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Abstract
Motivation: Detection of gene regulatory aberrations enhances our ability to interpret the impact of inherited and acquired genetic variation for 
rare disease diagnostics and tumor characterization. While numerous methods for calling RNA expression outliers from RNA-sequencing data 
have been proposed, the establishment of protein expression outliers from mass spectrometry data is lacking.
Results: Here, we propose and assess various modeling approaches to call protein expression outliers across three datasets from rare disease 
diagnostics and oncology. We use as independent evidence the enrichment for outlier calls in matched RNA-seq samples and the enrichment for 
rare variants likely disrupting protein expression. We show that controlling for hidden confounders and technical covariates, while simultaneously 
modeling the occurrence of missing values, is largely beneficial and can be achieved using conditional autoencoders. Moreover, we find that the 
differences between experimental and fitted log-transformed intensities by such models exhibit heavy tails that are poorly captured with the 
Gaussian distribution and report stronger statistical calibration when instead using the Student’s t-distribution. Our resulting method, PROTRIDER, 
outperformed baseline approaches based on raw log-intensities Z-scores, PCA, and isolation-based anomaly detection with Isolation forests. The 
application of PROTRIDER reveals significant enrichments of AlphaMissense pathogenic variants in protein expression outliers. Overall, 
PROTRIDER provides a method to confidently identify aberrantly expressed proteins applicable to rare disease diagnostics and cancer proteomics.
Availability and implementation: PROTRIDER is freely available at github.com/gagneurlab/PROTRIDER and also available on Zenodo under 
the DOI zenodo.15569781.

1 Introduction
The detection of outliers in omics data, i.e., values that signifi
cantly deviate from the population and can thus be suggestive 
of a disease-causing gene, is of great importance for rare disease 
diagnostics (Cummings et al. 2017, Kremer et al. 2017, Y�epez 
et al. 2022, Smail and Montgomery 2024). Importantly, outlier 
detection in omics data complements genome sequencing data 
by providing a functional readout to variants of uncertain sig
nificance whose interpretation is otherwise inconclusive. Outlier 
detection methods have been established for RNA-seq abun
dance, splicing, and chromatin accessibility (Brechtmann et al. 
2018, Jenkinson et al. 2020, Salkovic et al. 2020, Mertes et al. 
2021, Labory et al. 2022, Salkovic et al. 2023, Scheller et al. 
2023, Segers et al. 2023, Çelik et al. 2024). However, DNA ac
cessibility and RNA sequencing cannot capture the effects of all 
pathogenic variants. Some variants may affect translation or 
protein stability, without impacting chromatin accessibility or 
gene expression. To capture those effects, mass spectrometry- 
based proteomics constitutes an avenue to probe protein abun
dances as additional functional evidence (Kopajtich et al. 2021, 

Vialle et al. 2022, Hock et al. 2025, Chui et al. 2025). The inter
est in calling protein expression outliers also extends to cancer 
research, to characterize alterations in different molecular levels, 
find biomarkers, and explain drug sensitivities (Roumeliotis 
et al. 2017, Frejno et al. 2020).

Several studies have shown that measurements of gene ex
pression, splicing, and chromatin accessibility data exhibit 
covariation patterns driven by biological and technical fac
tors such as tissue, sampling site within the body, sex, batch, 
sequencing center, cause of death, sequencer, age, and read 
length (Kremer et al. 2017, Fr�esard et al. 2019, Mertes et al. 
2021, Y�epez et al. 2021, Çelik et al. 2024). Across those mo
dalities, adjusting for these sources of covariation is strongly 
beneficial to enrich for the direct regulatory effects of genetic 
variants. Biological and technical sources of covariation also 
pertain to labeled proteomics experiments. Notably, samples 
analyzed together in the same batch of the mass spectrometry 
run exhibit a stronger correlation than those from different 
batches, especially for tandem mass tag labeled quantitative 
proteomics (Brenes et al. 2019, Zecha et al. 2019, Phua et al. 
2022). In a previous study, we proposed calling protein level 
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outliers using a conditional autoencoder to account for hid
den confounders and reported improvements over methods 
lacking this adjustment (Kopajtich et al. 2021).

Here, we expand on and strengthen our previous work and 
present PROTRIDER. Method-wise, we investigate an alter
native strategy to obtain the optimal encoding dimension, 
model the occurrence of missing values, compare linear 
against non-linear autoencoders, and perform a statistical as
sessment based on the Student’s t-distribution against the 
Gaussian distribution. Furthermore, we expand the bench
mark to two other proteomics datasets of tumor cell lines and 
to enrichment among expression outliers in matched RNA- 
seq samples. Finally, we investigate the genetic determinants 
of the detected aberrant protein abundances, revealing that 
genes exhibiting protein expression outliers are strongly 
enriched for missense variants predicted to be pathogenic by 
AlphaMissense (Cheng et al. 2023).

2 Materials and methods
2.1 Datasets and data processing
2.1.1 Mitochondrial disorder dataset
We used a dataset of 143 tandem mass tag (TMT) labeled 
quantitative proteomics samples with matched RNA-seq 
samples and variant calls from whole exome sequencing of 
individuals affected with a rare mitochondrial disorder of 
suspected genetic origin (Kopajtich et al. 2021). This dataset 
consisted of samples from patient-derived fibroblast cell lines 
by using a TMT 10-plex labeling reagent. Each TMT batch 
included 8 patient samples and 2 reference samples. The 143 
samples were split over 21 TMT batches, with each batch 
contributing between 5 and 8 samples, except for one that 
only contributed one sample. Protein intensities were 
obtained from protein groups after peptide identification us
ing MaxQuant v.1.6.3.4 (Tyanova et al. 2016). The RNA- 
seq samples were derived from the same fibroblast cultures 
and reads were counted using DROP (Y�epez et al. 2021) as 
previously described (Y�epez et al. 2022).

2.1.2 Tumor cell line panels
We additionally used proteomics measurements from the two 
publicly available tumor cell line panels NCI60 (n¼60) and 
CRC65 (n¼65), obtained from (Frejno et al. 2020). Variant 
calls from whole exome sequencing from the NCI60 cell lines 
were downloaded from CellMiner (discover.nci.nih.gov/cell
miner/) in the form of the “DNA: Exome Seq—none” processed 
dataset. For the CRC65 panel, somatic mutation calls from 
WES were only available for a subset of 33 of the cell lines 
through the DepMap project (depmap.org/portal/). We down
loaded the “OmicsSomaticMutationsProfile.csv” file containing 
the somatic variant calls, and the files “OmicsProfiles.csv” and 
“Model.csv” to map from the DepMap profile IDs to the cell 
line names of the CRC65 data in the proteomics data (Frejno 
et al. 2020). The variant calls for NCI60 were based on the 
hg19 genome build and annotated with ANNOVAR (Wang 
et al. 2010, Abaan et al. 2013), whereas the variants obtained 
through DepMap were based on the hg38 genome build and an
notated with VEP (v. 100.1) among other tools.

