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Abstract

Motivation: Synthetic cellular tagging technologies play a crucial role in cell fate and lineage-tracing studies. Their integration with single-cell
and spatial transcriptomics assays has heightened the need for scalable software solutions to analyze such data. However, previous methods
are either designed for a subset of tagging technologies, or lack the performance needed for large-scale applications.

Results: To address these challenges, we developed Quick Clonal Analysis Toolkit (QuiCAT), an end-to-end Python-based package that stream-
lines the extraction, clustering, and analysis of synthetic tags from sequencing data. QuiCAT outperforms existing pipelines in both speed
and accuracy. Its outputs are widely compatible with the Python ecosystem for single-cell and spatial transcriptomics data analysis packages
allowing seamless integrations and downstream analyses. QuiCAT provides users with two workflows: a reference-free approach for extracting
and mapping synthetic tags, and a reference-based approach for aligning tags against known sequences. We validate QuiCAT across diverse
datasets, including population-level data, single-cell and spatially resolved transcriptomics, and benchmarked it against the two most recently
published tools. Our computational optimizations enhance performance while improving accuracy.

Availability: QuiCAT is available as a Python package to be installed. The source code is available at https://github.com/theislab/quicat

experimental conditions (Serrano ez al. 2022). Recent advance-
ments led to an increased affordability and accessibility of
scRNA-seq, allowing more research groups to adopt barcod-
ing systems for investigating heterogeneous cell populations
(Serrano et al. 2022; Howland and Brock 2023). However,
these systems are often developed independently and tailored
for specific applications. This has resulted in an array of barcode
structures and analysis software packages, which are typically
optimized for particular designs (Corsello et al. 2020; Weinreb

1 Introduction

The need to differentiate and track individual cells or cell
populations has driven the development of various cellular
barcoding systems over the past years (Lu et al. 2011; Biddy
et al. 2018; Wroblewska et al. 2018; Weinreb et al. 2020;
Emert et al. 2021; Oren et al. 2021; Chang et al. 2022,
Fennell et al. 2022; Ratz et al. 2022; Umeki et al.
2022; Yalcin et al. 2023; Baygin et al. 2024; Jang et al. 2025;
Kinsler et al. 2025). These barcoding techniques allow

researchers to quantify the relative abundance of uniquely bar-
coded cells in samples using DNA sequencing. When paired
with phenotypic readouts like single-cell RNA sequencing
(scRNA-seq) and spatially resolved transcriptomics (SRT),
synthetic barcodes enable the tracking and characterization of
distinct cell populations and their behaviours across various

et al. 20205 Ratz et al. 2022; Umeki et al. 2022; Baygin et al.
2024; Jindal et al. 2024; Jang et al. 2025; Kinsler et al. 2025).
For example, many available pipelines have limited flexibility
in terms of barcode length and structure, restricting the range
of potential applications. Several others are compatible with
only a narrow subset of sequencing technologies, and
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exclusively accept FASTQ input files. In response to these chal-
lenges, two more flexible software packages have recently
emerged to accommodate a range of barcoding techniques
(Daylin and Amy 2024; Holze et al. 2024). Despite these
advances, they often fall short in terms of sequence flexibility,
supported technologies, and, importantly, overall performance.
Most pipelines suffer from suboptimal processing speeds,
making them unsuitable for massively parallel screens—key
applications of synthetic tagging systems as the field shifts
toward large-scale, high-throughput approaches (Zhang
et al. 2025). Most of them function primarily as wrappers
around pre-existing tools, lacking computational optimiza-
tions. Moreover, the majority of the other pipelines do
not support reference-based barcode extraction methods.
Collectively, these constraints create a fragmented landscape
forcing users to navigate the complexity and select the tool
that fits each unique application.

To address this gap, we introduce Quick Clonal Analysis
Toolkit (QuiCAT), a Python-based toolkit designed for
rapid, accurate, and flexible barcode extraction and analysis
from sequencing data (Fig. 1). Regardless of barcode length
or structure, QuiCAT’s flexibility allows it to adapt to any
barcoding library used and to generate count matrices from
population-based DNA, scRNA-seq, and SRT data. QuiCAT
supports multiple sequencing technologies and accepts diverse
input formats, offering both reference-free and reference-based
extraction methods. We benchmarked QuiCAT against the
current state-of-the-art pipelines using a publicly available
population-based dataset, and a synthetically generated
dataset. Additionally, we applied QuiCAT to capture com-
binatorial barcodes in a newly generated dataset featuring
Pro-codes (Wroblewska et al. 2018; Dhainaut et al. 2022)
combined with scRNA-seq, and a publicly available SRT data-
set (Ratz e al. 2022).

