

2012 119: 4383-4386 Prepublished online February 28, 2012; doi:10.1182/blood-2010-12-327072

The FLT3ITD mRNA level has a high prognostic impact in NPM1 mutated, but not in NPM1 unmutated, AML with a normal karyotype

Friederike Schneider, Eva Hoster, Michael Unterhalt, Stephanie Schneider, Annika Dufour, Tobias Benthaus, Gudrun Mellert, Evelyn Zellmeier, Purvi M. Kakadia, Stefan K. Bohlander, Michaela Feuring-Buske, Christian Buske, Jan Braess, Achim Heinecke, Maria C. Sauerland, Wolfgang E. Berdel, Thomas Büchner, Bernhard J. Wörmann, Wolfgang Hiddemann and Karsten Spiekermann

Updated information and services can be found at: http://bloodjournal.hematologylibrary.org/content/119/19/4383.full.html

Articles on similar topics can be found in the following Blood collections
Brief Reports (1568 articles)
Clinical Trials and Observations (3554 articles)
Myeloid Neoplasia (760 articles)

Information about reproducing this article in parts or in its entirety may be found online at: http://bloodjournal.hematologylibrary.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at: http://bloodjournal.hematologylibrary.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at: http://bloodjournal.hematologylibrary.org/site/subscriptions/index.xhtml

Brief report

The *FLT3*ITD mRNA level has a high prognostic impact in *NPM1* mutated, but not in *NPM1* unmutated, AML with a normal karyotype

Friederike Schneider,¹ Eva Hoster,^{1,2} Michael Unterhalt,¹ Stephanie Schneider,¹ Annika Dufour,¹ Tobias Benthaus,¹ Gudrun Mellert,¹ Evelyn Zellmeier,¹ Purvi M. Kakadia,¹ Stefan K. Bohlander,^{1,3} Michaela Feuring-Buske,⁴ Christian Buske,⁵ Jan Braess,¹ Achim Heinecke,⁶ Maria C. Sauerland,⁶ Wolfgang E. Berdel,⁷ Thomas Büchner,⁷ Bernhard J. Wörmann,⁸ Wolfgang Hiddemann,^{1,3} and Karsten Spiekermann^{1,3}

¹Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital Munich, Munich, Germany; ²Institute of Medical Statistics, Biometry, and Epidemiology, University of Munich, Munich, Germany; ³Clinical Cooperative Group Acute Leukemias, Helmholtz Center Munich, Munich, Germany; ⁴Department of Internal Medicine III, University of Ulm, Ulm, Germany; ⁵Comprehensive Cancer Center Ulm, Institute of Experimental Tumor Research, Ulm, Germany; ⁶Institute of Biostatistics and Clinical Research, University of Muenster, Muenster, Germany; ⁷Department of Medicine, Hematology and Oncology, University of Muenster, Muenster, Germany; and ⁸German Society of Hematology and Oncology, Berlin, Germany

The impact of a *FLT3*-internal tandem duplication (*FLT3*ITD) on prognosis of patients with acute myeloid leukemia (AML) is dependent on the ratio of mutated to wild-type allele. In 648 normal karyotype (NK) AML patients, we found a significant independent effect of the quantitative *FLT3*ITD mRNA level—measured as (*FLT3*ITD/wt*FLT3*)/(*FLT3*ITD/wt*FLT3* + 1)

—on outcome. Moreover, this effect was clearly seen in 329 patients with a mutated *NPM1* gene (*NPM1*⁺), but not in 319 patients without a *NPM1* mutation (wt*NPM1*). In a multivariate Cox regression model, the quantitative *FLT3*ITD mRNA level showed an independent prognostic impact on overall survival (OS) and relapse-free survival (RFS) only in

the *NPM1*⁺ subgroup (OS: hazard ratio, 5.9; [95% confidence interval [CI]: 3.1-11.2]; RFS: hazard ratio, 7.5 [95% CI: 3.4-16.5]). The *FLT3*ITD mRNA level contributes to relapse risk stratification and might help to guide postremission therapy in *NPM1*-mutated AML. (*Blood*. 2012;119(19):4383-4386)

