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A B S T R A C T

Exposure to excess heat is linked to increased risks of cardiovascular diseases (CVD). As temperatures increase 
globally, it is crucial to examine the potential increase in excess heat-related CVD (xHEAT-CVD) burden to inform 
strategies for adaptation. This study aimed to identify the contextual factors associated with future xHEAT-CVD 
burden among older adults across eighty U.S. metropolitan statistical areas (MSAs).

The MSA-specific xHEAT-CVD risk for adults ≥ 65 years was estimated using hospitalization and temperature 
data from 2000 to 2017, with excess heat defined as temperatures above the minimum hospitalization percentile 
(TMHP). Future xHEAT-CVD hospitalizations were estimated using temperature projections for 2025–2054, 
2045–2074, and 2070–2099 under three climate scenarios. Area-level variables were used to identify de
mographic and economic status, health, environment, and infrastructure contexts and derive Urban Heat Health 
Risk (UHHR) scores using confirmatory factor analysis. The associations between adaptive capacity (the UHHR 
scores) and future xHEAT-CVD burden were examined.

In 2070–2099 under the mildest scenario, 36 more days annually were projected to be ≥ TMHP, and xHEAT- 
CVD burden was projected to increase by at least 20.4-fold. Lower adaptive capacity was associated with greater 
increases in future xHEAT-CVD burden, over 9-fold increase per 1-unit increase in UHHR score (9.1, 95 % 
Confidence Intervals: 2.8–15.4). The historical xHEAT-CVD burden (2000–2017) was largely driven by the 
health context, whereas environment played a more important role in the future.

Our findings suggest that drivers of the xHEAT-CVD burden may vary across time. Targeting the areas with the 
highest xHEAT-CVD burden at varying timeframes can help mitigate xHEAT-CVD burden more effectively.

1. Introduction

In the past two decades, approximately 490,000 deaths per year 
worldwide have been attributed to excess heat (Zhao et al., 2021), with 
greater impacts observed in urban areas (Madrigano et al., 2015). With 
the trajectory of temperature increases in projections under future 
emission scenarios (IPCC, 2023; Lee et al., 2021), it is crucial to un
derstand the magnitude of health burden related to excess heat.

The health risk assessment framework used in the Intergovernmental 
Panel on Climate Change (IPCC) Sixth Assessment Report (AR6) is a 

function of hazard, exposure, and vulnerability (Estoque et al., 2023; 
IPCC, 2023). In this framework, hazard refers to severe or extreme 
events, including climatic phenomenon; exposure typically refers to the 
elements that are at risk of exposure to the hazard and is commonly 
expressed as land use or population-related characteristics; and 
vulnerability refers to the lack of capacity to adapt, cope, mitigate, or 
change responses from the hazard (Cheng et al., 2021; Li et al., 2022). 
Applying the IPCC health risk assessment framework to the case of 
excess heat-related health risks, excess heat constitutes the component 
of hazard, which may be perceived differently based on the affected 
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population’s experience of heat intensity and biological susceptibility to 
adverse health impacts.

Urban areas are particularly affected, often experiencing amplified 
temperatures and health risks because of the urban heat island (UHI) 
effect (IPCC, 2023; Lee et al., 2021) and more communities at risk due to 
high population density. In the United States (US), urban areas are home 
to 82 % of adults aged 65 years old and over and 81 % of children 
younger than 5 years old (United Nations Statistics Division, 2025), two 
populations with demonstrated physiological susceptibility to heat. 
Studies have consistently reported that older adults have higher risks to 
excess heat burden due to physiological factors, such as reduced ther
moregulatory responses and a higher prevalence of chronic conditions 
(Chen et al., 2024; García-León et al., 2024; Liu et al., 2022). Moreover, 
the greatest impacts of cardiovascular morbidity are observed in older 
adults residing in urban areas with high UHI intensity (Cleland et al., 
2023). This emphasizes the need to understand how heat-related health 
burdens among older urban populations may change in the future. 
Therefore, older population residing in urban areas can be considered as 
the component of exposure in the case of excess heat-relate health risks.

In addition to disproportionately affecting at-risk populations, the 
compounding effects of demographic, economic, institutional, and 
environmental characteristics can further exacerbate heat-related health 
risks (Cheng et al., 2021; Conlon et al., 2020; Ebi et al., 2021). These 
characteristics can be considered aspects of vulnerability within the 
health risk framework, and a large body of research (Cheng et al., 2021; 
Conlon et al., 2020; Li et al., 2022) has identified numerous factors 
related to excess heat and human health which are frequently grouped 
based on context (Li et al., 2022) to help guide planning of potential 
interventions. The most common themes include demographic and 
economic factors, such as sex, income, educational attainment, housing 
structure, and economic hardship (Ellena et al., 2020; Gronlund, 2014; 
Ho et al., 2015; Rohat et al., 2019); health conditions, such as pre- 
existing chronic conditions and immunization status among children 
(Azhar et al., 2017; Ellena et al., 2020; Lin et al., 2009; Naughton et al., 
2002; O'Lenick et al., 2019; Vandentorren et al., 2006; Wilhelmi and 
Hayden, 2010); environmental factors, such as air quality, greenspaces 
(Ellena et al., 2020; Gronlund et al., 2015; Harlan et al., 2006; Kalisa 
et al., 2018; Maragno et al., 2020; Reid et al., 2009); and infrastructure 
conditions, such as facilities in response to heat events (e.g., cooling 
centers, urgent care, hospitals), public transportation (Cutter et al., 
2003; Ellena et al., 2020; Johnson et al., 2012; Nayak et al., 2018). Each 
of these themes (or “contexts”) has been associated with elevated heat- 
related health risks.

Cardiovascular disease (CVD)-related hospitalizations have been 
strongly associated with extreme heat and carry significant economic 
burden (Cleland et al., 2023; Liu et al., 2022; Moghadamnia et al., 2017; 
Phung et al., 2016). This study leveraged nationwide individual-level 
data on CVD hospitalizations to investigate the magnitude of excess 
heat-related health burden across future scenarios and identify the 
contextual variables that shape those risks. We first modeled the future 
heat-related CVD burden based on current heat-related hospitalization 
risks, population growth rates, and future temperature projections. We 
then scored the urban heat health risk (UHHR) to characterize the re
lationships between projected future health burdens and current levels 
of adaptive capacity with respect to demographic/economic status, 
health, environment, and infrastructure under different scenarios. 
Finally, we examined the associations between UHHR scores and the 
projected changes in future heat-related CVD burden.

