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Abstract

Adipose tissue (AT) closely interacts with the adrenal glands to regulate metabolism, energy balance, and stress responses. While the adrenal cortex
secretes glucocorticoids and mineralocorticoids that influence AT distribution, lipid storage, and browning, the adrenal medulla releases
catecholamines that acutely activate thermogenesis in brown and beige adipocytes. Under physiological conditions, this bidirectional crosstalk
maintains energy homeostasis and cardiovascular stability. However, in adrenal diseases such as Cushing syndrome, primary aldosteronism,
adrenocortical carcinoma, or pheochromocytoma, excess hormone secretion disrupts this balance, leading to AT dysfunction, altered adipokine
secretion, and adverse metabolic profiles, including insulin resistance, visceral adiposity, and hypertension. Emerging evidence suggests that
peri-adrenal AT may modulate adrenal tumor biology through endocrine and paracrine signals, and immune cell infiltration, with potential effects
on disease progression and clinical presentation. Uncovering cellular and molecular mechanisms underlying the crosstalk between adrenal gland
and AT may reveal new therapeutic targets for the reduction of cardiometabolic complications in patients with adrenal disorders. Here, we
discuss how 2 endocrine organs—adrenal gland and AT—interact with each other under physiological and pathophysiological conditions and
examine whether these interactions influence the progression of adrenal tumors and how this affects systemic metabolic health.
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Significance

The adrenal gland and adipose tissue interact in a bidirectional crosstalk that is essential for maintaining metabolic and car-
diovascular homeostasis. Adrenal hormones play a role in the regulation of adipose tissue distribution, lipid storage, and
adipocyte thermogenesis. Conversely, adipose-derived mediators can influence adrenal function and stress responses.
Excess hormone secretion disrupts the balance in adrenal disorders such as Cushing syndrome, primary aldosteronism, adre-
nocortical carcinoma, and pheochromocytoma, promoting adipose dysfunction, insulin resistance, visceral adiposity, and
hypertension. Furthermore, emerging evidence suggests that peri-adrenal fat may influence adrenal tumor behavior. A better
understanding of the cellular and molecular mechanisms controlling adrenal-adipose interaction could reveal new thera-
peutic targets to mitigate cardiometabolic complications and improve outcomes in patients with adrenal diseases.
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Introduction

The adipose tissue (AT) has been recognized as an active endo-
crine organ that plays a key role in maintaining homeostasis
and is involved in the pathogenesis of different diseases.'”
Extensive research has revealed that distinct adipose depots
regulate not only energy storage and consumption, but also
the secretion of adipokines and signaling molecules that affect
local and distant organs. Patients with adrenal tumors show an
increased prevalence of metabolic and cardiovascular compli-
cations.* The adrenal gland comprises the steroid-producing
cortex and the catecholamine-producing medulla, both en-
closed within a common capsule and surrounded by peri-
adrenal AT (peri-AT; Figure 1A). However, potential crosstalk
between these endocrine tissues remains poorly understood.
The adrenal gland maintains body homeostasis by producing
neuronal, metabolic, and endocrine signals that regulate metabol-
ism, stress response, electrolyte balance, and cardiovascular func-
tion. The adrenal cortex comprises 3 zones: the zona glomerulosa
(zG) produces mineralocorticoids controlling electrolyte balance
and blood pressure, the zona fasciculata (zF) synthesizes glucocor-
ticoids (GC) regulating metabolism and immunity, and the zona
reticularis (zR) generates androgens, precursors of sex hormones.
The cortex also mediates stress responses via the hypothalamic—pi-
tuitary—adrenal (HPA) axis, where internal and external stimuli
trigger corticotropin-releasing hormone (CRH) secretion from
the hypothalamus. Corticotropin-releasing hormone stimulates
the release of adrenocorticotropic hormone (ACTH) from
the pituitary gland, resulting in the release of GC by the zF.°
Furthermore, during acute stress (fight-or-flight response),
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chromaffin cells of the adrenal medulla secrete catecholamines
(epinephrine and norepinephrine (NE)).® Since cortex and me-
dulla share a common capsule, changes in one compartment affect
the other. Interactions between cortical and chromaffin cells are es-
sential for maintaining adrenal function under physiological and
pathophysiological conditions.”