Introduction

The prognosis of normal karyotype-acute myeloid leukemia (NK-AML) is influenced by the presence of gene mutations. NPM1 has been shown to be the most common single mutated gene in NK-AML occurring with a frequency of $\sim 50\%$. Combinations of NPM1 mutations with FLT3-internal tandem duplication (FLT3ITD) have been described in $\sim 20\%$ of patients with NK-AML. 1,2 The positive prognostic impact of the NPM1+ on outcome is mainly evident in patients lacking a FLT3ITD. Approximately 60% of patients carrying the NPM1+/ *FLT3*-wild-type genotype survive > 10 years.^{3,4} The *NPM1*⁺ NK-AML has been classified as an own entity of favorable prognosis in the revised World Health Organization and European LeukemiaNet classifications.5,6 Since 2001, there have been reports that not only the presence of a FLT3ITD per se, but also the FLT3ITD/FLT3-wild-type (wtFLT3) ratio is essential for prognosis. ^{7,8} The aim of our work was to assess the influence of the FTL3ITD mRNA level according to the mutation status of NPM1.

Methods

Patients

Our analyses were based on patients with NK-AML treated within the AML Cooperative Group 99 study. Patients were randomly assigned for

induction therapy with either TAD (thioguanine, conventional-dose AraC, daunorubicin) followed by HAM (high-dose AraC, mitoxantrone) or 2 courses of HAM. As consolidation therapy in first complete remission (CR), allogeneic transplantation from an unrelated donor was recommended for high-risk patients < 60 years whereas all other patients received treatment with TAD and maintenance therapy.⁹

End points

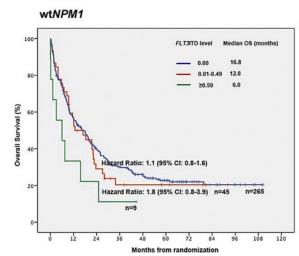
Overall survival (OS) was calculated from randomization to death from any cause or to the latest follow-up. Relapse-free survival (RFS) was determined from the first day of CR until relapse or death in CR.

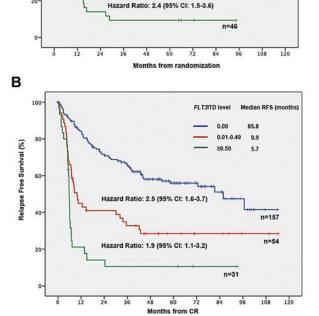
Molecular analyses

Mutation analyses of *NPM1*, *FLT3*ITD, *FLT3*-tyrosine kinase domain (*FLT3*TKD), *MLL*-partial tandem duplication (*MLL*-PTD), and *CEBPA* were performed according to standard protocols previously described. ¹⁰⁻¹² *FLT3* mRNA RT-PCR and PCR were performed according to standard protocols. ¹³ Labeled PCR products were electrophoresed on ABI 3100 (Applied Biosystems) according to protocol. The data were collected and analyzed with Genescan and Genotyper software (Applied Biosystems). The ratio of *FLT3*ITD mRNA to wt*FLT3* mRNA was calculated as previously published. ^{8,14} The amount of *FLT3*ITD mRNA in relation to the entire *FLT3* transcript signal was defined as: quantitative "*FLT3*ITD mRNA level" = (*FLT3*ITD/wt*FLT3*)/(*FLT3*ITD/wt*FLT3*)/(*FLT3*ITD/wt*FLT3*+1).

Submitted December 24, 2010; accepted February 3, 2012. Prepublished online as *Blood* First Edition paper, February 28, 2012; DOI 10.1182/blood-2010-12-327072.

The online version of this article contains a data supplement.


The publication costs of this article were defrayed in part by page charge payment. Therefore, and solely to indicate this fact, this article is hereby marked "advertisement" in accordance with 18 USC section 1734.


© 2012 by The American Society of Hematology

A

Overall Survival (%)

NPM1⁺

0.01-0.49 15.6

8.2

n=208

n=77

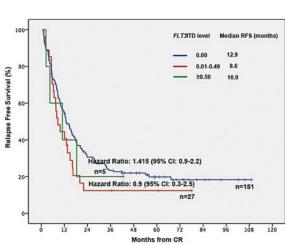


Figure 1. Impact of FLT3ITD mutation level on outcome according to NPM1. (A) OS in patients with NPM1 mutation (N = 329) compared with NPM1 wild-type (n = 319). (B) RFS in patients with NPM1 mutation (N = 242) compared to NPM1 wild-type (n = 183). The significant impact of FLT3ITD mutation level on outcome was evident in NPM1-mutated AML. In NPM1-mutated AML, the effect of the FLT3ITD mRNA level displayed a dose-dependency. Thus, patients with a FLT3ITD level ≥ 0.50 showed the worst OS and RFS compared to patients with a FLT3ITD level between 0.01 and 0.49 and patients without a FLT3ITD. Differences between the score groups were highly significant ($P \le .001$).

