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Abstract

Motivation: Detection of gene regulatory aberrations enhances our ability to interpret the impact of inherited and acquired genetic variation for
rare disease diagnostics and tumor characterization. While numerous methods for calling RNA expression outliers from RNA-sequencing data
have been proposed, the establishment of protein expression outliers from mass spectrometry data is lacking.

Results: Here, we propose and assess various modeling approaches to call protein expression outliers across three datasets from rare disease
diagnostics and oncology. We use as independent evidence the enrichment for outlier calls in matched RNA-seq samples and the enrichment for
rare variants likely disrupting protein expression. We show that controlling for hidden confounders and technical covariates, while simultaneously
modeling the occurrence of missing values, is largely beneficial and can be achieved using conditional autoencoders. Moreover, we find that the
differences between experimental and fitted log-transformed intensities by such models exhibit heavy tails that are poorly captured with the
Gaussian distribution and report stronger statistical calibration when instead using the Student's t-distribution. Our resulting method, PROTRIDER,
outperformed baseline approaches based on raw log-intensities Z-scores, PCA, and isolation-based anomaly detection with Isolation forests. The
application of PROTRIDER reveals significant enrichments of AlphaMissense pathogenic variants in protein expression outliers. Overall,
PROTRIDER provides a method to confidently identify aberrantly expressed proteins applicable to rare disease diagnostics and cancer proteomics.

Availability and implementation: PROTRIDER is freely available at github.com/gagneurlab/PROTRIDER and also available on Zenodo under

the DOI zenodo.15569781.

1 Introduction

The detection of outliers in omics data, i.e., values that signifi-
cantly deviate from the population and can thus be suggestive
of a disease-causing gene, is of great importance for rare disease
diagnostics (Cummings et al. 2017, Kremer et al. 2017, Yépez
et al. 2022, Smail and Montgomery 2024). Importantly, outlier
detection in omics data complements genome sequencing data
by providing a functional readout to variants of uncertain sig-
nificance whose interpretation is otherwise inconclusive. Outlier
detection methods have been established for RNA-seq abun-
dance, splicing, and chromatin accessibility (Brechtmann ez al.
2018, Jenkinson et al. 2020, Salkovic et al. 2020, Mertes et al.
2021, Labory et al. 2022, Salkovic et al. 2023, Scheller et al.
2023, Segers et al. 2023, Celik et al. 2024). However, DNA ac-
cessibility and RNA sequencing cannot capture the effects of all
pathogenic variants. Some variants may affect translation or
protein stability, without impacting chromatin accessibility or
gene expression. To capture those effects, mass spectrometry-
based proteomics constitutes an avenue to probe protein abun-
dances as additional functional evidence (Kopajtich et al. 2021,

Vialle ez al. 2022, Hock et al. 2025, Chui et al. 2025). The inter-
est in calling protein expression outliers also extends to cancer
research, to characterize alterations in different molecular levels,
find biomarkers, and explain drug sensitivities (Roumeliotis
et al. 2017, Frejno et al. 2020).

Several studies have shown that measurements of gene ex-
pression, splicing, and chromatin accessibility data exhibit
covariation patterns driven by biological and technical fac-
tors such as tissue, sampling site within the body, sex, batch,
sequencing center, cause of death, sequencer, age, and read
length (Kremer et al. 2017, Frésard et al. 2019, Mertes et al.
2021, Yépez et al. 2021, Celik et al. 2024). Across those mo-
dalities, adjusting for these sources of covariation is strongly
beneficial to enrich for the direct regulatory effects of genetic
variants. Biological and technical sources of covariation also
pertain to labeled proteomics experiments. Notably, samples
analyzed together in the same batch of the mass spectrometry
run exhibit a stronger correlation than those from different
batches, especially for tandem mass tag labeled quantitative
proteomics (Brenes et al. 2019, Zecha et al. 2019, Phua et al.
2022). In a previous study, we proposed calling protein level
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outliers using a conditional autoencoder to account for hid-
den confounders and reported improvements over methods
lacking this adjustment (Kopajtich et al. 2021).

Here, we expand on and strengthen our previous work and
present PROTRIDER. Method-wise, we investigate an alter-
native strategy to obtain the optimal encoding dimension,
model the occurrence of missing values, compare linear
against non-linear autoencoders, and perform a statistical as-
sessment based on the Student’s #-distribution against the
Gaussian distribution. Furthermore, we expand the bench-
mark to two other proteomics datasets of tumor cell lines and
to enrichment among expression outliers in matched RNA-
seq samples. Finally, we investigate the genetic determinants
of the detected aberrant protein abundances, revealing that
genes exhibiting protein expression outliers are strongly
enriched for missense variants predicted to be pathogenic by
AlphaMissense (Cheng et al. 2023).

2 Materials and methods

2.1 Datasets and data processing

2.1.1 Mitochondrial disorder dataset

We used a dataset of 143 tandem mass tag (TMT) labeled
quantitative proteomics samples with matched RNA-seq
samples and variant calls from whole exome sequencing of
individuals affected with a rare mitochondrial disorder of
suspected genetic origin (Kopajtich ez al. 2021). This dataset
consisted of samples from patient-derived fibroblast cell lines
by using a TMT 10-plex labeling reagent. Each TMT batch
included 8 patient samples and 2 reference samples. The 143
samples were split over 21 TMT batches, with each batch
contributing between 5 and 8 samples, except for one that
only contributed one sample. Protein intensities were
obtained from protein groups after peptide identification us-
ing MaxQuant v.1.6.3.4 (Tyanova et al. 2016). The RNA-
seq samples were derived from the same fibroblast cultures
and reads were counted using DROP (Yépez et al. 2021) as
previously described (Yépez et al. 2022).

2.1.2 Tumor cell line panels

We additionally used proteomics measurements from the two
publicly available tumor cell line panels NCI60 (7= 60) and
CRC65 (n=63), obtained from (Frejno et al. 2020). Variant
calls from whole exome sequencing from the NCI60 cell lines
were downloaded from CellMiner (discover.nci.nih.gov/cell-
miner/) in the form of the “DNA: Exome Seq—none” processed
dataset. For the CRC65 panel, somatic mutation calls from
WES were only available for a subset of 33 of the cell lines
through the DepMap project (depmap.org/portal/). We down-
loaded the “OmicsSomaticMutationsProfile.csv” file containing
the somatic variant calls, and the files “OmicsProfiles.csv” and
“Model.csv” to map from the DepMap profile IDs to the cell
line names of the CRC65 data in the proteomics data (Frejno
et al. 2020). The variant calls for NCI60 were based on the
hg19 genome build and annotated with ANNOVAR (Wang
et al. 2010, Abaan et al. 2013), whereas the variants obtained
through DepMap were based on the hg38 genome build and an-
notated with VEP (v. 100.1) among other tools.