Pathophysiological alterations of the adrenal are usually
associated with an over- or underproduction of adrenal
hormones, leading to local and systemic metabolic changes.
Pheochromocytomas are catecholamine-producing tumors
with heterogeneous presentations, ranging from dopamine-
only to epinephrine- or NE-producing phenotypes or even
non-functional tumors.® Chronic catecholamine excess associ-
ated with these tumors drives a pro-inflammatory and hyper-
metabolic state, causing weight loss despite normal food
intake.”" In contrast, adrenal Cushing syndrome (CS),
caused by autonomic cortisol hypersecretion due to an adrenal
tumor, results in profound metabolic changes, including insu-
lin resistance, dyslipidemia, and increased visceral adiposity,
which contributes to significant weight gain and redistribu-
tion.'*" The overproduction of aldosterone in patients with
primary aldosteronism (PA) has also direct consequences on
body fat distribution.'* For instance, patients with bilateral
PA tend to be more obese and have larger visceral fat areas
than patients with lateralized PA.'*

Adrenal tumors frequently cause metabolic and cardiovas-
cular comorbidities through hormone-induced disruption of
systemic homeostasis, profoundly affecting AT. Here, we
provide novel insights into the bidirectional crosstalk between
adrenal, AT, and adrenal tumors, to reveal how these

920z fsenuer 20 uo Jasn wnyibojojewseH 4S9 Aq G089/ £8/E8H/9/€6 |/3|o1e/opusle/woo-dno-olwapeoe//:sdiy Wolj PapEojuMO(]



Jiang et al.

interactions shape tumor biology, local remodeling, and dis-

ease manifestations.

Fat depots and fat beigeing/browning

Visceral adipose tissue (VAT) is an independent risk marker for

cardiovascular and metabolic morbidity and mortality,

15,16

whereas accumulation of abdominal subcutaneous adipose tis-
sue (SAT) is a much weaker indicator of cardiovascular risk.®
Emerging evidence also suggests that an accumulation of peri-
organ AT is associated with an increased risk for cardiovascular
and metabolic disease.'””'® Adipose tissue accumulation may
directly induce organ dysfunction through local mechanisms.
For example, peri-vascular AT is involved in the pathogenesis
of hypertension.'? Epicardial AT is associated with atheroscler-
osis and coronary heart disease,”® while peri-renal adipose tis-
sue (PRAT) is involved in chronic kidney disease (CKD).?! This
emphasizes the direct influence of AT on adjacent organs.
Previously considered primarily as fat storage depots, adipo-
cytes are now recognized as metabolically active endocrine,
autocrine, and paracrine cells that synthesize, store, and secrete
hormones and proteins (adipokines). There are 3 major types of
adipocytes, which differ in morphology, cellular origin, and
physiological function (Figure 1B). White adipocytes are derived
from myogenic factor § (myf5)-negative progenitors,>* store en-
ergy in the form of triglycerides and secret adipokines.* In con-
trast, brown adipocytes in mice originate from myf5-positive
precursor cells and feature multilocular lipid droplets, a round
central nucleus and cristae-enriched mitochondria that express
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uncoupling protein 1 (UCP1).?* Uncoupling protein 1 is the hall-
mark of brown adipocytes and promotes energy expenditure.
Brown adipocytes are regulated by the sympathetic nervous sys-
tem and are able to maintain body temperature through thermo-
genesis. Main depots of human brown adipose tissue (BAT) are
located in the supraclavicular and cervical regions, with some
additional mediastinal, peri-vertebral, peri-cardial, and peri-
renal locations.”* Beige (or brite or browning of white or
inducible) adipocytes resemble brown adipocytes in terms of
thermogenic properties”>*® and are also UCP1-positive, but
are unilocular and derived from myfS-negative precursors>’
under specific environmental or hormonal stimuli (eg, cold
exposure,”’ B3-adrenergic agonists,”® and irisin®’). Brown
adipose tissue is found in various depots in humans and can
exhibit features of both brown and beige adipocytes.
Peri-renal adipose tissue and peri-AT are BAT hot-spots
with many brown adipocytes near the adrenals.*°

Peri-renal adipose tissue is a metabolically active hybrid
VAT, which is located in the retroperitoneal space surround-
ing the kidneys and adrenal glands. Peri-renal adipose tissue
exhibited age-dependent molecular and morphological
progressive regression, continuously transforming BAT into
predominantly white adipose tissue (WAT).>! In human
adult PRAT, dormant unilocular UCP1-expressing adipocytes
are widely distributed, whereas active multilocular UCP1-
expressing adipocytes are predominantly located around the
adrenal, in areas with high numbers of sympathetic nerve end-
ings,*” which suggests that PRAT and peri-AT are both related
and distinct from each other. Peri-renal adipose tissue is more
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Figure 1 Adrenal and adipocyte function and secretion. (A) Adrenal zonation and hormone production. (B) Function and characteristic features of white,
beige and brown adipocytes. Created by BioRender.com.
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active than other typical VATs in metabolizing, synthesizing,
and secreting adipokines and inflammatory cytokines.>* A var-
iety of adipokines and cytokines secreted by peri-AT regulate
adrenal function and metabolism by local mechanisms.??**
Conversely, adrenal hormones affect peri-AT through para-
crine and endocrine pathways, which may contribute to tumor-
related pathophysiology.*®¢*°

