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Abstract
Motivation: Synthetic cellular tagging technologies play a crucial role in cell fate and lineage-tracing studies. Their integration with single-cell 
and spatial transcriptomics assays has heightened the need for scalable software solutions to analyze such data. However, previous methods 
are either designed for a subset of tagging technologies, or lack the performance needed for large-scale applications.
Results: To address these challenges, we developed Quick Clonal Analysis Toolkit (QuiCAT), an end-to-end Python-based package that stream
lines the extraction, clustering, and analysis of synthetic tags from sequencing data. QuiCAT outperforms existing pipelines in both speed 
and accuracy. Its outputs are widely compatible with the Python ecosystem for single-cell and spatial transcriptomics data analysis packages 
allowing seamless integrations and downstream analyses. QuiCAT provides users with two workflows: a reference-free approach for extracting 
and mapping synthetic tags, and a reference-based approach for aligning tags against known sequences. We validate QuiCAT across diverse 
datasets, including population-level data, single-cell and spatially resolved transcriptomics, and benchmarked it against the two most recently 
published tools. Our computational optimizations enhance performance while improving accuracy.
Availability: QuiCAT is available as a Python package to be installed. The source code is available at https://github.com/theislab/quicat

1 Introduction
The need to differentiate and track individual cells or cell 
populations has driven the development of various cellular 
barcoding systems over the past years (Lu et al. 2011; Biddy 
et al. 2018; Wroblewska et al. 2018; Weinreb et al. 2020; 
Emert et al. 2021; Oren et al. 2021; Chang et al. 2022; 
Fennell et al. 2022; Ratz et al. 2022; Umeki et al. 
2022; Yalcin et al. 2023; Baygin et al. 2024; Jang et al. 2025; 
Kinsler et al. 2025). These barcoding techniques allow 
researchers to quantify the relative abundance of uniquely bar
coded cells in samples using DNA sequencing. When paired 
with phenotypic readouts like single-cell RNA sequencing 
(scRNA-seq) and spatially resolved transcriptomics (SRT), 
synthetic barcodes enable the tracking and characterization of 
distinct cell populations and their behaviours across various 

experimental conditions (Serrano et al. 2022). Recent advance
ments led to an increased affordability and accessibility of 
scRNA-seq, allowing more research groups to adopt barcod
ing systems for investigating heterogeneous cell populations 
(Serrano et al. 2022; Howland and Brock 2023). However, 
these systems are often developed independently and tailored 
for specific applications. This has resulted in an array of barcode 
structures and analysis software packages, which are typically 
optimized for particular designs (Corsello et al. 2020; Weinreb 
et al. 2020; Ratz et al. 2022; Umeki et al. 2022; Baygin et al. 
2024; Jindal et al. 2024; Jang et al. 2025; Kinsler et al. 2025). 
For example, many available pipelines have limited flexibility 
in terms of barcode length and structure, restricting the range 
of potential applications. Several others are compatible with 
only a narrow subset of sequencing technologies, and 
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exclusively accept FASTQ input files. In response to these chal
lenges, two more flexible software packages have recently 
emerged to accommodate a range of barcoding techniques 
(Daylin and Amy 2024; Holze et al. 2024). Despite these 
advances, they often fall short in terms of sequence flexibility, 
supported technologies, and, importantly, overall performance. 
Most pipelines suffer from suboptimal processing speeds, 
making them unsuitable for massively parallel screens—key 
applications of synthetic tagging systems as the field shifts 
toward large-scale, high-throughput approaches (Zhang 
et al. 2025). Most of them function primarily as wrappers 
around pre-existing tools, lacking computational optimiza
tions. Moreover, the majority of the other pipelines do 
not support reference-based barcode extraction methods. 
Collectively, these constraints create a fragmented landscape 
forcing users to navigate the complexity and select the tool 
that fits each unique application.

To address this gap, we introduce Quick Clonal Analysis 
Toolkit (QuiCAT), a Python-based toolkit designed for 
rapid, accurate, and flexible barcode extraction and analysis 
from sequencing data (Fig. 1). Regardless of barcode length 
or structure, QuiCAT’s flexibility allows it to adapt to any 
barcoding library used and to generate count matrices from 
population-based DNA, scRNA-seq, and SRT data. QuiCAT 
supports multiple sequencing technologies and accepts diverse 
input formats, offering both reference-free and reference-based 
extraction methods. We benchmarked QuiCAT against the 
current state-of-the-art pipelines using a publicly available 
population-based dataset, and a synthetically generated 
dataset. Additionally, we applied QuiCAT to capture com
binatorial barcodes in a newly generated dataset featuring 
Pro-codes (Wroblewska et al. 2018; Dhainaut et al. 2022) 
combined with scRNA-seq, and a publicly available SRT data
set (Ratz et al. 2022).