2.1.3 Proteomics data preprocessing

TMT-reference samples were excluded in this analysis, and the
remaining samples were not normalized using any reference
samples. Raw protein intensities were log-transformed and
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adjusted for overall sample intensity using the DESeq2 size fac-
tor normalization (Love et al. 2014), resulting in a protein inten-
sity matrix X with elements x; ; for sample i and protein ;.

2.2 Aberrant protein expression level analysis

with PROTRIDER
2.2.1 Conditional autoencoder

PROTRIDER uses an autoencoder to capture known and un-
known sources of protein intensity variations, yielding expected
log-intensities for each protein in each sample. Deviations of the
measurements from these expected values are analyzed to iden-
tify outliers. First, proteins with more than a defined threshold
of missing values across samples were filtered out. That thresh-
old was set to 30% by default, and other thresholds were
further investigated. The remaining missing values were set to
the protein-wise means in the input matrix X of the autoen-
coder and were ignored during mean squared error loss compu-
tation. We also considered as possible further input of the
autoencoder the binary missingness mask M, in which ones in-
dicate non-missing intensity values and zeros indicate missing
values. In this setting, the intensity matrix X and the missingness
mask M were stacked and jointly fed into the autoencoder,
thereby modeling both protein intensities and missing value
occurrences simultaneously. We also introduced the option to
use a conditional autoencoder approach that explicitly uses
specified covariates by including them both in the input of the
encoder and the decoder.

The dimension g of the autoencoder bottleneck layer, i.e. latent
space, was treated as a hyperparameter and optimized separately.
We considered different numbers of layers for the encoder and
the decoder, ranging between 1 and 3, where ReLU was used as
an activation function between layers of the encoder and decoder,
respectively. No non-linear activation was included for 1-layer
encoders and decoders, effectively having a linear autoencoder of
dimension gq. In this case, the 1-layer model, possibly including
the missingness mask M as an additional input, was initialized
with truncated Singular Value Decomposition after centering the
protein intensity matrix X protein-wise and with bias terms
adjusting for protein-wise means.

The model weights were optimized by minimizing a compos-
ite loss function consisting of two terms: (1) the mean squared
error (MSE) between the predicted X and observed protein
intensities X, computed over all observed values, and (2) the
binary cross-entropy (BCE) loss between the predicted probabil-
ities of being observed M and the missingness mask M. These
two terms were combined as a weighted sum, with a predefined
weighting parameter A controlling the contribution of the miss-
ingness prediction, resulting in a final loss L, defined as

L=MSE (X, X) + 2-BCE (M,M), (1)
where . 1 o
MSE (X, X) = S Z,;,-mi,f' (xij — %ig) (2)
and ) 1
BCE(M, M) = TN 2ol i e log(i) + (1 —mij)

~log(1 — ;)]
(3)

with N defined as the total number of proteins times the num-
ber of samples in the matrix X, x;; and %;; as the observed

920z Afenuer /( uo Jasn Yaujolqigieuaz 4S9 AQ 8¥ZZE£8/8ZNeIN/Z L/ 1 /oI01HE/SONBUWLIOJUIOIG/ WO N0 OIWapEDk//:SdY WOl) PAPEOIUMOQ



PROTRIDER

and predicted intensities and #2;; and 77;; as the observed
and predicted presence values for each sample 7 and protein ;.

The numerical optimization was performed with Adam
(Kingma and Ba 2017) for 400 epochs. For 1-layer autoen-
coders, a small learning rate of 10™* was used, whereas
higher learning rates between 10™* and 107° were used for
multi-layer autoencoders.

2.2.2 Tail probability computation

For each sample i and protein j, the extremeness of the ob-
served pre-processed intensity x;; relative to the predicted in-
tensity x;; modeled by the autoencoder was quantified using
two-sided tail probabilities, denoted p; ;. To this end, we con-
sidered the residuals of the model ¢;; defined as x;; —x;; and
computed their protein-wise means 77; and unbiased standard
deviations s;. The tail probabilities were obtained from either
the Gaussian or Student’s #-distribution. Gaussian tail proba-
bilities were computed according to

pii = 2.min{w<e’*"*m">,1—l{!(e’?"*m’)}, (4)
' 5j sj

where ¥ denotes the cumulative function of the normal
distribution.

Early investigations with fitting Student’s #-distributions
with protein-specific degrees of freedom yielded poor statisti-
cal calibration, probably due to numerical instability of the
likelihood function with respect to the degree of freedom.
Therefore, tail probabilities based on a Student’s #-distribu-
tion were robustly computed with a two-pass approach. In
the first pass, we estimated the degrees of freedom, location,
and scale parameters of the Student’s #-distribution using
maximum likelihood for each protein. In the second pass, we
set the degrees of freedom for all proteins to a common value
Do defined as the median of the degrees of freedom estimated
in the first pass, and we fitted the location and the scale for
each protein again. The two-sided tail probabilities, simply
referred to as tail probabilities later on, were calculated as

pij —2~min{F<M7ao>,1—F(6"ﬂ”",ﬁo>}7 (5)
' Tj Tj

where F denotes the cumulative function of the Student’s
t-distribution, /i; the location estimate, and 7; the scale esti-
mates of protein ;.

Tail probabilities were used to rank outlier candidates. No
tail probabilities were reported for missing values.

2.2.3 Selection of the optimal encoding dimension

To find the optimal encoding dimension g of the autoen-
coder, i.e. the dimension of the autoencoder’s latent space,
we used two strategies: (i) the optimal hard threshold (OHT)
method (Gavish and Donoho 2014), which applies to the lin-
ear autoencoders without covariates only, and (ii) a grid
search over different values of g.

For the latter approach, at most 25 candidate values or up
to half the sample size, whichever is smaller, are explored for
finding g. These values are logarithmically spaced between 4
and half the sample size. For each candidate value, we fit the
autoencoder after injecting the original dataset with artificial
outliers generated with a frequency of 1 per 1000 under a
simulation scheme described earlier (Brechtmann et al.

2018). Specifically, the outlier intensity x°;; for sample i and
protein j was generated by shifting the observed preprocessed
intensity x;; by z;; times the standard deviation s; of x;;. The
absolute value z;; was drawn from a log-normal distribution
with the mean of the logarithm equal to 3 and the standard
deviation of the logarithm equal to 1.6, and with the sign of
z;; either positive or negative, drawn with equal probability:

x%ij = Xij+zij s (6)

We selected the candidate value for g that lead to the high-
est area under the precision-recall curve (AUPRC) of recover-
ing the previously injected outliers when ranking by tail
probabilities. After the optimal encoding dimension was de-
termined either with the OHT or the grid search approach,
the autoencoder was fitted using the determined value of g on
the actual data without any artificially injected outliers.

