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Abstract
Adipose tissue (AT) closely interacts with the adrenal glands to regulate metabolism, energy balance, and stress responses. While the adrenal cortex 
secretes glucocorticoids and mineralocorticoids that influence AT distribution, lipid storage, and browning, the adrenal medulla releases 
catecholamines that acutely activate thermogenesis in brown and beige adipocytes. Under physiological conditions, this bidirectional crosstalk 
maintains energy homeostasis and cardiovascular stability. However, in adrenal diseases such as Cushing syndrome, primary aldosteronism, 
adrenocortical carcinoma, or pheochromocytoma, excess hormone secretion disrupts this balance, leading to AT dysfunction, altered adipokine 
secretion, and adverse metabolic profiles, including insulin resistance, visceral adiposity, and hypertension. Emerging evidence suggests that 
peri-adrenal AT may modulate adrenal tumor biology through endocrine and paracrine signals, and immune cell infiltration, with potential effects 
on disease progression and clinical presentation. Uncovering cellular and molecular mechanisms underlying the crosstalk between adrenal gland 
and AT may reveal new therapeutic targets for the reduction of cardiometabolic complications in patients with adrenal disorders. Here, we 
discuss how 2 endocrine organs—adrenal gland and AT—interact with each other under physiological and pathophysiological conditions and 
examine whether these interactions influence the progression of adrenal tumors and how this affects systemic metabolic health.
Keywords: steroids, catecholamines, fat browning, Cushing syndrome, paraganglioma, primary aldosteronism, adipokines

Significance

The adrenal gland and adipose tissue interact in a bidirectional crosstalk that is essential for maintaining metabolic and car
diovascular homeostasis. Adrenal hormones play a role in the regulation of adipose tissue distribution, lipid storage, and 
adipocyte thermogenesis. Conversely, adipose-derived mediators can influence adrenal function and stress responses. 
Excess hormone secretion disrupts the balance in adrenal disorders such as Cushing syndrome, primary aldosteronism, adre
nocortical carcinoma, and pheochromocytoma, promoting adipose dysfunction, insulin resistance, visceral adiposity, and 
hypertension. Furthermore, emerging evidence suggests that peri-adrenal fat may influence adrenal tumor behavior. A better 
understanding of the cellular and molecular mechanisms controlling adrenal–adipose interaction could reveal new thera
peutic targets to mitigate cardiometabolic complications and improve outcomes in patients with adrenal diseases.
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Graphical Abstract

Introduction
The adipose tissue (AT) has been recognized as an active endo
crine organ that plays a key role in maintaining homeostasis 
and is involved in the pathogenesis of different diseases.1-3

Extensive research has revealed that distinct adipose depots 
regulate not only energy storage and consumption, but also 
the secretion of adipokines and signaling molecules that affect 
local and distant organs. Patients with adrenal tumors show an 
increased prevalence of metabolic and cardiovascular compli
cations.4 The adrenal gland comprises the steroid-producing 
cortex and the catecholamine-producing medulla, both en
closed within a common capsule and surrounded by peri- 
adrenal AT (peri-AT; Figure 1A). However, potential crosstalk 
between these endocrine tissues remains poorly understood.

The adrenal gland maintains body homeostasis by producing 
neuronal, metabolic, and endocrine signals that regulate metabol
ism, stress response, electrolyte balance, and cardiovascular func
tion. The adrenal cortex comprises 3 zones: the zona glomerulosa 
(zG) produces mineralocorticoids controlling electrolyte balance 
and blood pressure, the zona fasciculata (zF) synthesizes glucocor
ticoids (GC) regulating metabolism and immunity, and the zona 
reticularis (zR) generates androgens, precursors of sex hormones. 
The cortex also mediates stress responses via the hypothalamic–pi
tuitary–adrenal (HPA) axis, where internal and external stimuli 
trigger corticotropin-releasing hormone (CRH) secretion from 
the hypothalamus. Corticotropin-releasing hormone stimulates 
the release of adrenocorticotropic hormone (ACTH) from 
the pituitary gland, resulting in the release of GC by the zF.5

Furthermore, during acute stress (fight-or-flight response), 

chromaffin cells of the adrenal medulla secrete catecholamines 
(epinephrine and norepinephrine (NE)).6 Since cortex and me
dulla share a common capsule, changes in one compartment affect 
the other. Interactions between cortical and chromaffin cells are es
sential for maintaining adrenal function under physiological and 
pathophysiological conditions.7

Pathophysiological alterations of the adrenal are usually 
associated with an over- or underproduction of adrenal 
hormones, leading to local and systemic metabolic changes. 
Pheochromocytomas are catecholamine-producing tumors 
with heterogeneous presentations, ranging from dopamine- 
only to epinephrine- or NE-producing phenotypes or even 
non-functional tumors.8 Chronic catecholamine excess associ
ated with these tumors drives a pro-inflammatory and hyper
metabolic state, causing weight loss despite normal food 
intake.9-11 In contrast, adrenal Cushing syndrome (CS), 
caused by autonomic cortisol hypersecretion due to an adrenal 
tumor, results in profound metabolic changes, including insu
lin resistance, dyslipidemia, and increased visceral adiposity, 
which contributes to significant weight gain and redistribu
tion.12,13 The overproduction of aldosterone in patients with 
primary aldosteronism (PA) has also direct consequences on 
body fat distribution.14 For instance, patients with bilateral 
PA tend to be more obese and have larger visceral fat areas 
than patients with lateralized PA.14