2.1.3 Proteomics data preprocessing
TMT-reference samples were excluded in this analysis, and the 
remaining samples were not normalized using any reference 
samples. Raw protein intensities were log-transformed and 

adjusted for overall sample intensity using the DESeq2 size fac
tor normalization (Love et al. 2014), resulting in a protein inten
sity matrix X with elements xi;j for sample i and protein j.

2.2 Aberrant protein expression level analysis 
with PROTRIDER
2.2.1 Conditional autoencoder
PROTRIDER uses an autoencoder to capture known and un
known sources of protein intensity variations, yielding expected 
log-intensities for each protein in each sample. Deviations of the 
measurements from these expected values are analyzed to iden
tify outliers. First, proteins with more than a defined threshold 
of missing values across samples were filtered out. That thresh
old was set to 30% by default, and other thresholds were 
further investigated. The remaining missing values were set to 
the protein-wise means in the input matrix X of the autoen
coder and were ignored during mean squared error loss compu
tation. We also considered as possible further input of the 
autoencoder the binary missingness mask M, in which ones in
dicate non-missing intensity values and zeros indicate missing 
values. In this setting, the intensity matrix X and the missingness 
mask M were stacked and jointly fed into the autoencoder, 
thereby modeling both protein intensities and missing value 
occurrences simultaneously. We also introduced the option to 
use a conditional autoencoder approach that explicitly uses 
specified covariates by including them both in the input of the 
encoder and the decoder.

The dimension q of the autoencoder bottleneck layer, i.e. latent 
space, was treated as a hyperparameter and optimized separately. 
We considered different numbers of layers for the encoder and 
the decoder, ranging between 1 and 3, where ReLU was used as 
an activation function between layers of the encoder and decoder, 
respectively. No non-linear activation was included for 1-layer 
encoders and decoders, effectively having a linear autoencoder of 
dimension q. In this case, the 1-layer model, possibly including 
the missingness mask M as an additional input, was initialized 
with truncated Singular Value Decomposition after centering the 
protein intensity matrix X protein-wise and with bias terms 
adjusting for protein-wise means.

The model weights were optimized by minimizing a compos
ite loss function consisting of two terms: (1) the mean squared 
error (MSE) between the predicted X̂ and observed protein 
intensities X, computed over all observed values, and (2) the 
binary cross-entropy (BCE) loss between the predicted probabil
ities of being observed M̂ and the missingness mask M. These 
two terms were combined as a weighted sum, with a predefined 
weighting parameter λ controlling the contribution of the miss
ingness prediction, resulting in a final loss L, defined as 

L ¼MSE ðX; X̂Þ þ λ � BCE ðM; M̂Þ; (1) 

where
MSE X; X̂

� �
¼

1
P

i;j mi;j
�
X

i;j
mi;j � xi;j � x̂i;j

� �2 (2)  

and 
BCE M; M̂

� �
¼ �

1
N
�
X

i;j
½ mi;j � logðm̂i;jÞ þ ð1 � mi;jÞ

� logð1 � m̂i;jÞ�

(3) 

with N defined as the total number of proteins times the num
ber of samples in the matrix X, xi;j and x̂i;j as the observed 
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and predicted intensities and mi;j and m̂i;j as the observed 
and predicted presence values for each sample i and protein j.

The numerical optimization was performed with Adam 
(Kingma and Ba 2017) for 400 epochs. For 1-layer autoen
coders, a small learning rate of 10� 4 was used, whereas 
higher learning rates between 10� 4 and 10� 3 were used for 
multi-layer autoencoders.

2.2.2 Tail probability computation
For each sample i and protein j, the extremeness of the ob
served pre-processed intensity xi;j relative to the predicted in
tensity x̂i;j modeled by the autoencoder was quantified using 
two-sided tail probabilities, denoted pi;j. To this end, we con
sidered the residuals of the model ei;j defined as xi;j � x̂i;j and 
computed their protein-wise means mj and unbiased standard 
deviations sj. The tail probabilities were obtained from either 
the Gaussian or Student’s t-distribution. Gaussian tail proba
bilities were computed according to 

pi;j ¼ 2 �min Ψ
ei;j � mj

sj

� �

; 1 � Ψ
ei;j � mj

sj

� �� �

; (4) 

where Ψ denotes the cumulative function of the normal 
distribution.

Early investigations with fitting Student’s t-distributions 
with protein-specific degrees of freedom yielded poor statisti
cal calibration, probably due to numerical instability of the 
likelihood function with respect to the degree of freedom. 
Therefore, tail probabilities based on a Student’s t-distribu
tion were robustly computed with a two-pass approach. In 
the first pass, we estimated the degrees of freedom, location, 
and scale parameters of the Student’s t-distribution using 
maximum likelihood for each protein. In the second pass, we 
set the degrees of freedom for all proteins to a common value 
ν̂0 defined as the median of the degrees of freedom estimated 
in the first pass, and we fitted the location and the scale for 
each protein again. The two-sided tail probabilities, simply 
referred to as tail probabilities later on, were calculated as 

pi;j ¼ 2 �min F
ei;j � μ̂j

τ̂ j
; ν̂0

 !

; 1 � F
ei;j � μ̂j

τ̂ j
; ν̂0

 !( )

; (5) 

where F denotes the cumulative function of the Student’s 
t-distribution, μ̂j the location estimate, and τ̂ j the scale esti
mates of protein j.

Tail probabilities were used to rank outlier candidates. No 
tail probabilities were reported for missing values.

2.2.3 Selection of the optimal encoding dimension
To find the optimal encoding dimension q of the autoen
coder, i.e. the dimension of the autoencoder’s latent space, 
we used two strategies: (i) the optimal hard threshold (OHT) 
method (Gavish and Donoho 2014), which applies to the lin
ear autoencoders without covariates only, and (ii) a grid 
search over different values of q.

For the latter approach, at most 25 candidate values or up 
to half the sample size, whichever is smaller, are explored for 
finding q. These values are logarithmically spaced between 4 
and half the sample size. For each candidate value, we fit the 
autoencoder after injecting the original dataset with artificial 
outliers generated with a frequency of 1 per 1000 under a 
simulation scheme described earlier (Brechtmann et al. 

2018). Specifically, the outlier intensity xo
i;j for sample i and 

protein j was generated by shifting the observed preprocessed 
intensity xi;j by zi;j times the standard deviation sj of xi;j. The 
absolute value zi;j was drawn from a log-normal distribution 
with the mean of the logarithm equal to 3 and the standard 
deviation of the logarithm equal to 1.6, and with the sign of 
zi;j either positive or negative, drawn with equal probability: 

xo
i;j ¼ xi;jþ zi;j � sj (6) 

We selected the candidate value for q that lead to the high
est area under the precision-recall curve (AUPRC) of recover
ing the previously injected outliers when ranking by tail 
probabilities. After the optimal encoding dimension was de
termined either with the OHT or the grid search approach, 
the autoencoder was fitted using the determined value of q on 
the actual data without any artificially injected outliers.

