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Pertpy: an end-to-end framework for 
perturbation analysis
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Advances in single-cell technology have enabled the measurement of 
cell-resolved molecular states across a variety of cell lines and tissues 
under a plethora of genetic, chemical, environmental or disease 
perturbations. Current methods focus on differential comparison or 
are specific to a particular task in a multi-condition setting with purely 
statistical perspectives. The quickly growing number, size and complexity 
of such studies require a scalable analysis framework that takes existing 
biological context into account. Here we present pertpy, a Python-based 
modular framework for the analysis of large-scale single-cell perturbation 
experiments. Pertpy provides access to harmonized perturbation 
datasets and metadata databases along with numerous fast and 
user-friendly implementations of both established and novel methods, 
such as automatic metadata annotation or perturbation distances, to 
efficiently analyze perturbation data. As part of the scverse ecosystem, 
pertpy interoperates with existing single-cell analysis libraries and is 
designed to be easily extended.

Understanding cellular response to stimuli is crucial for describing bio-
logical phenomena and mechanisms. Single-cell data have increasingly 
shifted from observational experiments to perturbation experiments, 
encompassing genetic modifications, chemical treatments, physical 
interventions, environmental changes, diseases and combinations 
thereof. Technologies such as Perturb-seq1, CROP-seq2 and Sci-plex3 
leverage single-cell readouts to capture perturbations at scale. By moni-
toring resulting shifts in intrinsic cell states, single-cell perturbation 
analyses offer insights into changes in gene programs, shared and diver-
gent responses across tissues, drug targets and interactions, changes 
in cell type frequency and cell−cell interactions after perturbation.

Statistical and machine-learning-based analysis methods have 
been developed for these complex data, resulting in the discovery of, for 
example, cell states associated with autism risk genes4 or stimulation 

responses in primary human T cells5. However, the size and complex-
ity of high-throughput perturbation screens can pose considerable 
interpretation challenges, lacking meaningful lower-dimensional 
representations and additional context regarding cell lines or pertur-
bations. Current perturbation analysis frameworks such as MUSIC6, 
ScMAGeCK7, SCEPTRE8, GSFA9 and FR-Perturb10 primarily focus on 
CRISPR perturbation analysis, neglecting other perturbation data 
types and perturbation analysis steps. Furthermore, no current analysis 
framework exists that scales to genome-scale datasets11, contextual-
izes data with public annotations and uses common data structures 
across tools (Extended Data Table 1). In addition, many tools suffer 
from maintenance issues or are confined to the R ecosystem, compli-
cating analysis. Other widely used frameworks in the single-cell field, 
such as scirpy12 for adaptive immune receptor data and scvi-tools13 for 
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The first data transformation step assigns guide RNAs (gRNAs) to 
cells. These gRNAs are short RNA sequences that direct Cas9 nuclease 
to specific genomic targets. In single-cell CRISPR screens, each cell typi-
cally receives one gRNA (low multiplicity of infection (MOI)), although 
some experimental designs allow for multiple guides per cell (high 
MOI). This makes accurate guide-to-cell assignment crucial for linking 
phenotypic changes to specific genetic modifications. Pertpy provides 
a thresholding and a Poisson−Gaussian mixture model11 approach that 
has been shown to perform well in recent benchmarks24, accommodat-
ing both low and high MOI scenarios. This assignment step is required 
for downstream analyses, including quality control metrics, perturba-
tion efficiency assessment and statistical aggregation of phenotypic 
effects across cells containing identical guides.

In a second step, confounding factors such as unwanted techni-
cal variation and other single-cell-specific quality control issues are 
addressed. Technical variation between experimental batches, arising 
from differences in sample processing, reagent lots or sequencing 
runs, can introduce systematic biases that confound biological signals. 
These so-called batch effects are particularly challenging in perturba-
tion experiments where treatments may be applied across multiple 
experimental rounds or where controls are processed separately from 
perturbed samples. Complexity is further compounded when studying 
combinatorial perturbations, where systematic batch variations could 
be mistaken for interaction effects between different treatments. As 
pertpy is integrated with the scverse ecosystem, users of pertpy can 
seamlessly integrate established batch correction methods25,26 to 
disentangle technical artifacts from true perturbation responses.