2. Materials and methods

2.1. Study population and cardiovascular outcome

This study focused on older adults who resided in urbanized areas in 
the contiguous U.S., a population with an increased risk of adverse 
health outcomes from excess heat exposure. We defined urbanized areas 

as metropolitan statistical areas (MSAs) in the contiguous U.S. with a 
total population of >= 500,000 based on the U.S. Census 2010 data (U.S. 
Census Bureau, 2020). Though heat-related risk of CVD burden may 
change over time, we were interested in understanding how CVD burden 
may change within the areas with higher susceptibility to excess heat- 
related CVD burden. Therefore, we focused on MSAs with increased 
heat-related relative risks of CVD hospitalizations identified by Cleland 
et al. (2023). Results based on all the MSAs (including those with 
decreased relative risks) are provided in Supplemental Results section. 
The increased relative risks here were modeled using the distributed lag 
non-linear model across 21 days (Cleland et al., 2023) and were not 
always associated with increased CVD hospitalization. Eighty MSAs met 
these criteria (Fig. 1), with a population density ranging from 20.2 
people/km2 in Boise, Idaho to around 2500 people/km2 in Philadelphia, 
Pennsylvania. Detailed information on population, total land and water 
area, population density, and percent urban area based on the 2010 
Census Urban and Rural Classification and Urban Area Criteria for the 
selected MSAs are provided in Supplemental Table 1. CVD hospitaliza
tions were obtained from Medicare beneficiaries aged 65–114 within the 
80 MSAs for 2000–2017 (defined as the historical period). Daily counts 
of CVD hospitalizations were first obtained at the ZIP Code Tabulation 
Area (ZCTA) level using the Medicare billing claims from short-stay, 
inpatient hospitalizations and then aggregated to the MSA level. 
Detailed information about the diagnosis codes for CVD-related hospi
talizations (ICD-9: 390–438, ICD-10: I00-I69) used in this study are 
detailed in Cleland et al. (2023).

2.2. Temperature and population projections

Projected mean daily temperature from the Coupled Model Inter
comparison Project Phase 5 (CMIP5; Sheffield et al., 2013) ensemble of 
global climate models (GCMs) was statistically downscaled to 1/16-de
gree latitude–longitude (~6 km) grid using Localized Constructed An
alogs (LOCA; Pierce et al., 2014) and was obtained from the USGS Geo 
Data Portal (USGS Geo Data Portal, 2023). The CMIP5 projections are 
based on Representative Concentration Pathways (RCPs; van Vuuren 
et al., 2011), which are internationally recognized scenarios of future 
global greenhouse gas concentrations. This study used data from 
RCP4.5, a moderate emission scenario, and RCP8.5, a high emissions 
scenario, with global temperature increasing by 1.1–2.6 ◦C and 
2.6–4.8 ◦C, respectively, by the year 2100 (IPCC, 2013). The LOCA data 
were available as an ensemble of 32 downscaled GCMs on monthly 
timescales and as individual downscaled GCMs on a daily timescale. The 
monthly ensemble values were too temporally coarse to use in this 
study. The daily data in this analysis were sourced from two downscaled 
GCMs: Community Earth System Model version 1 (a.k.a the fourth 
version of the Community Climate System Model; CESM-CCSM4; Gent 
et al., 2011) under RCP4.5 (“CC4-rcp45”) and RCP8.5 (“CC4-rcp85”) 
scenarios, and Geophysical Fluid Dynamics Laboratory Coupled Model 
v3 under RCP8.5 scenario (GCM-CM3; “GC3-rcp85”; Donner et al., 
2001). In summary, the three climate scenarios for temperature pro
jections used in this analysis were CC4-rcp45, CC4-rcp85, and GC3- 
rcp85. These GCMs varied in climatological skill, and based on mean 
and extreme statistics, none of these models were CMIP5 outliers; CESM- 
CCSM4 was ranked 3rd and GFDL-CM3 17th within the ensemble 
(Sanderson et al., 2017). These GCMs produced near-average biases in 
mean rainfall over the contiguous United States and reduced biases for 
eastern North America (Sheffield et al., 2013). The choice of the GCMs 
was driven by data evaluation based on other studies (e.g., Jalowska 
et al., 2025), which were validated against historical data in previous 
research (Spero et al., 2016; Nolte et al., 2021) and were used in the 
Fourth National Climate Assessment (Nolte et al., 2018). The data was 
subset to MSA boundaries, and daily maximum and minimum temper
ature were extracted for each MSA using the ‘extract’ function in the R 
‘raster’ package (Hijmans, 2018). The mean daily temperature data for 
each MSA, for three periods: near- (2025–2054), mid- (2045–2074), and 
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long-term (2070–2099) were derived using the average of the daily 
maximum and minimum temperature.

After CMIP5, a new set of scenarios called Shared Socioeconomic 
Pathways (SSPs), was developed to incorporate future societal devel
opment (O’Neill et al., 2014) as the foundation for CMIP6. The popu
lation projections by age at the county level under SSP2 (“middle of the 
road”) and SSP5 (“fossil fuel development”) for near- (2025–2054), mid- 
(2045–2074), and long- term (2070–2099) periods were obtained from 
the NASA’s dataset (Hauer and Center for International Earth Science 
Information Network (CIESIN) at Columbia University, 2025). Subse
quently, CMIP6 climate projections merged RCPs with SSPs. However, 
at the time of the study, LOCA2v1 data from CMIP6 (Pierce, 2021) 
lacked sufficient evaluation studies to support using the datasets here.

The unit of the analysis is MSA because the variability in outcome 
measure for future periods depends on three factors: spatial resolution of 
temperature in the future periods, historical incidence, and measure of 
risk. The latter two factors are based on the previous study by Cleland 
et al. (2023). The primary limiting factor is spatial resolution of tem
perature in the future periods, which typically downscaled from global 
climate model with a coarse resolution (e.g., 2◦). In this analysis, we 
used a higher-resolution temperature data, LOCA, with a statistical 
downscaled data with a resolution of 1/16th degree, however, the res
olution is still not adequate to capture the temperature variations at the 
ZCTA level. Supplemental Table 2 shows the variations of temperature 
above minimal hospitalization percentile (i.e., the temperatures used for 
the burden calculations) at the ZCTA level using CC4-rcp45 as an 

example for each MSA.

2.3. Area-level variables describing contexts for adaptive capacity

Area-level variables were selected based on two criteria that they 
have been previously shown as relevant modifiers of heat-health risks, 
and that data is available across the nation with negligible missingness. 
Variables used in this analysis were obtained from multiple sources and 
categorized into four contexts: demographic and economic status (DES), 
health (HLT), environment (ENV), and infrastructure (INF) (Supple
mental Table 3). In this study, the demographic and economic status 
context characterizes demographic composition, financial capital, social 
cohesion and/or support, and stability of a place that may determine 
one’s ability to regulate thermal comfort during extreme heat events; the 
health context represents the existing health issues that may affect the 
response to extreme heat exposure; the environment context describes the 
physical and climatic characteristics of the environments, and environ
mental hazards that may affect heat regulation and adaptation for a 
place in both historical and contemporary periods; and the infrastructure 
context characterizes local investments that may affect the preparedness 
to respond to extreme heat events. Around 20 variables were initially 
considered for each context (Supplemental Table 3), and a series of 
variable selections were conducted (see Section 2.4) to optimize the 
variables (Table 1) to generate the UHHR score for each context. All the 
variables were aggregated to the MSA level prior to analysis. Detailed 
descriptions and processing procedures of each variable are available in 

Fig. 1. Study areas (MSAs), temperature at the minimum hospitalization percentile (TMHP), and excess heat-related CVD (xHEAT-CVD) burden rate at the historical 
period (2000–2017).
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Supplemental Text.