Statistical analyses

Univariate Cox regression for OS was first performed in the complete cohort to evaluate the prognostic value of the quantitative FLT3ITD mRNA level, independent of NPM1. For visualization of significant effects, we grouped patients according to the FLT3ITD mRNA level using 5 potential threshold values. To reduce the potential bias of data-derived cutpoints, we fixed the biologically meaningful thresholds 0.00, to distinguish between FLT3ITD and wtFLT3, 0.50, indicating a heterozygous mutation, and 1.00, indicating complete wild-type loss. In addition, we investigated the values 0.25 and 0.75 as potential thresholds. Very small patient groups ($\leq 5\%$) were combined to the next larger adjacent group.

Multiple Cox regression using the quantitative FLT3ITD mRNA level, together with its interaction with NPM1 and clinical and molecular characteristics, was performed for OS and RFS. Kaplan-Meier estimation for OS and RFS and multiple Cox regression was also performed separately for NPM1⁺ and wtNPM1 patients. A significance level of 5% was used.

Results and discussion

Analyses were performed in 648 of 802 patients treated within the AMLCG99 trial (supplemental Figure 1, available on the Blood Web site; see the Supplemental Materials link at the top of the online article).

Patients (119 of 648) received allogeneic transplantation in first CR. Median follow-up for OS was 62.3 months. Median OS was 20.4 months with 414 events. In 427 of 648 (66%) patients in CR, median RFS was 18.0 months. In 173 of 648 FLT3ITD-mutated patients, the median FLT3ITD level was 0.42 (0.02-1.00). Patient characteristics are summarized in supplemental Tables 1 and 2.

Impact of FLT3ITD mutation level on OS and definition of thresholds

Univariate Cox regression showed a significant impact of the FLT3ITD mRNA level on OS (hazard ratio of 1.12 for a FLT3ITD mutation level increased by 0.10, 95% confidence interval [CI], 1.08-1.17, P < .0001). Grouping patients using the prespecified threshold values, median OS for *FLT3*ITD mRNA level 0.00 (n = 471)of 648; 73%), 0.01-0.24 (n = 31 of 648; 5%), 0.25-0.49 (n = 91 of 648; 14%), 0.50-0.74 (n = 38 of 648; 6%), and 0.75-1.00 (n = 17 of 648; 3%) were 26, 24, 12, 8, and 8 months. The threshold level of 1.00 was excluded because only 7 patients had a complete wild-type loss. Because of the low patient number, FLT3ITD-positive patients with a level below 0.25 were combined with those with a level between 0.25 and 0.50 into a low-level (0.01-0.49) FLT3ITD group. Similarly,

Table 1. Multiple Cox regression models for OS and RFS

		Stratum	OS, n = 508				RFS, n = 333			
				95% CI				95% CI		
Parameter			HR	Lower CL	Upper CL	P	HR	Lower CL	Upper CL	P
NPM1	pos vs neg	wt <i>FLT3</i>	0.3	0.2	0.4	< .001	0.2	0.1	0.3	< .001
FLT3ITD mutation level		wt <i>NPM</i> 1	1.1	0.4	3.0	.789	0.6	0.2	2.2	.436
FLT3ITD mutation level		NPM1 ⁺	5.9	3.1	11.2	< .001	7.5	3.4	16.5	< .001
Interaction NPM1*FLT3ITD mutation level			5.2	1.7	15.3	.003	12.7	3.0	55	.001
mo <i>CEBPA</i>	vs wtCEBPA		0.6	0.3	1.04	.067	0.5	0.2	1.1	.075
bi <i>CEBPA</i>	vs wtCEBPA		0.3	0.1	0.5	< .001	0.3	0.1	0.6	.001
<i>FLT3</i> TKD	pos vs neg		1.4	0.9	2.3	.149	1.0	0.5	2.2	.890
MLL-PTD	pos vs neg		0.9	0.6	1.4	.699	0.8	0.4	1.4	.377
WBC, ×10 ⁶ /L	10-fold		1.4	1.1	1.8	.002	1.3	0.9	1.7	.118
Platelets, ×106/L	10-fold		0.7	0.6	1.01	.059	0.8	0.6	1.2	.343
Hemoglobin level, mg/dL	+1 g/dL		1.0	0.99	1.005	.595	1.0	0.99	1.01	.858
LDH, U/L	10-fold		1.2	8.0	1.8	.503	1.2	0.7	2.1	.616
BM blasts, %	+10%		1.0	0.997	1.01	.243	1.0	0.998	1.01	.178
Age, y	+10 y		1.4	1.2	1.5	< .001	1.2	1.1	1.4	< .001
Performance status, ECOG	2-4 vs 0,1		1.3	0.996	1.6	.054	1.2	0.9	1.6	.310
Sex	Female vs male		0.9	0.7	1.1	.353	0.8	0.6	1.1	.243
De novo AML	vs non-de novo		0.9	0.7	1.3	.709	0.9	0.6	1.4	.781