2.2.4 Implementation

The autoencoder model of PROTRIDER was implemented in
Python (v.3.8.13) using PyTorch (v.1.13.1). It is available at
https://github.com/gagneurlab/PROTRIDER. The package
includes the Python-based autoencoder implementation, cal-
culates tail probabilities, and produces results tables. We also
provide an example dataset and usage guidelines. The code is
also available on Zenodo under the DOI https://doi.org/10.
5281/zenodo.15569781.

2.3 Tail probability adjustment

2.3.1 Definition of the proportion of false positive calls in a
negative control dataset

PROTRIDER does not perform hypothesis testing.
Nonetheless, akin to the multiple hypothesis testing problem
for P-values, a nominal probability cutoff on tail probabilities
would lead to a number of calls increasing with the number
of proteins, even in the absence of genuine outliers. We
assessed approaches to address this issue by analyzing results
on a negative control dataset, in which the observed values
were simulated according to the modeling assumptions of
PROTRIDER: protein-specific locations linearly related to a
latent space, protein-specific scales, and a common value for
the degrees of freedom. Any positive call (outlier call) from
data generated from the negative control dataset is a false
positive. We considered the proportion of false positives
among the positive calls and defined this proportion to be
equal to 0 if no positive call is made.

2.3.2 Outlier calling using adjusted tail probabilities

While the procedure of Benjamini and Hochberg (Benjamini
and Hochberg 1995) and the one of Benjamini and Yekutieli
(Benjamini and Yekutieli 2001) have theoretical guarantees in
the context of multiple hypothesis testing, this does not imply
guarantees for our application setting. Therefore, we resorted to
empirically assessing whether applications of these procedures
to PROTRIDER tail probabilities led to false discovery controls
for the negative control dataset we simulated. Specifically, we
applied the procedure of Benjamini and Yekutieli, and alterna-
tively, the one of Benjamini and Hochberg, sample-wise, provid-
ing tail probabilities instead of P-values, which were originally
considered as input in the original publications.

For each sample separately, we considered the unadjusted
tail probabilities over the m proteins p1,...,p, and per-
formed the following steps:
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1) We sorted the tail probabilities in increasing or-
der: p(l) <... Sp(/) <.. p(m)

2) We computed adjusted tail probabilities:
qq) =ming ;- c(m)-py, where c(m)=1 for the
Benjamini-Hochberg procedure and c(m2) = Y"1" | § for the
Benjamini-Yekutieli procedure.

3) We truncated the adjusted tail probabilities at 1,

i.e. q(G) = min(l, qm) .
4) Finally, we reordered q(j to match the original order.

This procedure was implemented based on SciPy’s false_-
discovery_control method. Protein outliers were defined as
those with an adjusted tail probability of 0.1 or lower.

2.3.3 Empirical assessment of expected proportions of false
positive calls in the absence of outliers

We assessed whether the Benjamini-Yekutieli (Benjamini and
Yekutieli 2001) and the Benjamini-Hochberg (Benjamini and
Hochberg 1995) procedures applied to the tail probabilities
(instead of P-values) controlled the expected proportion of
false positive calls. We demonstrated this for a negative con-
trol dataset simulated without any outliers, following a three-
step procedure:

1) We first generated data under a model consistent with
the PROTRIDER assumptions. To this end, we sampled
residuals ¢*;; for all samples 7 and proteins j from a
Student’s ¢-distribution. To obtain simulated data with
realistic parameters, we used the locations, scales, and
common degrees of freedom estimated on the mitochon-
drial disorder dataset from the residuals ¢;; as described
in the Section 2.2.2. The sampled residuals e*;; were
added to the PROTRIDER fit x;;. We then reversed the
original preprocessing transformations to yield a syn-
thetic protein intensity matrix with no true outliers.

2) The entire PROTRIDER fitting procedure was applied
to each of 100 simulated negative control datasets.
Thereby, all parameters were re-estimated, including the
degrees of freedom.

3) Next, the Benjamini and Hochberg procedure and the
Benjamini and Yekutieli procedure were applied to the tail
probability vectors of each sample from each simulated
dataset, and outlier calls were made at a fixed threshold.

Since the datasets were simulated without any outliers, any
detected outlier constituted a false positive, yielding propor-
tions of false positive calls in each run equal to 0 (no calls
made) or 1 (some calls made). The empirical expected pro-
portion of false positive calls was estimated as the average
proportion of false positive calls across the 100 simulated
datasets and all samples. Moreover, the total amount of calls
was recorded for each simulation and sample combination.

2.4 Cross-validation

We also ran PROTRIDER in a leave-one-out and in a 5-fold
cross-validation setting. In the leave-one-out setting, each
sample was sequentially held out as a test case while the
remaining samples were used for model training and hyper-
parameter tuning. The optimal encoding dimension was de-
termined on the training set using both grid search and OHT
approaches. During autoencoder training, 20% of the train-
ing set was set aside as a validation set for early stopping.

Klaproth-Andrade et al.

After training, residuals were obtained for all training sam-
ples, and for each protein, a Student’s ¢-distribution was fit-
ted in a two-pass approach as described above. The resulting
model was then applied to the held-out test sample to derive
tail probabilities. This process was systematically repeated
for every sample in the dataset.

In the 5-fold setting, the dataset was split into 5 folds. Each
fold was used once as a test set while the remaining folds
were used for training. The tail probabilities for each test fold
were derived using the same procedure as in the leave-one-
out setting.

2.5 Comparison to alternative methods

2.5.1 Comparison to PCA

We considered an approach using principal component
analysis (PCA) for dimensionality reduction. PCA was ap-
plied to the centered, preprocessed protein intensities x; j, and
the optimal number of principal components to retain was
determined using the OHT criterion applied to the singular
values of the data matrix. The data were projected into the
subspace spanned by the selected components and subse-
quently reconstructed into the original feature space by re-
versing the PCA transformation. Residuals and tail
probabilities were then computed from the reconstructed ma-
trix as described above for PROTRIDER.

2.5.2 Comparison to Z-scores

We computed Z-scores from the preprocessed protein intensi-
ties x;; by subtracting the mean and dividing by the unbiased
standard deviation protein-wise. Tail probabilities were cal-
culated using the normal distribution, and the procedure of
Benjamini and Yekutieli (Benjamini and Yekutieli 2001) was
applied sample-wise.

2.5.3 Comparison to isolation Forest

As an alternative method, we also called outliers by fitting a
protein-specific Isolation forest (Liu et al. 2012) model in
two configurations: (i) fitted directly on the preprocessed in-
tensities x;;, and (ii) fitted on the residuals ¢;; returned by
PROTRIDER. Outlier candidates were ranked by the anom-
aly scores predicted by the Isolation Forest models.

