.e.=0.03; r, yp=0.38, s.e.= 0.03). The Neurodevelopmental factor
was uniquely associated with childhood BMI (ry neurodevelopmental = 0-26,
s.e.=0.06) and showed high genetic overlap with childhood aggres-
Si0N (I Neurodevelopmentat = 0-94, 5.€. = 0.10). As would be expected, the five
traits significantly associated with all five correlated factors were also
amongthetop correlations for the p-factor, reflecting stress sensitivity
(ry,=0.50,s.e.=0.02),loneliness (r, , = 0.62,s.e. = 0.02), neuroticism
(ry,=0.64,s.e.=0.02), self-harm (r, ,= 0.74, s.e. = 0.04) and suicide
attempts (r, ,=0.87,s.e.=0.03). The full set of correlations is shown
in Supplementary Table 13; comparison across factors is shown in
Extended Data Fig. 2; and comparison across traits within each factor
isshown in Extended Data Fig. 3.

LAVA finds regional hotspots of overlap

Global estimates of pleiotropy, such as the genome-wide r,s from
LDSC, provide an average of the degree of shared signal across the
genome. However, as genetic overlapis unlikely to be constant across
genomic regions, we segmented the genome into 1,093 LD-independ-
ent regions, and applied local analysis of (co)variant association
(LAVA*; Methods) to assess the r, between disorders within these
regions. Inaddition to capturing heterogeneity in genetic overlap and
pinpointing relevant regions, LAVA identifies potential r, hotspots
shared among several disorders, thereby providing further insight
into genetic architecture.

We restricted analyses to loci with sufficient SNP-based heritabi-
lity for the disorders analysed (P < 4.6 x 107 = 0.05/1,093; Methods).
Correcting for the number of bivariate tests performed across all
regions and disorder pairs, we detected 458 significant pairwise local
r,s (P<2.1x107°=0.05/24,273). The pairs of disorders with the greatest
number of local r, hits were MD and ANX (113 regions), MD and PTSD
(88 regions), and BIP and SCZ (40 regions), accounting for over half
ofallsignificantlocal r s detected (Fig. 3a). This is consistent with the
genome-wide levels of overlap indicated through the LDSC global r,
(Fig.1), the polygenic overlap estimated with MiXeR (Supplementary
Figs.5-9), and the multivariate genetic structure identified by genomic
SEM. Both global and local r,s tended to be positive, with significant
negativer,sidentified in only three instances (Supplementary Fig.19).
Thisindicates that the geneticrisk for one disorder typically increases
therisk for another (Supplementary Fig. 20).

We detected 101 regions that contained significantlocal r,s between
several disorder pairs, which we call r, hotspots (see Supplementary
Tables14-23 for local r,s across disorders in the top 10 hotspots). The
most pleiotropic of these hotspots was on chromosome 11, which con-
tained 17 positive and significant local r,s involving 8 of the 14 analysed
disorders (Fig.3b). This region also stands out as the most significantly
associated with 8 of these 17 disorder pairs, while ranking in the top
25% of associated loci for 12 of them (Supplementary Fig. 21). Notably,
this region contains the NCAMI1-TTC12-ANKKI-DRD2 gene cluster
that has been frequently associated with psychiatric phenotypes® %,
and flagged as a likely pleiotropy hotspot for arange of cognitive and
behavioural outcomesrelated to, for example, intelligence, personality,
substance use and sleep®#°*2,

Risk loci for psychiatric factors

We used multivariate GWAS within genomic SEM** to identify SNPs
associated with the factors from the five-factor model or the p-factor
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Fig.2|External traitgenetic correlations for psychiatricfactors. Point
estimates for ther,s between 14 external traits and the 5 psychiatric factors from
the correlated factors model and the p-factor from the hierarchical model. These
traits were selected as they were significantly correlated with atleast one factor
at>0.350r<-0.35.Bars depicted withadashed outline were significant for the
Qr..ic heterogeneity statistic, which indicates that the pattern of r,s for that trait
didnotfitthe factor structure. Bars depicted with an asterisk reflect values that
were significantat a Bonferroni-corrected threshold for multiple comparisons,
that were also notsignificant at this same Bonferroni corrected threshold for Qy,,;.
Thisiswith the exception that the p-factoris depicted with an asterisk evenifitis
significant for the Qr,,;, provided that the same trait was significantly correlated
with the majority (atleast three) of the five other factors. The two-sided Pvalues
used to evaluate significance were derived from the Z-statistics, calculated as
the pointestimate ofther,divided by itss.e.Error barsare +1.96 s.e., centred
aroundthe point estimate of ther,s. Traits are ordered by the point estimate for
the p-factor. The implied sample size for the psychiatric factors was: Compulsive
(7=54,100), SB (71=127,202), Neurodevelopmental (7 = 84,760), Internalizing
("=1,637,337),SUD (A =313,395) and p-factor (/1=2,168,621). Sample sizes for
the externaltraitsarereportedin Supplementary Table 12 and exact Pvalues are
reportedinSupplementary Table13.

in the hierarchical model. Similar to the Q;,,;; metric, we estimated
factor-specific Qg heterogeneity statistics. Thisindexes SNPs that devi-
ate strongly from the factor structure, due to either disorder-specific
or directionally discordant effects. We defined genomic hits for the
factors as those that were significant after Bonferroni correction
(P<5x107%/6 genomic factors) and did not overlap with Qs hits for
that factor (Methods). Most hits wereidentified for the SB (n =102) and
Internalizing (n =150) factors. After merging overlapping lociacross the
five correlated factors, 238 unique hits remained, including 27 broadly
pleiotropic lociassociated with two or more factors. The hierarchical
modelidentified 160 hits for the p-factor (Fig. 4, Supplementary Fig.22
and Supplementary Tables 24-36), 57 of which were not identified in
thefive-factor model (295 unique hits across both models). Forty-eight
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hits were novel relative to the univariate GWAS, of which 38 have been
described in previous GWAS for abroad range of outcomes, and 10 are
entirely novel (Supplementary Table 37).

We identified 33 unique hits with significant Qs effects across the
factors from the five-factor model. By comparison, we identified 117
Qqp hits from the p-factor model that showed significantly divergent
effectsacross the five, lower-order psychiatric factors (Supplementary
Table 36). These p-factor Qg hits also included the chromosome 11
LAVA hotspot, where this region was found not to confer transdiag-
nostic risk due to an absence of signal for the Neurodevelopmental
factor. For the SUD factor, highly significant Qs hits were driven by
variants in the genes involved in biological pathways specific to par-
ticular psychoactive substances, including the alcohol dehydrogenase
genes (ADHIA,ADH1B and ADHIC) for AUD and the CHRNA3-CHRNAS-
CHRNB4 nicotinic receptor subunit gene cluster for NIC. More Qgyp
loci for the p-factor model relative to the five-factor model indicates
that many shared geneticrelationships are better captured by the five
factors (Supplementary Figs. 23 and 24).