After diligent quality control, a typical analysis with pertpy starts 
by curating the perturbation annotations against ontologies such as 
Cell Line Ontology27 or Drug Ontology28 and enriching the perturba-
tions with additional metadata obtained from Cancer Dependency 
Map (DepMap) and Genomics of Drug Sensitivity in Cancer (GDSC)29 
for cell lines, Connectivity Map (CMap)30 for mechanisms of action and 
the PubChem31 and ChEMBL32 databases for drugs (Methods).

The application of CRISPR can exhibit variable efficacy in affecting 
gene expression. Pertpy’s fast Mixscape19 implementation accounts for 
this by classifying targeted cells based on their response to a perturba-
tion, analyzing each cell’s perturbation signature to determine if the 
cell was successfully perturbed (Methods and Extended Data Fig. 1). 
As the number of applied perturbations increases, comparing and 

probabilistic modeling, have demonstrated the importance of enabling 
efficient multimodal data analysis while providing flexible building 
blocks for developers. Inspired by their impact and the lack of effi-
cient frameworks for perturbation data, we present a new framework 
focused on perturbation data within scverse14.

Pertpy, a framework for perturbation analysis in Python, is pur-
pose built to organize, analyze and visualize complex perturbation 
datasets. Pertpy is flexible and can be applied to datasets of different 
assays, data types, sizes and perturbations, thereby unifying previ-
ous data-type-specific or assay-specific single-problem approaches. 
Designed to integrate external metadata with measured data, it ena-
bles unprecedented contextualization of results through swiftly built, 
experiment-specific pipelines, leading to more robust outcomes. To 
evaluate methods and obtained representations for perturbations, we 
implemented a series of shared metrics. The wide array of use cases and 
different types of growing datasets are addressed by pertpy through 
its sparse and memory-efficient implementations, which leverage the 
parallelization and graphics processing unit (GPU) acceleration library 
JAX15, thereby making them substantially faster than original imple-
mentations (Extended Data Fig. 1). We demonstrate this versatility by 
applying pertpy to three different, popular, single-cell RNA sequencing 
(scRNA-seq) perturbation use cases. To show how pertpy can discover 
new gene programs, we study a CRISPR activation (CRISPRa) screen 
(Perturb-seq)16, projecting it onto a meaningful perturbation space and 
evaluating the effect of different preprocessing strategies. Moreover, 
we demonstrate how pertpy can be used to deconvolve perturbation 
responses into viability-dependent and viability-independent compo-
nents in a large-scale gene expression and drug response screen17 by 
integrating metadata from existing databases. Finally, we decipher com-
positional changes and rank perturbation effects in a triple-negative 
breast cancer (TNBC) study18. Whereas previously, a user would sepa-
rately download cell line or perturbation information from scattered 
databases while piecing together analysis tools from different, incom-
patible ecosystems, it is now possible to efficiently analyze complex 
perturbation datasets end to end with integrated biological context.

We provide online links to tutorials with more than 15 additional 
use cases that demonstrate pertpy’s usage with datasets spanning a 
variety of cell lines and perturbation conditions, ranging from CRISPR 
screens19 to inflammation20 and COVID-19 severity states21. Pertpy is 
accessible as an extendable, user-friendly, open-source software pack-
age hosted at https://github.com/scverse/pertpy and installable from 
PyPI. It comes with comprehensive documentation, tutorials and use 
cases available at https://pertpy.readthedocs.io.

Results
Pertpy enables fast and scalable perturbation analyses
Pertpy includes methods for analysis of single and combinatorial 
perturbations covering diverse types of perturbation data, including 
genetic knockouts, drug screens and disease states. The framework 
is designed for flexibility, offering more than 100 composable and 
interoperable analysis functions organized in modules that further ease 
downstream interpretation and visualization (Table 1). These modules 
host fundamental building blocks for implementation and methods 
that share functionality and can be chained into custom pipelines. To 
facilitate setting up these pipelines, pertpy guides analysts through a 
general analysis pipeline (Fig. 1) with the goal of elucidating underlying 
biological mechanisms by examining how specific interventions alter 
cellular states and interactions.

The inputs to a typical analysis with pertpy are unimodal scRNA-seq 
or multimodal perturbation readouts stored in AnnData22 or MuData23 
objects. Although pertpy is primarily designed to explore perturba-
tions such as genetic modifications, drug treatments, exposure to 
pathogens and other environmental conditions, its utility extends to 
various other perturbation settings, including diverse disease states 
where experimental perturbations have not been applied.