2 Methods
2.1 Quicat overview
QuiCAT is a high-performance, flexible, and scalable Python- 
based package for the extraction of synthetic barcodes from 

sequencing data. Its modular design allows efficient retrieval 
from different modalities, including DNA sequencing, 
scRNAseq or SRT datasets. QuiCAT is built from the ground 
up to enhance efficiency, reduce redundant computations, and 
scale effectively for large datasets.

At the core of QuiCAT is the extraction workflow (Fig. 1
and Supplementary Fig. 1), which supports both binary align
ment map (BAM) and FASTQ input files, accommodating 
paired-end or single-end reads. If starting from BAM files, 
the user has an option to scan all reads, to only scan reads 
aligned to specific contigs, or to scan all the unaligned reads 
where the synthetic barcodes are usually found leaving the 
user full flexibility. The workflow begins with a QC step that 
removes reads failing user-defined QC criteria. The remain
ing reads are then scanned for sequences of interest using 
either a reference-based or a reference-free approach. In 
reference-based mode, users supply a list of known barcode 
sequences for exact matching, allowing precise retrieval. 
Typically, this is used when all barcodes (or other sequences) 
that can be found in the experiment are known in advance. 
Users can decide whether to be error tolerant in the matching. 
By foregoing error tolerance, users achieve faster, linear-time 
processing at the expense of sensitivity. Alternatively, optimal 
aligners are employed, increasing sensitivity but decreasing 
speed. In the reference-free mode, barcodes are identified 
based on their structure as defined by the user. The structure 
of the barcode can be defined by conserved flanking regions 
on either side of the barcode, conserved base pairs in the bar
code, or the combination of the two. This approach is used 
when the exact barcode sequences are not known in advance, 
for instance when the cells are randomly given a barcode from 
a pool of possible barcodes. QuiCAT integrates error correc
tion mechanisms, combining NGRAMS-based pre-clustering 
and a forest-based refinement process. This approach effi
ciently groups and corrects barcodes for sequencing errors 
while pruning the number of pairwise comparisons. During 
barcode extraction, the pipeline tracks the associated sample. 
For scRNA-seq and SRT data, it also records the respective 
cell, spot, or spatial coordinates from which each barcode is 
derived, along with UMI information for UMI-based 

Figure 1. Overview of QuiCAT extraction workflow. Bulk DNA sequencing, scRNA-seq, or SRT FASTQ, or BAM files are ingested as inputs (black). 
Reads are filtered based on quality thresholds and whitelisted cells/spots (yellow). Barcodes are extracted using either a reference-based (green) 
or reference-free (red) workflow. The final AnnData and CSV outputs containing count matrices (blue) can be used for downstream analysis and 
visualization.
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technologies. When working with BAM files as starting inputs, 
unlike other pipelines that start from unmapped reads, 
QuiCAT lifts this restriction, allowing users to specify any con
tig, transforming QuiCAT into a general tool for extracting 
any sequence of interest.

QuiCAT outputs a sample x cell x barcode or a sample x 
spot x barcode count matrix for scRNA-seq and SRT data, 
respectively. For population-based DNA data, the output is a 
sample x barcode count matrix. The matrices are stored in 
both AnnData and CSV formats, ensuring compatibility with 
Python-based analysis tools while allowing users to import 
data into other frameworks as needed.

Additionally, QuiCAT includes a simulation module capa
ble of generating both bulkDNA and scRNA-seq synthetic 
datasets. Users can opt for a controlled setup maintaining full 
control over generated barcodes and their distributions, or 
an empirical simulation using state of the art sequenc
ing simulators.

QuiCAT is a modular Python package featuring both a 
command line interface (CLI) and an application program
ming interface (API). The CLI handles tasks such as simulat
ing and extracting synthetic tags from sequencing data, while 
the API allows users to import the results into an AnnData 
object (Virshup et al. 2024) and extends SCANPY’s (Wolf 
et al. 2018) plotting functionalities. Each CLI workflow 
accepts configuration files, allowing the user to specify run
time parameters.

2.2 Reads filtering
Users define filtering parameters, including a PHRED (Ewing 
et al. 1998) quality threshold and the minimum fraction of 
bases in a read that must meet this threshold. Since droplet- 
based scRNA-seq methods sequence all droplets, most of 
which are empty, users can provide a whitelist of cells, typi
cally produced by alignment pipelines, ensuring that QuiCAT 
only scans reads from whitelisted cells, thereby further reduc
ing runtime.