A phenome-wide association study conducted in the Mayo Clinic
Biobank revealed that factor hits were associated with multiple psychi-
atricdisorders, especially those that loaded on the factor (Supplemen-
tary Table 38 and Supplementary Fig. 25). The Internalizing disorders
(Supplementary Fig. 25d) and p-factor (Supplementary Fig. 25f) loci
were also associated with a range of medical outcomes (for example,
chronic pain and hypertension).

Divergentlociacross disorders

In more fine-grained analyses of disorder pairs, case-case GWAS (CC-
GWAS)* was used to identify loci with different allele frequencies
across cases of different disorders. Such loci may reflect distinctive
genetic effects across disorder pairs. CC-GWAS was applied to 75 dis-
order pairs, comparing 13 disorders. NIC was excluded because it is a
continuous trait, and the pairs ANX-MD, ANX-PTSD and MD-PTSD
were excluded because all had an r, estimate of >0.8, thereby risking
aninflated typelerror rate (Methods). The genome-wide significance
threshold was defined at 5.5 x 107 (that is, 5 x 1078/91 pairwise com-
parisons). An overview of CC-GWAS input parameters is provided in
Supplementary Table 39.

In total, 412 loci showed significantly different effects across the
75 disorder pairs (Supplementary Tables 40 and 41); most (294 out of
412) were in comparisons thatincluded SCZ, possibly reflecting either
greater power for the SCZ GWAS or more distinctive biology for this
disorder. Owing to overlap amongthe hits, the 412 loci comprised 109
LD-independent loci (Supplementary Table 42). Five of these were
CC-GWAS specific,implying that they were not significantly associated
with case-control status in either of the disorders in the respective
disorder pair. CC-GWAS also computes agenome-wide genetic distance
between the cases of two disorders (Fg; ..., indicating how genetically
dissimilar the cases are onaverage. As expected, these genetic distances
wereinversely correlated (r=-0.79,s.e. = 0.07) with r, (Supplementary
Table 43). In support of the five-factor model, >99% of the CC-GWAS
hits were identified for disorder pairs that loaded on separate factors
(Supplementary Tables 44 and 45). Disorders that cluster on the same
factor fromthe five-factor model are, apparently, largely indistinguish-
able at the level of individual genetic variants.

Functional annotation

Enrichment analyses

To understand biological functions influenced by the risk loci, we pri-
oritized candidate risk genes implicated by the multivariate GWAS
loci using expression quantitative trait loci (eQTL)***> and Hi-C***¢
datasets collected from fetal and adult brain samples (Methods and
Supplementary Tables 46 and 47). Owing to the limited number of
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variants associated with other factors, analyses were restricted to
the p-factor, the SB and Internalizing disorders factors and Qgy, for
these latter two factors. We first compared the target gene expression
along the temporal trajectory of human brain development, finding
that genes associated with the three factors were expressed at higher
levels than Qqyptarget genes across the lifespan, with the largest differ-
ence observed at fetal stages and early life (Fig. 5and Supplementary
Fig. 26). This suggests that pleiotropic variants are involved in early,
fundamental neurodevelopmental processes. We next examined bio-
logical processes using Gene Ontology (GO) enrichment analysis®.
The target genes of the p-factor were primarily enriched in broader
biological processes related to gene regulation (Fig. 5). Toenhance the
specificity of the gene sets, we removed Internalizing disorders and SB
target genes that also appeared for the p-factor. SB (minus p-factor)
target genes were enriched in more specific terms related to neuron
development. Nosignificant results were identified for the Internalizing
disorders factor, probably reflecting the large proportion of target
genes overlapping with the p-factor. Results from MAGMA*® (Supple-
mentary Methods) provided convergent support for the role of early
neurodevelopmental processes in transdiagnostic psychiatric risk.
Specifically, genetic signal for the five correlated factors and p-factor
showed enrichment in genes identified from rare variant studies of
ASD*!, neurodevelopmental delay* or both (Supplementary Fig. 27).
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structure fromFig.1and, as shown, disorders of similar colours also tend to be
proximally located within the network. b, Thelocal r, structure within the top
ryhotspotonchromosome (chr.) 11(112755447-114742317, GRCh37 reference
genome), thatis, theregion where the greatest number of significant r,s were
foundacrossalldisorder pairs. Here, the network plotillustrates all significant
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strength of the association. The region plot in the middle displays the genes
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95% confidenceintervals (CI'"*, CI'PP*"), variance explained (R?) and Pvalues for
allsignificant pairwiselocal r s in thisregion. Label colours are again concordant
with those used for the genomic SEM factor structurein Fig. 1.

Averaged results across expression-weighted cell type enrich-
ment (EWCE)*>and MAGMA were used to evaluate enrichment within
neuronal cell types in fetal and adult single-cell datasets® ™ (Sup-
plementary Tables 48 and 49). Genes associated with the SB factor
were significantly enriched in fetal data in interneurons and seven
excitatory neuron subtypes, the strongest of which was for excitatory
maturing neurons®*** (Fig. 5). The SB factor was also uniquely enriched
for deep-layer excitatory neurons in the adult brain®. Internalizing
disorder genes were enriched within four excitatory neuron subtypes
in fetal data®®, although the signal was not as strong or pervasive as
for the SB factor. In adult data, the Internalizing factor was enriched
for medial ganglionic eminence (MGE) interneurons® and different
glial cells, specifically oligodendrocytes and Bergmann glia®***’. The
p-factor wasenriched for five excitatory neuron subtypesin fetal data
and oligodendrocyte precursor cells in adult data®. A significant pro-
portionof these genesis expressed during both fetal and adult stages;
celltype enrichment was largely driven by genes that are not expressed
inaparticular developmental stage (Supplementary Fig. 28). We also
tested enrichment for loci specific to MD and SCZ identified from
CC-GWAS. MD-specific signal was enriched for cycling and interme-
diate progenitors in fetal brain. SCZ-specific signal was enriched for
endothelial, vascular and upper rhombic lip cells in adult brain (Sup-
plementary Fig. 28).
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Fig.4|Locus-level results. a, Heatmap of CC-GWAS loci below the diagonal
across pairwise combinations of disorders; the darker orange shading indicates
ahigher number of CC-GWAS hits. CC-GWAS results are not shown for the
Internalizing disorders as their r,s were too high, or for nicotine dependence as
thisis acontinuously measured trait. Genomic SEM results (number of hits and
mean x*for each factor and factor-specific Qqyp estimate) are reported above
the diagonal. Results for the p-factor are shown above the plot along with a Venn
diagram of the overlap between p-factor, p-factor Qsy» and overall CC-GWAS hits.
Thedisordersare ordered and coloured according to the genomic SEM factor
structure fromFig.1.b,c, The Miami and QQ-plots for the p-factor (b) and SBs
factors (c), respectively. These panels show theresults for the -log,,-transformed

Stratified genomic SEM

We used stratified genomic SEM¥, amultivariate corollary of partitioned
LDSC?®, to characterize the functional signals captured by the psychiat-
ricfactorsinthefive-factor and p-factor models, estimating enrichment
for 162 functional annotations that passed quality control (Methods
and Supplementary Table 50). Enrichment of the factor variances in
the five-factor or p-factor models reflects groups of genetic variants
thatindex a disproportionate concentration of geneticrisk sharing. For
the p-factor model, we also examined the enrichment of the residual
(unique) variances of the five lower-order factors. Annotations signifi-
cant for afactor in the p-factor model are therefore likely to capture
signal specific to that factor. Enrichment was also calculated for arecent
GWAS of height*’ to evaluate the specificity of the psychiatric findings.
We used aBonferroni-corrected significance threshold of P<2.81x 107
(Methods). We focus here on results for the better-powered SB, Inter-
nalizing and p-factor, and do not discuss annotations that lacked psy-
chiatric specificity, as indicated by significant enrichment for height
(for example, evolutionarily conserved annotations).