2.4. Analytical approach

2.4.1. Main analysis
The analytical approach in this study included three steps (Fig. 2). 

Step 1 relied on MSA-specific exposure response functions and annual 
number of excess heat-related CVD hospitalizations per 100,000 bene
ficiaries (xHEAT-CVD burden rate) derived by Cleland et al. (2023)
using NOAA daily temperature data from 2000 to 2017. In short, the 
distributed lag non-linear model across 21 days (lags 0–20) was used to 
model the exposure response association between temperature and CVD 
hospitalizations. A multivariate meta-regression then pooled relative 
risks across all MSAs to identify the temperature percentile at which the 
risk of CVD hospitalizations was minimized (hereafter, minimum hos
pitalization percentile [MHP]). MHP was derived using an approximate 
parametric bootstrap estimator (Tobías et al., 2017), a commonly used 
approach. The pooled estimates were then re-centered at the MHP 
(identified as the 92nd percentile) of the temperature distribution, and 
updated MSA-specific relative risks were derived using best linear un
biased prediction. This approach allowed each MSA to have the same 
MHP, but a different minimum hospitalization temperature (TMHP) 
based on the distinct patterns of temperature in each MSA. Detailed 
information about the historical exposure data derivation and process
ing can be found in Cleland et al. (2023).

In Step 2, future xHEAT-CVD burden rates were derived using the 
MSA-specific exposure response functions from Step 1 and the daily 
temperature projections for years 2025–2099. Future daily xHEAT-CVD 
burden rates were then averaged for periods 2025–2054, 2045–2074, 
and 2070–2099 to represent near-, mid-, and long-term projections, 

respectively. Then, population projections for adults aged 65 and older 
for each MSA were obtained for the near-, mid-, and long-term under the 
SSP2 and SSP5 to correspond to RCP4.5 and RCP8.5, respectively. 
Changes in the population aged 65 and older were calculated using the 
population projections divided by the total population aged 65 and older 
based on the Decennial Census 2010 for each MSA. Lastly, future 
xHEAT-CVD burden rates were adjusted by multiplying the change in 
population aged 65 and older. Changes in xHEAT-CVD burden rates 
were then calculated by subtracting the historical xHEAT-CVD burden 
rates from the future xHEAT-CVD burden rates and dividing by the 
historical xHEAT-CVD burden rates for each GCMs under two RCPs 
paired with population projections in two SSPs at each term for each 
MSA. To summarize, the three climate scenarios for the xHEAT-CVD 
burden rates reported in this analysis are CC4-rcp45-ssp2, CC4-rcp85- 
ssp5, and GC3-rcp85-ssp5.

In Step 3, UHHR scores were generated based on the factor loadings 
of selected variables in each context using confirmatory factor analysis 
(CFA) using the ‘lavaan’ package in R (Rosseel, 2012). We used CFA 
because it enabled us to select a large set of indicator variables and 
group them by context based on the previously published literature 
(Cheng et al., 2021; Li et al., 2022) rather than use the universe of all 
indicators, which would be well-suited for principal component analysis 
(PCA). However, the two approaches are not fundamentally different, 
and sensitivity was done using PCA.

Prior to using CFA, we conducted variable selections. The evalua
tions occurred sequentially within each context with variable stan
dardizations by removing variables with high correlations (>0.8), 
filtering out variables with a value less than 0.5 based on the Kaiser- 
Meyer-Olkin (KMO) test in the exploratory factor analysis, dropping 
the variables with a factor loading less than 0.5, and further removing 

Table 1 
Data descriptions, years, sources, loadings from the confirmatory factor analysis for the selected variables in the demographic and economic (DES), health (HLT), 
environment (ENV), and infrastructure (INF) contexts used to describe adaptive capacity.

Context Variable code Description Year(s) Source(s)* Loadings

DES %MBSA Percent population in management, business, science, and arts 
occupations

2015–2019 ACS − 0.89

​ MedIncome Median household income 2015–2019 ACS − 0.82
​ EnergyBurden Percentage of gross household income spent on energy costs in 

summer (June–September)
2018 Shen et al. (2023) 0.67

​ %Mobile Percent housing units that are mobile homes 2015–2019 ACS 0.63
​ %EduLessHS Percent population aged 25 and older with an education 

attainment less than high school or equivalent
2015–2019 ACS 0.62

​ CSOrg Number of civic and social organizations per 1,000 people 2003–2017 CVI − 0.61
​ %NoHealthIns Percent population without any health insurance 2015–2019 ACS 0.61
HLT %AMI Mean annual prevalence proportion of acute myocardial 

infarction
2019 CMS 0.90

​ %Depression Mean annual prevalence proportion of depression 2019 CMS 0.87
​ %CKD Mean annual prevalence proportion of chronic kidney diseases 2019 CMS 0.84
​ %CHFChange Change in mean prevalence proportion of congestive heart 

failure between 2011 and 2019
2011, 2019 CMS − 0.52

ENV %Canopy Mean canopy cover 2019 MRLC − 0.93
​ Canopy/Impervious Ratio of canopy and imperviousness 2019 MRLC − 0.74
​ U/RCanopy Ratio of canopy in urban versus rural areas 2019 MRLC, EnviroAtlas 0.64
​ WildfireFreq Annualized wildfire frequency 2000–2021 NRI 0.55
​ DroughtFreq Annualized drought frequency 1996–2019 NRI 0.54
​ PM25 PM2.5 in summer (June–September) 2000–2019 Atmospheric Composition Analysis Group, 

Washington University, St. Louis, Missouri, USA
− 0.41

INF ProxMedServ Distance to the nearest medical facility (hospitals, urgent cares) 2024 HIFLD, Tiger 0.79
​ %PoorPubTrans Percent population in Census tracts with a Public Transit 

Performance Score below the national median score (i.e., 3.2)
2019 CVI 0.78

​ % 
15KMAwayMedServ

Percent population living within greater than 15 km away from 
a medical facility

2024 HIFLD, Tiger 0.69

​ %PoorWalkability Percent population in Census tracts with a Walkability Score 
below the national median score (i.e., 32)

2022 CVI 0.62

​ CoolingPlaces Averaged number of potential cooling places per sq. km 2010–2019 Census − 0.57

*ACS: U.S. Census American Community Survey 5-Year Estimate; Shen et al. (2023): dataset was obtained through personal communication; CVI: Climate Vulner
ability Index; CMS: Center for Medicare and Medicaid Services; MRLC: Multi-Resolution Land Characteristics; EnviroAtlas: U.S. Environmental Protection Agency 
EnviroAtlas project; NRI: Federal Emergency Management Agency (FEMA) National Risk Index; HIFLD: Homeland Infrastructure Foundation-Level Data; Tiger: U.S. 
Census Bureau Topologically Integrated Geographic Encoding and Referencing system.
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variables with a loading less than 0.1 in the CFA. We used the variance 
standardization method for CFA, which fixes the variance of each factor 
to 1 to allow comparisons of factor loadings across the variables.

In addition to generating a UHHR score for each context and MSA, 
the final set of the variables in DES, HLT, ENV, and INF contexts (i.e., all 
the variables in Table 1) were combined to obtain loadings to create a 
latent variable for an overall UHHR score in each MSA.