Table 1 | Summary of implemented methods

Analysis step Tool or algorithm Original authors

Datasets Data loaders Peidli et al.43

Metadata annotation API requests to public 
databases

Novel

gRNA assignment Threshold-based
Poisson−Gaussian 
mixture model

Adamson et al. 66

Repogle et al. 11

Differential gene 
expression

‘Formulaic’ interface Novel

Pooled CRISPR screens Mixscape Papalexi et al. 19

Differential abundance Milo
scCODA 2.0
tascCODA 2.0

Dann et al.39

Büttner et al.37

Ostner et al.38

MCPs DIALOGUE Jerby-Arnon and 
Regev40

Enrichment Drug2Cell Kanemaru et al.67

Perturbation response 
evaluation

Distances and metrics
Augur
CINEMA-OT

Novel
Skinnider et al.68

Squair et al.69

Dong et al.41

Embedding Perturbation spaces Novel
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interpreting them becomes increasingly challenging. Pertpy provides 
several distinct ways to learn biologically interpretable perturbation 
spaces that depart from the individualistic perspective of cells, instead 
generating a single embedding per perturbation that summarizes 
cellular responses (Methods). This specialized space, termed a per-
turbation space, represents the collective impact of perturbations 
on cells and serves as potential input for downstream analysis16,33. 
Generally, pertpy’s analysis pipeline can be adapted depending on 

whether the experiment involved multiple cell types or a number of 
experimental perturbations.

Gene expression changes between experimental conditions are 
crucial for understanding cellular responses to perturbations. Differential 
gene expression analysis helps researchers identify which genes signifi-
cantly change their expression levels when cells are exposed to different 
stimuli or treatments. Although scanpy34 is widely used for single-cell 
analysis, it lacks support for complex experimental designs that account 
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Fig. 1 | Modules of the pertpy framework. a, Unimodal or multimodal single-cell 
perturbation data originating from genetic modifications, chemical treatments, 
physical interventions, environmental changes or diseases are enriched with 
metadata from several databases. During preprocessing, confounding factors 
such as cell cycle and batch effects may be removed. Targeted cells are labeled as 

successfully or not successfully perturbed. Together, these modules enable the 
calculation of a meaningful perturbation space. b, Pertpy enables downstream 
analyses, depending on the question of interest. These include differential 
expression analysis, response prediction, determination of MCPs, calculation of 
distance between perturbations and mechanism of action enrichment.
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for multiple conditions, batch effects and nested comparisons simulta-
neously. Pertpy fills this gap by providing an intuitive interface for dif-
ferential gene expression that supports complex designs and contrasts, 
which is needed for multi-condition data (Methods). Currently, pertpy 
supports PyDESeq235, edgeR36, Wilcoxon tests and t-tests. This interface 
is accompanied by a suite of plotting functions including visualizations 
such as volcano plots, paired sample expression plots and multi-condition 
heatmaps. Going beyond differential gene expression at scale, both 
annotated metadata and differentially expressed genes can be used as 
input for further pertpy modules such as gene set enrichment tests to 
uncover the biological effects induced by the perturbations (Methods).

Tracking cell type compositional shifts is crucial for understand-
ing the underlying mechanisms of disease progression, tissue regen-
eration and developmental biology, offering insights into cellular 
responses and adaptations. Pertpy offers two distinct methods for 
detecting compositional shifts, both utilizing a common MuData-based 
data structure. If labeled groups are available, pertpy provides 
accelerated and scalable implementations of scCODA37 2.0 and its 
cell type hierarchy-aware extension tascCODA38 2.0 (Methods and 
Extended Data Fig. 1). Both approaches employ Bayesian methods to 
elucidate cell type compositional changes. If no labeled groups are 
available or continuous proportions are expected, such as during 
developmental processes, pertpy implements a scalable version of 
Milo, previously unique to the R ecosystem39, which conducts differen-
tial abundance tests by assigning cells to overlapping neighborhoods 
within a k-nearest neighbor graph (Methods).

Understanding how cells function together within tissues is a 
major challenge. Multicellular programs (MCPs) refer to the orches-
trated activities of various cell types that collaborate to create complex 
functional structures at the tissue scale. Pertpy’s fast implementation of 
DIALOGUE40 uncovers MCPs through a combination of factor analysis 
and hierarchical modeling, owing to a fast input-order-invariant linear 
programming solver and a new, fast test to determine significantly 
associated MCP genes (Methods).