The pipeline filters out reads that fail to meet these criteria. 
It then passes the remaining reads to the barcode extraction 
steps, preserving cell or spot barcode information for scRNA- 
seq and SRT data. For UMI-based technologies the dominat
ing barcode with highest frequency for each UMI is retained, 
limiting noise due to sequencing errors. Additionally, to 
remove low-count barcodes that may result from PCR arti
facts, we include an optional pre-filtering step based on either 
the absolute count of each UMI–barcode combination or the 
relative abundance of the barcode in the entire dataset, which 
the user can activate.

2.3 Reference-based barcodes extraction
In the reference-based workflow (Supplementary Fig. 1, green 
section), users provide known barcode sequences as a refer
ence, which can be supplied in different formats. Since mod
ern sequencers exhibit a low probability of base-calling errors 
(Stoler and Nekrutenko 2021), QuiCAT allows the user to 
specify the allowed number of alignment mismatches in the 
input configuration file. When the tolerance is set to 0, 
QuiCAT employs the Aho-Corasick algorithm (Aho and 
Corasick 1975) to efficiently extract matching barcodes in 
linear time. If a tolerance value is specified, QuiCAT switches 
to the optimal aligner Edlib (Sosic and Sikic 2017), extracting 
barcodes in quadratic time.

2.4 Reference-free barcodes extraction
The reference-free workflow (Supplementary Fig. 1, red sec
tion) allows users to define known flanking regions of the 
barcodes—upstream, downstream, or both—and optionally 
specify a length interval for accepted sequences. Similar to 
the reference-based workflow, users can specify a mismatch 
tolerance for the flanking regions. If a mismatch tolerance 
is set in the input configuration files, QuiCAT uses 
CUTADAPT (Martin 2011) to extract barcodes. Otherwise, 
it uses regular expression matching (REGEX). Additionally, 
users can specify a masked pattern using the character “N” 
when part of the barcode’s internal structure is known, as in 
LARRY (Weinreb et al. 2020).

Once barcodes are extracted, users can enable sequencing 
error correction by specifying a distance threshold. If a 
threshold is provided, QuiCAT collapses low-frequency 
sequences into higher-frequency ones within the specified dis
tance. This entails a two-step clustering process: first, a rapid 
pre-clustering using NGRAMS, followed by a more refined, 
tree-based method.

QuiCAT starts by building an NGRAMS matrix from the 
extracted sequences to create multiple fingerprints of each 
barcode. Following the Dirichlet Box principle, if the user 
wants to allow up to K mismatches we only need to split the 
barcodes in Kþ1 fingerprints, thus we compute the 
NGRAMS’ length necessary to split the barcodes in Kþ 1 fin
gerprints using Equation (1), where L represents the barcode 
length and K is the distance threshold set by the user. 

n ¼ L=ðKþ1Þ (1) 

The pipeline then iteratively multiplies vectors in the 
matrix to identify sequences sharing at least one NGRAM. 
It iteratively groups matching sequences into sets and 
removes them from the matrix, reducing the number of neces
sary multiplications. This process is repeated until the matrix 
is empty.

QuiCAT separately processes each set containing two or 
more sequences using a forest-based refinement step. It selects 
the barcode with the highest count as the root node and itera
tively compares the others to the root nodes. For variable- 
length barcodes, QuiCAT calculates the Levenshtein distance 
(Levenshtein 1966)—while for fixed-length ones, it applies 
the Hamming distance (Hamming 1950). If a barcode lies 
within the specified threshold distance of a root node, QuiCAT 
assigns it as a child node. Otherwise, it initializes a new root 
node. By limiting comparisons to root nodes during each itera
tion, we reduce the number of pairwise comparisons and accel
erates the process. This refinement continues until all barcodes 
are clustered. Given that the sets are disjoint, the process is par
allelized. Each resulting tree forms a cluster, which QuiCAT 
then uses to merge barcode counts.

Unlike other pipelines that run STARCODE (Zorita et al. 
2015) on each sample individually, QuiCAT performs clus
tering across the entire dataset, while applying count correc
tion at the sample level. This is particularly beneficial in 
scRNA-seq datasets where sampling bias can occur due to 
the limited number of cells analyzed relative to the tissue of 
origin (Bonham-Carter and Schiebinger 2024). After identify
ing groups of barcodes within a specified collapsing distance 
threshold, the ones with lower counts are merged into those 
with higher counts. Users can also specify a barcode ratio, en
suring that barcodes with lower counts are collapsed only if 
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the count of the major barcode is higher by a specified factor. 
By clustering globally, QuiCAT prevents the accidental col
lapse of real barcodes, even when they appear at low frequen
cies in some samples.

2.5 Barcode simulation
To support pipeline benchmarking and provide users with a 
tool for simulating barcoding libraries, we integrated a dedi
cated simulation workflow into QuiCAT. This workflow 
helps users fine-tune QuiCAT parameters before processing 
real data by generating synthetic datasets under two scenar
ios: controlled simulation and empirical simulation.