Adrenal hormones and activation/browning
of AT

Brown adipose tissue activity is tightly regulated by adrenal
hormones and the sympathetic nervous system (Figure 2).
Stress activates the HPA axis, causing cortisol secretion, which
suppresses BAT activation and promotes VAT accumula-
tion,*! while NE released by sympathetic nerves and the ad-
renal medulla stimulates BAT thermogenesis and white fat
beiging via p3-adrenergic receptor activation.** Other factors
such as cold exposure, ACTH, and fatty acids also enhance
browning, whereas insulin inhibits this process. Given the
key role of adrenal hormones in AT regulation, their dysregu-
lation profoundly disrupts metabolism and has major clinical
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consequences. Accordingly, adrenal tumors show hormone-
dependent differences in BAT prevalence. While 62.5% of pa-
tients with pheochromocytoma (PCC) have brown adipocytes
in their retroperitoneal fat mass, this is only the case in
~33.3% of patients with cortisol-producing adenomas and
46.9% of patients with aldosterone-producing adenomas
(APAs).*® The following sections discuss molecular and meta-
bolic mechanisms behind these differences and effects of
tumor-related adipose remodeling.

AT-adrenal cortex interactions

Glucocorticoids, mainly cortisol, regulate numerous biologic-
al functions in adipocytes, including adipogenesis. GC stimu-
lates differentiation of pre-adipocytes into mature white
adipocytes,**** but GC also inhibits development and activa-
tion of peri-renal BAT in rodents.*®*” In humans, GC acutely
increases BAT activity but chronically suppresses it, suggest-
ing a time-specific effect of GC on UCP1 and BAT activity.*'*®
This effect is highly species-specific, as GC reduce BAT activity
in mice.*® Moreover, GC inhibit the response of cultured hu-
man brown adipocytes to adrenergic stimulation.*” As an
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Figure 2 Regulation of brown adipose tissue activity in particular in response to secretion of adrenal hormones. Stress activates the HPA axis. The
autonomic nerves system triggers the hypothalamus to release CRH, which induces the release of ACTH in the anterior pituitary. In the adrenal cortex,
ACTH leads to the release of cortisol, which suppresses fat browning and increases the accumulation of visceral WAT. In contrast, NE released by the
sympathetic nervous system, including the adrenal medulla, causes fat beiging and activation of brown adipocytes. Other factors, such as adenosine,
ATP, ACTH, secretin, fatty acids, and other dietary nutrients can contribute to fat browning, while insulin, in addition to cortisol, reduces fat browning.
Therefore, NE binds to the beta-3 adrenergic receptor expressed on the surface of adipocytes, which leads to the activation of ADCY, which converts ATP
to cAMP. cAMP activates PKA, which causes the expression and activation of UCP1 leading to thermogenesis. Created by BioRender.com. ACTH,
adrenocorticotropic hormone; CRH, corticotrophin-releasing hormone; HPA, hypothalamic—pituitary—adrenal; NE, norepinephrine; ATP, adenosine
triphosphate; ADCY, adenylate cyclase; cAMP, cyclic adenosine monophosphate; PKA, protein kinase A; UCP1, uncoupling protein 1.
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antagonist, ACTH, which is responsible for the release of cor-
tisol in the adrenal, promotes browning of adipocytes.>*!

Intracellular GC activity and metabolism is regulated by
2 isoforms of 11B-hydroxysteroid dehydrogenase (HSD).
While type 1 (11B-HSD1) is localized in several tissues, includ-
ing AT, and converts inactive cortisone to cortisol that binds
to the intracellular glucocorticoid receptor (GR), type 2
(11B-HSD2) causes the reverse conversion of cortisol to
cortisone, thereby preventing cortisol from occupying the
mineralocorticoid receptor (MR) in aldosterone target tis-
sues.’>*> Under physiological conditions, cortisol is
100-1000 times higher concentrated than aldosterone, and
this effect is exacerbated in patients with hypercortiso-
lism.>**> Moreover, due to the saturation of 11p-HSD2 en-
zymatic activity under conditions of cortisol excess, cortisol
is even able to bind to MR in aldosterone target tissues.’®
Inflammatory signals, including tumor necrosis factor (TNF)
and interleukin (IL)-1B, modulate expression of HSD en-
zymes, thereby altering cellular sensitivity to GC.°” The GR,
encoded by NR3C1 (nuclear receptor subfamily 3, group C,
member 1), has a much higher affinity for cortisol than aldos-
terone and is most likely responsible for the inhibitory effects
of GC on BAT development and activity.***® However, MR,
encoded by NR3C2 (nuclear receptor subfamily 3, group C,
member 2), has a similar affinity for aldosterone and cortisol,
and coregulators recruited upon GR and MR binding largely
overlap.>”*" Glucocorticoids play a crucial role in AT metab-
olism and cause multiple transcriptomic changes and epigenet-
ic modifications.®’®?  Glucocorticoid receptor activation
exerts highly tissue-specific effects on the epigenome, which
can be controlled by a cell-type-specific binding of GR to tar-
get genomic sites®®®> and can even persist after stimulus is re-
moved. However, studies on the epigenetic regulation of GC
or other adrenal hormones in AT are lacking.