We identified 34 annotations that were significant for the SB fac-
tor in both models and are thereby likely to be specific to the neu-
robiology of the SB factor. This included the intersection between
protein-truncating-variant-intolerant (PI) genes and several neuronal
subtypes, including excitatory CAl and CA3 hippocampal neurons
(Extended Data Fig. 4 and Supplementary Table 50). In total, 51 sig-
nificant annotations were identified for the Internalizing disorders
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-0.04 0 0.04

MD case-control effect size

two-tailed Pvalues for the factor on the top half of the Miami plot and the
log,,-transformed one-tailed Pvalues for Qg on the bottom half. Factor hits
that were within 100 kb of univariate hits are shown as black triangles, novel
hits for the factors that were not within 100 kb of a univariate or Qs hit are
shownasred triangles and Qg hitsareshown as purple diamonds.d, The
two-tailed -log,,[P]inaManhattan plot for the CC-GWAS comparison across
MD and SCZ, which produced the most hits (orange diamonds), as well as the
scatterplot of standardized case-control effect sizes of MD (x axis) versus SCZ
(yaxis), with CC-GWAS significant SNPs labelled inred. For b-d, the grey
dashed linesindicate the significance threshold, which was defined using
Bonferronicorrection for multiple comparisons.

factor, including Pl-oligodendrocyte precursor annotations. We also
found strong enrichment for an annotation reflecting neural progeni-
tor biology®’, further implicating early neurobiological processes in
shared psychiatric risk. No annotations remained significant for the
Internalizing disorders factor’s residual variance (that is, independ-
ent of the p-factor), as would be expected given that only 10% of the
genetic variancein the Internalizing disorders factor was separate from
p. Finally, 64 significant annotations were detected for the p-factor,
the strongest of which were fetal male brain H3K4mel histone mark
and PI-GABAergic neuron annotations.

Discussion

Our analyses characterized the landscape of shared and divergent
genetic influences of common variants on 14 psychiatric disorders.
At the genome-wide level, we confirmed pervasive genetic overlap
across 14 clinically distinguished psychiatric disorders, asindicated by
large pairwise r, within the EUR-like genetic ancestry group and even
greater overlap whenincluding loci thatare shared, but have divergent
directional effects. This overlap was parsimoniously captured by five
genomicfactors (Compulsive, SB, Neurodevelopmental, Internalizing
and SUD), which explained the majority of the genetic variance of the
individual disorders. We identified 101 regions with correlated effects,
including a hotspot on chromosome 11 with associations for 8 disor-
ders. We found that broadly pleiotropic variants are primarily involved
in early neurobiological processes, while also identifying different
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brain cell types that uniquely confer risk to more circumscribed sub-
setsof disorders. At theindividual-variantlevel, we identified 238 loci
associated with at least one of the five correlated psychiatric factors,
along with412locithat distinguished disorders that primarily belong
to different factors.

The SB (defined by SCZ and BIP) and Internalizing disorders (defined
by major depression, PTSD and anxiety) factors offered a particularly
useful way tounderstand shared risk across sets of disorders. For these
factors, adiverse set of methods produced convergent results across
genome-wide, regional and locus-level results, indicating that the dis-
orders within these factors are characterized by overlapping genetic
signal. Areplicated finding across functional methods reflected enrich-
ment for the SB factor in excitatory neuron annotations, including
CAl and CA3 hippocampal neurons, deep-layer neurons from adult
data, and maturing, migrating, prefrontal and visual cortex excitatory
neuronsin fetal data. The Internalizing factor also showed enrichment
inexcitatory neurons, but was more consistently enriched in different
glial cellsin adult data, including oligodendrocytes and their precursor
cellsand Bergmann glia.

At the genome-wide level, the p-factor was strongly related to the
Internalizing disorders factor and evinced the largest r,s with external
traits reflecting broad clinical characteristics, such as neuroticism,
stress sensitivity and loneliness. These results are consistent with con-
ceptualizations of the p-factor as reflecting ageneral tendency towards
negative emotionality®.. In support of the p-factor, LAVA identified
pleiotropic hotspots characterized by widespread local r,across dis-
orders and multivariate GWAS yielded 160 hits for this factor alone.
However, the p-factor also had more hits for the Qg heterogeneity
metric (117) than all five-factors from the correlated factors model (33),
indicating that the p-factor alone is insufficient for explaining cross-
disorder risk. The p-factor was largely enriched for broad biological
categories, suchas gene regulation. These results suggest aconceptual
modelinwhich thereis a partial, broadly transdiagnostic component
of genetic vulnerability to psychiatric disorders that primarily captures
Internalizing genetic signals, with subsequent levels of more canalized
and neurobiologically meaningful subdomains of psychopathology
captured by the five factors.

Our study has several limitations. Analyses were restricted primarily
to EUR-like genetic ancestry populations due to the limited availability
of GWAS datafor other groups and the limitations of methods requiring
more genetically homogeneous groups®2. The sample sizes for GWASs
of non-EUR-like populations are still orders of magnitude smaller and
not currently powered for more precise cross-ancestry assessments;
this emphasizes the need for future research including the genera-
tion of additional ancestrally representative data, which will enable
well-powered studies and the examination of cross-disorder genetic
architecture across regional and cultural differences. Cross-ancestry
r,s should be interpreted in light of findings that show considerably
smaller within-disorder, within-ancestry r,s across cohorts for PTSD
(ry=0.73,s.e.=0.21)**and MD (r, = 0.76, s.e. = 0.03)** relative to SCZ
(ry=0.95,s.e.=0.03). This suggests that cross-ancestry r,s for PTSD
and MD could drop below 1 for reasons independent of ancestry-
specific signal, such as environmental moderation of genetic effects
or increased phenotypic heterogeneity. Another limitation reflects
potential inflation in r, estimates by cross-trait assortative mating®,
diagnostic misclassification® or the use of super-normal controls®®.
However, the high genetic overlap observed among subclusters of psy-
chiatricdisordersis unlikely to be explained by cross-trait assortment
alone® and current sensitivity analyses using stricter case definitions
suggested thatimpact of diagnostic misclassification was modest. Wide
ranges in sample sizes across the univariate psychiatric GWAS used
as input should also be considered when evaluating relative levels of
significant findings, particularly for locus discovery.