2.2.4 Implementation
The autoencoder model of PROTRIDER was implemented in 
Python (v.3.8.13) using PyTorch (v.1.13.1). It is available at 
https://github.com/gagneurlab/PROTRIDER. The package 
includes the Python-based autoencoder implementation, cal
culates tail probabilities, and produces results tables. We also 
provide an example dataset and usage guidelines. The code is 
also available on Zenodo under the DOI https://doi.org/10. 
5281/zenodo.15569781.

2.3 Tail probability adjustment
2.3.1 Definition of the proportion of false positive calls in a 
negative control dataset
PROTRIDER does not perform hypothesis testing. 
Nonetheless, akin to the multiple hypothesis testing problem 
for P-values, a nominal probability cutoff on tail probabilities 
would lead to a number of calls increasing with the number 
of proteins, even in the absence of genuine outliers. We 
assessed approaches to address this issue by analyzing results 
on a negative control dataset, in which the observed values 
were simulated according to the modeling assumptions of 
PROTRIDER: protein-specific locations linearly related to a 
latent space, protein-specific scales, and a common value for 
the degrees of freedom. Any positive call (outlier call) from 
data generated from the negative control dataset is a false 
positive. We considered the proportion of false positives 
among the positive calls and defined this proportion to be 
equal to 0 if no positive call is made.

2.3.2 Outlier calling using adjusted tail probabilities
While the procedure of Benjamini and Hochberg (Benjamini 
and Hochberg 1995) and the one of Benjamini and Yekutieli 
(Benjamini and Yekutieli 2001) have theoretical guarantees in 
the context of multiple hypothesis testing, this does not imply 
guarantees for our application setting. Therefore, we resorted to 
empirically assessing whether applications of these procedures 
to PROTRIDER tail probabilities led to false discovery controls 
for the negative control dataset we simulated. Specifically, we 
applied the procedure of Benjamini and Yekutieli, and alterna
tively, the one of Benjamini and Hochberg, sample-wise, provid
ing tail probabilities instead of P-values, which were originally 
considered as input in the original publications.

For each sample separately, we considered the unadjusted 
tail probabilities over the m proteins p1; . . . ;pm and per
formed the following steps:
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1) We sorted the tail probabilities in increasing or
der: p 1ð Þ≤ . . . ≤ p jð Þ≤ . . .p mð Þ. 

2) We computed adjusted tail probabilities: 
q jð Þ ¼mink ≥ j

m
k � c mð Þ � p jð Þ, where c mð Þ ¼ 1 for the 

Benjamini-Hochberg procedure and c mð Þ ¼
Pm

l¼1
1
l for the 

Benjamini-Yekutieli procedure. 
3) We truncated the adjusted tail probabilities at 1, 

i.e. q jð Þ ¼min
�

1; q jð Þ

�
. 

4) Finally, we reordered q jð Þ to match the original order. 

This procedure was implemented based on SciPy’s false_
discovery_control method. Protein outliers were defined as 
those with an adjusted tail probability of 0.1 or lower.

2.3.3 Empirical assessment of expected proportions of false 
positive calls in the absence of outliers
We assessed whether the Benjamini-Yekutieli (Benjamini and 
Yekutieli 2001) and the Benjamini-Hochberg (Benjamini and 
Hochberg 1995) procedures applied to the tail probabilities 
(instead of P-values) controlled the expected proportion of 
false positive calls. We demonstrated this for a negative con
trol dataset simulated without any outliers, following a three- 
step procedure:

1) We first generated data under a model consistent with 
the PROTRIDER assumptions. To this end, we sampled 
residuals e�i;j for all samples i and proteins j from a 
Student’s t-distribution. To obtain simulated data with 
realistic parameters, we used the locations, scales, and 
common degrees of freedom estimated on the mitochon
drial disorder dataset from the residuals ei;j as described 
in the Section 2.2.2. The sampled residuals e�i;j were 
added to the PROTRIDER fit x̂i;j. We then reversed the 
original preprocessing transformations to yield a syn
thetic protein intensity matrix with no true outliers. 

2) The entire PROTRIDER fitting procedure was applied 
to each of 100 simulated negative control datasets. 
Thereby, all parameters were re-estimated, including the 
degrees of freedom. 

3) Next, the Benjamini and Hochberg procedure and the 
Benjamini and Yekutieli procedure were applied to the tail 
probability vectors of each sample from each simulated 
dataset, and outlier calls were made at a fixed threshold. 

Since the datasets were simulated without any outliers, any 
detected outlier constituted a false positive, yielding propor
tions of false positive calls in each run equal to 0 (no calls 
made) or 1 (some calls made). The empirical expected pro
portion of false positive calls was estimated as the average 
proportion of false positive calls across the 100 simulated 
datasets and all samples. Moreover, the total amount of calls 
was recorded for each simulation and sample combination.

2.4 Cross-validation
We also ran PROTRIDER in a leave-one-out and in a 5-fold 
cross-validation setting. In the leave-one-out setting, each 
sample was sequentially held out as a test case while the 
remaining samples were used for model training and hyper
parameter tuning. The optimal encoding dimension was de
termined on the training set using both grid search and OHT 
approaches. During autoencoder training, 20% of the train
ing set was set aside as a validation set for early stopping. 

After training, residuals were obtained for all training sam
ples, and for each protein, a Student’s t-distribution was fit
ted in a two-pass approach as described above. The resulting 
model was then applied to the held-out test sample to derive 
tail probabilities. This process was systematically repeated 
for every sample in the dataset.

In the 5-fold setting, the dataset was split into 5 folds. Each 
fold was used once as a test set while the remaining folds 
were used for training. The tail probabilities for each test fold 
were derived using the same procedure as in the leave-one- 
out setting.

2.5 Comparison to alternative methods
2.5.1 Comparison to PCA
We considered an approach using principal component 
analysis (PCA) for dimensionality reduction. PCA was ap
plied to the centered, preprocessed protein intensities xi;j, and 
the optimal number of principal components to retain was 
determined using the OHT criterion applied to the singular 
values of the data matrix. The data were projected into the 
subspace spanned by the selected components and subse
quently reconstructed into the original feature space by re
versing the PCA transformation. Residuals and tail 
probabilities were then computed from the reconstructed ma
trix as described above for PROTRIDER.

2.5.2 Comparison to Z-scores
We computed Z-scores from the preprocessed protein intensi
ties xi;j by subtracting the mean and dividing by the unbiased 
standard deviation protein-wise. Tail probabilities were cal
culated using the normal distribution, and the procedure of 
Benjamini and Yekutieli (Benjamini and Yekutieli 2001) was 
applied sample-wise.

2.5.3 Comparison to isolation Forest
As an alternative method, we also called outliers by fitting a 
protein-specific Isolation forest (Liu et al. 2012) model in 
two configurations: (i) fitted directly on the preprocessed in
tensities xi;j, and (ii) fitted on the residuals ei;j returned by 
PROTRIDER. Outlier candidates were ranked by the anom
aly scores predicted by the Isolation Forest models.