In the controlled simulation, users can specify the number 
of barcodes to simulate their length, the minimum Hamming 
distance between them, the flanking regions, and the distribu
tion type. Supported distributions include uniform, random, 
normal, and power law, each with adjustable parameters. 
Users can also configure the number of PCR chimeras for 
each real barcode and control their relative abundance com
pared to the original barcodes. This process generates sequen
ces with high quality scores and no sequencing errors in the 
flanking regions. This setup enables precise runtime compari
sons across different pipelines.

For accuracy assessment, users can generate empirical sim
ulations, modeling real sequencing conditions. In this work
flow, QuiCAT generates a fixed number of real barcodes— 
following users’ specified properties—which are then stored 
in a FASTA file. These barcodes serve as input for the ART 
simulator (Huang et al. 2012). Beyond pipeline benchmark
ing, this approach allows users to explore the potential bar
code space and refine experimental designs. The workflow 
will produce FASTQ files with the simulated barcodes along 
with a CSV file containing the ground truth real sequences in 
both scenarios.

3 Results
3.1 Quicat enhances performance in 
barcode extraction
To evaluate QuiCAT’s performance, we compared its bar
code extraction efficiency with two recently published tools: 
BARTab and Pycashier. To extend the benchmark performed 
in the BARTab manuscript, we applied the three different 
pipelines to a publicly available dataset (Goyal et al. 2023), 
which encompasses population-level cellular DNA barcoding 
of 22 samples with 4 technical replicates each. We ensured 
consistency by applying similar parameters across all pipe
lines and limiting CPU usage to at most 20 cores.

We observed 142 650 (95.7%) sequences with at least 
0.001% frequencies detected by all three tools (Fig. 2A). An 
additional 1846 sequences (1.2%) were only identified by 
BARTab and QuiCAT due to Pycashier’s restricted length 
flexibility. The remaining non-overlapping barcodes, those 
identified by only one or two of the tools, are predominantly 
found near the frequency filtering threshold (Fig. 2B). This 
difference likely arises from QuiCAT’s use of a global cluster
ing approach, as opposed to the individual clustering strate
gies used by the other two pipelines. To assess QuiCAT’s 
robustness we computed pearson correlations between techni
cal replicates on a subset of samples. Briefly, the melanoma 
cell line WM989 was split into two treatment groups. Group 
fm03 was pretreated for 5 days with either DMSO or 4 µM 
DOT1L inhibitor (Dot1li), followed by 1uM treatment with 

B-RafV600E inhibitor vemurafenib (PLX4032). Group fm02 
was directly treated with 1 µM or 100 nM vemurafenib or 
5 nM trametinib. QuiCAT barcode extraction yielded strong 
correlation between technical replicates and between samples 
belonging to the same treatment group, demonstrating its 
robustness (Fig. 2C).

Since the Goyal dataset lacks a ground truth, we next 
assessed the performances of the three pipelines on a syn
thetic dataset generated with QuiCAT to verify accuracy 
under controlled conditions. The dataset contains four sam
ples, each containing 5000 (60 bp long) sequences, with a 
minimum Hamming distance of 6 and fixed flanking regions. 
Once generated, these barcodes served as input for the ART 
simulator to produce 2000 reads per barcode in amplicon 
mode. During barcode extraction, all three pipelines were run 
with comparable parameters. BARTab and Pycashier failed 
to recapitulate the set of barcodes in the ground truth by 
detecting significantly fewer barcodes and additionally pro
ducing false positives, whereas QuiCAT correctly recon
structed the ground truth set of barcodes with no false 
positives (Fig. 2D and E). QuiCAT’s accurate reconstruction 
underscores its robustness and analytical precision, which is 
critical in applications demanding high-fidelity barcode iden
tification and quantification such as including lineage tracing 
and CRISPR-based genomic screens.

Beyond accuracy, we assessed the computational perform
ances of the three pipelines. In terms of speed, QuiCAT out
performed the other tools in both datasets with up to a 
13-fold improvement in runtime compared to the second-best 
performing tool in both the Goyal and synthetic datasets 
(Fig. 2F). QuiCAT’s speed advantage primarily results from 
its optimized barcode collapsing and error correction algo
rithms, with the benefits of this approach becoming more 
apparent as the library complexity increases and more closely 
resembles real-world datasets. Furthermore, QuiCAT main
tained low peak memory consumption despite avoiding the 
storage of intermediate files (Fig. 2F).