The currentinvestigation into the genetic structure of psychopathol-
ogy reflects acomprehensive genomic examination of cross-disorder
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psychiatricrisk. It extends previous cross-disorder psychiatric genetics
analyses>” using updated datasets, new disorders and triangulation
across different methodological approaches to produce a robust set
of findings’®. We identified subsets of disorders with particularly high
geneticoverlap and characterized the biological processesimplicated
by their shared risk. This evidence should contribute substantially to
the ongoing debates regarding diagnostic boundaries between disor-
derssuchasBIP and SCZ. Certain pharmacological interventions have
proven to be effective across a range of disorders (for example, selec-
tive serotonin reuptake inhibitors)”, indicating that future work could
build on our findings to identify new or repurposed therapeutics that
target the shared signal captured by the factors. While much remains
to be done, cross-disorder genetics continues to fill in critical gapsin
our understanding of shared and unique psychiatric risk factors with
implications for the future of psychiatric research, therapeutics and
nosology.
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Methods

Quality control of summary statistics

A standard set of quality-control filters was applied to all univariate
GWAS summary statistics before conducting cross-disorder analyses.
Any additional quality-control filters applied by amethod are noted in
its corresponding section below. These quality-controlfiltersincluded
removing strand ambiguous SNPs, restricting to SNPs with animputa-
tion score (INFO) > 0.6 and with a minor allele frequency > 1% when
this information was available in the GWAS data. We also restricted
analyses to SNPs with an SNP-specific sum of the effective sample that is
>50% of the total sum of the effective sample or, when this SNP-specific
information was not available, to SNPs for which >50% of the cohorts
contributed information, as indexed by the direction column in the
GWAS summary statistics. The MHC region was excluded from all sum-
mary statistics before the analysis. Base pair locationis given in genome
build GRCh37/hg19 throughout the Article and its Supplementary
Information.

Genomic SEM

Genome-wide models. All GWAS summary statistics were runthrough
the munge function before running the multivariable version of LDSC
used as input to genomic SEM’. The munge function aligns GWAS
effects to the same reference allele and restricts to HapMap3 SNPs
and SNPs with INFO > 0.9. LDSC was estimated using these munged
summary statistics, applying a liability threshold model for all case-
control psychiatric disorders (that is, all disorders except for the NIC
outcome, whichreflectsa GWAS of the continuous Fagerstrom test for
nicotine dependence®). For comparability, population prevalence was
chosento matchwhat was used in the corresponding manuscript that
introduced the GWAS of each trait. The ascertainment correction was
performed using the sum of effective sample sizes across contribut-
ing cohorts for each disorder’. We note that, for CUD?, we used the
recently described formula’for estimating the sum of effective sample
size directly from the GWAS data. Thisis because, in thisinstance, we
found that the implied sum of effective sample size was much smaller
than the value computed from the reported sample sizes, which is
probably attributable to the complex familial structurein the included
deCODE sample.

The two primary estimates from multivariable LDSC are the genetic
covariance matrix and the corresponding sampling covariance matrix.
Thegenetic covariance matrix contains SNP-based heritabilitieson the
diagonal and the co-heritabilities (genetic covariances) across every
pairwise combination of included disorders on the off-diagonal. The
sampling covariance matrix contains squared standard errors (sam-
pling variances) on the diagonal, which allows genomic SEM to appro-
priately account for differences in the precision of GWAS estimates for
disorders with unequal power. The off-diagonal contains sampling
dependencies, whichwill arisein the presence of sample overlap across
GWAS phenotypes. As these sampling dependencies are estimated
directly from the data, summary statistics can be included with vary-
ingand unknown levels of sample overlap. We note that study overlap
betweendisordersisnotexpected to affect the findings, as study over-
lap affects only the covariance of error terms of the GWASs resulting in
increased intercepts of cross-trait LDSC withno expected impactonthe
estimates of r,**>. To guard against model overfitting, an exploratory
factor analysis (EFA) was performed on even chromosomes and used
to inform the fitting of an confirmatory factor analysis (CFA) in odd
chromosomes. The EFA was performed using the factanal R package for
2-5factorsusingboth promax (correlated) and varimax (orthogonal)
rotations. Disorders were specified toload onafactorinthe CFAwhen
the standardized EFA loadings were >0.3, with disorders allowed to
cross-load (for example, TS on the Compulsive and Neurodevelopmen-
tal factors) if this was the case for multiple factors. Models specified
based onvarimax EFA results still allowed for interfactor correlations,

asallowing only subsets of disorders toload on each factor willinduce
genetic overlap. A common-factor model was also modelled to test
asingle-latent-factor model predicting all 14 disorders. We did not
evaluate models with more than five factors as these caused issues with
model convergence. Results revealed that a five-factor model specified
based on the promax EFA results (Supplementary Table 3) fit the data
bestinodd chromosomes (CFI = 0.973, SRMR = 0.073; Supplementary
Table 2). This model also fit the data well in all autosomes, and was
subsequently carried forward for all analyses, along with the p-factor
model described in the main text. Considering the high r,across PTSD
and MD, we also evaluated amodel (in odd autosomes) that estimated
the residual genetic covariance across these two disorders; however,
we found that this did not significantly improve model fit (model y*,
difference =2.86, P=0.094).

Stratified genomic SEM. Stratified genomic SEM proceeds in two
stages?.Instage1, thes_ldsc function in genomic SEM, amultivariable
implementation of stratified LDSC (S-LDSC)%*, was used to estimate
the stratified genetic covariance and sampling covariance matrices
withineach functional annotation. We specifically used the zero-order
estimates for these analyses. In stage 2, the enrich function was used to
estimate the enrichment of the factor variances and residual genetic
variances unique to theindicators. Thisis achieved by first estimating
themodelinthe genome-wide annotationincluding all SNPs. The fac-
tor loadings from these genome-wide estimates are then fixed and the
(residual) variances of the factors and disorders are freely estimated
within eachannotation. These reflect the within-annotation estimates
for each variance component that are scaled to be comparable to the
genome-wide estimates. This cumulative set of results is used to cal-
culate the enrichment ratio of ratios. The numerator reflects the ratio
of the estimate of the factor variance within an annotation over the
genome-wide estimate. The denominator is the ratio of SNPs in the
annotation over the total number of SNPs examined. Enrichment es-
timates greater than the null of 1 are therefore observed when an an-
notation explainsadisproportionate level of genetic variance relative
to the annotation’s size.