2.5.4 Comparison to limma

We used the differential expression detection method limma
(Ritchie et al. 20135) to call outliers by testing each sample in-
dividually against all other samples. To run limma, we used
the preprocessed protein intensities x;; as the input. For each
dataset, we included relevant covariates in limma’s design
matrix, matching those used as input for PROTRIDER. This
resulted in a different limma run for each sample of each
dataset. The results were concatenated per dataset into a ta-
ble consisting of multiple testing-corrected P-values, fold-
changes, and Z-scores for each sample-protein combination.

3 Results
3.1 Overview of PROTRIDER

We developed PROTRIDER, a model to call aberrant protein
expression from mass spectrometry-based quantitative proteo-
mics data. PROTRIDER models log-transformed protein inten-
sities adjusted for overall sample intensity using a conditional
autoencoder to account for biological and technical sources
of variation, which may be known or unknown (Fig. 1).
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Preprocessing

Experimental
measurements

log intensities

Optional:

sample annotation of
possible covariates

125 ... 157

Samples

131 ... 183

Sample ID batch sex
samplel 1 male
sample2 1 female ...

Observed intensities

(+ covariates)

(+ presence/absence)

Autoencoder

Japooug
T
Decoder

Significance-based outlier detection

expected value + o

» Sample ID Protein P adjust Presence prob.

Predicted intensities Contrasted values

(+ presence probabilities)

g

Result table

samplel HBB 0.0013 0.99
sample1l INS 0.0394 0.92
sample4 MYH NA 0.04

Figure 1. Schematic overview of the PROTRIDER outlier detection approach. PROTRIDER takes a protein intensity matrix from a quantitative proteomics
experiment as input, and, optionally, a missingness mask, as well as covariates such as batch and sex, and fits a conditional autoencoder to account for
known and unknown biological and technical sources of covariation of proteins across samples. Expected log-transformed protein intensities from the
autoencoder are then contrasted with the observed values and tested for statistical significance.

Known covariates, such as batch effects, which are often
strongly observed in TMT-labeled proteomics data (Brenes
et al. 2019), can be directly provided to the model.

Proteomics data often contain missing values, which com-
plicates model fitting (Brenes et al. 2019, Phua et al. 2022).
To alleviate the impact of missing values, we filtered out pro-
teins with more than 30% missing values across an entire
dataset. The remaining missing values were ignored in the
mean squared error loss computation and tail probability cal-
culations. Moreover, we considered modeling the occurrences
of missing values jointly with the observed intensities in the
autoencoder (Section 2.2.1).

To identify the optimal latent space dimension, we used
two different approaches. The first one conducts a grid search
across candidate values for the encoding dimension and
selects the one that optimizes the recovery of artificially
injected outliers (Section 2.2.3). The second option applies to
linear autoencoders without covariates and without missing-
ness modeling only and is based on the Optimal Hard
Threshold (OHT) procedure, an analytical solution to the
number of principal components to select when assuming the
data matrix sums to a low-rank matrix and a white noise ma-
trix (Gavish and Donoho 2014). OHT has been recently used
as a computationally efficient alternative to the grid search
approach in the context of RNA-seq outlier calling by the
OutSingle and saseR methods (Salkovic et al. 2023, Segers
etal 2023).

After the autoencoder model of PROTRIDER is fitted, the
residuals, i.e. the differences between the observations and
the autoencoder predictions, are used to compute two-sided
tail probabilities assuming either a normal distribution or a
Student’s ¢-distribution fitted for each protein.

We applied PROTRIDER to three datasets. The first data-
set comprises 143 TMT-labelled proteomics samples col-
lected from individuals with a rare, suspected Mendelian,
mitochondrial disorder, which we refer to as the mitochon-
drial disorder dataset (Kopajtich et al. 2021). After filtering
out proteins with more than 30% missing values across sam-
ples, 7060 proteins were quantified (Fig. 1, available as sup-
plementary data at Bioinformatics online). Additionally, we
considered proteomic measurements of two tumor cell line
panels, NCI60 and CRC65 (Frejno et al. 2020). The NCI60
panel contains 60 cell lines from various tissues, while the
CRC6S5 panel consists of 65 colorectal tumor cell lines. The
two panels were analyzed separately because they differed in
the number of proteins detected, tumor entities present in the
data, genome build, and exome sequencing processing tool.
After removing proteins with more than 30% missing values,
the NCI60 dataset was left with 6,755 proteins and the
CRC6S5 dataset with 8,430 proteins (Fig. 2, available as sup-
plementary data at Bioinformatics online).

Strong batch effects were observed in the raw log-
transformed protein intensities between samples for all three
datasets (Fig. 2A, Fig. 3A and C, available as supplementary
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Figure 2. PROTRIDER accounts for known and hidden covariates and typically detects a limited number of outliers per sample. (A) Heatmaps of sample-
sample correlations of protein log-transformed intensities on the mitochondrial disorder dataset before (left) and after the PROTRIDER with OHT (middle)
and with autoencoder correction using sex and batch as covariates (right). (B) Histogram of tail probabilities from the normal distribution and from the
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three datasets (facets).
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data at Bioinformatics online). In the mitochondrial disorder
dataset, they were largely driven by the different TMT
batches (Fig. 2A). Similarly, in both of the cell line panels,
strong correlations between samples were observed in the ex-
perimental measurements, driven by the tissue of origin in
NCI60 and MSI (Microsatellite Instability Biomarker) status,
and subtype classification in CRC65 (Fig. 3A and C, avail-
able as supplementary data at Bioinformatics online).

To account for such sources of covariations, we evaluated
the effect of explicitly fitting a conditional autoencoder
model that received the covariates directly as part of its input,
in addition to the protein intensities, as well as missingness
modeling. We refer to this model as “PROTRIDER”. We
compared it to an autoencoder that did not have access to in-
formation about potential covariates or the missingness mask
during model fitting. To this end, we used a linear autoen-
coder with a dimension determined with the OHT approach.
The parameters of this model were further tuned (Section
2.2.3). We named this model “PROTRIDER (lite).” The
weights of the autoencoder in both PROTRIDER and
PROTRIDER (lite) were initialized using truncated singular
value decomposition. On the mitochondrial disorder dataset,
we included sex, TMT-batch, sample preparation batch, and
sequencing instrument of each sample as covariates, whereas
we included sex, age, and tissue of origin for NCI60, and
MSI status and subtype classification for CRC65. We found
encoding dimensions of 59, 13, and 18 to be optimal for
PROTRIDER on the mitochondrial disorder dataset, NCI60,
and CRC63, respectively. For PROTRIDER (lite), encoding
dimensions of 40, 7, and 5 were obtained, respectively.
Notably, we observed that the relationship between the
encoding dimension and the performance in recovering artifi-
cially injected outliers was typically well-behaved and unimo-
dal, with a relatively wide range of near-optimal values for
the encoding dimension (plateau, Section 2.2.3, Fig. 4, avail-
able as supplementary data at Bioinformatics online). In this
context, the area under the precision-recall curve (AUPRC)
for recovering artificially injected outliers is used as a relative
metric, rather than an absolute measure of performance on
real data. We observed a unimodal relationship between
AUPRC and encoding dimension, allowing for the reliable se-
lection of the encoding dimension that optimizes recovery on
artificial outliers.