To extend the benchmark on additional real-world data, 
we created an in-house dataset with available ground truth. 
Briefly, 40 individual clones were isolated from a PDAC cell 
line and simultaneously individually barcoded with a modi
fied version of LARRY (Weinreb et al. 2020) with a 16 bp 
barcode followed by a conserved region (Supplementary 
material). The barcode of each clone was independently 
confirmed by sequencing (Supplementary Fig. 2A). Then, 
the clones were pooled in equal amounts, expanded for 
24 hours, and the barcodes were amplified and sequenced in a 
pooled fashion (Supplementary Fig. 2A). For benchmark pur
poses, the barcodes of the pooled sample were detected using 
the reference-free workflows of each tool—Pycashier, Bartab 
and QuiCAT—with comparable parameters. In each case, the 
barcodes’ correction was enabled allowing up to two mis
matched nucleotides. Using this setup QuiCAT successfully 
extracted all forty expected barcodes, with one detected 
false positive barcode, representing 0.6% of relative abun
dance (Supplementary Fig. 2B), resulting in the best overall 
performance (Supplementary Fig. 2E). Similarly, Pycashier 
retrieved all 40 expected barcodes but with three false posi
tives, while Bartab only detected 33 barcodes and eighteen 
false positives (Supplementary Fig. 2D), resulting in the worst 
performance overall (Supplementary Fig. 2E). To further 
assess QuiCAT capabilities, we compared the reference-free to 
reference-based extraction. In the reference-based extraction, 
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the barcode sequences extracted from the individual clone 
sequencing were used as input reference, allowing up to two 
mismatches in the alignment to match the two allowed mis
matches in the sequencing error correction of the reference- 
free setup. Among the expected barcodes we found a 100% 
match in barcode counts, between the reference-free and 
reference-based extraction workflow (Supplementary Fig. 2C). 
While Pycashier does not offer a reference-based method, we 
attempted to evaluate QuiCAT against BARTab. However, 
BARTab repeatedly failed to extract the barcodes. Its reliance 
on Bowtie1 (Langmead et al. 2009), optimized for aligning 
short reads to long reference genomes, proved unsuitable for 
barcode extraction where references are often shorter than 
reads. Even when references were masked with “N” positions 
to artificially extend their length, BARTab was unable to com
plete a successful extraction run. Building upon QuiCAT’s 
demonstrated efficiency and accuracy in barcode extraction, 
we next evaluated its adaptability across various sequencing 
technologies and barcode libraries to show how its high degree 
of customizability can accommodate a variety of experimental 
designs. All the analyses and benchmarks were executed on an 
on-premises server with 378 GB of available RAM and two 
Intel Xeon Gold 6230 CPUs, providing a total of forty cores 
and eighty threads.

3.2 Reference-based extraction of combinatorial 
barcodes in single-cell RNA sequencing
Expressed cellular barcoding systems paired with single cell 
readouts enable the tracking of clonal populations and asso
ciated transcriptomic changes across different conditions, 
such as genetic or therapeutic perturbations. To demonstrate 
QuiCAT’s versatility, we applied its reference-based 

workflow to capture and analyze expressed barcodes in 
single-cell RNA sequencing data.

We performed an in vitro experiment using Pro-code 
barcodes—unique combinations of short protein encoding 
tags fused to the mCherry reporter gene (Dhainaut et al. 
2022). The expressed barcodes are typically detected using 
antibody-based techniques. However, to simultaneously 
obtain the single-cell transcriptomes, we opted for mRNA- 
based barcode detection.

Five pancreatic ductal adenocarcinoma (PDAC) murine 
clonal cell lines were individually tagged with unique combi
nations of 2–3 Pro-code barcodes. After isolating one PDAC 
clone per cell line, we verified the barcodes using Sanger 
sequencing and added six additional non-barcoded PDAC 
murine cell lines. Since the barcodes vary in total length, with 
some barcode combinations exceeding the most commonly 
used scRNA-seq read lengths, we selected a probe-based 
hybridization approach for combinatorial barcode detection 
with 10x Chromium Single Cell Gene Expression Flex kit. 
To detect mCherry and Pro-code tags, we designed specific 
hybridization probes for each of the Pro-codes and mCherry 
(Fig. 3A) (detailed methods in Supplementary Material).

Using three probes, as recommended by the Flex protocol, 
we successfully retrieved mCherry sequences with 10x 
Genomics Cell Ranger v7.2.0. However, it was not feasible 
to design three probes for the Pro-code tags because of their 
limited lengths. Therefore, only one probe per barcode tag 
was designed. Given the Pro-code tags’ length variability and 
absence of a shared flanking region, we employed QuiCAT’s 
reference-based workflow for targeted extraction.