2 Methods
2.1 Quicat overview

QuiCAT is a high-performance, flexible, and scalable Python-
based package for the extraction of synthetic barcodes from
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sequencing data. Its modular design allows efficient retrieval
from different modalities, including DNA sequencing,
scRNAseq or SRT datasets. QuiCAT is built from the ground
up to enhance efficiency, reduce redundant computations, and
scale effectively for large datasets.

At the core of QuiCAT is the extraction workflow (Fig. 1
and Supplementary Fig. 1), which supports both binary align-
ment map (BAM) and FASTQ input files, accommodating
paired-end or single-end reads. If starting from BAM files,
the user has an option to scan all reads, to only scan reads
aligned to specific contigs, or to scan all the unaligned reads
where the synthetic barcodes are usually found leaving the
user full flexibility. The workflow begins with a QC step that
removes reads failing user-defined QC criteria. The remain-
ing reads are then scanned for sequences of interest using
either a reference-based or a reference-free approach. In
reference-based mode, users supply a list of known barcode
sequences for exact matching, allowing precise retrieval.
Typically, this is used when all barcodes (or other sequences)
that can be found in the experiment are known in advance.
Users can decide whether to be error tolerant in the matching.
By foregoing error tolerance, users achieve faster, linear-time
processing at the expense of sensitivity. Alternatively, optimal
aligners are employed, increasing sensitivity but decreasing
speed. In the reference-free mode, barcodes are identified
based on their structure as defined by the user. The structure
of the barcode can be defined by conserved flanking regions
on either side of the barcode, conserved base pairs in the bar-
code, or the combination of the two. This approach is used
when the exact barcode sequences are not known in advance,
for instance when the cells are randomly given a barcode from
a pool of possible barcodes. QuiCAT integrates error correc-
tion mechanisms, combining NGRAMS-based pre-clustering
and a forest-based refinement process. This approach effi-
ciently groups and corrects barcodes for sequencing errors
while pruning the number of pairwise comparisons. During
barcode extraction, the pipeline tracks the associated sample.
For scRNA-seq and SRT data, it also records the respective
cell, spot, or spatial coordinates from which each barcode is
derived, along with UMI information for UMI-based
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Figure 1. Overview of QuiCAT extraction workflow. Bulk DNA sequencing, scRNA-seq, or SRT FASTQ, or BAM files are ingested as inputs (black).
Reads are filtered based on quality thresholds and whitelisted cells/spots (yellow). Barcodes are extracted using either a reference-based (green)
or reference-free (red) workflow. The final AnnData and CSV outputs containing count matrices (blue) can be used for downstream analysis and

visualization.
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QuiCAT

technologies. When working with BAM files as starting inputs,
unlike other pipelines that start from unmapped reads,
QuiCAT lifts this restriction, allowing users to specify any con-
tig, transforming QuiCAT into a general tool for extracting
any sequence of interest.

QuiCAT outputs a sample x cell x barcode or a sample x
spot x barcode count matrix for scRNA-seq and SRT data,
respectively. For population-based DNA data, the output is a
sample x barcode count matrix. The matrices are stored in
both AnnData and CSV formats, ensuring compatibility with
Python-based analysis tools while allowing users to import
data into other frameworks as needed.

Additionally, QuiCAT includes a simulation module capa-
ble of generating both bulkDNA and scRNA-seq synthetic
datasets. Users can opt for a controlled setup maintaining full
control over generated barcodes and their distributions, or
an empirical simulation using state of the art sequenc-
ing simulators.

QuiCAT is a modular Python package featuring both a
command line interface (CLI) and an application program-
ming interface (API). The CLI handles tasks such as simulat-
ing and extracting synthetic tags from sequencing data, while
the API allows users to import the results into an AnnData
object (Virshup et al. 2024) and extends SCANPY’s (Wolf
et al. 2018) plotting functionalities. Each CLI workflow
accepts configuration files, allowing the user to specify run-
time parameters.

2.2 Reads filtering

Users define filtering parameters, including a PHRED (Ewing
et al. 1998) quality threshold and the minimum fraction of
bases in a read that must meet this threshold. Since droplet-
based scRNA-seq methods sequence all droplets, most of
which are empty, users can provide a whitelist of cells, typi-
cally produced by alignment pipelines, ensuring that QuiCAT
only scans reads from whitelisted cells, thereby further reduc-
ing runtime.