Both PROTRIDER versions were able to account for the
observed strong batch effects. Specifically, the normalized in-
tensities after fitting the autoencoder models were no longer
strongly correlated between samples (Fig. 2A). On the mito-
chondrial disorder dataset, the median within-batch pairwise
sample Spearman correlations were reduced from 0.83 =
0.059 (mean = standard deviation, here and elsewhere) to
0.15+0.087 for PROTRIDER (lite) and to 0.13 +0.079 for
PROTRIDER. These results show that despite not having ac-
cess to covariates, PROTRIDER (lite) succeeded in capturing
the covariation. Similar results were obtained on the tumor
cell line panel datasets (Fig. 3B and D, available as supple-
mentary data at Bioinformatics online).

When modeling the residuals with protein-specific normal
distributions, we observed an excess of one-sided tail proba-
bilities close to 0.5, as well as close to 0 and 1, indicative of
the data exhibiting heavy tails (Fig. 2B). Therefore, we opted
to use the Student’s #-distribution instead of the normal distri-
bution. Fitting a Student’s #-distribution for each protein was
robustly achieved by learning a value for the degrees of

freedom common to all proteins (Section 2.2.2). The tail
probability distributions (observed via histograms and
quantile-quantile plots) indicated that the Student’s #-distri-
bution yielded much better statistical calibration than the
normal distribution (Fig. 2B and C).

PROTRIDER does not perform hypothesis testing and
therefore does not return P-values. Instead, it reports tail
probabilities of the model fitted to the data. An important
practical goal is to ensure that PROTRIDER rarely makes
outlier calls in datasets where no true outliers are present, i.e.
to control the proportion of false positives even under a com-
plete null scenario. To empirically assess this, we considered
a negative control dataset in which the observed values were
generated according to PROTRIDER modeling assumptions,
i.e. where the deviations from the autoencoder predictions
are drawn independently according to the Student’s ¢-distri-
bution. In order to make the simulations realistic, we set the
values of the parameters, including the autoencoder predic-
tions, the scales, locations, and common degrees of freedom,
to be equal to those we estimated on the mitochondrial disor-
der dataset. On each simulated dataset, the entire
PROTRIDER fitting procedure was applied, i.e. from the la-
tent dimension search to the estimation of the degrees of free-
dom. Any positive call (outlier call) from the negative control
dataset is a false positive. We confirmed that the tail proba-
bilities were approximately uniformly distributed when fit-
ting from scratch PROTRIDER models to 100 such negative
control datasets (Section 2.3.3, Fig. SA and B, available as
supplementary data at Bioinformatics online). We then ap-
plied the Benjamini-Yekutieli (BY, Benjamini and Yekutieli
2001) procedure and the Benjamini-Hochberg (BH,
Benjamini and Hochberg 1995) procedure to the tail proba-
bilities, each in a sample-wise manner. Because these proce-
dures were applied to tail probabilities rather than P-values,
the theoretical False Discovery Rate (FDR) guarantees origi-
nally formulated for P-values in the hypothesis-testing frame-
work do not apply. Consequently, we empirically evaluated
the proportion of false positive calls on the negative control
datasets for both the BY and BH procedures. We observed
that, when applying the BY procedure with a threshold of
0.1, the average proportion of false positive calls was appro-
priately controlled and yielded only a small number of false
positives (Fig. 5C and D, available as supplementary data at
Bioinformatics online). In the hypothesis testing framework,
the BY procedure is more general than the BH procedure as it
can be applied to dependent statistics. In our simulations, the
BY procedure behaved more conservatively compared to BH
(Fig. 5C, available as supplementary data at Bioinformatics
online). However, we note that the empirical calibration of
the BH procedure might be optimistic because the simula-
tions were performed using independently drawn errors.
Therefore, we conservatively used the BY procedure for the
subsequent analyses (adjusted tail probability < 0.1).

We exemplify PROTRIDER outlier calls for a rare disease
diagnostic relevant case we reported earlier (Kopajtich et al.
2021). The mitochondrial solute carrier SLC25A4, which
translocates ADP from the cytoplasm into the mitochondrial
matrix and ATP from the mitochondrial matrix into the cyto-
plasm, appeared as a downregulated outlier in the individual
OMO02364 (adjusted tail probability=0.05). This was evi-
dent from the deviation of the observed intensity compared
to the PROTRIDER expectation by 61-fold (Fig. 2D and E),
which was aberrant compared to the variations seen across
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the other individuals. This aberrantly reduced expression of
the mitochondrial disorder-causing protein SLC25A4 vali-
dated the functional impact of the heterozygous missense
candidate variant from the patient and led to the patient’s ge-
netic diagnostics (Kopajtich et al. 2021).

To provide baseline comparisons, we considered Z-scores
computed from the observed log-transformed protein intensi-
ties adjusted for overall sample intensity (denoted as “Z-
scores”). We also compared PROTRIDER to an approach
that uses only PCA projection with the number of principal
components determined via the OHT approach, without op-
timizing autoencoder weights.

Among all outlier calls (adjusted tail probability of 0.1 or
lower), PROTRIDER and PROTRIDER (lite) typically
reported 1 outlier per sample across all three datasets
(Fig. 2F). This is in line with the number of gene expression
outliers typically reported by OUTRIDER on RNA-seq sam-
ples (Yépez et al. 2022). The PCA-based approach returned a
comparable number of outliers per sample to PROTRIDER,
while the Z-scores approach reported slightly more outliers
per sample (median of 1-2 outliers per sample, Fig. 2F).

3.2 Enrichment for rare variants likely disrupting
protein expression

To benchmark alternative methods for protein outlier detec-
tion performance using orthogonal data, we first considered
enrichments for variants that likely lead to protein abundance
outliers. To this end, we selected variants that are rare in the
human population with a minor allele frequency (MAF) less
than or equal to 0.1% in gnomAD (Karczewski e al. 2020)
and whose consequence is stop, frameshift, splice-site, or mis-
sense according to VEP, likely deleterious according to
CADD, or pathogenic according to AlphaMissense (McLaren
et al. 2016, Rentzsch et al. 2019, Cheng et al. 2023). Those
variants do not necessarily lead to aberrant protein abundan-
ces. However, one can expect that more accurate protein
abundance outlier callers will lead to higher enrichments for
genes carrying those variants. We first compared linear
autoencoders from PROTRIDER to the PCA-only approach,
as well as the Z-scores approach, using the variant categories
described above as a ground truth proxy.