2.5.4 Comparison to limma
We used the differential expression detection method limma 
(Ritchie et al. 2015) to call outliers by testing each sample in
dividually against all other samples. To run limma, we used 
the preprocessed protein intensities xi;j as the input. For each 
dataset, we included relevant covariates in limma’s design 
matrix, matching those used as input for PROTRIDER. This 
resulted in a different limma run for each sample of each 
dataset. The results were concatenated per dataset into a ta
ble consisting of multiple testing-corrected P-values, fold- 
changes, and Z-scores for each sample-protein combination.

3 Results
3.1 Overview of PROTRIDER
We developed PROTRIDER, a model to call aberrant protein 
expression from mass spectrometry-based quantitative proteo
mics data. PROTRIDER models log-transformed protein inten
sities adjusted for overall sample intensity using a conditional 
autoencoder to account for biological and technical sources 
of variation, which may be known or unknown (Fig. 1). 
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Known covariates, such as batch effects, which are often 
strongly observed in TMT-labeled proteomics data (Brenes 
et al. 2019), can be directly provided to the model.

Proteomics data often contain missing values, which com
plicates model fitting (Brenes et al. 2019, Phua et al. 2022). 
To alleviate the impact of missing values, we filtered out pro
teins with more than 30% missing values across an entire 
dataset. The remaining missing values were ignored in the 
mean squared error loss computation and tail probability cal
culations. Moreover, we considered modeling the occurrences 
of missing values jointly with the observed intensities in the 
autoencoder (Section 2.2.1).

To identify the optimal latent space dimension, we used 
two different approaches. The first one conducts a grid search 
across candidate values for the encoding dimension and 
selects the one that optimizes the recovery of artificially 
injected outliers (Section 2.2.3). The second option applies to 
linear autoencoders without covariates and without missing
ness modeling only and is based on the Optimal Hard 
Threshold (OHT) procedure, an analytical solution to the 
number of principal components to select when assuming the 
data matrix sums to a low-rank matrix and a white noise ma
trix (Gavish and Donoho 2014). OHT has been recently used 
as a computationally efficient alternative to the grid search 
approach in the context of RNA-seq outlier calling by the 
OutSingle and saseR methods (Salkovic et al. 2023, Segers 
et al. 2023).

After the autoencoder model of PROTRIDER is fitted, the 
residuals, i.e. the differences between the observations and 
the autoencoder predictions, are used to compute two-sided 
tail probabilities assuming either a normal distribution or a 
Student’s t-distribution fitted for each protein.

We applied PROTRIDER to three datasets. The first data
set comprises 143 TMT-labelled proteomics samples col
lected from individuals with a rare, suspected Mendelian, 
mitochondrial disorder, which we refer to as the mitochon
drial disorder dataset (Kopajtich et al. 2021). After filtering 
out proteins with more than 30% missing values across sam
ples, 7060 proteins were quantified (Fig. 1, available as sup
plementary data at Bioinformatics online). Additionally, we 
considered proteomic measurements of two tumor cell line 
panels, NCI60 and CRC65 (Frejno et al. 2020). The NCI60 
panel contains 60 cell lines from various tissues, while the 
CRC65 panel consists of 65 colorectal tumor cell lines. The 
two panels were analyzed separately because they differed in 
the number of proteins detected, tumor entities present in the 
data, genome build, and exome sequencing processing tool. 
After removing proteins with more than 30% missing values, 
the NCI60 dataset was left with 6,755 proteins and the 
CRC65 dataset with 8,430 proteins (Fig. 2, available as sup
plementary data at Bioinformatics online).

Strong batch effects were observed in the raw log- 
transformed protein intensities between samples for all three 
datasets (Fig. 2A, Fig. 3A and C, available as supplementary 

Figure 1. Schematic overview of the PROTRIDER outlier detection approach. PROTRIDER takes a protein intensity matrix from a quantitative proteomics 
experiment as input, and, optionally, a missingness mask, as well as covariates such as batch and sex, and fits a conditional autoencoder to account for 
known and unknown biological and technical sources of covariation of proteins across samples. Expected log-transformed protein intensities from the 
autoencoder are then contrasted with the observed values and tested for statistical significance.
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Figure 2. PROTRIDER accounts for known and hidden covariates and typically detects a limited number of outliers per sample. (A) Heatmaps of sample- 
sample correlations of protein log-transformed intensities on the mitochondrial disorder dataset before (left) and after the PROTRIDER with OHT (middle) 
and with autoencoder correction using sex and batch as covariates (right). (B) Histogram of tail probabilities from the normal distribution and from the 
Student’s t-distribution obtained after the PROTRIDER (lite) correction on the mitochondrial disorder dataset. (C) Quantile-Quantile plot comparing 
observed −log10(tail probabilities) to their theoretical quantiles under the null (uniform distribution). (D) Observed against expected log-transformed 
protein intensities for the gene SLC25A4, highlighting the protein underexpression outlier on individual OM02364. (E) Sorted fold changes of protein 
intensities (ratio of observed and fitted values) for the gene SLC25A4, highlighting individual OM02364. (F) Sorted number of protein abundance outliers 
per sample obtained by the four methods: PROTRIDER, PROTRIDER (lite), the Z-score-based approach, and the approach based on PCA only on the 
three datasets (facets).
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data at Bioinformatics online). In the mitochondrial disorder 
dataset, they were largely driven by the different TMT 
batches (Fig. 2A). Similarly, in both of the cell line panels, 
strong correlations between samples were observed in the ex
perimental measurements, driven by the tissue of origin in 
NCI60 and MSI (Microsatellite Instability Biomarker) status, 
and subtype classification in CRC65 (Fig. 3A and C, avail
able as supplementary data at Bioinformatics online).

To account for such sources of covariations, we evaluated 
the effect of explicitly fitting a conditional autoencoder 
model that received the covariates directly as part of its input, 
in addition to the protein intensities, as well as missingness 
modeling. We refer to this model as “PROTRIDER”. We 
compared it to an autoencoder that did not have access to in
formation about potential covariates or the missingness mask 
during model fitting. To this end, we used a linear autoen
coder with a dimension determined with the OHT approach. 
The parameters of this model were further tuned (Section 
2.2.3). We named this model “PROTRIDER (lite).” The 
weights of the autoencoder in both PROTRIDER and 
PROTRIDER (lite) were initialized using truncated singular 
value decomposition. On the mitochondrial disorder dataset, 
we included sex, TMT-batch, sample preparation batch, and 
sequencing instrument of each sample as covariates, whereas 
we included sex, age, and tissue of origin for NCI60, and 
MSI status and subtype classification for CRC65. We found 
encoding dimensions of 59, 13, and 18 to be optimal for 
PROTRIDER on the mitochondrial disorder dataset, NCI60, 
and CRC65, respectively. For PROTRIDER (lite), encoding 
dimensions of 40, 7, and 5 were obtained, respectively. 
Notably, we observed that the relationship between the 
encoding dimension and the performance in recovering artifi
cially injected outliers was typically well-behaved and unimo
dal, with a relatively wide range of near-optimal values for 
the encoding dimension (plateau, Section 2.2.3, Fig. 4, avail
able as supplementary data at Bioinformatics online). In this 
context, the area under the precision-recall curve (AUPRC) 
for recovering artificially injected outliers is used as a relative 
metric, rather than an absolute measure of performance on 
real data. We observed a unimodal relationship between 
AUPRC and encoding dimension, allowing for the reliable se
lection of the encoding dimension that optimizes recovery on 
artificial outliers.