After applying filtering steps on the gene expression library 
to exclude cells with detected transcripts/genes outside two 

Figure 2. Benchmarking of QuiCAT against available barcode-extraction pipelines displays its advantages. (A) The three tested pipelines show a high 
overlap in detected barcode sequences in a real bulk DNA sequencing dataset (Goyal et al. 2023). (B) The frequency distribution of barcodes that are 
not detected by all three pipelines shows that they predominantly occur at low frequencies, near the filtering threshold. (C) The correlation matrix on a 
subset of samples shows a high correlation between the four technical replicates (indicated by brackets) in the QuiCAT output, demonstrating 
robustness. Melanoma cell line WM989 was either pretreated with DMSO or DOT1Li, followed by treatment with the BRAF inhibitor vemurafenib 
(PLX4032, 1 µM)—fm03; or was treated with 1 µM or 100 nM PLX4032 or MEK-inhibition with 5 nM trametinib (T) without pretreatment—fm02. (D) 
Results on a synthetic dataset of 20 000 barcodes generated with QuiCAT demonstrate superior barcode detection, with a 100% match to the ground 
truth for QuiCAT, compared to the two other pipelines. (E) Accuracy, precision, recall, and F1 score of the benchmarked tools on the synthetic dataset. 
(F) Averaged Peak memory usage (reported as GB per unique barcode) and runtime (reported as milliseconds per unique barcode) on the synthetic and 
Goyal dataset extraction workflows.
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median absolute deviations according to current single-cell best 
practices (Heumos et al. 2023), after the filtering we were left 
with 5930 high quality cells (59.7% of the dataset). Next we 
integrated the QuiCAT output with the gene expression 
AnnData object. Positive mCherry barcoded cell lines notably 
cluster apart from the non-barcoded cell lines (Fig. 3B). We 
then assigned cells to clones using QuiCAT’s API by comparing 
the set of detected barcodes per cell against the expected 
Pro-code tag combinations. Since our library included clones 
carrying combinations of two or three barcodes, the assignment 
procedure evaluated which predefined combination best 
matched the observed barcodes. To ensure robust assignments, 
cells were only mapped to a clone if the best match reached at 
least 75% similarity with the expected barcode combinations 

(Fig. 3C and D). The 75% cutoff was chosen as a balance 
between sensitivity and specificity reducing the risk of misas
signing cells due to barcode dropout or spurious detection, 
while at the same time avoiding the exclusion of a large fraction 
of true clonal cells affected by imperfect barcode capture. 
Empirically, this threshold provided a practical compromise, 
allowing us to assign a clone to every Pro-code positive cell.

To explore differences among the cell lines, we identified 
11 Leiden clusters based on gene expression (Fig. 3E). Cell 
line assignments were mapped onto these clusters, revealing 
strong concordance (Fig. 3G). Interestingly, cell line 1 
appeared in two separate Leiden clusters, both linked to the 
same starting cell clone of the cell line through synthetic bar
coding. A closer examination showed distinct transcription 

Figure 3. QuiCAT demonstrated reference-based barcode extraction and analysis of the in-house scRNA-seq. (A) Experimental design overview. A Pro- 
code with 3 Pro-code tags was used to barcode each cell line and was pooled with non-barcoded cell lines prior to library preparation and sequencing. 
(B) mCherryþ barcoded cells cluster apart from non-barcoded cell lines. (C, D) The cell lines were assigned based on mCherry expression status and 
expected combination of two or three Pro-code tags. (E) Leiden clustering based on gene expression identified 11 distinct clusters. (F) Leiden clusters 
overlap with cell lines based on Pro-code tag expression. (G) Representation of cell lines across Leiden clusters shows that different cell lines tend to 
segregate transcriptionally with high concordance of Leiden clusters and different barcoded cells. (H, I) UMAP of cell line 1 coloured by Leiden clusters 
(H), and expression of the proliferation marker gene Top2a (I), which is increased in cluster 8. (J) Gene enrichment analysis shows Leiden cluster 8 to 
express Hallmark gene sets associated with cell cycle progression and increased proliferation.
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profiles between these two clusters, indicating plasticity or tu
mor evolution of the cells over the prolonged culturing period 
during clonal isolation (Fig. 3H and I). Gene enrichment 
analysis performed with Decoupler (Badia-I-Mompel et al. 
2022) and Liana (Dimitrov et al. 2024) revealed increased 
proliferative activity in cluster 8 (Fig. 3J).

Having validated QuiCAT’s ability to accurately extract 
Pro-code barcodes and integrate them with transcriptomic 
data, we next sought to compare its performance against 
Bartab. As for the in-house dataset from the previous section, 
we were unfortunately unable to complete a successful run 
using Bartab reference-based workflow for performance com
parison due to the limitations of the tool.