PROTRIDER outlier calls performed consistently favor-
ably across all variant categories (Fig. 3A).

Specifically, among the 1000 top-ranked underexpression
outliers detected by PROTRIDER, 14% ([11.9, 16.3] 95%
confidence interval) of the called outliers harbored at least
one rare variant whose consequence was stop, frameshift,
splice-site, or missense according to VEP on the mitochon-
drial disorder dataset. The Z-score approach showed sub-
stantially lower proportions (never exceeding 5%). Very
similar results to those obtained with PROTRIDER (lite)
were also observed when using a PCA projection alone with
the same tail probability computation strategy, without sub-
sequent autoencoder training (Fig. 3A). Moreover, we also
considered a non-parametric approach to call and rank out-
lier candidates. To this end, we applied isolation-based
anomaly detection using Isolation Forests (Liu et al. 2012).
Since our goal was to identify outlier intensities per protein
and sample, Isolation Forest was run on each protein individ-
ually. We first applied Isolation Forest directly on the prepro-
cessed protein intensities. This led to essentially no
enrichment for variants likely disrupting protein expression
(Fig. 6, available as supplementary data at Bioinformatics
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online). We next applied Isolation Forest on the residuals
returned by PROTRIDER (Fig. 3A), effectively replacing the
computed tail probabilities using the Student’s ¢-distribution
by the returned anomaly scores for ranking. This second ap-
proach outperformed the Z-scores approach, confirming the
importance of adjusting for hidden sources of covariation
with the autoencoder, yet did not improve upon
PROTRIDER (Fig. 3A). These results are consistent with the
good calibration of PROTRIDER tail probabilities evident
from the QQ-plot analysis and further indicate that Student’s
t-distributions reasonably capture protein intensity residuals.

Overall, the superiority of PROTRIDER was observed inde-
pendently of the rank cutoff and for all three considered variant
categories (Fig. 3A). Moreover, we compared the results
obtained when filtering the dataset to include proteins with at
most 30% missing values to those obtained using alternative
thresholds for the maximum allowed proportion of missing val-
ues per protein. Across all thresholds, PROTRIDER consis-
tently outperformed the other methods (Fig. 7, available as
supplementary data at Bioinformatics online). There is a trade-
off between protein coverage and model performance, whereby
a lower proportion of missing values yielded a higher propor-
tion of underexpression outliers associated with rare variants
likely disrupting protein expression, yet at the cost of excluding
more proteins from the analysis, potentially omitting valuable
outlier candidates (Fig. 7, available as supplementary data at
Bioinformatics online). As a compromise, we opted for a thresh-
old of at most 30% missing values per protein for all subse-
quent analyses.

For the two tumor cell line datasets, no significant difference
between the methods was found when comparing them at equal
protein ranks, and the proportions of rare variants likely dis-
rupting protein expression were globally lower compared to the
mitochondrial dataset (Fig. 3B and C). One possible explana-
tion for the weaker proportions is the lower sample size (60 and
65 versus 143). Consistent with this hypothesis, the proportions
of variants decreased gradually as we downsampled the mito-
chondrial dataset, yielding proportions at matched sample
sizes that were similar to those observed in the tumor cell line
dataset (=460, Fig. 8, available as supplementary data at
Bioinformatics online). At these lower sample sizes, the perfor-
mance advantage of PROTRIDER over the other methods also
decreased, though it remained slightly more pronounced than in
the tumor datasets (Fig. 8, available as supplementary data at
Bioinformatics online). Additionally, the lower performance ob-
served in the tumor cell lines compared to the mitochondrial
disorder dataset may also reflect greater genetic heterogeneity in
tumor-derived cell lines relative to patient fibroblasts. We evalu-
ated whether changing the process of artificially injecting out-
liers during the selection of the encoding dimension could
improve the model. Specifically, changing the outlier injection
mean from three to six consistently resulted in substantially
higher AUPRC when recovering artificially injected outliers for
all encoding dimension candidates (Fig. 9A, available as supple-
mentary data at Bioinformatics online). However, even though
the optimal dimensions changed for the two panels (from 13 to
8 for NCI60 and from 18 to 10 for CRC65), this did not practi-
cally result in a difference in the variant enrichment perfor-
mance (Fig. 9B and C, available as supplementary data at
Bioinformatics online).

Nonetheless, considering the significant calls only,
PROTRIDER reported fewer outliers than the Z-scores ap-
proach on the tumor cell line panels with an adjusted tail
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Figure 3. PROTRIDER outperforms baseline approaches on rare variant benchmarks. (A) Proportion of outliers with at least one rare variant on the
mitochondrial disorder dataset for underexpression outliers calls from PROTRIDER (blue), PROTRIDER (lite), the isolation forest approach applied on
PROTRIDER's residuals, the Z-score-based method and a method based on PCA without autoencoder trainingon three sets of rare variant categories as
ground truth proxies: (i) VEP stop, frameshift, direct splice-site, and missense variants, (i) CADD deleterious variants (PHRED score > 20), and (iii)
AlphaMissense pathogenic variants. Ribbons mark 95% confidence intervals. (B and C) Same as (A) but for the two tumor cell line panels NCI60 and
CRCB65, and only on the category of stop, frameshift, direct split-site, and missense variants. (D) Odds ratio of shared RNA and protein outliers (with an
adjusted tail probability of 0.1 or lower) in the mitochondrial disorder dataset and their 95% confidence intervals (Fisher's test) for the two PROTRIDER

methods, the PCA-based approach, and the Z-scores approach.

probability of 0.1 or lower (75 versus 347 on NCI60, 104 ver-
sus 157 on CRC65) and maintained, in the case of NCI60, a
reasonably high proportion of rare variants likely causing pro-
tein abundance aberration compared to the Z-scores approach
(8.8% versus 7.4% at rank 500, Fig. 3B and C). Altogether,
this benchmark using independent evidence from rare genetic
variants indicates that PROTRIDER in either setting improves
the detection of genuinely aberrantly expressed proteins.

We also considered whether non-linear autoencoders could
improve over linear ones. To this end, we added up to three
layers with non-linear activations between layers to

PROTRIDER. However, using multi-layer models did not im-
prove the performance over the one-layer model on the mito-
chondrial disorder dataset (Fig. 10, available as supplementary
data at Bioinformatics online). Therefore, we used one-layer
autoencoders for all the subsequent analyses.