Both PROTRIDER versions were able to account for the 
observed strong batch effects. Specifically, the normalized in
tensities after fitting the autoencoder models were no longer 
strongly correlated between samples (Fig. 2A). On the mito
chondrial disorder dataset, the median within-batch pairwise 
sample Spearman correlations were reduced from 0.83 ± 
0.059 (mean ± standard deviation, here and elsewhere) to 
0.15 ± 0.087 for PROTRIDER (lite) and to 0.13 ± 0.079 for 
PROTRIDER. These results show that despite not having ac
cess to covariates, PROTRIDER (lite) succeeded in capturing 
the covariation. Similar results were obtained on the tumor 
cell line panel datasets (Fig. 3B and D, available as supple
mentary data at Bioinformatics online).

When modeling the residuals with protein-specific normal 
distributions, we observed an excess of one-sided tail proba
bilities close to 0.5, as well as close to 0 and 1, indicative of 
the data exhibiting heavy tails (Fig. 2B). Therefore, we opted 
to use the Student’s t-distribution instead of the normal distri
bution. Fitting a Student’s t-distribution for each protein was 
robustly achieved by learning a value for the degrees of 

freedom common to all proteins (Section 2.2.2). The tail 
probability distributions (observed via histograms and 
quantile-quantile plots) indicated that the Student’s t-distri
bution yielded much better statistical calibration than the 
normal distribution (Fig. 2B and C).

PROTRIDER does not perform hypothesis testing and 
therefore does not return P-values. Instead, it reports tail 
probabilities of the model fitted to the data. An important 
practical goal is to ensure that PROTRIDER rarely makes 
outlier calls in datasets where no true outliers are present, i.e. 
to control the proportion of false positives even under a com
plete null scenario. To empirically assess this, we considered 
a negative control dataset in which the observed values were 
generated according to PROTRIDER modeling assumptions, 
i.e. where the deviations from the autoencoder predictions 
are drawn independently according to the Student’s t-distri
bution. In order to make the simulations realistic, we set the 
values of the parameters, including the autoencoder predic
tions, the scales, locations, and common degrees of freedom, 
to be equal to those we estimated on the mitochondrial disor
der dataset. On each simulated dataset, the entire 
PROTRIDER fitting procedure was applied, i.e. from the la
tent dimension search to the estimation of the degrees of free
dom. Any positive call (outlier call) from the negative control 
dataset is a false positive. We confirmed that the tail proba
bilities were approximately uniformly distributed when fit
ting from scratch PROTRIDER models to 100 such negative 
control datasets (Section 2.3.3, Fig. 5A and B, available as 
supplementary data at Bioinformatics online). We then ap
plied the Benjamini-Yekutieli (BY, Benjamini and Yekutieli 
2001) procedure and the Benjamini-Hochberg (BH, 
Benjamini and Hochberg 1995) procedure to the tail proba
bilities, each in a sample-wise manner. Because these proce
dures were applied to tail probabilities rather than P-values, 
the theoretical False Discovery Rate (FDR) guarantees origi
nally formulated for P-values in the hypothesis-testing frame
work do not apply. Consequently, we empirically evaluated 
the proportion of false positive calls on the negative control 
datasets for both the BY and BH procedures. We observed 
that, when applying the BY procedure with a threshold of 
0.1, the average proportion of false positive calls was appro
priately controlled and yielded only a small number of false 
positives (Fig. 5C and D, available as supplementary data at 
Bioinformatics online). In the hypothesis testing framework, 
the BY procedure is more general than the BH procedure as it 
can be applied to dependent statistics. In our simulations, the 
BY procedure behaved more conservatively compared to BH 
(Fig. 5C, available as supplementary data at Bioinformatics 
online). However, we note that the empirical calibration of 
the BH procedure might be optimistic because the simula
tions were performed using independently drawn errors. 
Therefore, we conservatively used the BY procedure for the 
subsequent analyses (adjusted tail probability < 0.1).

We exemplify PROTRIDER outlier calls for a rare disease 
diagnostic relevant case we reported earlier (Kopajtich et al. 
2021). The mitochondrial solute carrier SLC25A4, which 
translocates ADP from the cytoplasm into the mitochondrial 
matrix and ATP from the mitochondrial matrix into the cyto
plasm, appeared as a downregulated outlier in the individual 
OM02364 (adjusted tail probability¼ 0.05). This was evi
dent from the deviation of the observed intensity compared 
to the PROTRIDER expectation by 61-fold (Fig. 2D and E), 
which was aberrant compared to the variations seen across 
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the other individuals. This aberrantly reduced expression of 
the mitochondrial disorder-causing protein SLC25A4 vali
dated the functional impact of the heterozygous missense 
candidate variant from the patient and led to the patient’s ge
netic diagnostics (Kopajtich et al. 2021).

To provide baseline comparisons, we considered Z-scores 
computed from the observed log-transformed protein intensi
ties adjusted for overall sample intensity (denoted as “Z- 
scores”). We also compared PROTRIDER to an approach 
that uses only PCA projection with the number of principal 
components determined via the OHT approach, without op
timizing autoencoder weights.

Among all outlier calls (adjusted tail probability of 0.1 or 
lower), PROTRIDER and PROTRIDER (lite) typically 
reported 1 outlier per sample across all three datasets 
(Fig. 2F). This is in line with the number of gene expression 
outliers typically reported by OUTRIDER on RNA-seq sam
ples (Y�epez et al. 2022). The PCA-based approach returned a 
comparable number of outliers per sample to PROTRIDER, 
while the Z-scores approach reported slightly more outliers 
per sample (median of 1–2 outliers per sample, Fig. 2F).

3.2 Enrichment for rare variants likely disrupting 
protein expression
To benchmark alternative methods for protein outlier detec
tion performance using orthogonal data, we first considered 
enrichments for variants that likely lead to protein abundance 
outliers. To this end, we selected variants that are rare in the 
human population with a minor allele frequency (MAF) less 
than or equal to 0.1% in gnomAD (Karczewski et al. 2020) 
and whose consequence is stop, frameshift, splice-site, or mis
sense according to VEP, likely deleterious according to 
CADD, or pathogenic according to AlphaMissense (McLaren 
et al. 2016, Rentzsch et al. 2019, Cheng et al. 2023). Those 
variants do not necessarily lead to aberrant protein abundan
ces. However, one can expect that more accurate protein 
abundance outlier callers will lead to higher enrichments for 
genes carrying those variants. We first compared linear 
autoencoders from PROTRIDER to the PCA-only approach, 
as well as the Z-scores approach, using the variant categories 
described above as a ground truth proxy.