The pipeline filters out reads that fail to meet these criteria.
It then passes the remaining reads to the barcode extraction
steps, preserving cell or spot barcode information for scRNA-
seq and SRT data. For UMI-based technologies the dominat-
ing barcode with highest frequency for each UMI is retained,
limiting noise due to sequencing errors. Additionally, to
remove low-count barcodes that may result from PCR arti-
facts, we include an optional pre-filtering step based on either
the absolute count of each UMI-barcode combination or the
relative abundance of the barcode in the entire dataset, which
the user can activate.

2.3 Reference-based barcodes extraction

In the reference-based workflow (Supplementary Fig. 1, green
section), users provide known barcode sequences as a refer-
ence, which can be supplied in different formats. Since mod-
ern sequencers exhibit a low probability of base-calling errors
(Stoler and Nekrutenko 2021), QuiCAT allows the user to
specify the allowed number of alignment mismatches in the
input configuration file. When the tolerance is set to 0,
QuiCAT employs the Aho-Corasick algorithm (Aho and
Corasick 1975) to efficiently extract matching barcodes in
linear time. If a tolerance value is specified, QuiCAT switches
to the optimal aligner Edlib (Sosic and Sikic 2017), extracting
barcodes in quadratic time.

2.4 Reference-free barcodes extraction

The reference-free workflow (Supplementary Fig. 1, red sec-
tion) allows users to define known flanking regions of the
barcodes—upstream, downstream, or both—and optionally
specify a length interval for accepted sequences. Similar to
the reference-based workflow, users can specify a mismatch
tolerance for the flanking regions. If a mismatch tolerance
is set in the input configuration files, QuiCAT uses
CUTADAPT (Martin 2011) to extract barcodes. Otherwise,
it uses regular expression matching (REGEX). Additionally,
users can specify a masked pattern using the character “N”
when part of the barcode’s internal structure is known, as in
LARRY (Weinreb et al. 2020).

Once barcodes are extracted, users can enable sequencing
error correction by specifying a distance threshold. If a
threshold is provided, QuiCAT collapses low-frequency
sequences into higher-frequency ones within the specified dis-
tance. This entails a two-step clustering process: first, a rapid
pre-clustering using NGRAMS, followed by a more refined,
tree-based method.

QuiCAT starts by building an NGRAMS matrix from the
extracted sequences to create multiple fingerprints of each
barcode. Following the Dirichlet Box principle, if the user
wants to allow up to K mismatches we only need to split the
barcodes in K+1 fingerprints, thus we compute the
NGRAMS’ length necessary to split the barcodes in K+ 1 fin-
gerprints using Equation (1), where L represents the barcode
length and K is the distance threshold set by the user.

n=LJ(K+1) (1)

The pipeline then iteratively multiplies vectors in the
matrix to identify sequences sharing at least one NGRAM.
It iteratively groups matching sequences into sets and
removes them from the matrix, reducing the number of neces-
sary multiplications. This process is repeated until the matrix
is empty.

QuiCAT separately processes each set containing two or
more sequences using a forest-based refinement step. It selects
the barcode with the highest count as the root node and itera-
tively compares the others to the root nodes. For variable-
length barcodes, QuiCAT calculates the Levenshtein distance
(Levenshtein 1966)—while for fixed-length ones, it applies
the Hamming distance (Hamming 1950). If a barcode lies
within the specified threshold distance of a root node, QuiCAT
assigns it as a child node. Otherwise, it initializes a new root
node. By limiting comparisons to root nodes during each itera-
tion, we reduce the number of pairwise comparisons and accel-
erates the process. This refinement continues until all barcodes
are clustered. Given that the sets are disjoint, the process is par-
allelized. Each resulting tree forms a cluster, which QuiCAT
then uses to merge barcode counts.

Unlike other pipelines that run STARCODE (Zorita et al.
2015) on each sample individually, QuiCAT performs clus-
tering across the entire dataset, while applying count correc-
tion at the sample level. This is particularly beneficial in
scRNA-seq datasets where sampling bias can occur due to
the limited number of cells analyzed relative to the tissue of
origin (Bonham-Carter and Schiebinger 2024). After identify-
ing groups of barcodes within a specified collapsing distance
threshold, the ones with lower counts are merged into those
with higher counts. Users can also specify a barcode ratio, en-
suring that barcodes with lower counts are collapsed only if
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the count of the major barcode is higher by a specified factor.
By clustering globally, QuiCAT prevents the accidental col-
lapse of real barcodes, even when they appear at low frequen-
cies in some samples.