Not all cell types are equally affected by perturbations. Pertpy’s 
fast implementation of Augur (Extended Data Fig. 1) ranks cell types 
based on their response to perturbations by training machine learn-
ing models to predict experimental labels within each cell type and 
then ranking these cell types by the models’ accuracy metrics across 
multiple cross-validation runs (Methods). Furthermore, understand-
ing the dynamics of cellular response to various stimuli is crucial when 
experimental exploration of all possible conditions is unfeasible. 
CINEMA-OT41, via scalable pertpy implementation, extends this con-
cept by distinguishing between confounding variations and the effect 
of perturbations, achieving an optimal transport match that mirrors 
counterfactual cell pairings (Methods). These pairings enable analysis 
of potentially causal perturbation responses, allowing for individual 
treatment effect analysis, clustering of responses, attribution analysis 
and examination of synergistic effects.

For accurate statistical comparison and measurement of pertur-
bation effects, it is essential to employ distance metrics between cell 
groups. A suitable metric quantifies divergence or similarity in expres-
sion patterns of cells under different perturbations, enabling inference 
of unique or common mechanisms. Different types of distance metrics 
make varying assumptions on the shape of the data and emphasize 
specific aspects of difference. For instance, optimal transport-based 
distances, such as the Wasserstein distance42, assume correspondence 
between cell populations, whereas the Mahalanobis distance focuses 
on covariance structures and scale differences within the data. To cap-
ture a wide range of distance metric types, pertpy implements more 
than 18 different metrics, including, but not limited to, the Euclidean 
distance (E-distance)11,43 and the Wasserstein distance (Methods). All 
included metrics can also be used for perturbation testing through 
Monte Carlo permutation testing, allowing for the statistical evaluation 
of perturbation distinguishability and efficacy (Methods).

Built on the scverse14 ecosystem, pertpy ensures seamless interop-
erability with existing single-cell omics workflows and can be combined 
with tools such as decoupler-py44 and NetworkCommons45 for tasks 
such as context-specific inference of protein interaction networks 
while being purposefully extensible to address new challenges. Base 
classes for additional perturbation spaces, distances, differential gene 
expression tests and other components are provided to facilitate swift 
development. We additionally provide a dataset module with more than 
30 public loadable perturbational single-cell datasets in AnnData and 
MuData format, building upon and extending scPerturb43 to kickstart 
analysis, development and benchmarking with pertpy. The meta-
data of the datasets were curated against public ontologies to enable 
swift dataset integration and large-scale machine learning, including 
foundational models.

Learning and exploring perturbation representations with 
pertpy
To demonstrate pertpy’s ability to learn meaningful perturbation 
spaces, we examined a publicly available CRISPRa screen dataset ini-
tially presented by Norman et al.16, consisting of 111,255 single-cell 
transcriptomes of K562 cells subjected to 287 single gene and gene 
pair perturbations (Fig. 2a). We use this dataset to show how genetic 
interactions through combinatorial expression of genes lead to cellular 
and organismal gene programs and phenotypes. We further use pertpy 
to investigate how different perturbation-specific preprocessing strate-
gies affect the outcome. In particular, we examine whether different 
strategies may inadvertently remove true biological signals, such as 
the cell cycle effects induced by CDKN2A perturbations.

After initial preprocessing (Methods), we test three 
perturbation-specific processing strategies: (1) computing cell-specific 
perturbation signatures based on the 20 nearest neighbor control cells 
of a perturbed cell and filtering out targeted cells that escaped pertur-
bation based on this signature (Methods); (2) computing cell-specific 
perturbation signatures using all control cells within the same Gel 
Bead-in-Emulsion (GEM) group (that is, cells processed in the same 
sequencing lane) to detect and filter out unperturbed cells (Methods); 
and (3) no perturbation-signature-based filtering of cells.

Pertpy’s Mixscape19 implementation supports strategies (1) 
and (2), facilitating comparison of preprocessing strategies. After 
applying each of the three strategies, we project the normalized gene 
expression of the remaining cells into a perturbation space using 
the penultimate layer of our multilayer perceptron (MLP)-based 
discriminator classifier for each processing strategy (Methods and 
Extended Data Fig. 2). We found that all strategies yielded similar per-
turbation spaces (Extended Data Fig. 2i), suggesting that, for this data-
set, the approach without perturbation-signature-based cell filtering 
is preferable. This is expected because the CRISPRa approach used for 
this dataset does not suffer from cells escaping a perturbation through 
in-frame mutations, as would be expected in CRISPR−Cas9 screens.