PROTRIDER outlier calls performed consistently favor
ably across all variant categories (Fig. 3A).

Specifically, among the 1000 top-ranked underexpression 
outliers detected by PROTRIDER, 14% ([11.9, 16.3] 95% 
confidence interval) of the called outliers harbored at least 
one rare variant whose consequence was stop, frameshift, 
splice-site, or missense according to VEP on the mitochon
drial disorder dataset. The Z-score approach showed sub
stantially lower proportions (never exceeding 5%). Very 
similar results to those obtained with PROTRIDER (lite) 
were also observed when using a PCA projection alone with 
the same tail probability computation strategy, without sub
sequent autoencoder training (Fig. 3A). Moreover, we also 
considered a non-parametric approach to call and rank out
lier candidates. To this end, we applied isolation-based 
anomaly detection using Isolation Forests (Liu et al. 2012). 
Since our goal was to identify outlier intensities per protein 
and sample, Isolation Forest was run on each protein individ
ually. We first applied Isolation Forest directly on the prepro
cessed protein intensities. This led to essentially no 
enrichment for variants likely disrupting protein expression 
(Fig. 6, available as supplementary data at Bioinformatics 

online). We next applied Isolation Forest on the residuals 
returned by PROTRIDER (Fig. 3A), effectively replacing the 
computed tail probabilities using the Student’s t-distribution 
by the returned anomaly scores for ranking. This second ap
proach outperformed the Z-scores approach, confirming the 
importance of adjusting for hidden sources of covariation 
with the autoencoder, yet did not improve upon 
PROTRIDER (Fig. 3A). These results are consistent with the 
good calibration of PROTRIDER tail probabilities evident 
from the QQ-plot analysis and further indicate that Student’s 
t-distributions reasonably capture protein intensity residuals.

Overall, the superiority of PROTRIDER was observed inde
pendently of the rank cutoff and for all three considered variant 
categories (Fig. 3A). Moreover, we compared the results 
obtained when filtering the dataset to include proteins with at 
most 30% missing values to those obtained using alternative 
thresholds for the maximum allowed proportion of missing val
ues per protein. Across all thresholds, PROTRIDER consis
tently outperformed the other methods (Fig. 7, available as 
supplementary data at Bioinformatics online). There is a trade
off between protein coverage and model performance, whereby 
a lower proportion of missing values yielded a higher propor
tion of underexpression outliers associated with rare variants 
likely disrupting protein expression, yet at the cost of excluding 
more proteins from the analysis, potentially omitting valuable 
outlier candidates (Fig. 7, available as supplementary data at 
Bioinformatics online). As a compromise, we opted for a thresh
old of at most 30% missing values per protein for all subse
quent analyses.

For the two tumor cell line datasets, no significant difference 
between the methods was found when comparing them at equal 
protein ranks, and the proportions of rare variants likely dis
rupting protein expression were globally lower compared to the 
mitochondrial dataset (Fig. 3B and C). One possible explana
tion for the weaker proportions is the lower sample size (60 and 
65 versus 143). Consistent with this hypothesis, the proportions 
of variants decreased gradually as we downsampled the mito
chondrial dataset, yielding proportions at matched sample 
sizes that were similar to those observed in the tumor cell line 
dataset (n¼60, Fig. 8, available as supplementary data at 
Bioinformatics online). At these lower sample sizes, the perfor
mance advantage of PROTRIDER over the other methods also 
decreased, though it remained slightly more pronounced than in 
the tumor datasets (Fig. 8, available as supplementary data at 
Bioinformatics online). Additionally, the lower performance ob
served in the tumor cell lines compared to the mitochondrial 
disorder dataset may also reflect greater genetic heterogeneity in 
tumor-derived cell lines relative to patient fibroblasts. We evalu
ated whether changing the process of artificially injecting out
liers during the selection of the encoding dimension could 
improve the model. Specifically, changing the outlier injection 
mean from three to six consistently resulted in substantially 
higher AUPRC when recovering artificially injected outliers for 
all encoding dimension candidates (Fig. 9A, available as supple
mentary data at Bioinformatics online). However, even though 
the optimal dimensions changed for the two panels (from 13 to 
8 for NCI60 and from 18 to 10 for CRC65), this did not practi
cally result in a difference in the variant enrichment perfor
mance (Fig. 9B and C, available as supplementary data at 
Bioinformatics online).

Nonetheless, considering the significant calls only, 
PROTRIDER reported fewer outliers than the Z-scores ap
proach on the tumor cell line panels with an adjusted tail 
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probability of 0.1 or lower (75 versus 347 on NCI60, 104 ver
sus 157 on CRC65) and maintained, in the case of NCI60, a 
reasonably high proportion of rare variants likely causing pro
tein abundance aberration compared to the Z-scores approach 
(8.8% versus 7.4% at rank 500, Fig. 3B and C). Altogether, 
this benchmark using independent evidence from rare genetic 
variants indicates that PROTRIDER in either setting improves 
the detection of genuinely aberrantly expressed proteins.

We also considered whether non-linear autoencoders could 
improve over linear ones. To this end, we added up to three 
layers with non-linear activations between layers to 

PROTRIDER. However, using multi-layer models did not im
prove the performance over the one-layer model on the mito
chondrial disorder dataset (Fig. 10, available as supplementary 
data at Bioinformatics online). Therefore, we used one-layer 
autoencoders for all the subsequent analyses.

Furthermore, we investigated the contribution of various 
modeling choices by fitting PROTRIDER under different config
urations (Fig. 11, available as supplementary data at 
Bioinformatics online). Our analysis showed that modeling miss
ingness as well as using PCA for weight initialization improves 
PROTRIDER’s performance. Interestingly, PROTRIDER (lite) 

Figure 3. PROTRIDER outperforms baseline approaches on rare variant benchmarks. (A) Proportion of outliers with at least one rare variant on the 
mitochondrial disorder dataset for underexpression outliers calls from PROTRIDER (blue), PROTRIDER (lite), the isolation forest approach applied on 
PROTRIDER’s residuals, the Z-score-based method and a method based on PCA without autoencoder trainingon three sets of rare variant categories as 
ground truth proxies: (i) VEP stop, frameshift, direct splice-site, and missense variants, (ii) CADD deleterious variants (PHRED score ≥ 20), and (iii) 
AlphaMissense pathogenic variants. Ribbons mark 95% confidence intervals. (B and C) Same as (A) but for the two tumor cell line panels NCI60 and 
CRC65, and only on the category of stop, frameshift, direct split-site, and missense variants. (D) Odds ratio of shared RNA and protein outliers (with an 
adjusted tail probability of 0.1 or lower) in the mitochondrial disorder dataset and their 95% confidence intervals (Fisher’s test) for the two PROTRIDER 
methods, the PCA-based approach, and the Z-scores approach.
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achieves similar performance regardless of whether PCA-based 
weight initialization is used. Moreover, we observed consistently 
similar performance across a range of non-zero weighting factors 
used to combine the binary cross-entropy with mean squared er
ror loss terms when incorporating the binary missingness model
ing (Section 2.2.1), indicating that the model is relatively robust 
to this parameter choice (Fig. 12, available as supplementary 
data at Bioinformatics online). In contrast, setting the weighting 
factor to zero, i.e. effectively disabling the missingness modeling, 
led to a noticeable decrease in performance.