3.3 Quicat enables barcode extraction in spatial 
transcriptomics
Spatial transcriptomics has transformed transcriptome analy
sis by incorporating spatial information, allowing researchers 
to investigate cellular interactions and neighborhoods. Most 
techniques, including Visium and Stereo-seq, utilise fixed 
barcode-labeled-oligonucleotides to link the mRNA tran
script to the spatial coordinates.

To demonstrate barcode extraction in a spatial dataset, we 
applied QuiCAT to a study exploring clonal relationships in 
the developing mouse brain (Ratz et al. 2022). Briefly, mouse 
embryonic progenitor cells were labeled in vivo on embryonic 
day 9.5 using a lentiviral library, incorporating a 30 bp ran
dom barcode sequence downstream of the nuclear-localized 
EGFP. The mice were sacrificed and analyzed at around post
natal day P14. Visium spatial transcriptomics and immunos
taining were performed on eight consecutive 10 µm brain 
sections from one mouse.

Using QuiCAT in reference-free mode, we extracted barco
des from all eight Visium slides using FASTQ reads. Barcode 
presence varied substantially between slides (Fig. 4A). Notably, 
slides 1–4 exhibited higher endogenous transcripts and barcode 

detection compared to slides 5–8, likely due to immunohisto
chemistry (IHC) staining performed prior to Visium processing 
in the latter group (Fig. 4B) as described in the original publica
tion. Notably, barcode detection in slide 5 was lower than in 
all other IHC-stained slides, in line with lower overall tran
script abundance in this sample. In general, most spots con
tained between one and five barcodes (Fig. 4C). Focusing the 
analysis on slide 1, we performed Leiden clustering based on 
transcriptomic profile, which delineated distinct brain regions, 
consistent with the original publication (Fig. 4D). Next, we ex
amined the abundance of different barcodes among Leiden 
clusters and observed higher barcode variability in clusters 2, 7, 
and 8 (Fig. 4E). Almost no barcodes were detected in cluster 4 
due to its position at the edge of the slide, which reduced spots 
qualities and the number of detected transcripts and barcodes 
overall. In general, we observe a correlation between the detec
tion of endogenous transcripts and barcodes. To investigate 
clonal localization patterns, we focused on the two most abun
dant clones and generally observed a lack of spatial segregation 
(Fig. 4F). This widespread barcode distribution aligns with 
expectations since barcoding happened early in brain develop
ment (E9.5). As a result, the barcode was passed on to progeny 
populating all investigated brain regions.

3.4. Extraction of sgRNA coupled to scRNA-seq on 
Perturb seq dataset
Recent advances in single-cell methods, such as Perturb-seq, 
allow for the coupling of CRISPR screens with scRNA- 
seq (Dixit et al. 2016). To demonstrate QuiCAT’s utility be
yond cellular barcodes, we applied it to a single sample 
(KD6_1_essential) of a public Perturb-seq dataset (Replogle 
et al. 2022) targeting 2203 essential genes. For efficient gene 
depletion, the study used two single-guided RNAs (sgRNAs) 
targeting the same gene that were both present in the same 
construct (dual-sgRNA construct) and were therefore expressed 
in the same cells. For demonstration purposes we limited the 

Figure 4. Barcodes can be extracted from spatial transcriptomic data with QuiCAT. Briefly, mouse embryonic progenitor cells were labeled with 
expressed barcodes in vivo on embryonic day 9.5 and the brain was sampled around postnatal day P14. 10x Visium spatial transcriptomics was 
performed on eight consecutive brain sections. (A) Barcode-positive Visium spots compared to the total number of spots in the eight different 
Visium samples. (B) Fewer barcodes were retrieved in samples that underwent IHC prior to the Visium run indicating lower quality of the slides #5–8. 
(C) Detected number of different barcodes per spot combining all slides. (D) Gene expression-based Leiden clustering on slide #1. (E) Barcodes per spot 
show variability across clusters, with clusters 2, 7, and 8 exhibiting the highest barcode counts. (F) The two most abundant barcodes are spatially 
distributed over all brain regions.
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analysis to a single sample from the study. Using the reference- 
based extraction workflow of QuiCAT, we extracted the 
sgRNAs and mapped them to their origin cell. We found that 
most cells contained a single sgRNA pair, while a smaller frac
tion contained multiple pairs (Fig. 5A). After quality control 
and preprocessing according to single-cell best practices 
(Heumos et al. 2023), we found that cells containing identical 
sgRNAs frequently appeared close together in the UMAP em
bedding (Fig. 5B). As expected, the expression of a targeted 
gene was substantially reduced in cells containing the corre
sponding sgRNA, confirming both the efficacy of the screen 
and the accuracy of our extraction.