Functional annotations used to estimate the stratified matrices were
obtained fromavariety of dataresources. Thisincluded: (1) the baseline
annotations from the 1000 Genomes Phase 3 BaslineLD (v.2.2)” from
the S-LDSC developers®s; (2) tissue-specific gene expression annotation
files created using data from GTEx” and DEPICT?; (3) tissue-specific
histone marks from the Roadmap Epigenetics project’; (4) annota-
tions that we created” from datain GTEx” and the Genome Aggregate
Database (gnomAD)” thatindex protein-truncating-variant-intolerant
(PI) genes, genes expressed indifferent types of brain cellsin the human
hippocampus and prefrontal cortex, and their intersection; (5) 11 neu-
ronal cell type annotations defined by peaks from single-cell assay for
transposase accessibility by sequencing (scATAC-seq) in the human
forebrain®*; (6) an annotation defined by peaks from ATAC-seq data
with greater accessibility in neural progenitor enriched regions encom-
passing the ventricular, subventricular and intermediate zones (GZ)
over neuron-enriched regions within the subplate, marginal zone and
cortical plate (CP; GZ > CP), and asecond CP > GZ annotation reflecting
the converse®’; and (7) afetal and an adult annotations defined by eQTLs
identified using high-throughput RNA-seq*. We excluded 22 annota-
tions that produced stratified genetic covariance matrices that were
highly non-positive definite to examine a total of 162 annotations. We
corrected for multiple testing by using a strict Bonferroni correction
forthe 162 annotations analysed that passed quality control across the
11 factors examined (the factors from the five-factor factor model and
the p-factor and residuals of the five factors from the p-factor model)
of P<2.81x107,

Multivariate GWAS. The sumstats function in genomic SEM was
used to align SNP effects across traits to the same reference allele and



standardize the effects and their corresponding s.e. values relative to
thetotal varianceinthe predicted phenotype. The s.e. values were ad-
ditionally corrected for uncontrolled confounds by taking the product
ofs.e.valuesand the LDSC univariate intercept when this value was >1.
After removing 136 SNPs that produced highly non-positive definite
matrices when combined with the genetic covariance matrix, the final
listwise deleted set consisted of 2,795,800 SNPs present across all 14 dis-
orders. The userGWAS function was used to estimate the multivariate
GWAS for SNP effects on the five factors from the five-factor model and
the p-factor. We used asignificance threshold of P< 8.33 x 107, reflect-
ing the standard genome-wide threshold of 5 x 108 with a Bonferroni
correction for the six factors. As a quality-control check, we confirmed
that the attenuation ratio® was near O for all factors (Supplementary
Table 17), suggesting that the factor signal is not due to uncontrolled
confounds (such as population stratification).

The Qs heterogeneity metric is a y>-distributed test statistic pro-
duced through a nested-model comparison of a common pathway
model, in which the SNP predicts a latent factor, to anindependent
pathways model, where the SNP directly predicts the factor indicators.
Factor-specific Qsyp estimates for the five-factor model were estimated
using five independent pathways models that consisted of the SNP
predicting both the indicators for one factor and the remaining four
factors. For the p-factor model, the SNP predicted thefive, first-order
factors to obtain Qs estimates for the second-order, p-factor.

Cross-ancestry analyses

We applied the cross-ancestry Popcorn method to estimate genetic
impact correlation (p,; metric) across EUR-like, EAS-like and AFR-like
genetic ancestry groups. Six disorders were included in the analysis,
including EAS-like summary statistics for MD and SCZ and AFR-like
summary statistics for OUD, AUD, PTSD and CUD. Thereference panel
for the EAS dataset was based on 504 individuals from EAS population
of the 1000 Genomes Phase3 data”®. For AFR-like genetic ancestry, we
performed the Popcornanalysis using three alternative references from
1000 Genomes Phase3 data: (1) the African Ancestry in the southwest
United States subgroup (n = 61); (2) the African population (n = 661);
and (3) areference panel created to capture the admixed ancestral back-
ground of some AFR-like individuals reflecting the combination across
the EUR-like and AFR-like sample (n =1,164). Cross-ancestry results
and within-ancestry LDSC results for the AFR-like and EAS-like popu-
lations are reported in Supplementary Table 4. We acknowledge that
using LDSC with admixed ancestry may violate its assumptions; thus,
our results for AFR-like ancestry should be interpreted with caution.
With this in mind, we performed LDSC for AFR-like datasets using
two different LD reference panels for AFR-like ancestry or admixed
American ancestry from Pan UK Biobank to assess their impact on
results (Supplementary Table 4). The resultsin Extended Data Table 1
report liability-scale heritabilities for AFR-like datasets using the
admixed LD scores, as these produced more sensible results.

MiXeR

MiXeR (v.1.3) was applied using the procedure outlined in the original
publication®. We performed additional simulations to evaluate appro-
priate threshold for inclusion of a GWAS study in cross-trait MiXeR
analysis. In previous simulations, we demonstrated that MiXeR cannot
produce reliable estimates for analyses using low-powered input’.
Specifically, as statistical power increases, the Akaike information
criterion (AIC) differences indicate that MiXeR-modelled estimates
become increasingly more distinguishable from the minimum and
maximum overlap, corresponding to theincreasing precision of MiXeR
estimates. This demonstrates that AIC differences are sensitive to the
input power of the summary statistics and can be used to support the
reliability of MiXeR estimates. On the basis of these previous simula-
tions, psychiatric disorders were brought forward for cross-trait MiXeR
analysis when the product of Ny and MiXeR hSZNP estimates were

>12,000, where this cut point reflects the product of Ny >100,000
and hgp > 0.12. As aresult, we excluded OUD, TS, NIC, OCD, ASD and
CUD. As AN was very close to this threshold and had a high AIC in uni-
variate analysis, it was brought forward for cross-trait analyses along
with the seven remaining psychiatric disorders. For the NIC summary
statistics, we excluded two locidefined asa2 Mb window around either
the CHRNA3-CHRNAS-CHRNB4 gene cluster or the CHRNA4 gene,
which is known to have such alarge effect on the phenotype that it
would skew results. We note that, for PTSD, ANX and MD, the r,s were
so high that there was little room for additional overlap beyond cor-
relation, given MiXeR’s modelling assumptions. Specifically, the range
in size of the putative shared component is too small to allow for an
accurate model fit in this situation, as demonstrated by the range on
therespective x axes (Supplementary Fig.7). Thereis alsoa consider-
able uncertainty of polygenicity estimates for PTSD and ANX. Thus,
cross-trait MiXeR results for PTSD, ANX and MD should be interpreted
with caution.