2.5 Barcode simulation

To support pipeline benchmarking and provide users with a
tool for simulating barcoding libraries, we integrated a dedi-
cated simulation workflow into QuiCAT. This workflow
helps users fine-tune QuiCAT parameters before processing
real data by generating synthetic datasets under two scenar-
ios: controlled simulation and empirical simulation.

In the controlled simulation, users can specify the number
of barcodes to simulate their length, the minimum Hamming
distance between them, the flanking regions, and the distribu-
tion type. Supported distributions include uniform, random,
normal, and power law, each with adjustable parameters.
Users can also configure the number of PCR chimeras for
each real barcode and control their relative abundance com-
pared to the original barcodes. This process generates sequen-
ces with high quality scores and no sequencing errors in the
flanking regions. This setup enables precise runtime compari-
sons across different pipelines.

For accuracy assessment, users can generate empirical sim-
ulations, modeling real sequencing conditions. In this work-
flow, QuiCAT generates a fixed number of real barcodes—
following users’ specified properties—which are then stored
in a FASTA file. These barcodes serve as input for the ART
simulator (Huang et al. 2012). Beyond pipeline benchmark-
ing, this approach allows users to explore the potential bar-
code space and refine experimental designs. The workflow
will produce FASTQ files with the simulated barcodes along
with a CSV file containing the ground truth real sequences in
both scenarios.

3 Results
3.1 Quicat enhances performance in
barcode extraction

To evaluate QuiCAT’s performance, we compared its bar-
code extraction efficiency with two recently published tools:
BARTab and Pycashier. To extend the benchmark performed
in the BARTab manuscript, we applied the three different
pipelines to a publicly available dataset (Goyal et al. 2023),
which encompasses population-level cellular DNA barcoding
of 22 samples with 4 technical replicates each. We ensured
consistency by applying similar parameters across all pipe-
lines and limiting CPU usage to at most 20 cores.

We observed 142650 (95.7%) sequences with at least
0.001% frequencies detected by all three tools (Fig. 2A). An
additional 1846 sequences (1.2%) were only identified by
BARTab and QuiCAT due to Pycashier’s restricted length
flexibility. The remaining non-overlapping barcodes, those
identified by only one or two of the tools, are predominantly
found near the frequency filtering threshold (Fig. 2B). This
difference likely arises from QuiCAT’s use of a global cluster-
ing approach, as opposed to the individual clustering strate-
gies used by the other two pipelines. To assess QuiCAT’s
robustness we computed pearson correlations between techni-
cal replicates on a subset of samples. Briefly, the melanoma
cell line WM989 was split into two treatment groups. Group
fm03 was pretreated for 5days with either DMSO or 4 uM
DOTI1L inhibitor (Dotlli), followed by 1uM treatment with
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B-RafV60OE inhibitor vemurafenib (PLX4032). Group fm02
was directly treated with 1uM or 100nM vemurafenib or
5nM trametinib. QuiCAT barcode extraction yielded strong
correlation between technical replicates and between samples
belonging to the same treatment group, demonstrating its
robustness (Fig. 2C).

Since the Goyal dataset lacks a ground truth, we next
assessed the performances of the three pipelines on a syn-
thetic dataset generated with QuiCAT to verify accuracy
under controlled conditions. The dataset contains four sam-
ples, each containing 5000 (60bp long) sequences, with a
minimum Hamming distance of 6 and fixed flanking regions.
Once generated, these barcodes served as input for the ART
simulator to produce 2000 reads per barcode in amplicon
mode. During barcode extraction, all three pipelines were run
with comparable parameters. BARTab and Pycashier failed
to recapitulate the set of barcodes in the ground truth by
detecting significantly fewer barcodes and additionally pro-
ducing false positives, whereas QuiCAT correctly recon-
structed the ground truth set of barcodes with no false
positives (Fig. 2D and E). QuiCAT’s accurate reconstruction
underscores its robustness and analytical precision, which is
critical in applications demanding high-fidelity barcode iden-
tification and quantification such as including lineage tracing
and CRISPR-based genomic screens.

Beyond accuracy, we assessed the computational perform-
ances of the three pipelines. In terms of speed, QuiCAT out-
performed the other tools in both datasets with up to a
13-fold improvement in runtime compared to the second-best
performing tool in both the Goyal and synthetic datasets
(Fig. 2F). QuiCAT’s speed advantage primarily results from
its optimized barcode collapsing and error correction algo-
rithms, with the benefits of this approach becoming more
apparent as the library complexity increases and more closely
resembles real-world datasets. Furthermore, QuiCAT main-
tained low peak memory consumption despite avoiding the
storage of intermediate files (Fig. 2F).