The independent prognostic impact of the FLT3ITD mutation level on OS and RFS was evaluated using multivariate Cox regression models. The FLT3ITD mutation level was introduced as a continuous parameter into the model. Due to the known interaction between NPM1 and FLT3ITD. an interaction term NPM1*FLT3ITD mutation level was included in the model. Besides the FLT3TTD mutation level, mutations of the molecular markers NPM1 (NPM1+), CEBPA (mo CEBPA); biCEBPA), FLT3TKD, MLL-PTD, and the clinical parameters age, sex, ECOG performance status, AML de novo, WBC, platelet count, hemoglobin level, LDH, and amount of BM blasts were introduced into the model. The multivariate prognostic factors were identified using a logistic regression model with a significance level of 5%

OS indicates overall survival; RFS, relapse-free survival; mo CEBPA, monoallelic CEBPA mutation; bi CEBPA, biallelic CEBPA mutation; TKD, tyrosine kinase domain; PTD, partial tandem duplication; ITD, internal tandem duplication; WBC, white blood count; LDH, lactate dehydrogenase; ECOG, Eastern Cooperative Oncology Group; HR, hazard ratio; CI, confidence interval; CL, confidence limit; pos, positive; neg, negative; and AML, acute myeloid leukemia.

patients with a positive *FLT3*ITD mRNA level \geq 0.50 were combined to one high-level (0.50-1.00) group. Finally, only the biologic meaningful cutpoints 0.00 and 0.50 were retained. Median OS in FLT3ITDnegative (73%), low-level (19%), and high-level FLT3ITD (8%) were 26.2, 15.6, and 7.8 months, respectively (P < .001).

Impact of FLT3ITD mutation level on outcome according to NPM1 mutation status

In the NPM1-mutated cohort, median OS was 97.8 months in the FLT3ITD-negative, 15.6 months in the low-level (0.01-0.49), and 8.2 months in the high-level FLT3ITD (0.50-1.00) group (P < .001, Figure 1A). Significant differences between these risk groups were evident regarding RFS (P < .001; Figure 1B). Median OS in wtNPM1 patients without a FLT3ITD, with a FLT3ITD level < 0.50 and ≥ 0.50 were not statistically different (16.8 months, 12.8 months, and 6.0 months, respectively, P = .133, Figure 1A). FLT3ITD mRNA level may not impact on survival in patients with wtNPM1, although this conclusion is limited by the low statistical power because of the relatively small number of patients with a high *FLT3*ITD mRNA level (n = 9; 1%).

In the multivariate Cox regression model with all 648 patients, the independent prognostic impact of the quantitative FLT3ITD mRNA level on outcome was detectable in NPM1+ patients (P < .001), but not in wtNPM1 (Table 1). This was true for both age subgroups (</≥ 60 years, data not shown). In multiple regression in NPM1+ patients, the FLT3ITD low-level group had an adjusted hazard ratio of 1.5 (95% CI, 0.96-2.3) for OS (P = .078), and the FLT3ITD high-level group an adjusted hazard ratio of 3.1 (95% CI 1.9-5.2, P < .001) compared with wt*FLT3* (supplemental Table 3). Within wtNPM1 patients, the FLT3ITD mRNA level did not appear as an independent prognostic factor. Similar results were observed for RFS.

Whitman et al were the first to show that a complete loss of wtFLT3 was associated with worse outcome compared to patients without a FLT3ITD (wtFLT3/wtFLT3) or a heterozygous FLT3ITD (wtFLT3/FLT3ITD) mutation. Thiede et al defined the FLT3ITD/wt ratio as the relative proportion of the area under the curve (AUC) of mutant and wtFLT3 alleles (AUC-FLT3ITD/AUC-wtFLT3) in Genescan analysis. A FLT3ITD/wtFLT3 ratio above the median of the cohort was associated with an unfavorable prognosis.8 Mediandefined risk groups have to be determined in large patient cohorts before a definite statement about individual prognosis can be made. In contrast, we defined the FLT3ITD mRNA level as the relative amount of FLT3ITD mRNA to the total FLT3 transcript, with a range from 0 (absence of mutation) to 1 (complete loss of wild type), facilitating the estimation of the FLT3ITD mutational load. This has the advantage of direct estimation of individual prognosis according to a patient's FLT3ITD mutant level and better comparability in different clinical studies.