We note that our approach does not require a cross- 
validation scheme because the encoding dimension is smaller 
than the dataset dimension, and because the encoding dimen
sion is chosen to optimize the recovery of original, uncor
rupted intensities. Nonetheless, we investigated whether a 
cross-validation scheme could further improve the robustness 
to PROTRIDER. Specifically, we considered both 5-fold 
cross-validation and leave-one-out cross-validation (Section 
2.4). We observed lower performance for both approaches 
on the variant enrichment benchmark, whereby the leave- 
one-out approach performed substantially better than 5-fold 
cross-validation (Fig. 13, available as supplementary data at 
Bioinformatics online). This consistent trend indicates that 
the model needs the entire dataset to provide good fits, at 
least for the sample sizes we could investigate.

3.3 Concordance of protein expression outliers with 
RNA expression outliers
As another independent type of benchmarking data, we con
sidered gene expression outliers from RNA-sequencing. As 
for the rare variant benchmark performed above, this bench
mark only provides a ground truth proxy, as some gene ex
pression outliers can be translationally buffered. Moreover, 
some protein abundance outliers may not be reflected in 
RNA-seq, for instance, due to post-transcriptional regulation 
(Wang et al. 2018, Kusnadi et al. 2022). Nevertheless, the 
proportions of RNA-seq outliers obtained on the same sam
ples can be used to compare different protein abundance out
lier callers. For this, we considered outlier calls by 
PROTRIDER, the PCA-only approach, and the Z-scores ap
proach (adjusted tail probability < 0.1). Another added value 
of using RNA-seq outliers for benchmarking, compared to 
variants likely disrupting protein expression, is that they al
low assessment of the overexpression outliers. All methods 
obtained a significant enrichment (Fisher’s test nominal P- 
value < 0.05) for underexpression RNA-seq outliers called 
by OUTRIDER (Brechtmann et al. 2018). However, the en
richment for the Z-scores approach was two times lower 
than for the other methods, which performed similarly 
(Fig. 3D). For overexpression, no enrichment for RNA-seq 
outliers was found by the Z-scores approach, nor by the 
PCA-only approach, nor by PROTRIDER, including miss
ingness modeling, while the remaining methods performed 
similarly and significantly higher than random (Fig. 3D).

Finally, we considered an approach based on the differential 
expression test limma (Ritchie et al. 2015), applied by testing 
each sample against all others. We note that, limma is funda
mentally designed for group-level hypothesis testing, specifically 
for comparing mean expression levels between predefined 
groups, rather than identifying individual outlying samples. 
Its underlying statistical model targets differences in group 
means and assumes sufficient replicates per condition, which 
makes it conceptually distinct from outlier detection methods. 

Nonetheless, compared to PCA-only or Z-score baseline 
approaches, limma offers the advantage of covariate adjust
ment. In our benchmarks, applying limma with covariates 
yielded a strong baseline that outperformed both limma without 
covariates and the Z-scores approach, highlighting the value of 
adjusting for confounders. Nevertheless, it did not surpass 
PROTRIDER nor the Isolation forest approach on 
PROTRIDER’s residuals (Figs 7, 8, 14, and 15, available as 
supplementary data at Bioinformatics online).

Taken together, these results show that PROTRIDER is 
well-suited for the task of aberrant protein abundance detec
tion, outperforming the Z-scores approach, the PCA-only ap
proach, the Isolation forest approach, as well as limma with 
and without covariates on the benchmark using rare protein- 
disrupting variants and outperforming the limma approach 
without covariates in the enrichment of shared protein and 
RNA expression outliers.

3.4 Genetic determinants underlying aberrant 
protein expression
Having established a protein expression outlier caller, we next 
investigated various characteristics of the genetic determinants 
of these outliers. To this end, we considered all rare variants 
(gnomAD MAF <0.1%) falling within the gene boundary. We 
note that, as the variants of this dataset were called from whole- 
exome sequencing, they were biased toward the coding se
quence. We found that 30% of the underexpression protein 
abundance outliers called by PROTRIDER had at least one 
such rare variant (Fig. 4A). As expected, stop and frameshift 
variants showed the strongest enrichments (Fig. 4B) and 
explained overall 15.3% of the underexpression outliers 
(Fig. 4A). PROTRIDER achieved stronger enrichments, 
whereas PROTRIDER (lite) showed similar overall patterns, al
beit with somewhat reduced signal strength (Fig. 4A and B). No 
significant enrichments for these variants were found, as 
expected, for overexpression outliers (Fig. 16, available as sup
plementary data at Bioinformatics online).

We further found a strong enrichment for AlphaMissense 
pathogenic variants (Fig. 4A and B), which explained another 
3.4% of the underexpression outliers. The AlphaMissense 
categories helped prioritize missense variants affecting pro
tein expression, as the AlphaMissense pathogenic category 
(odds ratio¼15.4) had stronger enrichment than the ambigu
ous (odds ratio¼4.2) and benign (odds ratio¼ 0.5) catego
ries (Fig. 4B).

We evaluated the effect of replacing the conservative 
Benjamini-Yekutieli method with the Benjamini-Hochberg 
procedure to adjust tail probabilities. This substitution 
increased the number of outliers detected by about 69% 
(208 versus 349) for PROTRIDER and about 134% (360 
versus 843) for PROTRIDER (lite), accompanied by only 
a slight decrease in the enrichment of protein-disrupting 
rare variants (Fig. 17, available as supplementary data at 
Bioinformatics online).

4 Discussion
We described PROTRIDER, a model that extends the 
autoencoder-based outlier detection approach already valu
able in the RNA-seq-based diagnosis of rare disease patients 
to mass spectrometry-based proteomics measurements. Using 
rare genomic variants and RNA-seq outliers as orthogonal 
data for benchmarking, we showed that protein abundance 
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underexpression outliers detected with PROTRIDER outper
formed baseline methods based on simple Z-scores, Isolation 
Forest, and PCA. We found that modeling the occurrence of 
missing values improved the model performance. In the three 
investigated datasets from rare disease and tumor cell lines, 
linear models outperformed non-linear, multi-layer autoen
coders. Moreover, we found that the heavy-tailed nature of 
model residuals was better captured with a Student’s t-distri
bution with a shared degrees-of-freedom parameter across 
proteins than with a Gaussian distribution. Consequently, us
ing the Student’s t-distribution substantially improved the 
statistical calibration. Finally, we showed that variants pre
dicted by AlphaMissense to be pathogenic, in contrast to the 
benign predictions, were enriched among underexpres
sion outliers.