Glucocorticoids induce an increased leptin secretion from
adipocytes, suggesting a mechanism that may contribute to
anorexia and weight loss during stress when these conditions
are accompanied by a sustained increase in plasma leptin con-
centrations.® Furthermore, leptin inhibits GC secretion in hu-
man adrenocortical cells by the suppression of steroidogenic
enzymes,®” which demonstrates the complex regulation of
this system, particularly under stress.

The renin-angiotensin—aldosterone system (RAAS) is a cen-
tral regulator of blood pressure, fluid, and electrolyte balance,
and also affects adipocyte function via MR signaling®®
(Figure 3). Aldosterone prevents ACTH-induced expression of
UCP1.*7°1%° Mineralocorticoid receptor is expressed in BAT
cellsand MR antagonists are able to induce browning of visceral
and subcutaneous AT in mice.”’ Mineralocorticoid receptor an-
tagonists can improve BAT function in response to cooling in hu-
mans.”! However, administration of classic steroidal MR
antagonists to mice fed a moderately high-fat diet reduces the
spread of WAT, induces the activation of interscapular BAT,
and stimulates the browning of WAT.”® The activation of MR
also causes adipocyte hypertrophy, which leads to oxidative
stress, local hypoxia, and a pro-inflammatory state.”” In line,
MR blockade reduces the expression of pro-inflammatory and
prothrombotic factors and enhances adiponectin expression in
AT of obese, diabetic mice, revealing a potential mechanism
for the cardioprotective effects observed under MR blockade.”?
In vitro, aldosterone appears to be able to induce adipocyte dif-
ferentiation and intracellular lipid accumulation, suggesting
that both MR and GR are vital for adipocyte differentiation.”*”*
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Figure 3 Crosstalk between adipocytes and the RAAS. Created by
BioRender.com. RAAS, renin—angiotensin—-aldosterone system.

Moreover, adipocytes play a regulatory role in steroidogene-
sis. Adipocyte-conditioned medium stimulates aldosterone pro-
duction in adrenocortical cells (NCI-H295R).”*”” Adipokines,
including C1g/TNF-related protein (CTRP1), adiponectin and
leptin, can stimulate the production of aldosterone in the ad-
renal, which links obesity directly with hypertension.”5°
Leptin directly regulates aldosterone synthase expression in
the adrenal and thus aldosterone secretion, contributing to
high aldosterone levels observed in obese mice.®!

Visceral and subcutaneous AT can also produce angiotensi-
nogen and possesses a local renin-angiotensin system."*
Activation of this local RAAS system in the peri-AT of patients
with CS causes high blood pressure levels even 6 months after
the remission of hypercortisolism.*® Adipocyte-derived aldos-
terone regulates adipocyte differentiation and vascular func-
tion providing a potential link between vascular dysfunction
in diabetes mellitus—associated obesity.5?

AT-adrenocortical tumor interactions

Adrenocortical tumors are neoplasms that arise from the ad-
renal cortex and range from benign adrenal adenomas to high-
ly aggressive adrenal carcinomas. They may be hormonally
active and cause clinically significant endocrine syndromes
(Table 1), or they may be non-functional and discovered inci-
dentally during imaging examinations.

Cushing syndrome

Adrenal Cushing is caused by autonomous overproduction of
cortisol in the adrenal due to benign or malignant adrenal tu-
mors, or due to bilateral primary micro- and macronodular
adrenal hyperplasia and accounts for ~20% of all CS cases.””
Patients with CS typically present with metabolic manifesta-
tions such as hyperglycemia, hypertension, and excessive fat
deposits in face, neck, and visceral organs.®>?® The severity
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Table 1 Metabolic changes and effects on the peri-AT or peri-renal AT associated with adrenal tumors.

Adrenal disorder

Hormone production Metabolic changes associated with the Main effects on peri-AT or peri-renal AT  Further key

disease publications
Adrenal medulla
Pheochromocytoma  Excess catecholamines Hyperglycemia, insulin resistance, Promotes brown adipose tissue Ref.,40-84
(epinephrine, weight loss, increased lipolysis'® activation and browning phenotype in
norepinephrine) peri-AT?*°
Adrenal cortex
Cushing syndrome Excess cortisol Central obesity, insulin resistance, type Adipocyte hypertrophy, macrophage Ref.37-88

2 diabetes, dyslipidemia®’

infiltration, inflammation®®
Increased fibrosis, inflammation, altered Re
adipokine secretion®®”°

f38,9]

. . . 93,94
Increased peri-adrenal adipose tissue Ref.”%

Primary Excess aldosterone Subtype specific features'®;

aldosteronism hypertension, hypokalemia, insulin
resistance, impaired glucose
tolerance, increased cardiovascular
risk®’

Adrenocortical Variable; often cortisol Features of Cushing syndrome and/or

carcinoma and/or androgen virilization, metabolic syndrome

excess features if hypercortisolism

Non-functional
adenomas

None significant

subclinical present

Often incidental; might be associated
with mild metabolic alterations if

mass, potential tumor-induced fibrosis

and altered adipokine profiles in

dependence of the hormone secreted
Minimal direct effects unless subclinical Ref.”?