Furthermore, we investigated the contribution of various
modeling choices by fitting PROTRIDER under different config-
urations (Fig. 11, available as supplementary data at
Bioinformatics online). Our analysis showed that modeling miss-
ingness as well as using PCA for weight initialization improves
PROTRIDER’s performance. Interestingly, PROTRIDER (lite)
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achieves similar performance regardless of whether PCA-based
weight initialization is used. Moreover, we observed consistently
similar performance across a range of non-zero weighting factors
used to combine the binary cross-entropy with mean squared er-
ror loss terms when incorporating the binary missingness model-
ing (Section 2.2.1), indicating that the model is relatively robust
to this parameter choice (Fig. 12, available as supplementary
data at Bioinformatics online). In contrast, setting the weighting
factor to zero, i.e. effectively disabling the missingness modeling,
led to a noticeable decrease in performance.

We note that our approach does not require a cross-
validation scheme because the encoding dimension is smaller
than the dataset dimension, and because the encoding dimen-
sion is chosen to optimize the recovery of original, uncor-
rupted intensities. Nonetheless, we investigated whether a
cross-validation scheme could further improve the robustness
to PROTRIDER. Specifically, we considered both 5-fold
cross-validation and leave-one-out cross-validation (Section
2.4). We observed lower performance for both approaches
on the variant enrichment benchmark, whereby the leave-
one-out approach performed substantially better than 5-fold
cross-validation (Fig. 13, available as supplementary data at
Bioinformatics online). This consistent trend indicates that
the model needs the entire dataset to provide good fits, at
least for the sample sizes we could investigate.

3.3 Concordance of protein expression outliers with
RNA expression outliers

As another independent type of benchmarking data, we con-
sidered gene expression outliers from RNA-sequencing. As
for the rare variant benchmark performed above, this bench-
mark only provides a ground truth proxy, as some gene ex-
pression outliers can be translationally buffered. Moreover,
some protein abundance outliers may not be reflected in
RNA-seq, for instance, due to post-transcriptional regulation
(Wang et al. 2018, Kusnadi ef al. 2022). Nevertheless, the
proportions of RNA-seq outliers obtained on the same sam-
ples can be used to compare different protein abundance out-
lier callers. For this, we considered outlier calls by
PROTRIDER, the PCA-only approach, and the Z-scores ap-
proach (adjusted tail probability < 0.1). Another added value
of using RNA-seq outliers for benchmarking, compared to
variants likely disrupting protein expression, is that they al-
low assessment of the overexpression outliers. All methods
obtained a significant enrichment (Fisher’s test nominal P-
value < 0.05) for underexpression RNA-seq outliers called
by OUTRIDER (Brechtmann ez al. 2018). However, the en-
richment for the Z-scores approach was two times lower
than for the other methods, which performed similarly
(Fig. 3D). For overexpression, no enrichment for RNA-seq
outliers was found by the Z-scores approach, nor by the
PCA-only approach, nor by PROTRIDER, including miss-
ingness modeling, while the remaining methods performed
similarly and significantly higher than random (Fig. 3D).
Finally, we considered an approach based on the differential
expression test limma (Ritchie et al. 2015), applied by testing
each sample against all others. We note that, limma is funda-
mentally designed for group-level hypothesis testing, specifically
for comparing mean expression levels between predefined
groups, rather than identifying individual outlying samples.
Its underlying statistical model targets differences in group
means and assumes sufficient replicates per condition, which
makes it conceptually distinct from outlier detection methods.

Klaproth-Andrade et al.

Nonetheless, compared to PCA-only or Z-score baseline
approaches, limma offers the advantage of covariate adjust-
ment. In our benchmarks, applying limma with covariates
yielded a strong baseline that outperformed both limma without
covariates and the Z-scores approach, highlighting the value of
adjusting for confounders. Nevertheless, it did not surpass
PROTRIDER nor the Isolation forest approach on
PROTRIDER’s residuals (Figs 7, 8, 14, and 15, available as
supplementary data at Bioinformatics online).

Taken together, these results show that PROTRIDER is
well-suited for the task of aberrant protein abundance detec-
tion, outperforming the Z-scores approach, the PCA-only ap-
proach, the Isolation forest approach, as well as limma with
and without covariates on the benchmark using rare protein-
disrupting variants and outperforming the limma approach
without covariates in the enrichment of shared protein and
RNA expression outliers.

3.4 Genetic determinants underlying aberrant
protein expression

Having established a protein expression outlier caller, we next
investigated various characteristics of the genetic determinants
of these outliers. To this end, we considered all rare variants
(gnomAD MAF <0.1%) falling within the gene boundary. We
note that, as the variants of this dataset were called from whole-
exome sequencing, they were biased toward the coding se-
quence. We found that 30% of the underexpression protein
abundance outliers called by PROTRIDER had at least one
such rare variant (Fig. 4A). As expected, stop and frameshift
variants showed the strongest enrichments (Fig. 4B) and
explained overall 15.3% of the underexpression outliers
(Fig. 4A). PROTRIDER achieved stronger enrichments,
whereas PROTRIDER (lite) showed similar overall patterns, al-
beit with somewhat reduced signal strength (Fig. 4A and B). No
significant enrichments for these variants were found, as
expected, for overexpression outliers (Fig. 16, available as sup-
plementary data at Bioinformatics online).

We further found a strong enrichment for AlphaMissense
pathogenic variants (Fig. 4A and B), which explained another
3.4% of the underexpression outliers. The AlphaMissense
categories helped prioritize missense variants affecting pro-
tein expression, as the AlphaMissense pathogenic category
(odds ratio = 15.4) had stronger enrichment than the ambigu-
ous (odds ratio=4.2) and benign (odds ratio=0.5) catego-
ries (Fig. 4B).

We evaluated the effect of replacing the conservative
Benjamini-Yekutieli method with the Benjamini-Hochberg
procedure to adjust tail probabilities. This substitution
increased the number of outliers detected by about 69%
(208 versus 349) for PROTRIDER and about 134% (360
versus 843) for PROTRIDER (lite), accompanied by only
a slight decrease in the enrichment of protein-disrupting
rare variants (Fig. 17, available as supplementary data at
Bioinformatics online).