Lastly, we examined how much the UHHR scores can characterize 
the relationships between future burdens and current levels of adaptive 
capacity with respect to demographic and economic, health, environ
ment, and infrastructure contexts. The relationship between measures of 
current adaptive capacity and future projections of heat-health burden 
can provide better understanding about areas where adaptive capacity 
has to be improved. Linear regression was applied to model the associ
ations between change in future xHEAT-CVD burden and the UHHR 
scores for the DES, HLT, ENV, and INF contexts, as well as the associa
tions between change in future burden and the overall UHHR score. Part 
R-squared was used to measure the contribution of each context in the 
joint model. All the statistical analyses were conducted using RStudio 
with R version 4.4.1.

2.4.2. Sensitivity analysis
In addition to CFA, we also generated UHHR scores for the DES, HLT, 

ENV, and INF contexts, as well as an overall score, using PCA. We 
applied the set of variables in the first step of variable selections (i.e., 
variables without a correlation > 0.8) in the CFA analysis for PCA. In this 
sensitivity analysis, we only focused on the first component. Only var
iables with a percent contribution greater than the threshold calculated 
using 100 divided by the total number of variables within each context 
were retained. The scores of each context were derived for each MSA 
based on the eigenvectors. Similar to the CFA analysis, the final set of the 
variables in the DES, HLT, ENV, and INF contexts were combined to 

create an overall score for PCA. Linear regression and part R-squared 
were also applied to examine the associations between change in future 
burden and PCA scores of four contexts and overall, and the contribution 
of each context, respectively.

3. Results

3.1. Temperature and population projections and xHEAT-CVD burden 
rates

At the historical period, TMHP ranged from 19.1 ◦C in Tacoma- 
Lakewood, Washington, to 35.4 ◦C in Phoenix-Mesa-Scottsdale, Ari
zona, with a mean ± standard deviation value of 25.6 ± 2.8 ◦C. For 
future projections on temperature and xHEAT-CVD burden (Table 2), it 
was expected that greater changes would be observed in the high 
emission/fossil fuel development scenario (RCP8.5/SSP5) compared to 
the changes observed in the moderate emission/middle of the road 
scenario (RCP4.5/SSP2), as well as by the long-term compared to the 
near-term. Between the two GCMs, greater changes were estimated by 
GFDL-CM3 (GC3) compared to CESM-CCSM4 (CC4). While the mini
mum and maximum values of future temperature percentile of TMHP 
were observed by GC3-rcp85 and CC4-rcp45, respectively, the minimum 
and maximum values of number of days above TMHP were observed by 
CC4-rcp45 and GC3-rcp85, respectively, across the near-, mid-, and 
long-term. Under the future temperature projection, TMHP moved from 
the 92nd percentile at historical period to 80th ± 7 to 87th ± 5 for near- 
term, 73rd ± 7 to 84th ± 5 for mid-term, and 65th ± 8 to 83rd ± 6 for 
long-term (‘pTile of TMHP’ in Table 2). In other words, while the mean 
number of days above TMHP at the historical period was around 29 days 
for all the MSAs, the number of days above for TMHP across the MSAs at 
the near-, mid-, and long-term ranged from 51 ± 19 to 76 ± 24, 60 ± 20 
to 102 ± 27, and 65 ± 23 to 128 ± 28, respectively (‘Days ≥ TMHP’ in 

Fig. 2. Fig. 2. Analytical approach for this study.
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Table 2).
Mean values of population growth rates (fold increase) for aged 65 

and older under SSP2 for the near-, mid-, and long-term were 2.1 ± 0.6, 
2.8 ± 1.1, and 3.7 ± 1.9, respectively (‘Population Growth’ in Table 2). 
As expected, the population growth rates were generally higher under 
SSP5, with mean values of 2.4 ± 0.7, 3.4 ± 1.4, and 5.0 ± 2.6 for the 
near-, mid-, and long-term, respectively. The highest population growth 
rates for the population aged 65 and older were consistently projected to 
be in Raleigh, North Carolina, across all the terms under SSP2 (popu
lation growth rate for the near-, mid-, and long-term: 4.3, 6.9, and 10.3) 
and SSP5 (population growth rate for the near-, mid-, and long-term: 
4.8, 8.4, and 14.0). Conversely, the lowest population growth rates 
were projected to be in Scranton–Wilkes-Barre–Hazleton, Pennsylvania, 
and Detroit-Dearborn-Livonia, Michigan, under both SSP2 (lowest 
population growth rate for the near-, mid-, and long-term: 1.19, 1.18, 
and 1.15) and SSP5 (lowest population growth rate for the near-, mid-, 
and long-term: 1.29, 1.38, and 1.48).

At the historical period, the xHEAT-CVD burden rates ranged from 
− 8.5 to 78.7 hospitalizations per 100,000 beneficiaries per year, with a 
mean value of 18.3 ± 15.7. In the future periods, the minimum and 
maximum values of the xHEAT-CVD rate and change in xHEAT-CVD rate 
were projected by CC4-rcp45 and GC3-rcp85, respectively, across the 
near-, mid-, and long-term. For xHEAT-CVD burden rates, the projected 
mean values under the mildest scenario (CC4-rcp45-ssp2) were 111.7 ±
167.5, 205.7 ± 314.8, 349.5 ± 596.6 per 100,000 beneficiaries per year 
for the near-, mid-, and long-term, respectively (‘xHEAT-CVD rate’ in 
Table 2). The magnitudes of the burden were increasingly larger across 
the near-, mid-, and long-term when comparing the different emission/ 

societal development scenarios (rcp45-ssp2 vs. rcp85-ssp5). The mean 
value was 1.7, 2.3, and 3.8 times higher for the near-, mid-, and long- 
term in the CC4-rcp85-ssp5 compared to CC4-rcp45-ssp2 scenario. 
Similar trends occurred when comparing different GCMs (CC4 versus 
GC3) under the same emission/societal development scenario (rcp85- 
ssp5). The mean values were 1.7, 2.1, and 2.2 times higher for the near-, 
mid-, and long-term in the GC3-rpc85-ssp5 compared to CC4-rpc85-ssp5 
scenario.

For changes in xHEAT-CVD burden rates (‘Change in xHEAT-CVD 
rate’ in Table 2), the ranges of fold change in mean values under the 
mildest scenario were 5.4 ± 7.0, 11.5 ± 14.8, and 20.4 ± 27.9 for the 
near-, mid-, and long-term. Similar to xHEAT-CVD rate, when 
comparing CC4-rcp45-ssp2 versus CC4-rpc85-ssp5 across the future 
periods, the magnitude of changes increased by 1.9, 2.5, 4.2 times, 
respectively, for the near-, mid-, long-term. The magnitude of changes 
was also higher when comparing GC3-rcp85-ssp5 versus CC4-rcp85- 
ssp5, with multiplicative growth of 1.7, 2.2, and 2.3 for the near-, 
mid-, and long-term.