To extend the benchmark on additional real-world data,
we created an in-house dataset with available ground truth.
Briefly, 40 individual clones were isolated from a PDAC cell
line and simultaneously individually barcoded with a modi-
fied version of LARRY (Weinreb ef al. 2020) with a 16 bp
barcode followed by a conserved region (Supplementary
material). The barcode of each clone was independently
confirmed by sequencing (Supplementary Fig. 2A). Then,
the clones were pooled in equal amounts, expanded for
24 hours, and the barcodes were amplified and sequenced in a
pooled fashion (Supplementary Fig. 2A). For benchmark pur-
poses, the barcodes of the pooled sample were detected using
the reference-free workflows of each tool—Pycashier, Bartab
and QuiCAT—with comparable parameters. In each case, the
barcodes’ correction was enabled allowing up to two mis-
matched nucleotides. Using this setup QuiCAT successfully
extracted all forty expected barcodes, with one detected
false positive barcode, representing 0.6% of relative abun-
dance (Supplementary Fig. 2B), resulting in the best overall
performance (Supplementary Fig. 2E). Similarly, Pycashier
retrieved all 40 expected barcodes but with three false posi-
tives, while Bartab only detected 33 barcodes and eighteen
false positives (Supplementary Fig. 2D), resulting in the worst
performance overall (Supplementary Fig. 2E). To further
assess QuiCAT capabilities, we compared the reference-free to
reference-based extraction. In the reference-based extraction,
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Figure 2. Benchmarking of QuiCAT against available barcode-extraction pipelines displays its advantages. (A) The three tested pipelines show a high
overlap in detected barcode sequences in a real bulk DNA sequencing dataset (Goyal et al. 2023). (B) The frequency distribution of barcodes that are
not detected by all three pipelines shows that they predominantly occur at low frequencies, near the filtering threshold. (C) The correlation matrix on a
subset of samples shows a high correlation between the four technical replicates (indicated by brackets) in the QuiCAT output, demonstrating
robustness. Melanoma cell line WM989 was either pretreated with DMSO or DOT1Li, followed by treatment with the BRAF inhibitor vemurafenib
(PLX4032, 1 uM)—fm03; or was treated with 1 uM or 100 nM PLX4032 or MEK-inhibition with 5nM trametinib (T) without pretreatment—fm02. (D)
Results on a synthetic dataset of 20 000 barcodes generated with QuiCAT demonstrate superior barcode detection, with a 100% match to the ground
truth for QuiCAT, compared to the two other pipelines. (E) Accuracy, precision, recall, and F1 score of the benchmarked tools on the synthetic dataset.
(F) Averaged Peak memory usage (reported as GB per unique barcode) and runtime (reported as milliseconds per unique barcode) on the synthetic and

Goyal dataset extraction workflows.

the barcode sequences extracted from the individual clone
sequencing were used as input reference, allowing up to two
mismatches in the alignment to match the two allowed mis-
matches in the sequencing error correction of the reference-
free setup. Among the expected barcodes we found a 100%
match in barcode counts, between the reference-free and
reference-based extraction workflow (Supplementary Fig. 2C).
While Pycashier does not offer a reference-based method, we
attempted to evaluate QuiCAT against BARTab. However,
BARTab repeatedly failed to extract the barcodes. Its reliance
on Bowtiel (Langmead et al. 2009), optimized for aligning
short reads to long reference genomes, proved unsuitable for
barcode extraction where references are often shorter than
reads. Even when references were masked with “N” positions
to artificially extend their length, BARTab was unable to com-
plete a successful extraction run. Building upon QuiCAT’s
demonstrated efficiency and accuracy in barcode extraction,
we next evaluated its adaptability across various sequencing
technologies and barcode libraries to show how its high degree
of customizability can accommodate a variety of experimental
designs. All the analyses and benchmarks were executed on an
on-premises server with 378 GB of available RAM and two
Intel Xeon Gold 6230 CPUs, providing a total of forty cores
and eighty threads.

3.2 Reference-based extraction of combinatorial
barcodes in single-cell RNA sequencing

Expressed cellular barcoding systems paired with single cell
readouts enable the tracking of clonal populations and asso-
ciated transcriptomic changes across different conditions,
such as genetic or therapeutic perturbations. To demonstrate
QuiCAT’s versatility, we applied its reference-based

workflow to capture and analyze expressed barcodes in
single-cell RNA sequencing data.