LAVA
Local r,analyses were conducted using LAVA v.0.1.0%. To avoid evalu-
ating localr,sinregionsin whichthereis alow amount of geneticsignal
(which could lead to unstable or uninterpretable estimates) for all
phenotype pairsand lociseparately, we used the univariate testin LAVA
asafiltering step, computingbivariatelocal r,s only inlociwhere both
analysed phenotypeshavea hSZNPsigniﬁcant atP<4.6x10°=0.05/1,093
(where1,093 represents the total number of analysed loci). Given this
filtering step, we performed 24,273 local r, tests across all loci and
phenotype pairs, resulting in a Bonferroni corrected Pvalue threshold
of P<2.1x107°= 0.05/24,273 for the bivariate, local r,analyses.
Genomic loci used for the regional r, analyses were defined by seg-
menting the genomeinto approximately equal-sized, semi-independent
blocks using the LAVA partitioning algorithm (https://github.com/cad-
eleeuw/lava-partitioning). This algorithm works by iteratively splitting
the chromosomes into smaller chunks, creating break points at regions
where the LD between SNPsis the lowest (see the program manual for
more details). To achieve a balance between block size and correlations
between adjacent blocks, weran the algorithm with the default param-
eters, changing only the minimum size requirement (in the number of
SNPs) t0 5,000, based onthe 1,000 genomes data. Sample overlap was
accounted for by obtaining the estimated intercepts from bivariate
LDSC and providing these to LAVA.

CC-GWAS

CC-GWAS*was applied to identify loci with different allele frequencies
across cases of different disorders, contrasting cases one disorder pair
atatime. CC-GWASisbased on estimating a weighted difference of the
CC-GWAS results of the disorders considered, thereby avoiding the
necessity to match casesacross disorders atindividual level. CC-GWAS
combines two components. The first component (CC-GWAS,, ) opti-
mizes power and protects against type I error rate at null-null SNPs
(SNPsthat affect neither of both disorders), based on analytical expecta-
tions of genetic differences between cases and controls of both diseases.
The second component (CC-GWAS,,, ) controls type I error rate at
‘stress test’ SNPs (SNPs affecting both disorders resulting in no allele
frequency difference across cases of both disorders). A SNP is signifi-
cantly associated with case—case status when the P value of the OLS
component reaches genome-wide significance and when the Pvalue of
the exact-componentis <10~ (there is an upper bound on the number
of stress test SNPs as these are causal SNPs). Importantly, CC-GWAS
also filters false-positive associations that may arise due to (subtle)
differential tagging of a stress test SNP in the respective CC-GWAS,
which are present eveninwithin-ancestry analysis*. CC-GWAS excludes
analyses of any disorder pair withanr, > 0.8 because these have asmall
genetic distance between cases with increased risk of type-l error at
stress test SNPs.
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Locus definition and cross-locus overlap

The same locus definition (also referred to as a hitin the main text) was
used for CC-GWAS and genomic SEM. Significant loci were identified
using the clumping functionality in PLINK v.1.9 with an r* threshold of
0.1and a 3,000 kb window. Physically proximal loci (including when
comparinglociboth within and across factors from genomic SEM and
for CC-GWAS and univariate GWAS results), were additionally collapsed
into a single locus when the locus windows were within 100 kb of one
anotheroneither side. For the univariate results, we use the same locus
definition applied to the complete GWAS summary statistics for each
disorder (that is, without our quality-control filters applied), along
with a more liberal genome-wide significance threshold of P<5x1078
without a Bonferroni correction. These more liberal quality-control
and significance thresholds were used for univariate locitobenchmark
whether genomic SEM and CC-GWAS loci could be considered strictly
novel. The 1000 Genomes Phase 3 reference files” were used for LD
pruning for each respective genetic ancestry group (that is, EUR-like,
EAS-like, AFR-like).

Functional annotation

To predict the target genes of the variants (Supplementary Fig. 17),
we first expanded the variants by including any variants within the
LD block (2> 0.6) based on the EUR population using LDProxy from
the LDIink R package®®. We began by curating the genes of which the
promoters (+500 bp from the transcription start site) or exons overlap
with the variants of interest. Conversely, to map target genes that are
notnear the variants, we first filtered the variants for those localized
in either human fetal brain open-chromatin regions® or human adult
brain H3K27ac ChIP-seq regions**, both of which indicate enhancer
activity, but during different stages of brain development. Next, we
assigned target genes to each filtered variant using eQTL*** or HiC
loops***¢ generated from samples from the corresponding stages.
We also assigned variants present in promoter or exonic regions to
the corresponding genes (Supplementary Fig. 17). Finally, we filtered
all of the target genes for those expressed (RNA-seq count > 0) in the
corresponding tissues. In this way, we obtained 715 and 572 target
genesin fetal and adult brains, respectively (Supplementary Tables 40
and 41). Notably, there is a prominent overlap between the two sets
of genes, whichisaresult of the shared, positional mapping of genes
to promoters or exons (Supplementary Fig. 17). Both the fetal and
adult target genes were enriched in GO terms related to neuron or
braindevelopment, suggesting the biological relevance of the genetic
variants.

To plot thetemporal expression trends of the predicted target genes,
we used gene expression datasets from the BrainSpan. We plotted
the averaged gene expression (reads per million kb) of the selected
genesover all samples collected fromthe cortex at the available stages
of development, then generated a smoothened curve with the loess
method. We performed GO enrichment analysis using the ToppGene
suite®. We filtered the enriched terms by containing at least 10% of
the input list of genes, then displayed up to top 5 terms by adjusted
Pvalues under the indicated category.

EWCE®was used to assess the cell type enrichment of target genes
for the variants using a size-biased averaging method. This method
uses single-cell datasets to compute the average expression of a set
of genes (in this case, genes assigned to variants for each factor) and
compares this to the average expressionlevels for 100,000 permuted
gene lists of the same size that are randomly sampled from a back-
ground set of genes. Annotations were taken from publicly avail-
able datasets® ¥, but simplified to provide cell-type-level instead of
cluster-level enrichments. For example, several upper-layer clusters
in the dataset of ref. 57 were combined into ‘ExcNeu superficial’ and
so on. For the ref. 56 dataset, EWCE objects were processed for each
brain region separately. This included the hippocampal formation,

cortex, cerebral nuclei (dissections including basal nuclei, amygda-
loid complex, basal forebrain, claustrum), midbrain (including tissues
fromthalamic complex, hypothalamus, and midbrain) and hindbrain
(including tissues from spinal cord, pons, myelencephalon and cer-
ebellum) and non-neuronal cells across regions. For superclusters
that were present in multiple regions, enrichment was tested only for
regions with the highest abundance of that supercluster (for exam-
ple, MGE interneuron supercluster is most abundant in cortex, so this
cell type was dropped from enrichment analyses in the midbrain) to
prevent excess multiple comparisons. P values were FDR-corrected
based on the number of cell types x gene lists within brain region and
dataset.

MAGMA gene-set enrichment analyses were performed using the
MAGMA Celltyping package in R®. Rather than considering only the
top associated genes, as donein EWCE, MAGMA relies on the genome-
wide signals to competitively evaluate enrichment through linear
regression*s, We used the European subset of the 1000 Genomes’® as
LD reference data, and mapped SNPs to genes based on their genomic
location (GRCh37/hgl19). To allow the inclusion of nearby regulatory
variants, we considered all SNPs within a 35 kb upstream and 10 kb
downstream window of the gene transcriptionregion. As signed effect-
size estimates are not available for the Qqy, results, these analyses were
restricted to the factors. The FDR corrected Pvalues from MAGMA and
EWCE were averaged together to produce the results reported in the
main text (but see Supplementary Tables 48 and 49 for P values from
the individual methods).