3.2. Urban heat health risk scores by context

Overall, based on the direction of CFA loadings, higher UHHR scores 
for all four contexts described lower adaptive capacity or heightened 
vulnerability. For the DES context, percent population in management, 
business, science, and arts occupations, median household income, and 
number of social and civic organization per 1000 people were selected 
with negative loadings, whereas energy burden during the summer 
months, percent housing that is mobile homes, percent population aged 

Table 2 
Mean, standard deviation (sd), and range of: future temperature percentiles of the temperature at the minimum hospitalization percentile (92nd percentile) (pTile of 
TMHP); number of days above TMHP (Days ≥ TMHP); growth rate of the population aged 65 and older (Population Growth); excess heat-related cardiovascular disease 
hospitalizations per 100,000 beneficiaries per year (xHEAT-CVD burden rate); and changes in xHEAT-CVD burden rate (folds) between the historical and future 
periods (Change in xHEAT-CVD rate). Results are shown for the 80 Metropolitan Statistical Areas included in analysis. The historical period refers to 2000–2017, and 
near-, mid-, and long-term refers to 2025–2054, 2045–2074, and 2070–2099, respectively.

pTile of 
TMHP

Days ≥
TMHP

Population 
Growth

xHEAT-CVD 
rate

Change in 
xHEAT-CVD 
rate

80 MSAs Mean 
(sd)

Range Mean 
(sd)

Range Mean (sd) Range Mean (sd) Range Mean (sd) Range

Historical 
period

92.0 (0) 92.0–92.0 29.2 (0) 29.2–29.2 − − 18.34 
(15.71)

− 8.45–78.72 − −

CC4-rcp45- 
ssp2

​ ​ ​ ​ ​ ​ ​ ​ ​ ​

Near-term 86.5 
(4.9)

73.7–97.9 51.3 
(18.6)

8.5–100.0 2.13 (0.57) 1.19–4.30 111.66 
(167.49)

− 1.14–1182.91 5.44 (6.97) − 1.00–43.35

Mid-term 84.1 
(5.4)

70.1–96.9 60.0 
(20.4)

12.5–112.6 2.82 (1.13) 1.18–6.85 205.71 
(314.78)

0.59–2172.26 11.47 (14.75) − 0.44–87.03

Long-term 82.6 
(6.2)

66.9–96.4 65.4 
(23.1)

14.3–124.6 3.74 (1.90) 1.15–10.28 349.52 
(596.62)

1.35–4323.56 20.35 (27.90) − 0.44–180.64

CC4-rcp85- 
ssp5

​ ​ ​ ​ ​ ​ ​ ​ ​ ​

Near-term 84.2 
(5.5)

69.5–97.0 59.5 
(20.8)

11.3–115.0 2.36 (0.65) 1.29–4.79 184.35 
(265.69)

0.66–1836.63 10.12 (13.00) − 0.72–89.89

Mid-term 79.5 
(6.3)

62.4–93.6 76.5 
(23.4)

24.0–140.2 3.43 (1.40) 1.38–8.40 479.61 
(819.52)

− 0.09–5885.10 28.95 (42.47) − 1.04–307.87

Long-term 73.6 
(7.0)

54.2–87.8 98.0 
(25.8)

45.7–169.6 5.03 (2.58) 1.48–13.92 1333.47 
(2644.28)

0.02–19950.31 84.61 (138.17) − 0.99–950.00

GC3-rcp85- 
ssp5

​ ​ ​ ​ ​ ​ ​ ​ ​ ​

Near-term 79.8 
(6.5)

62.9–95.3 75.5 
(24.4)

18.1–138.7 2.36 (0.65) 1.29–4.79 307.08 
(592.75)

− 1.24–4335.20 17.48 (25.87) 0.23–170.09

Mid-term 72.5 
(7.2)

54.6–89.3 101.8 
(26.5)

39.9–168.1 3.43 (1.40) 1.38–8.40 1027.44 
(2232.60)

10.08–17284.31 63.44 (100.01) 2.21–613.64

Long-term 65.2 
(7.7)

44.6–81.9 128.3 
(28.4)

66.9–204.9 5.03 (2.58) 1.48–13.92 2952.84 
(6761.63)

46.31–52489.23 192.25 (329.97) 18.23–1961.99

CC4-rcp45-ssp2: Community Climate System Model (CESM-CCSM4) under RCP 4.5 adjusting for population growth for aged 65 and older under SSP2-4.5.
CC4-rcp85-ssp5: Community Climate System Model (CESM-CCSM4) under RCP 8.5 adjusting for population growth for aged 65 and older under SSP5-8.5.
GC3-rcp85-ssp5: Geophysical Fluid Dynamics Laboratory Coupled Model (GCM-CM3) under RCP 8.5 adjusting for population growth for aged 65 and older under 
SSP5-8.5.

W.-L. Tsai et al.                                                                                                                                                                                                                                 Environment International 207 (2026) 110022 

6 



25 and older without a high school diploma, and percent population 
without health insurance were selected with positive loadings. This in
dicates that areas that lack economic and social resources/support ten
ded to have higher scores in the DES context.

For the HLT context, change in prevalence of congestive heart failure 
(2011–2019) was selected with a negative loading, and variables with 
positive loadings included mean prevalence of acute myocardial 
infarction, depression, and chronic kidney diseases. Therefore, high 
UHHR scores for the HLT context indicated higher and persistent con
centrations of individuals with one or more chronic diseases.

For the ENV context, mean canopy cover, ratio of canopy and 
imperviousness, and PM2.5 during summer months were selected with 
negative loadings, whereas ratio of canopy in urban versus rural areas, 
annualized wildfire, and drought frequency were selected with positive 
loadings. This means that areas with low canopy, high levels of air 
pollution, less rural canopy, and high frequency of wildfire and drought 
had higher scores in the ENV context.

For the INF context, the average number of potential cooling places 
per square kilometer was selected with a negative loading, and variables 
with positive loadings included distance to the nearest medical facility 
(hospitals and urgent care), percent population living greater than 15 
km away from a medical facility, percent population in census tracts 
with a Public Transit Performance Score less than the national median 
score, and percent population in census tracts with a Walkability Score 
less than the national median score. As such, higher values in the INF 
context may indicate a lack of facilities and/or transportation network in 
response to emergency needs.

For the overall UHHR score that included all variables, the ranks of 
the scores were most consistent with the DES context (Fig. 3). The MSAs 
with high UHHR scores in the DES context tended to have higher scores 
in the HLT and INF contexts and lower scores in the ENV context.

3.3. Associations of urban heat health risk (UHHR) scores and change in 
future burden

The overall UHHR score was associated with larger changes in 
burden rates across the near-, mid-, long-term for all scenarios (Table 3). 
The associations for the overall UHHR scores were inconclusive for the 
historical period, as individual contexts were inconsistent in sign and 
magnitude. Under the CC4-rcp45-ssp2, a unit increase in overall UHHR 
score increased the xHEAT-CVD burden rates by factors of 2.4 [95 % 
Confidence Intervals: 0.9–4.0], 4.8 [1.4–8.1], and 9.1 [2.8–15.4] for the 
near-, mid-, and long-term, respectively; 95 % confidence intervals 
shown. The magnitudes of the projected burden increases were at least 
doubled for the corresponding terms under the CC4-rcp85-ssp5, with 
respective coefficients of 4.9 [2.1–7.8], 13.6 [4.0–23.1], and 35.1 
[3.4–66.8]. The associations between overall UHHR scores and pro
jected burden changes under GC3-rcp85-ssp5 were generally greater 
than those projected by the CC4-rcp45-ssp2 and rcp85-ssp5 but were 
only significant for the near-term.