4 Discussion
In this work, we introduced QuiCAT, an end-to-end Python 
package for the analysis of synthetic DNA and RNA barcodes. 
Benchmarking demonstrated QuiCAT’s ability to extract barc
odes across different datasets, outperforming current pipelines 
in both accuracy and speed. QuiCAT’s reference-based align
ment strategy demonstrated superior flexibility in sequence 
retrieval compared to existing pipelines. Those pipelines either 
lack reference-based support entirely or rely on general- 
purpose aligners, which are often suboptimal for barcode ex
traction, with Bartab repeatedly failing to complete a successful 
run when a reference is provided, while Pycashier entirely lack
ing the reference-based workflow. Additionally, by leveraging 
optimized algorithms in both the reference-free and reference- 
based approaches, QuiCAT ensures robust detection of barco
des while dramatically increasing computational performances. 
This is particularly important in emerging high-throughput 
applications where scalability and accuracy are crucial.

QuiCAT’s modular and open-source design, combined 
with user-configurable parameters for fine-grained control, 
grants flexibility across different datasets, and various syn
thetic cellular barcoding systems. At the current stage, 
QuiCAT supports barcode extraction from DNA sequencing 
data in both single-end and paired-end formats, 10x Genomics 
datasets including Chromium, Flex, and Visium, spatial 

datasets generated with Stereoseq, as well as single-cell data
sets from Parse Biosciences, as these are the most prominent 
in recent literature. Additionally, given the modularity of 
QuiCAT’s code, adding support for emerging technologies will 
be fast and easy, making the pipeline future-proof. Moreover, 
QuiCAT outputs are compatible with Scanpy for downstream 
tasks by directly outputting an AnnData H5AD file. 
Alternatively, QuiCAT’s CSV output can be imported into any 
framework of the user’s choice, ensuring interoperability.

QuiCAT accepts both FASTQ and BAM inputs. When 
working with FASTQ files, every read in the dataset is 
scanned for sequences of interest. In single-cell or spatial 
transcriptomics datasets, where alignment is typically per
formed with the vendor-provided pipelines, users can instead 
use the resulting BAM files as the starting point. Unlike other 
pipelines that restrict analysis to unmapped reads when 
working with BAM files, QuiCAT relaxes this constraint by 
allowing users to specify whether to focus on reads mapped 
to a given contig, to use only unmapped reads, or to process 
the entire read set. This feature enables targeted extraction of 
known variants of interest, removing the rigid constraints im
posed by existing barcode extraction tools. Consequently, 
QuiCAT has the theoretical potential to function as a 
general-purpose sequence extractor, extending its usability to 
a broader range of applications beyond synthetic barcoding. 
We showcase this increased flexibility in a public Perturb-seq 
dataset using QuiCAT to extract sgRNAs and map them to 
their cell of origin. However, it is important to note that 
while QuiCAT’s flexibility theoretically allows it to retrieve 
sequences of interest in different contexts, it has not been 
explicitly tested for use cases beyond barcode extraction and 
Perturb-seq datasets. Users exploring novel applications 
should carefully validate performance for their specific needs 
where additional optimization may be required. For example, 
QuiCAT has not yet been specifically tested for dynamic bar
coding systems. Most dynamic barcoding systems employ a 
two-barcode structure with one dynamic and one static bar
code, such as macsGESTALT (Simeonov et al. 2021). In this 
scenario the user could theoretically run the extraction 

Figure 5. QuiCAT enables extraction of sgRNAs from Perturb-seq datasets. sgRNAs were extracted from a single sample targeting 2203 essential 
genes. (A) Most cells contained a single sgRNA, consistent with expectations. (B) Cells carrying different perturbations showed distinct localization in the 
UMAP embedding. (C) Targeted genes’ expression was markedly reduced in cells containing the corresponding sgRNA compared to other cells.
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workflow twice and combine the two outputs afterwards. 
For dynamic systems that rely on a single barcode like 
LINNAEUS (Spanjaard et al. 2018), QuiCAT’s reference-free 
workflow could potentially be utilised, but users would need 
to carefully adjust the parameters, especially when perform
ing sequencing error correction. These improvements could 
be implemented in future iterations if demand for these use 
cases arises.

Additionally, while QuiCAT demonstrated strong perfor
mance in benchmarking tests without a significant increase in 
memory footprint compared to other pipelines, users should 
still be aware that the QuiCAT processes all data in memory. 
This architecture enables fast execution but may lead to high 
random-access memory (RAM) usage for extremely large 
datasets, particularly through the creation of the NGRAMS 
matrix. In cases where barcode libraries are highly complex, 
users may need to monitor system memory availability and 
adjust computational resources accordingly. Future itera
tions of QuiCAT may explore memory-efficient strategies, 
such as chunked processing, if memory footprint becomes 
a bottleneck.
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