Adrenal tumors frequently cause metabolic and cardiovas
cular comorbidities through hormone-induced disruption of 
systemic homeostasis, profoundly affecting AT. Here, we 
provide novel insights into the bidirectional crosstalk between 
adrenal, AT, and adrenal tumors, to reveal how these 
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interactions shape tumor biology, local remodeling, and dis
ease manifestations.

Fat depots and fat beigeing/browning
Visceral adipose tissue (VAT) is an independent risk marker for 
cardiovascular and metabolic morbidity and mortality,15,16

whereas accumulation of abdominal subcutaneous adipose tis
sue (SAT) is a much weaker indicator of cardiovascular risk.16

Emerging evidence also suggests that an accumulation of peri- 
organ AT is associated with an increased risk for cardiovascular 
and metabolic disease.17,18 Adipose tissue accumulation may 
directly induce organ dysfunction through local mechanisms. 
For example, peri-vascular AT is involved in the pathogenesis 
of hypertension.19 Epicardial AT is associated with atheroscler
osis and coronary heart disease,20 while peri-renal adipose tis
sue (PRAT) is involved in chronic kidney disease (CKD).21 This 
emphasizes the direct influence of AT on adjacent organs.

Previously considered primarily as fat storage depots, adipo
cytes are now recognized as metabolically active endocrine, 
autocrine, and paracrine cells that synthesize, store, and secrete 
hormones and proteins (adipokines). There are 3 major types of 
adipocytes, which differ in morphology, cellular origin, and 
physiological function (Figure 1B). White adipocytes are derived 
from myogenic factor 5 (myf5)-negative progenitors,22 store en
ergy in the form of triglycerides and secret adipokines.23 In con
trast, brown adipocytes in mice originate from myf5-positive 
precursor cells and feature multilocular lipid droplets, a round 
central nucleus and cristae-enriched mitochondria that express 

uncoupling protein 1 (UCP1).23 Uncoupling protein 1 is the hall
mark of brown adipocytes and promotes energy expenditure. 
Brown adipocytes are regulated by the sympathetic nervous sys
tem and are able to maintain body temperature through thermo
genesis. Main depots of human brown adipose tissue (BAT) are 
located in the supraclavicular and cervical regions, with some 
additional mediastinal, peri-vertebral, peri-cardial, and peri- 
renal locations.24 Beige (or brite or browning of white or 
inducible) adipocytes resemble brown adipocytes in terms of 
thermogenic properties25,26 and are also UCP1-positive, but 
are unilocular and derived from myf5-negative precursors25

under specific environmental or hormonal stimuli (eg, cold 
exposure,27 β3-adrenergic agonists,28 and irisin29). Brown 
adipose tissue is found in various depots in humans and can 
exhibit features of both brown and beige adipocytes. 
Peri-renal adipose tissue and peri-AT are BAT hot-spots 
with many brown adipocytes near the adrenals.30

Peri-renal adipose tissue is a metabolically active hybrid 
VAT, which is located in the retroperitoneal space surround
ing the kidneys and adrenal glands. Peri-renal adipose tissue 
exhibited age-dependent molecular and morphological 
progressive regression, continuously transforming BAT into 
predominantly white adipose tissue (WAT).31 In human 
adult PRAT, dormant unilocular UCP1-expressing adipocytes 
are widely distributed, whereas active multilocular UCP1- 
expressing adipocytes are predominantly located around the 
adrenal, in areas with high numbers of sympathetic nerve end
ings,30 which suggests that PRAT and peri-AT are both related 
and distinct from each other. Peri-renal adipose tissue is more 

Figure 1 Adrenal and adipocyte function and secretion. (A) Adrenal zonation and hormone production. (B) Function and characteristic features of white, 
beige and brown adipocytes. Created by BioRender.com.
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active than other typical VATs in metabolizing, synthesizing, 
and secreting adipokines and inflammatory cytokines.32 A var
iety of adipokines and cytokines secreted by peri-AT regulate 
adrenal function and metabolism by local mechanisms.33-35

Conversely, adrenal hormones affect peri-AT through para
crine and endocrine pathways, which may contribute to tumor- 
related pathophysiology.28,36-40