The associations with the four contexts (Table 3) show that the DES 
and HLT scores were associated with an increased burden at the his
torical period, whereas the ENV and INF contexts were negatively 
associated with the historical burden. Overall, the UHHR scores across 
the four contexts were consistently associated with greater changes in 
burden rates for the future terms under all scenarios, with larger and 
more significant associations in the ENV context. For the ENV context, 
the respective multipliers for the near-, mid- and long-term were 1.9 
[-0.1–3.9], 4.9 [0.7–9.1] and 9.0 [1.0–17.1] under CC4-rcp45-ssp2, 3.9 
[0.3–7.6], 12.3 [0–24.6], and 37.5 [-3.2–78.2] under CC4-rcp85-ssp5, 
and 7.2 [-0.4–14.7], 30.1 [0.8–59.4], and 104.4 [7.5–201.3] under 
GC3-rpc85-ssp5, per one unit of increase in score.

When examining the relative importance of each context in the joint 
model using part R-squared (Fig. 4; Supplemental Table 4), the HLT and 

Fig. 3. Urban Heat Health Risk (UHHR) scores, overall and for the demographic and economic status (DES), health (HLT), environment (ENV), and infrastructure 
(INF) contexts for each of the 80 MSAs for the historical period (2000–2017). Positive values (in warm colors) indicate lower adaptive capacity or increased 
vulnerability, while negative values (cooler colors) indicate higher adaptive capacity or decreased vulnerability. X-axis represents the UHHR scores, and y-axis 
represents the 80 MSAs.
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INF scores explained the most variation (6.9 % and 6.4 %, respectively) 
in health burden at the historical period. Both the HLT and INF scores 
explained less variances for the future terms, with greater decreases in 
variances explained by the HLT scores. The variances explained by HLT 
context decreased to 2.6 % in the near-term under CC4-rcp45-ssp2 and 
0.3 % in the long-term under GC3-rcp85-ssp5. In contrast, the role of the 
ENV context, and to lesser extent the DES context, increased across the 
near-, mid-, and long-term projections, indicating that the ENV context 
plays a significant role in future temperature trends and consequently 
the attributable health burden. Total variances explained by the ENV 
context changed from 0.7 % at the historical period to 3.5 % in the near- 

term under CC4-rcp45-ssp2 and 6.8 % in the long-term under GC3- 
rcp85-ssp5.

3.4. Sensitivity analysis

Sensitivity analysis using the PCA approach showed that the vari
ables selected for each context were generally consistent with those 
selected by the CFA approach (Supplemental Fig. 1). Though the di
rections of the factor loadings for the same selected variables in the HLT 
and INF contexts were opposite to those selected by CFA, the relative 
magnitudes of the same selected variables in all the contexts were 
similar. However, the sign of each variable was opposite from its original 
direction in each individual context when aggregating the selected 
factors from all the contexts to create overall UHHR scores.

The ranks of the overall UHHR scores created by the PCA approach 
were mostly consistent with the ranks of scores by the CFA approach but 
in a reversed direction (Supplemental Fig. 2). The ranges of the scores 
were much wider (from − 10.1 to 8.0) than those created by the CFA 
approach (from − 2.8 to 3.01). The overall UHHR scores from the PCA 
approach appeared to be dominated by the HLT and INF contexts. MSAs 
with high HLT and INF often have low DES but inconsistent patterns 
with the ENV context.

The UHHR scores and xHEAT-CVD burden rates were inversely 
associated (Supplemental Table 5). One unit increase in overall UHHR 
scores was consistently associated with decreasing xHEAT-CVD burden 
rates in the future terms. Negative associations between xHEAT-CVD 
burden rates and UHHR scores in the HLT context were also apparent 
for the current and future terms, while positive associations occurred for 
the ENV context. The associations for the INF context were less 
conclusive.

When examining the relative importance of each context in the joint 
model using part R-squared (Supplemental Fig. 3), the HLT and INF 
scores also explained the most variances of the associations between the 
UHHR scores and burden at the historical period. Slightly different from 
the CFA approach, the HLT scores still explained considerable amounts 
of variances for the future term, whereas INF explained increasingly less, 
and ENV explained increasingly more of the variances in the associa
tions between xHEAT-CVD burden rates and UHHR scores in all the 
contexts.

4. Discussion

The health burden of extreme heat is the result of a complex inter
action of a wide range of intrinsic and extrinsic factors. With a projected 
increase in temperature and aging population, it is necessary to identify 
the drivers of variations in future heat-related health burden. The most 
influential drivers can then help inform targeted interventions and 
viable solutions for mitigating the attributable health burden. In this 
study, we applied IPCC’s health risk assessment framework to identify 
drivers of heat-related cardiovascular morbidity burden across four 
relevant lived contexts (demographic and economic status, health, 
environment, and infrastructure) among adults aged 65 and older in 80 
US cities. The results of this study suggest several drivers of the future 
heat-related CVD burden. First, the burden was driven not only by the 
increase in temperature, but also by the increased number of days with 
harmful temperatures. Growth in population aged 65 and older also 
significantly increased the burden. In addition, environmental factors 
today played an increasingly important role over the time horizons, 
presumably due to temperature increases and lack of adaptive capacity 
to mitigate temperature rise. In 2019, the total expenditure related to 
CVD hospitalizations for the 80 MSAs in this study was around USD$186 
billion, according to the Medicare Provider Analysis and Review data
base (in-house database under the agreement with Center for Medicare 
& Medicaid Services). Considering that the expenditure for heat-related 
CVD hospitalizations in US cities is approximately 1.5 % of the total 
expenditure, as estimated by Cleland et al. (2023), the total expenses are 

Table 3 
Associations of overall Urban Heat Health Risk (UHHR) scores and context- 
specific UHHR scores (demographic and economic status (DES), health (HLT), 
environment (ENV), and infrastructure (INF)) with the historical period 
(2000–2017) and change in future excess heat-related cardiovascular disease 
burden rates. The UHHR scores were generated using confirmatory factor 
analysis (CFA). Future burden rates are shown for three different scenarios for 
the near- (2025–2054), mid- (2045–2074), and long-term (2070–2099) and 
based on CESM-CCSM4 (CC4) under the paired scenarios of Representative 
Concentration Pathways (RCPs) and Shared Socioeconomic Pathways (SSPs) for 
moderate emission-middle of the road (rcp45-ssp2) and high emission-fossil fuel 
development (rcp85-ssp5) and GFDL-CM3 (GC3) under rcp85-ssp5. Results are 
shown), per unit increase in score. Bold face indicates statistical significance 
level is < 0.05.