hypercortisolism induces changes

92

Abbreviations: AT, adipose tissue; peri-AT, peri-adrenal adipose tissue.

of hypercortisolism correlates with higher visceral adiposity.®”
In patients with active CS, hypercortisolism induced PRAT
adipocyte hypertrophy, which is associated with increased
macrophage infiltration and elevated leptin levels, as well as
reduced adiponectin levels.*® Another study identified higher
leptin levels in peri-AT than in PRAT and subcutaneous AT
in patients with CS.>*

Primary bilateral macronodular adrenal hyperplasia (BMAD)
is a rare cause of CS, often misdiagnosed as bilateral adrenal in-
cidentalomas with subclinical cortisol production. Interestingly,
BMAD frequently occur alongside myelolipoma, especially
those associated with food-dependent (glucose-dependent insu-
linotropic polypeptide-dependent) hypercortisolism, due to
KDMT1A mutations.”””” However, the mechanisms by which
these 2 lesions develop in parallel and influence each other re-
main unknown. Paradoxically, leptin stimulates cortisol secre-
tion in nutrition-dependent BMAD.'” Moreover, BMAD
tissue expresses abnormal levels of ACTH.'°! It is therefore con-
ceivable that adrenal cortex cells influence intra-adrenal adipo-
cytes via a paracrine mechanism involving locally produced
ACTH.'%>!%Reciprocally, AT may activate cortisol production
through leptin release.

It is well known that acute or prolonged glucocorticoid admin-
istration decreases C-reactive protein (CRP), IL-6, and
TNF-alpha (TNF-a). However, long-term hypercortisolism is
characterized by chronic, low-grade inflammation 510410
Even after achieving a long-term cure, patients who have experi-
enced CS exhibit a persistent accumulation of central fat, similar
to that seen in active hypercortisolism, associated with an
unfavorable adipokine profile and a state of low-grade inflamma-
tion.®® Moreover, amelioration of visceral fat mass cannot
be achieved in all patients, suggesting the presence of a
potentially persistent epigenetic mechanism.*®'%® Compared to
body mass index (BMI)-matched controls, patients with CS ex-
hibitan increased number of infiltrating macrophages in subcuta-
neous AT and PRAT.?*'%” Macrophages stimulate expression of
pro-fibrotic factors and interfere with the differentiation of pre-
adipocytes, thus promoting AT fibrosis. Excess exposure to GC
also has a pro-fibrotic effect on AT, which requires the presence

of macrophages.'%® Consistently, chronic exposure to endogen-
ous GC results in increased oxidative stress, inflammation, and
fibrosis in PRAT."?

The adipokine leptin may promote proliferation and inva-
sion of cancer cells by the activation of pathways such as phos-
phoinositide 3-kinases, mitogen-activated protein kinase
(MAPK), and signal transducer and activator of transcription
3 (STAT3), while adiponectin may inhibit tumor growth and
spread by inhibition of pathways such as nuclear factor kap-
pa-light-chain-enhancer of activated B (NF-«xB), STAT3, and
mammalian target of rapamycin (mTOR).'*”''° However,
studies examining effects of adipokines on adrenal tumors
are mostly lacking. Hypercortisolism lead to changes in the
levels of circulating adipokines, with higher fatty acid-binding
protein 4 (FABP4), retinol-binding protein 4 (RBP4), and
resistin  levels compared to healthy controls.!!"!!?
Additionally, leptin expression was significantly higher in
peri-AT than in PRAT or subcutaneous AT in patients with
CS, while adiponectin expression was significantly lower.>*
Plasma leptin levels are also elevated in patients with CS and
decrease following tumor resection.''® Although fasting in-
hibits leptin secretion in healthy subjects, inhibitory effects
of short-term fasting are less pronounced in patients with
CS.'™ Leptin is known to decrease the corticotropin-
stimulated release of steroids in vitro,''® potentially providing
a hint for an important feedback loop and illustrating the dir-
ect interaction between tumor, AT, and adrenal.