Adrenal hormones and activation/browning 
of AT
Brown adipose tissue activity is tightly regulated by adrenal 
hormones and the sympathetic nervous system (Figure 2). 
Stress activates the HPA axis, causing cortisol secretion, which 
suppresses BAT activation and promotes VAT accumula
tion,41 while NE released by sympathetic nerves and the ad
renal medulla stimulates BAT thermogenesis and white fat 
beiging via β3-adrenergic receptor activation.42 Other factors 
such as cold exposure, ACTH, and fatty acids also enhance 
browning, whereas insulin inhibits this process. Given the 
key role of adrenal hormones in AT regulation, their dysregu
lation profoundly disrupts metabolism and has major clinical 

consequences. Accordingly, adrenal tumors show hormone- 
dependent differences in BAT prevalence. While 62.5% of pa
tients with pheochromocytoma (PCC) have brown adipocytes 
in their retroperitoneal fat mass, this is only the case in 
∼33.3% of patients with cortisol-producing adenomas and 
46.9% of patients with aldosterone-producing adenomas 
(APAs).43 The following sections discuss molecular and meta
bolic mechanisms behind these differences and effects of 
tumor-related adipose remodeling.

AT–adrenal cortex interactions
Glucocorticoids, mainly cortisol, regulate numerous biologic
al functions in adipocytes, including adipogenesis. GC stimu
lates differentiation of pre-adipocytes into mature white 
adipocytes,44,45 but GC also inhibits development and activa
tion of peri-renal BAT in rodents.46,47 In humans, GC acutely 
increases BAT activity but chronically suppresses it, suggest
ing a time-specific effect of GC on UCP1 and BAT activity.41,48

This effect is highly species-specific, as GC reduce BAT activity 
in mice.48 Moreover, GC inhibit the response of cultured hu
man brown adipocytes to adrenergic stimulation.49 As an 

Figure 2 Regulation of brown adipose tissue activity in particular in response to secretion of adrenal hormones. Stress activates the HPA axis. The 
autonomic nerves system triggers the hypothalamus to release CRH, which induces the release of ACTH in the anterior pituitary. In the adrenal cortex, 
ACTH leads to the release of cortisol, which suppresses fat browning and increases the accumulation of visceral WAT. In contrast, NE released by the 
sympathetic nervous system, including the adrenal medulla, causes fat beiging and activation of brown adipocytes. Other factors, such as adenosine, 
ATP, ACTH, secretin, fatty acids, and other dietary nutrients can contribute to fat browning, while insulin, in addition to cortisol, reduces fat browning. 
Therefore, NE binds to the beta-3 adrenergic receptor expressed on the surface of adipocytes, which leads to the activation of ADCY, which converts ATP 
to cAMP. cAMP activates PKA, which causes the expression and activation of UCP1 leading to thermogenesis. Created by BioRender.com. ACTH, 
adrenocorticotropic hormone; CRH, corticotrophin-releasing hormone; HPA, hypothalamic–pituitary–adrenal; NE, norepinephrine; ATP, adenosine 
triphosphate; ADCY, adenylate cyclase; cAMP, cyclic adenosine monophosphate; PKA, protein kinase A; UCP1, uncoupling protein 1.
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antagonist, ACTH, which is responsible for the release of cor
tisol in the adrenal, promotes browning of adipocytes.50,51

Intracellular GC activity and metabolism is regulated by 
2 isoforms of 11β-hydroxysteroid dehydrogenase (HSD). 
While type 1 (11β-HSD1) is localized in several tissues, includ
ing AT, and converts inactive cortisone to cortisol that binds 
to the intracellular glucocorticoid receptor (GR), type 2 
(11β-HSD2) causes the reverse conversion of cortisol to 
cortisone, thereby preventing cortisol from occupying the 
mineralocorticoid receptor (MR) in aldosterone target tis
sues.52,53 Under physiological conditions, cortisol is 
100-1000 times higher concentrated than aldosterone, and 
this effect is exacerbated in patients with hypercortiso
lism.54,55 Moreover, due to the saturation of 11β-HSD2 en
zymatic activity under conditions of cortisol excess, cortisol 
is even able to bind to MR in aldosterone target tissues.56

Inflammatory signals, including tumor necrosis factor (TNF) 
and interleukin (IL)-1β, modulate expression of HSD en
zymes, thereby altering cellular sensitivity to GC.57 The GR, 
encoded by NR3C1 (nuclear receptor subfamily 3, group C, 
member 1), has a much higher affinity for cortisol than aldos
terone and is most likely responsible for the inhibitory effects 
of GC on BAT development and activity.43,58 However, MR, 
encoded by NR3C2 (nuclear receptor subfamily 3, group C, 
member 2), has a similar affinity for aldosterone and cortisol, 
and coregulators recruited upon GR and MR binding largely 
overlap.59,60 Glucocorticoids play a crucial role in AT metab
olism and cause multiple transcriptomic changes and epigenet
ic modifications.61-63 Glucocorticoid receptor activation 
exerts highly tissue-specific effects on the epigenome, which 
can be controlled by a cell-type-specific binding of GR to tar
get genomic sites64,65 and can even persist after stimulus is re
moved. However, studies on the epigenetic regulation of GC 
or other adrenal hormones in AT are lacking.