The full PROTRIDER model, which uses grid search to 
optimize the encoding dimension and explicitly incorporates 
relevant covariates and missingness modeling, consistently 
achieved the best performance, particularly when benchmark
ing for rare variants likely disrupting protein expression on the 
mitochondrial disorder dataset. However, PROTRIDER (lite) 
remained a robust and computationally efficient alternative. 

Unlike the full version, PROTRIDER (lite) does not require 
hyperparameter tuning nor covariate specification, making it a 
convenient and perhaps more robust starting point. We 
therefore recommend running both versions. Enrichment for 
variants likely disrupting protein expression when available, 
or Q-Q-plots of tail probabilities and sample correlation 
heatmaps can help decide whether the full model provided an 
improved fit to the data.

In this study, we presented the main results using the con
servative Benjamini-Yekutieli procedure to adjust the tail 
probabilities, originally introduced to control the false dis
covery rate in the context of multiple testing under arbitrary 
dependencies of the statistics. However, the enrichment for 
variants likely disrupting protein expression on the real data 
remained high, even though slightly reduced, when using the 
Benjamini-Hochberg procedure instead of the Benjamini- 
Yekutieli procedure. Independent of the procedure to adjust 
tail probabilities, using less stringent cutoffs may be appro
priate in scenarios where greater sensitivity to outliers or 
higher diagnostic rates is a priority. A further plausible sce
nario in rare disease diagnostics arises when genome analysis 
yields a candidate variant. Here, the nominal tail probability 

Figure 4. Genetic determinants of protein expression outliers. (A) Proportions of non-outliers, protein overexpression, and protein underexpression 
outliers with a rare variant detected in the same gene for PROTRIDER and PROTRIDER (lite) in the mitochondrial disorder dataset. Colors indicate the 
different variant categories based on annotations from VEP and AlphaMissense. (B) Odds ratios and their 95% confidence intervals (Fisher’s test) of the 
enrichment of the proportion for each variant category among underexpression outliers compared to the background proportion of the non-outliers for 
PROTRIDER and PROTRIDER (lite).
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of the associated protein may be evaluated directly, without 
the need for tail probability adjustment.

Given the enrichments we observed for rare and likely delete
rious variants of various categories, we expect PROTRIDER to 
be of value for genetic diagnostic pipelines in addition to RNA- 
based analyses, especially to capture variant effects acting on 
the level of translation or protein stability. As we have shown 
earlier (Kopajtich et al. 2021) in the diagnostic context, proteo
mics can provide functional evidence for rare variants of uncer
tain significance. This is true for stop and frameshift variants 
but also for missense variants, which remain difficult variants to 
interpret. Here, we further showed a strong enrichment of 
AlphaMissense pathogenic variants in outliers detected at the 
protein level compared to other missense variants, highlighting 
a class of variants whose effects are often not captured by 
RNA-seq analyses.

Our estimation of tail probabilities could, in principle, be 
improved by separating the data used for model fitting from 
the data used for evaluating residuals and computing tail 
probabilities. This separation could enhance the sensitivity of 
outlier detection by preventing overfitting and ensuring that 
the model’s ability to identify extreme values is not influenced 
by the same data on which the model was trained. 
Nevertheless, the empirical distribution of tail probabilities 
for data simulated under the negative control dataset did not 
show evidence for overfitting, suggesting the impact of this is
sue may be limited in practice.

The benchmarks presented in this study focus mostly on 
underexpression outliers. This is partly due to the nature of 
the available genomic information, as there were no copy 
number variations (CNVs) available for the mitochondrial 
datasets and only for some samples of the CRC65 panel, and 
partly because it is not straightforward to define classes of 
variants that lead to an increase in protein abundances. To 
benchmark overexpression outlier calls with genetic variants, 
further datasets with available copy number variants and 
larger sample sizes would be beneficial. Nevertheless, we 
could show using RNA-seq data that PROTRIDER (lite) 
overexpression calls were enriched for RNA-seq overexpres
sion calls, indicating that the method can also capture overex
pression outliers.

Missing values are common in mass spectrometry-based pro
teomics, especially in data-dependent acquisition mode 
(Karpievitch et al. 2012, Ahlmann-Eltze and Anders 2019, 
Brenes et al. 2019, Kong et al. 2022), and often reflect low- 
abundance proteins (Kong et al. 2022). In PROTRIDER, incor
porating the missingness binary mask allowed us to handle 
missing data more explicitly, rather than simply ignoring it in 
the loss function. This approach enabled the model to identify 
biologically relevant absences, such as protein intensities missing 
in certain samples due to regulation, sample-level, or batch-level 
technical dropouts. While PROTRIDER models missingness, 
we did not consider calling individual missing values as outliers. 
This could be relevant for non-TMT data-dependent acquisition 
proteomics but would require a substantial extension of the pre
sent study. In this context, future work may also investigate 
other methods, such as variational autoencoders (Collier et al. 
2020, Naz�abal et al. 2020) within the scope of outlier detection, 
particularly for incorporating probabilistic modeling and uncer
tainty estimates. However, the application of variational 
autoencoders to sample–protein level outlier detection would re
quire substantial adaptation and evaluation of modeling 

choices, such as the design of an appropriate conditional prior 
and regularization terms to preserve reconstruction accuracy.

Furthermore, PROTRIDER only calls outliers at the pro
tein level. However, entire protein complexes are often desta
bilized (Kremer et al. 2017, Kopajtich et al. 2021), therefore, 
additionally assessing outliers at the protein complex level 
could increase sensitivity. Additionally, peptide-level outliers 
may offer finer resolution, capturing variant-specific changes 
such as those caused by post-translational modifications or 
alternative splicing, which may have important functional 
consequences. At a more global level, one could also be inter
ested in calling sample-level outliers, i.e. individuals whose 
entire proteome appears disrupted. In this case, multivariate 
outlier methods, including LSCP (Locally Selective 
Combination of Parallel Outlier Ensembles, Berger-Wolf and 
Chawla 2019) and AnoGAN (Anomaly Detection with 
Generative Adversarial Networks, Schlegl et al. 2017), could 
be worth investigating. Another interesting extension of our 
work would be to model longitudinal datasets, which would 
allow for the detection of outlier values for individual sub
jects over time.

Although PROTRIDER was developed for proteomics data, it 
could also be applicable to other mass spectrometry-based meas
urements, such as metabolomics and lipidomics, which may 
share similar statistical properties. If the autoencoder-based cor
rection and statistical calibration generalize well, PROTRIDER 
could support broader applications beyond proteomics.
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