Primary aldosteronism

Primary aldosteronism is characterized by the autonomic
secretion of aldosterone caused by unilateral or bilateral adrenal
lesions, associated with fundamental metabolic consequen-
ces.''®!17 Compared to patients with essential hypertension, pa-
tients with PA exhibit a higher prevalence of insulin resistance,
impaired glucose tolerance, and type 2 diabetes.®” Excess aldos-
terone promotes AT dysfunction, inflammation, and fibrosis.''®
Furthermore, visceral obesity and altered adipokine secretion
have been associated with increased cardiometabolic risk
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observed in this population.''*'?° For example, APAs are asso-
ciated with obesity in males, but not in females,'*! which may be
related to the increased prevalence of KCNJS mutations in fe-
males compared to males.'**'*? Furthermore, patients with bi-
lateral PA present with a higher BMI and greater visceral
adiposity than patients with unilateral disease,'® reflecting the
heterogeneity of metabolic characteristics across different PA
subtypes, which are not yet fully understood. Treatment with
MR agonists (eplerenone or spironolactone) lead to a significant
reduction in VAT in these patients.'** Adipocytes adjacent to
APAs exhibita browning phenotype, as evidenced by smaller adi-
pocyte size and higher UCP1 expression.”’ The authors of this
study proposed the following mechanism: APA cells release retin-
oic acid, which promotes tissue browning and leads to the release
of lactate by beige adipocytes, thereby increasing aldosterone
production.” As outlined before, treatment with MR antago-
nists rather induce browning,***”° suggesting that aldosterone
might not be the principal mediator of fat browning in patients
with APA. In vitro studies revealed that only pharmacological
concentrations of aldosterone reduced glucose uptake in adipo-
cytes, suggesting: (1) insulin resistance in patients with PA may
occur in compartments other than AT, and/or (2) it may depend
on secondary factors, such as retinoic acid.'*> RNA sequencing
revealed a downregulation of inflammation-associated pathways
in SAT and peri-AT of patients with APA compared to patients
with non-functional adrenal adenomas, while steroid-related
pathways were upregulated, particularly in peri-AT of patients
with KCNJS-mutant APAs, which suggest a paracrine actions
of aldosterone.’® Moreover, cortisol co-secretion has been re-
ported in up to 30% of patients with PA,'>*12” which might fur-
thermore affect the adipose tissue phenotype in these patients.
Leptin expression in the PRAT was significantly higher in pa-
tients with APAs compared to patients with non-functional ad-
enomas.’* Leptin receptor (LEP-R) levels in APA tissues
correlate positively with plasma aldosterone concentrations in
these patients.'”®1? However, expression of the adiponectin
receptor 1/2 (AdipoR1/2) and LEP-R is significantly lower
in benign adrenal neoplasms compared to adrenocortical
carcinomas (ACCs).'3° Aldosterone excess in patients with PA
is furthermore associated with elevated resistin levels and car-
diac alterations, independently of the presence of metabolic syn-
drome.'™ Moreover, PRAT of patients with APA exhibites
significantly higher levels of IL-6, TNF-a and of genes related
to fibrosis compared to normotensive individuals and patients
with essential hypertension.*® Whether these effects are related
to increased macrophage infiltration, as in CS, is largely un-
known.?® In rats, it has been shown that administration of al-
dosterone plus salt mediates an inflammatory M1 macrophage
phenotype and increased renal fibrosis via activation of min-
eralocorticoid receptors.’*! This suggests that APAs induce
PRAT dysfunction associated with a pro-inflammatory and
fibrotic state that can worsen cardiovascular impairment.

Adrenocortical carcinoma

Adrenocortical carcinomas often produce excess steroid hor-
mones, most commonly cortisol and androgens, leading to clin-
ically overt endocrine syndromes such as CS or virilization. The
clinical presentation of patients with ACCs greatly depends on
whether the tumor is hormonally active or “non-functional.””?
Metabolic effects and effects on peri-AT of the cortisol or aldos-
terone (rare) excess in these patients have already been discussed
above. Additionally, in rare cases, ACCs can release estrogen,
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which can lead to feminization. Under physiological conditions,
estrogen promotes lipolysis and inhibits adipogenesis.'** Thus,
estrogen enhances insulin sensitivity.'** Androgens also play a
critical role in AT homeostasis, by improving insulin sensitivity
and glucose tolerance and by regulating the expression of vari-
ous adipokines and regulating lipolysis.'** However, the impact
of ACC-driven androgen or estrogen excess on adipocytes and
metabolism remains unknown.

A correlation has been found between an increase in intra-
abdominal fat tissue and a reduced survival rate in patients
with ACC."* Moreover, mixed cortisol/androgen-secreting
ACCs are associated with worse overall survival compared
to non-secreting ACCs, while cortisol or androgen secretion
alone is not associated with worse overall survival.'*
Patients with ACC have higher IL-6, TNF-a and monocyte
chemoattractant protein 1 (MCP1) serum levels compared to
healthy controls, indicating similar to patients with CS a
pro-inflammatory state.”> However, little is known about
the interaction of adipocytes and ACCs.

Monotherapy with mitotane is the first-line treatment for less
aggressive ACCs after surgery, while patients with more aggres-
sive forms of the disease are treated with mitotane plus chemo-
therapy.'®” However, due to its lipophilic nature, mitotane
concentration is 200-fold higher in AT than in plasma.'*®
Therefore, high dosages of mitotane are required to reach the
therapeutic plasma concentration, which result in several ad-
verse effects.'*” For example, mitotane has profound impact
on lipid levels marked by increased total, low-density lipopro-
tein and high-density lipoprotein (HDL) cholesterol levels in
more than half of the patients.!**'*! To the best of our knowl-
edge, no studies have investigated the influence of BMI or body
fat distribution on how ACC patients respond to mitotane
treatment, though including these factors could improve out-
comes and reduce side effects. Overall, ACC-adipose crosstalk
remains poorly understood. Transcriptomic profiling of
peri-AT alongside tumor hormone status and clinical parame-
ters, as well as analysis of adipokine changes during rapid
ACC progression, could provide valuable insights.