Glucocorticoids induce an increased leptin secretion from 
adipocytes, suggesting a mechanism that may contribute to 
anorexia and weight loss during stress when these conditions 
are accompanied by a sustained increase in plasma leptin con
centrations.66 Furthermore, leptin inhibits GC secretion in hu
man adrenocortical cells by the suppression of steroidogenic 
enzymes,67 which demonstrates the complex regulation of 
this system, particularly under stress.

The renin–angiotensin–aldosterone system (RAAS) is a cen
tral regulator of blood pressure, fluid, and electrolyte balance, 
and also affects adipocyte function via MR signaling68

(Figure 3). Aldosterone prevents ACTH-induced expression of 
UCP1.47,51,69 Mineralocorticoid receptor is expressed in BAT 
cells and MR antagonists are able to induce browning of visceral 
and subcutaneous AT in mice.70 Mineralocorticoid receptor an
tagonists can improve BAT function in response to cooling in hu
mans.71 However, administration of classic steroidal MR 
antagonists to mice fed a moderately high-fat diet reduces the 
spread of WAT, induces the activation of interscapular BAT, 
and stimulates the browning of WAT.70 The activation of MR 
also causes adipocyte hypertrophy, which leads to oxidative 
stress, local hypoxia, and a pro-inflammatory state.72 In line, 
MR blockade reduces the expression of pro-inflammatory and 
prothrombotic factors and enhances adiponectin expression in 
AT of obese, diabetic mice, revealing a potential mechanism 
for the cardioprotective effects observed under MR blockade.73

In vitro, aldosterone appears to be able to induce adipocyte dif
ferentiation and intracellular lipid accumulation, suggesting 
that both MR and GR are vital for adipocyte differentiation.74,75

Moreover, adipocytes play a regulatory role in steroidogene
sis. Adipocyte-conditioned medium stimulates aldosterone pro
duction in adrenocortical cells (NCI-H295R).76,77 Adipokines, 
including C1q/TNF-related protein (CTRP1), adiponectin and 
leptin, can stimulate the production of aldosterone in the ad
renal, which links obesity directly with hypertension.78-80

Leptin directly regulates aldosterone synthase expression in 
the adrenal and thus aldosterone secretion, contributing to 
high aldosterone levels observed in obese mice.81

Visceral and subcutaneous AT can also produce angiotensi
nogen and possesses a local renin–angiotensin system.82

Activation of this local RAAS system in the peri-AT of patients 
with CS causes high blood pressure levels even 6 months after 
the remission of hypercortisolism.33 Adipocyte-derived aldos
terone regulates adipocyte differentiation and vascular func
tion providing a potential link between vascular dysfunction 
in diabetes mellitus–associated obesity.83

AT–adrenocortical tumor interactions
Adrenocortical tumors are neoplasms that arise from the ad
renal cortex and range from benign adrenal adenomas to high
ly aggressive adrenal carcinomas. They may be hormonally 
active and cause clinically significant endocrine syndromes 
(Table 1), or they may be non-functional and discovered inci
dentally during imaging examinations.

Cushing syndrome
Adrenal Cushing is caused by autonomous overproduction of 
cortisol in the adrenal due to benign or malignant adrenal tu
mors, or due to bilateral primary micro- and macronodular 
adrenal hyperplasia and accounts for ∼20% of all CS cases.95

Patients with CS typically present with metabolic manifesta
tions such as hyperglycemia, hypertension, and excessive fat 
deposits in face, neck, and visceral organs.85,96 The severity 

Figure 3 Crosstalk between adipocytes and the RAAS. Created by 
BioRender.com. RAAS, renin–angiotensin–aldosterone system.
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of hypercortisolism correlates with higher visceral adiposity.87

In patients with active CS, hypercortisolism induced PRAT 
adipocyte hypertrophy, which is associated with increased 
macrophage infiltration and elevated leptin levels, as well as 
reduced adiponectin levels.86 Another study identified higher 
leptin levels in peri-AT than in PRAT and subcutaneous AT 
in patients with CS.34

Primary bilateral macronodular adrenal hyperplasia (BMAD) 
is a rare cause of CS, often misdiagnosed as bilateral adrenal in
cidentalomas with subclinical cortisol production. Interestingly, 
BMAD frequently occur alongside myelolipoma, especially 
those associated with food-dependent (glucose-dependent insu
linotropic polypeptide-dependent) hypercortisolism, due to 
KDM1A mutations.97-99 However, the mechanisms by which 
these 2 lesions develop in parallel and influence each other re
main unknown. Paradoxically, leptin stimulates cortisol secre
tion in nutrition-dependent BMAD.100 Moreover, BMAD 
tissue expresses abnormal levels of ACTH.101 It is therefore con
ceivable that adrenal cortex cells influence intra-adrenal adipo
cytes via a paracrine mechanism involving locally produced 
ACTH.102,103Reciprocally, AT may activate cortisol production 
through leptin release.