We performed an in vitro experiment using Pro-code
barcodes—unique combinations of short protein encoding
tags fused to the mCherry reporter gene (Dhainaut et al.
2022). The expressed barcodes are typically detected using
antibody-based techniques. However, to simultaneously
obtain the single-cell transcriptomes, we opted for mRNA-
based barcode detection.

Five pancreatic ductal adenocarcinoma (PDAC) murine
clonal cell lines were individually tagged with unique combi-
nations of 2-3 Pro-code barcodes. After isolating one PDAC
clone per cell line, we verified the barcodes using Sanger
sequencing and added six additional non-barcoded PDAC
murine cell lines. Since the barcodes vary in total length, with
some barcode combinations exceeding the most commonly
used scRNA-seq read lengths, we selected a probe-based
hybridization approach for combinatorial barcode detection
with 10x Chromium Single Cell Gene Expression Flex kit.
To detect mCherry and Pro-code tags, we designed specific
hybridization probes for each of the Pro-codes and mCherry
(Fig. 3A) (detailed methods in Supplementary Material).

Using three probes, as recommended by the Flex protocol,
we successfully retrieved mCherry sequences with 10x
Genomics Cell Ranger v7.2.0. However, it was not feasible
to design three probes for the Pro-code tags because of their
limited lengths. Therefore, only one probe per barcode tag
was designed. Given the Pro-code tags’ length variability and
absence of a shared flanking region, we employed QuiCAT’s
reference-based workflow for targeted extraction.

After applying filtering steps on the gene expression library
to exclude cells with detected transcripts/genes outside two
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Figure 3. QuiCAT demonstrated reference-based barcode extraction and analysis of the in-house scRNA-seq. (A) Experimental design overview. A Pro-
code with 3 Pro-code tags was used to barcode each cell line and was pooled with non-barcoded cell lines prior to library preparation and sequencing.
(B) mCherry+ barcoded cells cluster apart from non-barcoded cell lines. (C, D) The cell lines were assigned based on mCherry expression status and
expected combination of two or three Pro-code tags. (E) Leiden clustering based on gene expression identified 11 distinct clusters. (F) Leiden clusters
overlap with cell lines based on Pro-code tag expression. (G) Representation of cell lines across Leiden clusters shows that different cell lines tend to
segregate transcriptionally with high concordance of Leiden clusters and different barcoded cells. (H, I) UMAP of cell line 1 coloured by Leiden clusters
(H), and expression of the proliferation marker gene Top2a (I), which is increased in cluster 8. (J) Gene enrichment analysis shows Leiden cluster 8 to
express Hallmark gene sets associated with cell cycle progression and increased proliferation.

median absolute deviations according to current single-cell best
practices (Heumos et al. 2023), after the filtering we were left
with 5930 high quality cells (59.7% of the dataset). Next we
integrated the QuiCAT output with the gene expression
AnnData object. Positive mCherry barcoded cell lines notably
cluster apart from the non-barcoded cell lines (Fig. 3B). We
then assigned cells to clones using QuiCAT’s API by comparing
the set of detected barcodes per cell against the expected
Pro-code tag combinations. Since our library included clones
carrying combinations of two or three barcodes, the assignment
procedure evaluated which predefined combination best
matched the observed barcodes. To ensure robust assignments,
cells were only mapped to a clone if the best match reached at
least 75% similarity with the expected barcode combinations

(Fig. 3C and D). The 75% cutoff was chosen as a balance
between sensitivity and specificity reducing the risk of misas-
signing cells due to barcode dropout or spurious detection,
while at the same time avoiding the exclusion of a large fraction
of true clonal cells affected by imperfect barcode capture.
Empirically, this threshold provided a practical compromise,
allowing us to assign a clone to every Pro-code positive cell.
To explore differences among the cell lines, we identified
11 Leiden clusters based on gene expression (Fig. 3E). Cell
line assignments were mapped onto these clusters, revealing
strong concordance (Fig. 3G). Interestingly, cell line 1
appeared in two separate Leiden clusters, both linked to the
same starting cell clone of the cell line through synthetic bar-
coding. A closer examination showed distinct transcription
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profiles between these two clusters, indicating plasticity or tu-
mor evolution of the cells over the prolonged culturing period
during clonal isolation (Fig. 3H and I). Gene enrichment
analysis performed with Decoupler (Badia-I-Mompel et al.
2022) and Liana (Dimitrov et al. 2024) revealed increased
proliferative activity in cluster 8 (Fig. 3]).

Having validated QuiCAT’s ability to accurately extract
Pro-code barcodes and integrate them with transcriptomic
data, we next sought to compare its performance against
Bartab. As for the in-house dataset from the previous section,
we were unfortunately unable to complete a successful run
using Bartab reference-based workflow for performance com-
parison due to the limitations of the tool.