AT-adrenal medulla interactions

Catecholamines are well known to stimulate lipolysis by bind-
ing to B-adrenergic receptors expressed on adipocytes,**'*?
which leads to increased activity of adenylyl cyclase, resulting
in evaluated levels of cyclic adenosine monophosphate
(cAMP)'*? (Figure 2). Cyclic adenosine monophosphate further
activates protein kinase A (PKA) that leads to phosphorylation
of downstream targets including hormone-sensitive lipase.
Hormone-sensitive lipase is capable of breaking down triacylgly-
cerol to diacylglycerol, but to a lesser extent than the adipose tri-
glyceride lipase (ATGL). Protein kinase A phosphorylates
perilipin, which is associated with the lipid droplet in the basal
state and impedes ATGL access and activity.'** Insulin and GC
furthermore affect this pathway by altering cAMP levels.'*1%°
The activation of PKA further lead to an activation of rapamycin-
sensitive mTOR complex 1 (mTORC1)"*¢ and p38 MAP kinase,
resulting in the induction of target genes involved in fat browning
(UCP1 and Pparg coactivator 1 alpha (PGC1a)).** Furthermore,
co-culture experiments revealed that catecholamines block
vesicle transport and secretion of leptin and resistin via
B-adrenergic receptors, whereas leptin and resistin promote ves-
icle transport and secretion of catecholamines via PKA, protein
kinase C (PKC), MAPK kinase, and Ca>*-dependent signaling
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pathways.>’Leptin is secreted mainly by white adipocytes and
stimulates the synthesis of catecholamines,'*”>'*® while catechol-
amines reduce leptin  production.'**"*!  Additionally,
B-adrenergic stimulation of AT, rather than macrophages, seems
to be responsible for enhanced plasma IL-6 concentrations ob-
served in obesity.'* Interleukin-6 is known to modulate adrenal
steroid production indicating a crosstalk between AT and ad-
renal cortex, %15

Approaches to promote energy consumption through the in-
duction of thermogenesis are of high clinical relevance, especially
given the widespread prevalence of obesity. B3-Adrenergic recep-
tor is highly expressed in human BAT and WAT, as well as in oth-
er tissues such as the gallbladder, gastrointestinal tract, and
prostate.>® Therefore, various p3-agonists have been investi-
gated for the treatment of obesity due to their potential appetite-
suppressing and thermogenic effects.’*® None of the investigated
agonists, however, advanced beyond clinical phase II due to a
lack of efficacy and cardiovascular side effects, mainly caused
by insufficient selectivity of available agonists.">” While short-
term exposure to high doses of B3-adrenergic agonist mirabegron
leads to activation of BAT, catecholamine-secreting tumors
(pheochromocytomas), as well as long-term exposure to mirabe-
gron even promote fat browning.'’® To further evaluate the
therapeutic potential for obesity and metabolic syndrome,
more selective and potent B3-adrenergic receptor agonists with
fewer off-target effects are needed.

AT-PCC interactions

Excessive catecholamine production by adrenal medullary PCC
triggers a P3-adrenergic response that activates BAT and
peri-AT browning.>*>® This promotes a hypermetabolic state as-
sociated with increased glycogenolysis, lipolysis, and the release
of proinflammatory cytokines.'? Patients with functional PCCs
exhibit higher prevalence of BAT activation”'*® and weight
gain after PCC resection has been observed.'" The presence of ac-
tive BAT is associated with higher plasma NE levels and de-
creased overall survival in patients with PCC.">%1* Moreover,
patients with BAT activation seem to be younger.'*® However,
there is no significant correlation between changes in plasma cat-
echolamines or metanephrines and changes in fat mass.'®'¢* A
meta-analysis identified elevated catecholamine levels, particu-
larly NE/normetanephrine, to be associated with the presence
of activated BAT on imaging in patients with PCC.'%3

Brown adipose tissue activation in PCC exhibits regional dis-
tribution differences, with stronger activation closer to the tumor
(peri-AT) than further away from the tumor (subcutaneous).*
This may be due to a hormonal gradient or to differences in
the response of AT at different sites to adrenal signaling.
Surprisingly, no difference in 18F-fluorodeoxyglucose uptake
by the peri-renal AT between the side of the PCC and contralat-
eral side has been observed.” Moreover, pheochromocytomas
and paragangliomas (PPGLs) are genetically heterogeneous tu-
mors with a strong genotype—phenotype correlation, but no dif-
ference in the prevalence of BAT activation was observed
between sporadic cases or patients with succinate dehydroxyge-
nase (SDHx) or von Hippel-Lindau (VHL)-related PPGLs.’
Discrepancies between studies on the prevalence of activated
BAT in patients with PPGLs and a possible correlation with
excess catecholamine/NE”!1:138:160:162:.163 ¢1d be related to
differences in the timing and implementation of an adrenergic
receptors blockade. Since intraoperative mobilization of the tu-
mor often leads to a sudden rise in blood pressure in these patients
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due to the release of catecholamines, guidelines recommend
preoperative treatment of symptomatic patients with
o-adrenoreceptor antagonists.'®*'®* Depending on when adren-
ergic receptor blockade is initiated, this might affect the results.