It is well known that acute or prolonged glucocorticoid admin
istration decreases C-reactive protein (CRP), IL-6, and 
TNF-alpha (TNF-α). However, long-term hypercortisolism is 
characterized by chronic, low-grade inflammation.88,104,105

Even after achieving a long-term cure, patients who have experi
enced CS exhibit a persistent accumulation of central fat, similar 
to that seen in active hypercortisolism, associated with an 
unfavorable adipokine profile and a state of low-grade inflamma
tion.88 Moreover, amelioration of visceral fat mass cannot 
be achieved in all patients, suggesting the presence of a 
potentially persistent epigenetic mechanism.88,106 Compared to 
body mass index (BMI)-matched controls, patients with CS ex
hibit an increased number of infiltrating macrophages in subcuta
neous AT and PRAT.86,107 Macrophages stimulate expression of 
pro-fibrotic factors and interfere with the differentiation of pre- 
adipocytes, thus promoting AT fibrosis. Excess exposure to GC 
also has a pro-fibrotic effect on AT, which requires the presence 

of macrophages.108 Consistently, chronic exposure to endogen
ous GC results in increased oxidative stress, inflammation, and 
fibrosis in PRAT.12

The adipokine leptin may promote proliferation and inva
sion of cancer cells by the activation of pathways such as phos
phoinositide 3-kinases, mitogen-activated protein kinase 
(MAPK), and signal transducer and activator of transcription 
3 (STAT3), while adiponectin may inhibit tumor growth and 
spread by inhibition of pathways such as nuclear factor kap
pa-light-chain-enhancer of activated B (NF-κB), STAT3, and 
mammalian target of rapamycin (mTOR).109,110 However, 
studies examining effects of adipokines on adrenal tumors 
are mostly lacking. Hypercortisolism lead to changes in the 
levels of circulating adipokines, with higher fatty acid-binding 
protein 4 (FABP4), retinol-binding protein 4 (RBP4), and 
resistin levels compared to healthy controls.111,112

Additionally, leptin expression was significantly higher in 
peri-AT than in PRAT or subcutaneous AT in patients with 
CS, while adiponectin expression was significantly lower.34

Plasma leptin levels are also elevated in patients with CS and 
decrease following tumor resection.113 Although fasting in
hibits leptin secretion in healthy subjects, inhibitory effects 
of short-term fasting are less pronounced in patients with 
CS.114 Leptin is known to decrease the corticotropin- 
stimulated release of steroids in vitro,115 potentially providing 
a hint for an important feedback loop and illustrating the dir
ect interaction between tumor, AT, and adrenal.

Primary aldosteronism
Primary aldosteronism is characterized by the autonomic 
secretion of aldosterone caused by unilateral or bilateral adrenal 
lesions, associated with fundamental metabolic consequen
ces.116,117 Compared to patients with essential hypertension, pa
tients with PA exhibit a higher prevalence of insulin resistance, 
impaired glucose tolerance, and type 2 diabetes.89 Excess aldos
terone promotes AT dysfunction, inflammation, and fibrosis.118

Furthermore, visceral obesity and altered adipokine secretion 
have been associated with increased cardiometabolic risk 

Table 1 Metabolic changes and effects on the peri-AT or peri-renal AT associated with adrenal tumors.

Adrenal disorder Hormone production Metabolic changes associated with the 
disease

Main effects on peri-AT or peri-renal AT Further key 
publications

Adrenal medulla
Pheochromocytoma Excess catecholamines 

(epinephrine, 
norepinephrine)

Hyperglycemia, insulin resistance, 
weight loss, increased lipolysis10

Promotes brown adipose tissue 
activation and browning phenotype in 
peri-AT9,40

Ref.9,40,84

Adrenal cortex
Cushing syndrome Excess cortisol Central obesity, insulin resistance, type 

2 diabetes, dyslipidemia85
Adipocyte hypertrophy, macrophage 

infiltration, inflammation86
Ref.87,88

Primary 
aldosteronism

Excess aldosterone Subtype specific features14; 
hypertension, hypokalemia, insulin 
resistance, impaired glucose 
tolerance, increased cardiovascular 
risk89

Increased fibrosis, inflammation, altered 
adipokine secretion38,90

Ref.38,91

Adrenocortical 
carcinoma

Variable; often cortisol 
and/or androgen 
excess

Features of Cushing syndrome and/or 
virilization, metabolic syndrome 
features if hypercortisolism92

Increased peri-adrenal adipose tissue 
mass, potential tumor-induced fibrosis 
and altered adipokine profiles in 
dependence of the hormone secreted

Ref.93,94

Non-functional 
adenomas

None significant Often incidental; might be associated 
with mild metabolic alterations if 
subclinical present