3.3 Quicat enables barcode extraction in spatial
transcriptomics

Spatial transcriptomics has transformed transcriptome analy-
sis by incorporating spatial information, allowing researchers
to investigate cellular interactions and neighborhoods. Most
techniques, including Visium and Stereo-seq, utilise fixed
barcode-labeled-oligonucleotides to link the mRNA tran-
script to the spatial coordinates.

To demonstrate barcode extraction in a spatial dataset, we
applied QuiCAT to a study exploring clonal relationships in
the developing mouse brain (Ratz et al. 2022). Briefly, mouse
embryonic progenitor cells were labeled in vivo on embryonic
day 9.5 using a lentiviral library, incorporating a 30 bp ran-
dom barcode sequence downstream of the nuclear-localized
EGFP. The mice were sacrificed and analyzed at around post-
natal day P14. Visium spatial transcriptomics and immunos-
taining were performed on eight consecutive 10 um brain
sections from one mouse.

Using QuiCAT in reference-free mode, we extracted barco-
des from all eight Visium slides using FASTQ reads. Barcode
presence varied substantially between slides (Fig. 4A). Notably,
slides 1-4 exhibited higher endogenous transcripts and barcode

A

detection compared to slides 5-8, likely due to immunohisto-
chemistry (IHC) staining performed prior to Visium processing
in the latter group (Fig. 4B) as described in the original publica-
tion. Notably, barcode detection in slide 5 was lower than in
all other THC-stained slides, in line with lower overall tran-
script abundance in this sample. In general, most spots con-
tained between one and five barcodes (Fig. 4C). Focusing the
analysis on slide 1, we performed Leiden clustering based on
transcriptomic profile, which delineated distinct brain regions,
consistent with the original publication (Fig. 4D). Next, we ex-
amined the abundance of different barcodes among Leiden
clusters and observed higher barcode variability in clusters 2, 7,
and 8 (Fig. 4E). Almost no barcodes were detected in cluster 4
due to its position at the edge of the slide, which reduced spots
qualities and the number of detected transcripts and barcodes
overall. In general, we observe a correlation between the detec-
tion of endogenous transcripts and barcodes. To investigate
clonal localization patterns, we focused on the two most abun-
dant clones and generally observed a lack of spatial segregation
(Fig. 4F). This widespread barcode distribution aligns with
expectations since barcoding happened early in brain develop-
ment (E9.5). As a result, the barcode was passed on to progeny
populating all investigated brain regions.

3.4. Extraction of sgRNA coupled to scRNA-seq on
Perturb seq dataset

Recent advances in single-cell methods, such as Perturb-seq,
allow for the coupling of CRISPR screens with scRNA-
seq (Dixit et al. 2016). To demonstrate QuiCAT’s utility be-
yond cellular barcodes, we applied it to a single sample
(KD6_1_essential) of a public Perturb-seq dataset (Replogle
et al. 2022) targeting 2203 essential genes. For efficient gene
depletion, the study used two single-guided RNAs (sgRNAs)
targeting the same gene that were both present in the same
construct (dual-sgRNA construct) and were therefore expressed
in the same cells. For demonstration purposes we limited the
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Figure 4. Barcodes can be extracted from spatial transcriptomic data with QuiCAT. Briefly, mouse embryonic progenitor cells were labeled with
expressed barcodes in vivo on embryonic day 9.5 and the brain was sampled around postnatal day P14. 10x Visium spatial transcriptomics was
performed on eight consecutive brain sections. (A) Barcode-positive Visium spots compared to the total number of spots in the eight different

Visium samples. (B) Fewer barcodes were retrieved in samples that underwent IHC prior to the Visium run indicating lower quality of the slides #5-8.
(C) Detected number of different barcodes per spot combining all slides. (D) Gene expression-based Leiden clustering on slide #1. (E) Barcodes per spot
show variability across clusters, with clusters 2, 7, and 8 exhibiting the highest barcode counts. (F) The two most abundant barcodes are spatially

distributed over all brain regions.
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UMAP embedding. (C) Targeted genes' expression was markedly reduced in cells containing the corresponding sgRNA compared to other cells.

analysis to a single sample from the study. Using the reference-
based extraction workflow of QuiCAT, we extracted the
sgRNAs and mapped them to their origin cell. We found that
most cells contained a single sgRNA pair, while a smaller frac-
tion contained multiple pairs (Fig. SA). After quality control
and preprocessing according to single-cell best practices
(Heumos et al. 2023), we found that cells containing identical
sgRNAs frequently appeared close together in the UMAP em-
bedding (Fig. 5B). As expected, the expression of a targeted
gene was substantially reduced in cells containing the corre-
sponding sgRNA, confirming both the efficacy of the screen
and the accuracy of our extraction.