Adrenergic stimulation triggers a series of molecular events
through activation of B-adrenergic receptor signaling in AT,
including altered gene expression and splicing regulation, ul-
timately leading to browning of AT, increased thermogenesis
and enhanced metabolism.** In AT of patients with PCC, ele-
vated expression of genes associated with mitochondrial heat
production (eg, UCP1 and CKMT1A/B) and lipid and carbo-
hydrate catabolism is observed, while pro-inflammatory path-
ways are decreased.®* Peri-renal brown adipocytes in patients
with PCC recapitulate activated classical brown adipocytes
with the reduced expression of markers selective for beige adi-
pocytes (CD137 and TBX1).'® In retroperitoneal VAT of pa-
tients with PPGL UCP1 expression correlate negatively with
the BMI and positively with HDLc levels.'®”

Fibroblast growth factor-21 (FGF21) plays a systemic role by
promoting glucose uptake, insulin secretion, and brown
adipogenesis.'®®'®® NE activates the transcription of the
FGF21 through a cAMP-dependent PKA- and p38
MAPK-mediated mechanisms in BAT.'%!”! FGF21 is released
from BAT into circulation during thermogenic activation.'”®
Visceral adipose tissue of patients with PCC significantly ex-
pressed FGF21 and UCP1 with a positive correlation, suggest-
ing that FGF21 is involved in human BAT activation in these
patients.'®” Adrenomedullin (ADM), a peptide released, for ex-
ample, by chromaffin cells of the adrenal medulla or PCCs, may
also be involved in tumor-AT interactions since ADM causes
browning of adipocytes in proximity to breast cancer cells.'”?
However, it is not known whether this effect plays a role in
browning of peri-AT in patients with PCC, which even presents
with elevated plasma ADM levels.'”?

Adiponectin expression is significantly higher in BAT than in
WAT around PCC, and urinary metanephrine levels correlate
positively with UCP1 expression in BAT.'”* AdipoR1 and
AdipoR2 expression is significantly higher in PCC than in adre-
nocortical tumors.'** Moreover, AdpR1 expression is higher in
epinephrine-producing PCCs than in NE-producing PCCs.'”*
Leptin receptor is more frequently expressed in PCC than in
ACGs,"° but leptin does not appear to be involved in the regu-
lation of cell proliferation in adrenal tumors.'”® Moreover, pa-
tients with PCC have higher mitochondrial content in peri-AT
and significantly higher peridroplet mitochondria content, as-
sociated with increased energy expenditure.'”” Peridroplet
mitochondria is a functionally independent subpopulation of
mitochondria in AT involved in browning and energy metabol-
ism. Up to one-third of PCC patients develop diabetes due to im-
paired glucose tolerance and insulin resistance.'”*'”” Compared
to patients with non-functional adenomas, the peri-AT of
patients with PCC exhibits reduced phosphorylated AMP-acti-
vated protein kinase expression, increased expression of pyru-
vate dehydrogenase kinase (PDK4), pIRS1, and oxidative
stress markers.'”” Due to PDK4’s involvement in glucose up-
take, it may play a role in the catecholamine-induced insulin re-
sistance in patients with PCC.

Conclusion and perspectives

Adrenal-AT interactions play a pivotal role in regulating sys-
temic energy homeostasis, stress responses, and metabolic
health. Adrenal tumors are associated with impaired adrenal
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hormone secretion, which leads to dysfunction of AT, promot-
ing visceral obesity, insulin resistance, and cardiovascular
complications. Moreover, chronic stress also impairs this
tightly regulated system, contributing to the widespread
prevalence of obesity, insulin resistance, and cardiovascular
disease in our society. Targeting this bidirectional system
therapeutically may not only be a promising approach to im-
prove care for patients with adrenal tumors, but it may also
help to cure obesity and type 2 diabetes.

Emerging evidence indicates that peri-AT can influence
adrenal tumor biology via endocrine, paracrine, and immune
signaling, affecting tumor progression and therapy response.
However, the precise mechanisms remain unclear.
Multiomics studies of matched tumor and AT correlated with
clinical parameters are needed to identify novel targets, miti-
gate metabolic and cardiovascular risk, and enable personal-
ized management. Whether modulating adipose inflammation
or browning can improve adrenal disease outcomes remains
unknown, highlighting the need for further translational re-
search into this complex crosstalk.
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