Minimal direct effects unless subclinical 
hypercortisolism induces changes

Ref.93

Abbreviations: AT, adipose tissue; peri-AT, peri-adrenal adipose tissue.
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observed in this population.119,120 For example, APAs are asso
ciated with obesity in males, but not in females,121 which may be 
related to the increased prevalence of KCNJ5 mutations in fe
males compared to males.122,123 Furthermore, patients with bi
lateral PA present with a higher BMI and greater visceral 
adiposity than patients with unilateral disease,14 reflecting the 
heterogeneity of metabolic characteristics across different PA 
subtypes, which are not yet fully understood. Treatment with 
MR agonists (eplerenone or spironolactone) lead to a significant 
reduction in VAT in these patients.124 Adipocytes adjacent to 
APAs exhibit a browning phenotype, as evidenced by smaller adi
pocyte size and higher UCP1 expression.91 The authors of this 
study proposed the following mechanism: APA cells release retin
oic acid, which promotes tissue browning and leads to the release 
of lactate by beige adipocytes, thereby increasing aldosterone 
production.91 As outlined before, treatment with MR antago
nists rather induce browning,47,69,70 suggesting that aldosterone 
might not be the principal mediator of fat browning in patients 
with APA. In vitro studies revealed that only pharmacological 
concentrations of aldosterone reduced glucose uptake in adipo
cytes, suggesting: (1) insulin resistance in patients with PA may 
occur in compartments other than AT, and/or (2) it may depend 
on secondary factors, such as retinoic acid.125 RNA sequencing 
revealed a downregulation of inflammation-associated pathways 
in SAT and peri-AT of patients with APA compared to patients 
with non-functional adrenal adenomas, while steroid-related 
pathways were upregulated, particularly in peri-AT of patients 
with KCNJ5-mutant APAs, which suggest a paracrine actions 
of aldosterone.90 Moreover, cortisol co-secretion has been re
ported in up to 30% of patients with PA,126,127 which might fur
thermore affect the adipose tissue phenotype in these patients.

Leptin expression in the PRAT was significantly higher in pa
tients with APAs compared to patients with non-functional ad
enomas.34 Leptin receptor (LEP-R) levels in APA tissues 
correlate positively with plasma aldosterone concentrations in 
these patients.128,129 However, expression of the adiponectin 
receptor 1/2 (AdipoR1/2) and LEP-R is significantly lower 
in benign adrenal neoplasms compared to adrenocortical 
carcinomas (ACCs).130 Aldosterone excess in patients with PA 
is furthermore associated with elevated resistin levels and car
diac alterations, independently of the presence of metabolic syn
drome.119 Moreover, PRAT of patients with APA exhibites 
significantly higher levels of IL-6, TNF-α and of genes related 
to fibrosis compared to normotensive individuals and patients 
with essential hypertension.38 Whether these effects are related 
to increased macrophage infiltration, as in CS, is largely un
known.38 In rats, it has been shown that administration of al
dosterone plus salt mediates an inflammatory M1 macrophage 
phenotype and increased renal fibrosis via activation of min
eralocorticoid receptors.131 This suggests that APAs induce 
PRAT dysfunction associated with a pro-inflammatory and 
fibrotic state that can worsen cardiovascular impairment.

Adrenocortical carcinoma
Adrenocortical carcinomas often produce excess steroid hor
mones, most commonly cortisol and androgens, leading to clin
ically overt endocrine syndromes such as CS or virilization. The 
clinical presentation of patients with ACCs greatly depends on 
whether the tumor is hormonally active or “non-functional.”92

Metabolic effects and effects on peri-AT of the cortisol or aldos
terone (rare) excess in these patients have already been discussed 
above. Additionally, in rare cases, ACCs can release estrogen, 

which can lead to feminization. Under physiological conditions, 
estrogen promotes lipolysis and inhibits adipogenesis.132 Thus, 
estrogen enhances insulin sensitivity.133 Androgens also play a 
critical role in AT homeostasis, by improving insulin sensitivity 
and glucose tolerance and by regulating the expression of vari
ous adipokines and regulating lipolysis.134 However, the impact 
of ACC-driven androgen or estrogen excess on adipocytes and 
metabolism remains unknown.

A correlation has been found between an increase in intra- 
abdominal fat tissue and a reduced survival rate in patients 
with ACC.135 Moreover, mixed cortisol/androgen-secreting 
ACCs are associated with worse overall survival compared 
to non-secreting ACCs, while cortisol or androgen secretion 
alone is not associated with worse overall survival.136

Patients with ACC have higher IL-6, TNF-α and monocyte 
chemoattractant protein 1 (MCP1) serum levels compared to 
healthy controls, indicating similar to patients with CS a 
pro-inflammatory state.93 However, little is known about 
the interaction of adipocytes and ACCs.

Monotherapy with mitotane is the first-line treatment for less 
aggressive ACCs after surgery, while patients with more aggres
sive forms of the disease are treated with mitotane plus chemo
therapy.137 However, due to its lipophilic nature, mitotane 
concentration is 200-fold higher in AT than in plasma.138

Therefore, high dosages of mitotane are required to reach the 
therapeutic plasma concentration, which result in several ad
verse effects.139 For example, mitotane has profound impact 
on lipid levels marked by increased total, low-density lipopro
tein and high-density lipoprotein (HDL) cholesterol levels in 
more than half of the patients.140,141 To the best of our knowl
edge, no studies have investigated the influence of BMI or body 
fat distribution on how ACC patients respond to mitotane 
treatment, though including these factors could improve out
comes and reduce side effects. Overall, ACC–adipose crosstalk 
remains poorly understood. Transcriptomic profiling of 
peri-AT alongside tumor hormone status and clinical parame
ters, as well as analysis of adipokine changes during rapid 
ACC progression, could provide valuable insights.