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Thedatasupporting the findings of this study are all publicly available
or canberequested for access. Specific download links for various data-
sets are directly below. Psychiatric disorder GWAS summary statistics
for datafromthe PGC can be downloaded or requested online (https://
www.med.unc.edu/pgc/download-results/). Links tothe LD scores and
reference panel datafor GenomicSEM analyses canbe found at GitHub
(https://github.com/GenomicSEM/GenomicSEM/wiki). Links to the
BaselineLD v.2.2 annotations can be found online (https://data.broa-
dinstitute.org/alkesgroup/LDSCORE). Gene expression datasets from
Brainspan canbe found online (https://brainspan.org/static/download.
html). Multivariate GWAS summary statistics for the latent psychiatric
factors in GenomicSEM, including the sensitivity GWAS results, are
available online (https://www.med.unc.edu/pgc/download-results/).

Code availability

Genomic SEM analyses were implemented using publicly available
code (v.0.5.0, https://github.com/GenomicSEM/GenomicSEM). Facta-
nal was conducted using publicly available code within the stats R
package (v.3.6.2, https://www.rdocumentation.org/packages/stats/
versions/3.6.2). MiXeR was conducted using publicly available code
(v.1.3; https://github.com/precimed/mixer). LAVA was conducted using
publicly available code (v.0.1.0, https://github.com/josefin-werme/
LAVA). CC-GWAS was conducted using publicly available code (v.0.1.0,
https://github.com/wouterpeyrot/CCGWAS). LDlink was conducted
using publicly available code (v.1.4.0, https://cran.r-project.org/web/
packages/LDlinkR/vignettes/LDlinkR.html). ToppGene suite was con-
ducted using publicly available code (v.0.1.0, https://toppgene.cchmc.
org/). EWCE was conducted using publicly available code (v.1.16.0,
https://nathanskene.github.io/EWCE/). MAGMA was conducted using
publicly available code (v.2.0.15, https://neurogenomics.github.io/
MAGMA _Celltyping/index.html).
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Extended DataFig.1|Univariate MiXeR Results. Power curves estimating the
samplesize of a GWAS study are needed to saturate the yield of genome-wide
significantloci. The legend shows the current effective sample size of today’s
GWAS, followed by the projected effective sample size needed for the GWAS
yield tosaturate.
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the point estimate for the p-factor. Theimplied sample size for the psychiatric
factors was: Compulsive (7= 54,100); Schizophrenia/Bipolar (71=127,202);
Neurodevelopmental (7 = 84,760); Internalizing (41=1,637,337); Substance Use
(f=313,395); p-factor (7=2,168,621). See Suppl. Table 12 for sample sizes for
the external traits and Suppl. Table 13 for exact P-values.
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Extended DataFig. 3 |See next page for caption.
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Extended DataFig. 3 | External trait genetic correlations: Comparison
within factors. Bar graphs depict genetic correlations with the 31 complex
traitsthatare ordered by magnitude within each factor for the five psychiatric
factors fromthe correlated factors modeland the second-order, p-factor from
the hierarchical model. Bars depicted with a dashed outline for the Q.
heterogeneity metric. Bar depicted witha*reflect values that were significant
ataBonferronicorrected threshold for multiple comparisons, that were also
notsignificantat this same Bonferroni corrected threshold for Qy,,; Thisis with
exceptionofthe p-factor, whichis depicted witha* evenifitis significant for
the Qq,,, as long as that same trait was significantly correlated with the majority

(atleast three) of the five other factors. The two-sided P-values used to evaluate
significance were derived from the Z-statistics, calculated as the point estimate
ofthe genetic correlationdivided by its standard error. Error bars are +/-1.96
SEthatare centred around the point estimate of the genetic correlations. The
implied sample size for the psychiatric factors was: Compulsive (7 =54,100);
Schizophrenia/Bipolar (7=127,202); Neurodevelopmental (72 = 84,760);
Internalizing (7=1,637,337); Substance Use (/1= 313,395); p-factor (7=2,168,621).
See Suppl. Table 12 for sample sizes for the external traits and Suppl. Table 13 for
exactP-values.
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Extended DataFig. 4 |Stratified Genomic SEMresults. Bar graph depictsthe
enrichment results for different brain cell types, protein-truncating variant
intolerant (PI) genes, and the intersection across Plgenes and brain cell types.
Results are shown only for the SB, Internalizing, and p-factor due to the limited
signal for the other factors. Enrichment for height is depicted in purple to
benchmarkresults and evaluate specificity in signal for the psychiatric factors
relative to another human complex trait. Error bars are +/-1.96 SE that are
centred around the enrichment point estimate. Enrichment estimates that
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weresignificantatastrict Bonferronicorrected threshold for multiple
comparisons areshownwitha*. The one-sided P-values used to evaluate
significance were derived from the Z-statistics, calculated as the enrichment
pointestimate divided by its standard error. Exact P-values are reported in Suppl.
Table 50. Theimplied sample size for the psychiatric factors was: Compulsive
(7=54,100); Schizophrenia/Bipolar (7=127,202); Neurodevelopmental

(7 =84,760); Internalizing (7=1,637,337); Substance Use (7= 313,395); p-factor
(7=2,168,621).



Extended Data Table 1| Summary of Psychiatric Disorder Datasets

Psychiatric Disorders Sample Size Lifetime Liability GWAS
Cases Controls Nefrective Prevalence Scale loci
Heritability
European (EUR)-Like Genetic Ancestry
Tourette's Syndrome 4,819 9,488 12,140 0.8% .22 (.03) 1
Schizophrenia 53,386 77,258 117,498 1.0% 22 (.01) 177
Cannabis Use Disorder 14,808 343,726 26,789 4.8% .19 (.02) 2
Bipolar Disorder 41,917 371,549 101,963 2.0% .19 (.01) 58
Attention-Deficit/Hyperactivity Disorder ~ 38,691 186,843 99,252 5% .18 (.01) 27
Anorexia Nervosa 16,992 55,525 46,322 0.9% .16 (.01) 8
Obsessive Compulsive Disorder 14,688 656,901 32,706 2.5% .16 (.01) 1
Alcohol Use Disorder 57,564 256,399 179,186 15.9% .12 (.01) 25
Autism Spectrum Disorder 18,381 27,969 43,778 1.2% 12 (.01) 3
Anxiety Disorders 117,401 699,243 329,323 2.0% .11 (.01) 47
Nicotine Dependence 46,213 - - .09 (.01) 2
Major Depression 412,305 1,588,397 1,105,086 15.0% .06 (.01) 230
Opioid Use Disorder 10,544 72,163 45,543 1.0% .06 (.01) 1
Post-traumatic Stress Disorder 141,479 1,113,329 451,034 12.5% .05 (.01) 25
African-Like Genetic Ancestry
Alcohol Use Disorder 3,335 2,945 4,053 15.9% .22 (.09) 1
Cannabis Use Disorder 3,848 5,897 9,044 4.8% .10 (.03) 0
Post-traumatic Stress Disorder 11,560 39,474 32,940 12.5% .03 (.01) 0
Opioid Use Disorder 5,212 26,876 15,935 1.0% .01 (.02) 0
East Asian (EAS)-Like Genetic Ancestry
Schizophrenia 22,778 35,362 11,532 1.0% .69 (.04) 19
Major Depression 13,893 155,912 42,011 15% .05 (.01) 1