Overall DES HLT ENV INF

Historical 
period

0.55 
[-3.16, 
4.27]

5.71 
[0.80, 
10.62]

5.34 
[1.49, 
9.20]

− 2.45 
[-6.91, 
2.01]

¡8.81 
[-14.27, 
¡3.36]

CC4- 
rcp45- 
ssp2

​ ​ ​ ​ ​

Near-term 2.41 
[0.85, 
3.96]

0.37 
[-1.84, 
2.58]

1.04 
[-0.70, 
2.78]

1.92 
[-0.08, 
3.93]

1.97 
[-0.48, 
4.43]

Mid-term 4.75 
[1.44, 
8.07]

0.29 
[-4.37, 
4.95]

2.31 
[-1.35, 
5.97]

4.89 
[0.66, 
9.12]

4.35 
[-0.82, 
9.52]

Long-term 9.08 
[2.81, 
15.35]

1.48 
[-7.35, 
10.30]

3.59 
[-3.33, 
10.51]

9.04 
[1.03, 
17.05]

7.77 
[-2.03, 
17.56]

CC4- 
rcp85- 
ssp5

​ ​ ​ ​ ​

Near-term 4.92 
[2.06, 
7.79]

0.51 
[-3.53, 
4.55]

2.17 
[-1.00, 
5.35]

3.93 
[0.27, 
7.60]

4.38 
[-0.11, 
8.86]

Mid-term 13.57 
[4.00, 
23.14]

3.23 
[-10.30, 
16.76]

4.16 
[-6.46, 
14.78]

12.29 
[0.01, 
24.57]

11.34 
[-3.68, 
26.35]

Long-term 35.14 
[3.44, 
66.83]

12.86 
[-31.99, 
57.71]

7.98 
[-27.21, 
43.17]

37.53 
[-3.17, 
78.23]

26.67 
[–23.11, 
76.44]

GC3- 
rcp85- 
ssp5

​ ​ ​ ​ ​

Near-term 7.25 
[1.36, 
13.15]

3.18 
[-5.13, 
11.49]

2.23 
[-4.30, 
8.75]

7.16 
[-0.38, 
14.71]

4.57 
[-4.66, 
13.79]

Mid-term 22.65 
[-0.44, 
45.73]

10.70 
[-21.60, 
42.99]

7.18 
[-18.17, 
32.52]

30.11 
[0.80, 
59.42]

14.36 
[-21.48, 
50.20]

Long-term 62.11 
[-14.65, 
138.87]

30.92 
[-75.87, 
137.70]

17.38 
[-66.40, 
101.17]

104.43 
[7.52, 
201.33]

42.00 
[-76.50, 
160.50]

CC4-rcp45-ssp2: Community Climate System Model (CESM-CCSM4) under RCP 
4.5 adjusting for population growth for aged 65 and older under SSP2-4.5.
CC4-rcp85-ssp5: Community Climate System Model (CESM-CCSM4) under RCP 
8.5 adjusting for population growth for aged 65 and older under SSP5-8.5.
GC3-rcp85-ssp5: Geophysical Fluid Dynamics Laboratory Coupled Model (GCM- 
CM3) under RCP 8.5 adjusting for population growth for aged 65 and older 
under SSP5-8.5.
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estimated to increase by USD$60 billion by the end of the century, after 
accounting for change in days above MHT and aging population.

Cleland et al. (2023) estimated that the minimum hospitalization 
percentile was located at the 92nd percentile of the temperature dis
tribution across US MSAs. Here, the temperatures at the minimum 
hospitalization percentile identified at the historical period were shifted 
to lower percentiles in future years, indicating that more days will have 
a temperature exceeding the TMHP, although temperature projections 
vary substantially based on the GCMs and scenarios (Feng et al., 2014; 
Tebaldi et al., 2021). These shifts in temperature distributions corre
sponded to an increase of at least 36 days annually with temperature 
above TMHP in the long-term under the scenario with the mildest change. 
This highlights the importance of considering potential intensified ef
fects due to increased durations of periods of high temperature in 
addition to the increase in temperature itself.

Population growth and structure in the future period were also 
important. After accounting for population growth rates for those aged 
65 and older, which are projected to increase by 2.8 times under SSP2 
and by 3.2 times under SSP5 at the mid-term (i.e., 2045–2074), the 
changes in xHEAT-CVD burden rates are projected to be at least 11.5- 
fold and 29.0-fold higher than the current burden under those sce
narios, respectively. By adjusting for changes in population growth and 
structure, we address the cautions from previous studies (Cole et al., 
2023; de Schrijver et al., 2023) indicating that lack of proper adjustment 
of changes in population growth and/or structure can underestimate 
health burden by 50–65 %. Although it is not directly comparable, our 
findings qualitatively align with Khatana et al. (2024), who reported 
that the annual excess heat-related mortality rates in the mid-century (i. 
e., 2036–2065 in their study) among U.S. older adults projected under 
the higher scenario are about double the projection under the moderate 
scenario.

This analysis also highlights the importance of environmental factors 
in shaping future heat-related burden. When examining the relative 
importance of the DES, HLT, ENV, and INF contexts in explaining the 
relationships with current and future xHEAT-CVD burden by part R- 
squared, the HLT and INF contexts explained the most variances in the 
model for the historical period. Specifically, at historical period, pre- 
existing health issues (all the selected variables in the HLT context) 
and access to medical facilities (two of the selected variables in the INF 

context) were the primary drivers of xHEAT-CVD burden. Across the 
near-, mid-, and long-term for the future xHEAT-CVD burden, the vari
ances explained by the ENV context gradually increased, and the ENV 
context gradually replaced most of the variances explained by the HLT 
and INF contexts at the historical period. The findings that ENV context 
became the primary driver of the future xHEAT-CVD burden, which 
were determined by temperature projections, are likely due to the na
ture that temperature projections are modeled based on environmental 
characteristics, such as land surface, oceanic, and atmospheric param
eters (Danabasoglu et al., 2020; Delworth et al., 2006). Unlike the ENV, 
INF, and HLT contexts, the variances explained by the DES context 
remained relatively constant across the historical and future periods. 
These findings suggest that action plans to alleviate the xHEAT-CVD 
burden should consider multifaceted approaches with adjustments of 
focal areas and/or targeting factors that can help tackle multiple issues 
at different time points or across time. For instance, increased tree cover 
is associated with heat mitigation (e.g., Ettinger et al., 2024; Wong et al., 
2021), reduction in air pollution (e.g., Nowak et al., 2014; Sicard et al., 
2025), reduced building energy consumption (e.g., McDonald et al., 
2020; Nowak et al., 2017), and improved mental health (e.g., Astell-Burt 
and Feng, 2019; Callaghan et al., 2021), so investing in tree cover may 
bring co-benefits for alleviating health burden and improving environ
ments. While addressing the contexts that influence historical xHEAT- 
CVD burden can help understand the potential causes, developing 
strategies that can improve the contexts influencing future burden 
simultaneously may enhance the overall capability to cope and adapt to 
increasing temperatures.