The focus of our analyses was the investigation of the impact of the FLT3ITD mRNA level according to the NPM1 mutation status in NK-AML. Univariate and multivariate analyses demonstrated a distinct dose-dependent effect of the FLT3ITD mutant level on OS and RFS only in NPM1⁺, but not in wtNPM1 patients. In NPM1-mutated patients, multivariate analyses revealed a FLT3ITD level of 0.50 as cutoff between an intermediate group (26% long-term survivors) and a poor-risk group with 9% survivors in 7 years. In accordance with Whitman et al, these observations suggest different pathophysiologies of heterozygous FLT3ITD versus *FLT3*ITD with a complete loss of the wild-type allele.⁷

Our data suggest a significantly worse outcome with regard to OS and RFS for patients harboring an NPM1 mutation and higher FLT3ITD mRNA expression compared to those NPM1-mutated patients with a low FLT3ITD mRNA expression. Thus, the FLT3ITD mRNA level might guide the decision for allogeneic

SCHNEIDER et al 4386

transplantation in NPM1+ AML. However, such a strategy should be prospectively evaluated.

Authorship

Contribution: F.S. performed statistical analysis and wrote the manuscript; E.H., M.U., A.H., and M.C.S. provided statistical support; S.S., A.D., T. Benthaus, G.M., E.Z., and P.M.K. performed molecular diagnostics; S.K.B., M.F.-B., C.B., J.B., and K.S. performed central diagnostics; W.E.B., T. Büchner, B.J.W., and W.H. were principal investigators of AMLCG99 study; and K.S. wrote the manuscript.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Karsten Spiekermann, MD, Department of Medicine III, University Hospital Grosshadern, Marchioninistr 15, 81377 Munich, Germany; e-mail: karsten.spiekermann@med.uni-muenchen.de.

References

- 1. Schnittger S. Schoch C. Kern W. et al. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood. 2005;106(12): 3733-3739.
- 2. Döhner K, Schlenk RF, Habdank M, et al. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood. 2005;106(12):3740-3746.
- 3. Büchner T. Berdel WE. Haferlach C. et al. Agerelated risk profile and chemotherapy dose response in acute myeloid leukemia: a study by the German Acute Myeloid Leukemia Cooperative Group. J Clin Oncol. 2009;27(1):61-69.
- Schlenk RF, Döhner K, Krauter J, et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med. 2008; 358(18):1909-1918.
- 5. Arber D, Brunning RD, Le Beau MM. Acute myeloid leukaemia with recurrent genetic abnormalities. In: Swerdlow SH, ed. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon, France: IARC; 2008.

- 6. Döhner H. Estev EH. Amadori S. et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European Leukemia-Net. Blood. 2010;115(3):453-474.
- Whitman SP, Archer KJ, Feng L, et al. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. Cancer Res. 2001;61(19):7233-7239.
- Thiede C, Steudel C, Mohr B, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 2002;99(12):4326-4335.
- Büchner T, Berdel WE, Schoch C, et al. Double induction containing either two courses or one course of high-dose cytarabine plus mitoxantrone and postremission therapy by either autologous stem-cell transplantation or by prolonged maintenance for acute myeloid leukemia. J Clin Oncol. 2006;24(16):2480-2489

- 10. Benthaus T. Schneider F. Mellert G. et al. Rapid and sensitive screening for CEBPA mutations in acute myeloid leukaemia. Br J Haematol. 2008; 143(2):230-239
- Dufour A, Schneider F, Metzeler KH, et al. Acute myeloid leukemia with biallelic CEBPA gene mutations and normal karyotype represents a distinct genetic entity associated with a favorable clinical outcome. J Clin Oncol. 2010;28(4):570-577.
- 12. Falini B, Mecucci C, Tiacci E, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med. 2005; 352(3):254-266
- Schnittger S. Schoch C. Dugas M. et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood. 2002; 100(1):59-66.
- Meshinchi S, Alonzo TA, Stirewalt DL, et al. Clinical implications of FLT3 mutations in pediatric AML. Blood. 2006:108(12):3654-3661.