4 Discussion

In this work, we introduced QuiCAT, an end-to-end Python
package for the analysis of synthetic DNA and RNA barcodes.
Benchmarking demonstrated QuiCAT’s ability to extract barc-
odes across different datasets, outperforming current pipelines
in both accuracy and speed. QuiCAT’s reference-based align-
ment strategy demonstrated superior flexibility in sequence
retrieval compared to existing pipelines. Those pipelines either
lack reference-based support entirely or rely on general-
purpose aligners, which are often suboptimal for barcode ex-
traction, with Bartab repeatedly failing to complete a successful
run when a reference is provided, while Pycashier entirely lack-
ing the reference-based workflow. Additionally, by leveraging
optimized algorithms in both the reference-free and reference-
based approaches, QuiCAT ensures robust detection of barco-
des while dramatically increasing computational performances.
This is particularly important in emerging high-throughput
applications where scalability and accuracy are crucial.
QuiCAT’s modular and open-source design, combined
with user-configurable parameters for fine-grained control,
grants flexibility across different datasets, and various syn-
thetic cellular barcoding systems. At the current stage,
QuiCAT supports barcode extraction from DNA sequencing
data in both single-end and paired-end formats, 10x Genomics
datasets including Chromium, Flex, and Visium, spatial

datasets generated with Stereoseq, as well as single-cell data-
sets from Parse Biosciences, as these are the most prominent
in recent literature. Additionally, given the modularity of
QuiCAT’s code, adding support for emerging technologies will
be fast and easy, making the pipeline future-proof. Moreover,
QuiCAT outputs are compatible with Scanpy for downstream
tasks by directly outputting an AnnData HSAD file.
Alternatively, QuiCAT’s CSV output can be imported into any
framework of the user’s choice, ensuring interoperability.
QuiCAT accepts both FASTQ and BAM inputs. When
working with FASTQ files, every read in the dataset is
scanned for sequences of interest. In single-cell or spatial
transcriptomics datasets, where alignment is typically per-
formed with the vendor-provided pipelines, users can instead
use the resulting BAM files as the starting point. Unlike other
pipelines that restrict analysis to unmapped reads when
working with BAM files, QuiCAT relaxes this constraint by
allowing users to specify whether to focus on reads mapped
to a given contig, to use only unmapped reads, or to process
the entire read set. This feature enables targeted extraction of
known variants of interest, removing the rigid constraints im-
posed by existing barcode extraction tools. Consequently,
QuiCAT has the theoretical potential to function as a
general-purpose sequence extractor, extending its usability to
a broader range of applications beyond synthetic barcoding.
We showecase this increased flexibility in a public Perturb-seq
dataset using QuiCAT to extract sgRNAs and map them to
their cell of origin. However, it is important to note that
while QuiCAT’s flexibility theoretically allows it to retrieve
sequences of interest in different contexts, it has not been
explicitly tested for use cases beyond barcode extraction and
Perturb-seq datasets. Users exploring novel applications
should carefully validate performance for their specific needs
where additional optimization may be required. For example,
QuiCAT has not yet been specifically tested for dynamic bar-
coding systems. Most dynamic barcoding systems employ a
two-barcode structure with one dynamic and one static bar-
code, such as macsGESTALT (Simeonov et al. 2021). In this
scenario the user could theoretically run the extraction
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workflow twice and combine the two outputs afterwards.
For dynamic systems that rely on a single barcode like
LINNAEUS (Spanjaard et al. 2018), QuiCAT’s reference-free
workflow could potentially be utilised, but users would need
to carefully adjust the parameters, especially when perform-
ing sequencing error correction. These improvements could
be implemented in future iterations if demand for these use
cases arises.

Additionally, while QuiCAT demonstrated strong perfor-
mance in benchmarking tests without a significant increase in
memory footprint compared to other pipelines, users should
still be aware that the QuiCAT processes all data in memory.
This architecture enables fast execution but may lead to high
random-access memory (RAM) usage for extremely large
datasets, particularly through the creation of the NGRAMS
matrix. In cases where barcode libraries are highly complex,
users may need to monitor system memory availability and
adjust computational resources accordingly. Future itera-
tions of QuiCAT may explore memory-efficient strategies,
such as chunked processing, if memory footprint becomes
a bottleneck.
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