The table is ordered with respect to the liability scale heritabilities (within each genetic ancestry). The N, column reports the sum of effective sample sizes across contributing cohorts. Nicotine
dependence includes a single value for the sample size columns as this was the one continuous measure, defined using the Fagerstrém Test for Nicotine Dependence. The reported population
prevalences were taken from the corresponding univariate publication when possible and were used for liability scale conversions (possible scale = 0-100%). The numbers in parentheses in the
liability scale heritability column reflect the corresponding standard errors. The GWAS loci column reports the number of independent significant hits. A genome-wide significance threshold

of P<5x107® was employed to correct for multiple statistical comparisons, and significance was evaluated using two-sided P values obtained from Z-statistics, which reflected the estimated
univariate GWAS beta over its estimated standard error. Results are shown for: Tourette’s Syndrome', Schizophrenia'”*°, Cannabis Use Disorder?, Bipolar Disorder®, Attention-Deficit/Hyperactivity
Disorder™, Anorexia Nervosa', Obsessive Compulsive Disorder®, Alcohol Use Disorder?"®', Autism Spectrum Disorder’, Anxiety Disorders?, Nicotine Dependence®, Major Depression**%, Opioid
Use Disorder?®, and Post-traumatic Stress Disorder?®.
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Psychiatric disorder GWAS summary statistics for data from the PGC can be downloaded or requested here:
https://www.med.unc.edu/pgc/download-results/

Links to the LD-scores and reference panel data for GenomicSEM analyses can be found here: https://github.com/GenomicSEM/GenomicSEM/wiki
Links to the BaselinelD v2.2 annotations can be found here:

https://data.broadinstitute.org/alkesgroup/LDSCORE

Gene expression datasets from Brainspan can be found here:

https://brainspan.org/static/download.html

Multivariate GWAS summary statistics for the latent psychiatric factors in GenomicSEM, including the sensitivity GWAS results, are available at:
https://www.med.unc.edu/pgc/download-results/
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Reporting on sex and gender Biological sex (as determined by the sex chromosomes) was used as a covariate in the original GWAS analyses for all included
traits. All included GWAS summary statistics included both male and female subjects, with the exact split across males and
females provided in the original papers describing this univariate GWAS data.

Reporting on race, ethnicity, or  This study includes GWAS summary statistics for genetic ancestry groups that can be approximately described, based on

other socially relevant genetic similarity to global reference panels, as reflecting European-like, East Asian-like, and African/African American-like

groupings genetic ancestries. The sample sizes are separately reported for each of these genetic ancestry groups in Extended Data
Table 1.

Population characteristics In order to achieve adequate power for GWAS analyses, the psychiatric disorders that are used as the primary data input in

this paper include data from multiple cohorts, each with different population characteristics. The supplementary materials of
the corresponding univariate GWAS papers include information on the different cohorts that went into their analyses. Our
current manuscript reports sample sizes (case/control) and diagnosis for each disorder.

Recruitment As described directly above, this study was not involved in recruitment of study participants. Rather, the individual cohorts
that made-up the univariate GWAS for psychiatric disorders employed different recruitment strategies. This recruitment
strategies ranged from volunteer basis, population-level surveys, and convenience sampling from hospital settings. As no
single recruitment strategy was used for a psychiatric disorder this should ideally reduce bias induced by any one form of
recruitment.

Ethics oversight Primary data collection was not conducted for this study. As the data was used was already collected and deidentified, ethics
oversight was not applicable.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size The current study reflects the largest and most comprehensive cross-disorder psychiatric genetic analysis to-date. This study makes use of
the largest psychiatric disorder GWAS currently available. Sample sizes for each of the included 14 disorders are provided in Table 1 of the
main text.

Data exclusions  We employed strict quality control of the GWAS summary statistics prior to running analyses. These QC filters included removing strand
ambiguous SNPs, restricting to SNPs with an imputation score (INFO) > 0.6 and with a minor allele frequency (MAF) > 1% when this
information was available in the GWAS summary stats. Finally, we restrict to SNPs with a SNP-specific sum of the effective sample that is >
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50% of the total sum of the effective sample or, when this SNP-specific information was not available, to SNPs for which > 50% of the cohorts
contributed information, as indexed by the direction column in the GWAS summary stats. The MHC region was excluded from all summary
statistics prior to the analysis.

Replication We examined how genetic correlations in European-like genetic ancestry individuals compared to results from East Asian-like and African/
African American-like genetic ancestry individuals. The genetic correlation (rg) between major depression and schizophrenia in East Asian-like
participants (rg = 0.45; SE = 0.09) was double that observed in European-like participants (rg = 0.22; SE = 0.04), though this discrepancy was
previously shown to be driven by a single cohort of severe and recurrent major depression. Genetic correlations across disorders using
African-like genetic ancestry GWAS did not produce any significant results due to lower power reflective of smaller participants sample sizes in
these GWAS. Genetic correlations across genetic ancestry groups within a disorder were generally underpowered, but included a strong East
Asian-like and European-like genetic correlation for schizophrenia.

Functional analyses using MAGMA, Expression-Weighted Cell Type Enrichment, and Stratified Genomic SEM replicated certain key findings,
including the enrichment of excitatory neuron pathways for the Schizophrenia/Bipolar factor and oligodendrocyte biology for the Internalizing
factor.

We also evaluated replication of results when utilizing more strictly ascertained samples of psychiatric cases. We find that the general pattern
of results replicates for this ascertainment sensitivity analysis, with similar patterns of genetic correlations across disorders, multivariate
genetic architecture, and genetic variants associated with the psychiatric factors.
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Randomization  Asthisis a study of genetic risk for psychiatric disorders, and not a study of treatment effects as might be evaluated in a randomized control
trial, randomization is not relevant as a study consideration. This is because participants cannot be randomized by the experimenter to have a
psychiatric disorder or not.

Blinding Blinding does not apply to this type of study design as the study participants are not randomly assigned to have a psychiatric disorder or not.
In addition, there is no bias that can be introduced by the scientists running the genetic association analyses being aware of their psychiatric
case status.
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Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
was applied.
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