The heat-health contexts used to characterize adaptive capacity and 
identify drivers of current and future burden (demographic and eco
nomic status, health, environment, and infrastructure) are aligned with 
the factors reported in previous studies (Li et al., 2022; Niu et al., 2021). 
Though current indices are built in various spatial scales (e.g., extents, 
such as one location versus multiple locations, and resolutions, such as 
gridded, census tract, or county) (Niu et al., 2021), the final sets of 
factors selected for each context in this study at the MSA scale across the 
US are generally consistent with previous studies (Cheng et al., 2021; Li 
et al., 2022).

Moreover, the composite scores of the selected factors in each 
context indicated that high values of the UHHR scores were indicative of 

Fig. 4. Part R-squared of demographic and economic status, health, environment, and infrastructure contexts in the joint models explaining the associations with 
excess heat-related cardiovascular hospitalizations per 100,000 beneficiaries per year (xHEAT-CVD burden rates) for the historical period, and changes in future 
xHEAT-CVD burden rates under different scenarios and future periods.
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low adaptive capacity. The characteristics of these high UHHR scores 
can help planners target areas and approaches to improve adaptive ca
pacity to heat-related health burden. The selected variables in the DES 
context indicated that MSAs with lower economic resources, lack of 
social support, and greater economic hardship had higher DES com
posite scores. For the HLT context, the selected variables indicated that a 
higher and consistent concentration of individuals with one or more 
chronic disease resulted in higher HLT composite scores. For the ENV 
context, MSAs with low canopy, high levels of pollution, less rural 
canopy, and high frequency of wildfire and drought had higher ENV 
composite scores. For the INF context, higher INF composite scores were 
driven by the lack of facilities and transportation network in response to 
emergency needs. The selection of these factors for the composite scores 
indicate that they may be valuable to target for heat-health issues at the 
regional, state, and national levels.

This study has some limitations that are worth noting. Due to limited 
data availability, this analysis did not include some factors relevant to 
adaptive capacity, such as prevalence of air conditioning (AC). How
ever, energy burden in summer was used to represent the likelihood of 
energy consumption by AC usage (De Cian et al., 2025) and the 
affordability of energy usage in summer. Similarly, due to limited data 
availability, we were not able to account for physiological (e.g., heat 
acclimation), behavioral (e.g., changes in physical activity pattern or 
coping mechanism), infrastructural (e.g., using cooling building mate
rials), institutional (e.g., community preparedness or strategies to heat 
responses), and medical (e.g., less health issues due to advance in 
treatments) adaptation. Currently established approaches for estimating 
future health burden, such as approach taken here, are limited to use the 
exposure–response function estimated in the historic period across the 
future periods, while response-exposure function may change over time. 
Likewise, we were limited to using current and historical observations to 
explain the relationships with future burden due to the unavailability of 
future scenarios or trajectories for most factors used in this analysis. 
Therefore, we advise caution in interpreting the associations between 
UHHR and future burden reported in this analysis, as they are unlikely to 
be stationary over time. Additionally, although other climatic factors, 
such as humidity and wind speed, may play an important role in heat- 
related health outcomes (Baldwin et al., 2023; Bröde and Kampmann, 
2023), we did not use a temperature metric that accounts for these cli
matic factors, such as Wet Bulb Globe Temperature. However, while the 
exposure-response function used in this analysis relied solely on daily 
average temperature as the exposure parameter, it took humidity into 
account during the modeling process. Future research should also 
evaluate the xHEAT-CVD burden using metric(s) that take these climatic 
factors into account. In addition, the temperature projection is not only 
affected by the global climate models but also the downscaling methods 
(Manzanas et al., 2018). In this analysis, we used statistical downscaled 
data, which assumes that the statistical relationships between observed 
local climatic and large-scale variables stay constant over time (i.e., 
stationarity assumption) (Wang et al., 2018). However, it is unlikely that 
the relationships observed in the historical period will remain the same 
in the future. Though previous research reports that temperature pro
jections from statistically and dynamically downscaled data tend to 
agree with each other (Murphy, 1999; Pierce et al., 2013; Sparks et al., 
2017), future research should still consider evaluating the heat-health 
risks using data from both downscaling techniques to have a more 
comprehensive understanding on the future heat-health burden. Lastly, 
this analysis was only conducted for urban areas with a focus on older 
adults. Although older individuals have been identified as one of the 
most high-risk groups to heat impacts and are well-represented in the 
Medicare program, with an estimation of 94 % of the individuals older 
than 65 enrolled in the program (Lindstrom et al., 2024), it is also 
important to understand the risks among other populations. However, 
focusing on one large risk group at the time can be beneficial from 
program implementation perspective because the information can better 
integrate with the established channels of communication and access to 

information which are often unique to group. For example, number of 
organizations and medical professional groups who specialize in care for 
older individuals are keenly aware of how, when, and where specific 
population (e.g., Medicare beneficiaries) receive information and re
sources. Similarly, there are number of organizations that focus on 
children and individuals with chronic diseases which are also suscepti
ble to health impacts of temperature. Additionally, heat-health burden 
in rural areas is increasing (Cross et al., 2021) and it is important to 
identify the factors and key areas for mitigating heat-health burden in 
rural areas. Future research is needed for a more comprehensive un
derstanding of the drivers of heat-health risks and burdens across 
various landscapes and populations, since other populations may not 
share similar pathways of exposure and effects as the older individuals.

Notwithstanding, this study has several strengths that make signifi
cant contributions to the existing literature. First, we estimated the 
xHEAT-CVD burden at multiple timeframes across the US, which pro
vides a more comprehensive understanding of the impacts of excess heat 
on CVD burden and the differing intensity of change in burden over 
time. Though previous research has assessed future CVD burden across 
the US (e.g., Khatana et al., 2024; Mohebi et al., 2022), to our knowledge 
our study is the first to estimate xHEAT-CVD burden among US older 
adults for multiple future terms. Second, among the existing indices 
addressing heat and health issues, only a small number of studies con
ducted validation processes to evaluate the efficacy of indices through 
examining the correlations and/or associations with present-day health 
burden (Cheng et al., 2021; Li et al., 2022). This study validated the 
UHHR scores with not only present-day but also future CVD burden. In 
addition, the validation was conducted for the overall UHHR score, as 
well as by the context-specific scores. Third, most existing studies 
developed indices using only one method (Cheng et al., 2021; Li et al., 
2022). In contrast, we created the UHHR scores primarily using CFA but 
also employed the most used method, PCA, for comparison. The findings 
in this study indicate that the “most” appropriate methods for creating 
indice(s) may depend on study purposes and designs.

5. Conclusions

There are increasing efforts to assess heat-related health issues from 
different perspectives across the world. This study estimates the impacts 
of future CVD burden due to excess heat in US metropolitan areas and 
develops a urban heat health risk score that captures four distinct con
texts relevant to adaptive capacity. These contexts were defined using 
factors that were shown to be significantly associated with current and 
future heat-related CVD burden. Findings from this study not only 
provide additional contributions to the existing literature on the po
tential drivers of heat-health burden but also identify additional areas of 
focus for mitigating the heat-health burden at different forward-looking 
timeframes. To mitigate the potential increase in future heat-related 
CVD burden, action plans are encouraged to use multifaceted ap
proaches that address the different drivers of vulnerability and adaptive 
capacity.
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