AT–adrenal medulla interactions
Catecholamines are well known to stimulate lipolysis by bind
ing to β-adrenergic receptors expressed on adipocytes,42,142

which leads to increased activity of adenylyl cyclase, resulting 
in evaluated levels of cyclic adenosine monophosphate 
(cAMP)143 (Figure 2). Cyclic adenosine monophosphate further 
activates protein kinase A (PKA) that leads to phosphorylation 
of downstream targets including hormone-sensitive lipase. 
Hormone-sensitive lipase is capable of breaking down triacylgly
cerol to diacylglycerol, but to a lesser extent than the adipose tri
glyceride lipase (ATGL). Protein kinase A phosphorylates 
perilipin, which is associated with the lipid droplet in the basal 
state and impedes ATGL access and activity.144 Insulin and GC 
furthermore affect this pathway by altering cAMP levels.143,145

The activation of PKA further lead to an activation of rapamycin- 
sensitive mTOR complex 1 (mTORC1)146 and p38 MAP kinase, 
resulting in the induction of target genes involved in fat browning 
(UCP1 and Pparg coactivator 1 alpha (PGC1α)).42 Furthermore, 
co-culture experiments revealed that catecholamines block 
vesicle transport and secretion of leptin and resistin via 
β-adrenergic receptors, whereas leptin and resistin promote ves
icle transport and secretion of catecholamines via PKA, protein 
kinase C (PKC), MAPK kinase, and Ca2+-dependent signaling 
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pathways.39Leptin is secreted mainly by white adipocytes and 
stimulates the synthesis of catecholamines,147,148 while catechol
amines reduce leptin production.149-151 Additionally, 
β-adrenergic stimulation of AT, rather than macrophages, seems 
to be responsible for enhanced plasma IL-6 concentrations ob
served in obesity.152 Interleukin-6 is known to modulate adrenal 
steroid production indicating a crosstalk between AT and ad
renal cortex.153,154

Approaches to promote energy consumption through the in
duction of thermogenesis are of high clinical relevance, especially 
given the widespread prevalence of obesity. β3-Adrenergic recep
tor is highly expressed in human BAT and WAT, as well as in oth
er tissues such as the gallbladder, gastrointestinal tract, and 
prostate.155 Therefore, various β3-agonists have been investi
gated for the treatment of obesity due to their potential appetite- 
suppressing and thermogenic effects.156 None of the investigated 
agonists, however, advanced beyond clinical phase II due to a 
lack of efficacy and cardiovascular side effects, mainly caused 
by insufficient selectivity of available agonists.157 While short- 
term exposure to high doses of β3-adrenergic agonist mirabegron 
leads to activation of BAT, catecholamine-secreting tumors 
(pheochromocytomas), as well as long-term exposure to mirabe
gron even promote fat browning.156 To further evaluate the 
therapeutic potential for obesity and metabolic syndrome, 
more selective and potent β3-adrenergic receptor agonists with 
fewer off-target effects are needed.

AT–PCC interactions
Excessive catecholamine production by adrenal medullary PCC 
triggers a β3-adrenergic response that activates BAT and 
peri-AT browning.28,36 This promotes a hypermetabolic state as
sociated with increased glycogenolysis, lipolysis, and the release 
of proinflammatory cytokines.10 Patients with functional PCCs 
exhibit higher prevalence of BAT activation9,158 and weight 
gain after PCC resection has been observed.11 The presence of ac
tive BAT is associated with higher plasma NE levels and de
creased overall survival in patients with PCC.159,160 Moreover, 
patients with BAT activation seem to be younger.158 However, 
there is no significant correlation between changes in plasma cat
echolamines or metanephrines and changes in fat mass.161,162 A 
meta-analysis identified elevated catecholamine levels, particu
larly NE/normetanephrine, to be associated with the presence 
of activated BAT on imaging in patients with PCC.163

Brown adipose tissue activation in PCC exhibits regional dis
tribution differences, with stronger activation closer to the tumor 
(peri-AT) than further away from the tumor (subcutaneous).40

This may be due to a hormonal gradient or to differences in 
the response of AT at different sites to adrenal signaling. 
Surprisingly, no difference in 18F-fluorodeoxyglucose uptake 
by the peri-renal AT between the side of the PCC and contralat
eral side has been observed.9 Moreover, pheochromocytomas 
and paragangliomas (PPGLs) are genetically heterogeneous tu
mors with a strong genotype–phenotype correlation, but no dif
ference in the prevalence of BAT activation was observed 
between sporadic cases or patients with succinate dehydroxyge
nase (SDHx) or von Hippel–Lindau (VHL)-related PPGLs.9

Discrepancies between studies on the prevalence of activated 
BAT in patients with PPGLs and a possible correlation with 
excess catecholamine/NE9,11,158-160,162,163 could be related to 
differences in the timing and implementation of an adrenergic 
receptors blockade. Since intraoperative mobilization of the tu
mor often leads to a sudden rise in blood pressure in these patients 

due to the release of catecholamines, guidelines recommend 
preoperative treatment of symptomatic patients with 
α-adrenoreceptor antagonists.164,165 Depending on when adren
ergic receptor blockade is initiated, this might affect the results.