4 Discussion

We described PROTRIDER, a model that extends the
autoencoder-based outlier detection approach already valu-
able in the RNA-seq-based diagnosis of rare disease patients
to mass spectrometry-based proteomics measurements. Using
rare genomic variants and RNA-seq outliers as orthogonal
data for benchmarking, we showed that protein abundance
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Figure 4. Genetic determinants of protein expression outliers. (A) Proportions of non-outliers, protein overexpression, and protein underexpression
outliers with a rare variant detected in the same gene for PROTRIDER and PROTRIDER (lite) in the mitochondrial disorder dataset. Colors indicate the
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enrichment of the proportion for each variant category among underexpression outliers compared to the background proportion of the non-outliers for

PROTRIDER and PROTRIDER (lite).

underexpression outliers detected with PROTRIDER outper-
formed baseline methods based on simple Z-scores, Isolation
Forest, and PCA. We found that modeling the occurrence of
missing values improved the model performance. In the three
investigated datasets from rare disease and tumor cell lines,
linear models outperformed non-linear, multi-layer autoen-
coders. Moreover, we found that the heavy-tailed nature of
model residuals was better captured with a Student’s ¢-distri-
bution with a shared degrees-of-freedom parameter across
proteins than with a Gaussian distribution. Consequently, us-
ing the Student’s t-distribution substantially improved the
statistical calibration. Finally, we showed that variants pre-
dicted by AlphaMissense to be pathogenic, in contrast to the
benign predictions, were enriched among underexpres-
sion outliers.

The full PROTRIDER model, which uses grid search to
optimize the encoding dimension and explicitly incorporates
relevant covariates and missingness modeling, consistently
achieved the best performance, particularly when benchmark-
ing for rare variants likely disrupting protein expression on the
mitochondrial disorder dataset. However, PROTRIDER (lite)
remained a robust and computationally efficient alternative.

Unlike the full version, PROTRIDER (lite) does not require
hyperparameter tuning nor covariate specification, making it a
convenient and perhaps more robust starting point. We
therefore recommend running both versions. Enrichment for
variants likely disrupting protein expression when available,
or Q-Q-plots of tail probabilities and sample correlation
heatmaps can help decide whether the full model provided an
improved fit to the data.

In this study, we presented the main results using the con-
servative Benjamini-Yekutieli procedure to adjust the tail
probabilities, originally introduced to control the false dis-
covery rate in the context of multiple testing under arbitrary
dependencies of the statistics. However, the enrichment for
variants likely disrupting protein expression on the real data
remained high, even though slightly reduced, when using the
Benjamini-Hochberg procedure instead of the Benjamini-
Yekutieli procedure. Independent of the procedure to adjust
tail probabilities, using less stringent cutoffs may be appro-
priate in scenarios where greater sensitivity to outliers or
higher diagnostic rates is a priority. A further plausible sce-
nario in rare disease diagnostics arises when genome analysis
yields a candidate variant. Here, the nominal tail probability
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of the associated protein may be evaluated directly, without
the need for tail probability adjustment.

Given the enrichments we observed for rare and likely delete-
rious variants of various categories, we expect PROTRIDER to
be of value for genetic diagnostic pipelines in addition to RNA-
based analyses, especially to capture variant effects acting on
the level of translation or protein stability. As we have shown
earlier (Kopajtich et al. 2021) in the diagnostic context, proteo-
mics can provide functional evidence for rare variants of uncer-
tain significance. This is true for stop and frameshift variants
but also for missense variants, which remain difficult variants to
interpret. Here, we further showed a strong enrichment of
AlphaMissense pathogenic variants in outliers detected at the
protein level compared to other missense variants, highlighting
a class of variants whose effects are often not captured by
RNA-seq analyses.

Our estimation of tail probabilities could, in principle, be
improved by separating the data used for model fitting from
the data used for evaluating residuals and computing tail
probabilities. This separation could enhance the sensitivity of
outlier detection by preventing overfitting and ensuring that
the model’s ability to identify extreme values is not influenced
by the same data on which the model was trained.
Nevertheless, the empirical distribution of tail probabilities
for data simulated under the negative control dataset did not
show evidence for overfitting, suggesting the impact of this is-
sue may be limited in practice.

The benchmarks presented in this study focus mostly on
underexpression outliers. This is partly due to the nature of
the available genomic information, as there were no copy
number variations (CNVs) available for the mitochondrial
datasets and only for some samples of the CRC65 panel, and
partly because it is not straightforward to define classes of
variants that lead to an increase in protein abundances. To
benchmark overexpression outlier calls with genetic variants,
further datasets with available copy number variants and
larger sample sizes would be beneficial. Nevertheless, we
could show using RNA-seq data that PROTRIDER (lite)
overexpression calls were enriched for RNA-seq overexpres-
sion calls, indicating that the method can also capture overex-
pression outliers.

Missing values are common in mass spectrometry-based pro-
teomics, especially in data-dependent acquisition mode
(Karpievitch et al. 2012, Ahlmann-Eltze and Anders 2019,
Brenes et al. 2019, Kong et al. 2022), and often reflect low-
abundance proteins (Kong et al. 2022). In PROTRIDER, incor-
porating the missingness binary mask allowed us to handle
missing data more explicitly, rather than simply ignoring it in
the loss function. This approach enabled the model to identify
biologically relevant absences, such as protein intensities missing
in certain samples due to regulation, sample-level, or batch-level
technical dropouts. While PROTRIDER models missingness,
we did not consider calling individual missing values as outliers.
This could be relevant for non-TMT data-dependent acquisition
proteomics but would require a substantial extension of the pre-
sent study. In this context, future work may also investigate
other methods, such as variational autoencoders (Collier et al.
2020, Nazabal et al. 2020) within the scope of outlier detection,
particularly for incorporating probabilistic modeling and uncer-
tainty estimates. However, the application of variational
autoencoders to sample—protein level outlier detection would re-
quire substantial adaptation and evaluation of modeling

Klaproth-Andrade et al.

choices, such as the design of an appropriate conditional prior
and regularization terms to preserve reconstruction accuracy.

Furthermore, PROTRIDER only calls outliers at the pro-
tein level. However, entire protein complexes are often desta-
bilized (Kremer et al. 2017, Kopajtich et al. 2021), therefore,
additionally assessing outliers at the protein complex level
could increase sensitivity. Additionally, peptide-level outliers
may offer finer resolution, capturing variant-specific changes
such as those caused by post-translational modifications or
alternative splicing, which may have important functional
consequences. At a more global level, one could also be inter-
ested in calling sample-level outliers, i.e. individuals whose
entire proteome appears disrupted. In this case, multivariate
outlier methods, including LSCP (Locally Selective
Combination of Parallel Outlier Ensembles, Berger-Wolf and
Chawla 2019) and AnoGAN (Anomaly Detection with
Generative Adversarial Networks, Schlegl ez al. 2017), could
be worth investigating. Another interesting extension of our
work would be to model longitudinal datasets, which would
allow for the detection of outlier values for individual sub-
jects over time.

Although PROTRIDER was developed for proteomics data, it
could also be applicable to other mass spectrometry-based meas-
urements, such as metabolomics and lipidomics, which may
share similar statistical properties. If the autoencoder-based cor-
rection and statistical calibration generalize well, PROTRIDER
could support broader applications beyond proteomics.
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