Adrenergic stimulation triggers a series of molecular events 
through activation of β-adrenergic receptor signaling in AT, 
including altered gene expression and splicing regulation, ul
timately leading to browning of AT, increased thermogenesis 
and enhanced metabolism.84 In AT of patients with PCC, ele
vated expression of genes associated with mitochondrial heat 
production (eg, UCP1 and CKMT1A/B) and lipid and carbo
hydrate catabolism is observed, while pro-inflammatory path
ways are decreased.84 Peri-renal brown adipocytes in patients 
with PCC recapitulate activated classical brown adipocytes 
with the reduced expression of markers selective for beige adi
pocytes (CD137 and TBX1).166 In retroperitoneal VAT of pa
tients with PPGL UCP1 expression correlate negatively with 
the BMI and positively with HDLc levels.167

Fibroblast growth factor-21 (FGF21) plays a systemic role by 
promoting glucose uptake, insulin secretion, and brown 
adipogenesis.168,169 NE activates the transcription of the 
FGF21 through a cAMP-dependent PKA- and p38 
MAPK-mediated mechanisms in BAT.170,171 FGF21 is released 
from BAT into circulation during thermogenic activation.170

Visceral adipose tissue of patients with PCC significantly ex
pressed FGF21 and UCP1 with a positive correlation, suggest
ing that FGF21 is involved in human BAT activation in these 
patients.169 Adrenomedullin (ADM), a peptide released, for ex
ample, by chromaffin cells of the adrenal medulla or PCCs, may 
also be involved in tumor–AT interactions since ADM causes 
browning of adipocytes in proximity to breast cancer cells.172

However, it is not known whether this effect plays a role in 
browning of peri-AT in patients with PCC, which even presents 
with elevated plasma ADM levels.173

Adiponectin expression is significantly higher in BAT than in 
WAT around PCC, and urinary metanephrine levels correlate 
positively with UCP1 expression in BAT.174 AdipoR1 and 
AdipoR2 expression is significantly higher in PCC than in adre
nocortical tumors.130 Moreover, AdpR1 expression is higher in 
epinephrine-producing PCCs than in NE-producing PCCs.175

Leptin receptor is more frequently expressed in PCC than in 
ACCs,130 but leptin does not appear to be involved in the regu
lation of cell proliferation in adrenal tumors.176 Moreover, pa
tients with PCC have higher mitochondrial content in peri-AT 
and significantly higher peridroplet mitochondria content, as
sociated with increased energy expenditure.177 Peridroplet 
mitochondria is a functionally independent subpopulation of 
mitochondria in AT involved in browning and energy metabol
ism. Up to one-third of PCC patients develop diabetes due to im
paired glucose tolerance and insulin resistance.178,179 Compared 
to patients with non-functional adenomas, the peri-AT of 
patients with PCC exhibits reduced phosphorylated AMP-acti
vated protein kinase expression, increased expression of pyru
vate dehydrogenase kinase (PDK4), pIRS1, and oxidative 
stress markers.179 Due to PDK4’s involvement in glucose up
take, it may play a role in the catecholamine-induced insulin re
sistance in patients with PCC.

Conclusion and perspectives
Adrenal–AT interactions play a pivotal role in regulating sys
temic energy homeostasis, stress responses, and metabolic 
health. Adrenal tumors are associated with impaired adrenal 
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hormone secretion, which leads to dysfunction of AT, promot
ing visceral obesity, insulin resistance, and cardiovascular 
complications. Moreover, chronic stress also impairs this 
tightly regulated system, contributing to the widespread 
prevalence of obesity, insulin resistance, and cardiovascular 
disease in our society. Targeting this bidirectional system 
therapeutically may not only be a promising approach to im
prove care for patients with adrenal tumors, but it may also 
help to cure obesity and type 2 diabetes.

Emerging evidence indicates that peri-AT can influence 
adrenal tumor biology via endocrine, paracrine, and immune 
signaling, affecting tumor progression and therapy response. 
However, the precise mechanisms remain unclear. 
Multiomics studies of matched tumor and AT correlated with 
clinical parameters are needed to identify novel targets, miti
gate metabolic and cardiovascular risk, and enable personal
ized management. Whether modulating adipose inflammation 
or browning can improve adrenal disease outcomes remains 
unknown, highlighting the need for further translational re
search into this complex crosstalk.
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