Examining this perturbation space, we observe that explicitly 
training the classifier to distinguish between individual perturba-
tions results in clustering of perturbations with similar effects on the 
cell, as indicated by the affected gene program as originally labeled 
by Norman et al.16. We assessed the importance of individual input 
genes in the classifier’s assignment of a cell to a specific perturbation 
using integrated gradients46 (Methods). By averaging these feature 
importances for each annotated gene program, we demonstrate 
that the classifier prioritizes the respective targeted genes from the 
set of 4,000 highly variable input genes (for example, KLF1 for the 
pro-growth program), highlighting their relevance to the prediction 
(Extended Data Fig. 3a). In addition to validating known annotations, 
evaluating data in perturbation space also allows for refinement of 
previous annotations. For instance, the perturbation TP73, character-
ized as a pioneer factor gene program in the original publication16, 
clusters with the G1 cell cycle perturbations when embedded using the 
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discriminator classifier. This can be explained by the profound influ-
ence of TP73 on the cell cycle47. Moreover, what the original authors 
identified and labeled as a single pro-growth gene program cluster can 
now be differentiated into two distinct clusters (mean squared error 
(MSE) distance between the two subclusters: 0.46; mean pairwise MSE 
distance between all gene programs: 0.29; Extended Data Fig. 3b). 
Indeed, we found that although both clusters comprise perturba-
tions targeting genes important for cell growth, one cluster mainly 
targets genes encoding Krüppel-like factors (KLFs), whereas the 
other comprises perturbations of mitogen-activated protein kinase 
(MAPK) encoding genes. Projection of data into the perturbation 
space also allows for an in-depth exploration of clusters without gene 
program annotation, enabling identification of a previously unan-
notated cluster comprising perturbations with a downregulating 

effect on the neutrophil degranulation pathway (Fig. 2b). This use 
case demonstrates the simplicity and effectiveness of combining 
several of pertpy’s modules into a new analysis pipeline, spanning 
from quality control over perturbation space to the annotation of 
previously unlabeled gene programs.

Pertpy streamlines discovery for complex perturbation 
experiments
Advancements in multiplexing technologies have markedly increased 
the number of cell states that can be profiled in one experiment, result-
ing in large perturbation screens. McFarland et al.17 introduced MIX-Seq, 
an experimental assay that enables multiplexing of different cell lines 
within a single sequencing run. We use pertpy to efficiently analyze a 
dataset comprising 172 cell lines and 13 drug treatments17.
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Fig. 3 | Deconvolution of viability-related response signatures in scRNA-seq 
drug screen data. a, Overview of the chemical perturbation dataset. Cell 
lines and perturbations were annotated with pertpy with additional metadata 
facilitating detailed analysis. b, Linear regression model between single-cell 
expression data and GDSC profiles shows high correlation, reinforcing the 
high quality of the dataset. c, Volcano plot showing the value and significance 
(two-sided t-test, Benjamini−Hochberg corrected) of the intercept of the fit linear 
regression models for each gene (top), indicating the viability-independent 
response. An example linear regression (±95% confidence interval) for the gene 

UBALD2 (bottom left) shows that a change in UBALD2 expression in a cell line 
is observable, irrespective of the respective cell line’s sensitivity to dabrafenib 
treatment. The top genes were used to perform GSEA (bottom right), with 
enrichment P values computed using blitzGSEA65, which applies Kolmogorov–
Smirnov tests and gamma distribution fitting. The figure design is inspired by 
Fig. 2c in the original publication that introduces the dataset17. d, The same  
as in c but for the slope of the linear regression models, indicating the 
viability-dependent response. adj., adjusted; CNS, central nervous system;  
FC, fold change; PCC, Pearson correlation coefficient; NA, not available.
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Pertpy reduces annotation and quality control to just a few 
steps. Its metadata module annotates cell lines with tissue-of-origin, 
cancer type and bulk expression profiles from the disease ontology 
OncoTree48 and the Cancer Cell Line Encyclopedia49 (CCLE). Com-
pounds are annotated with their targets and mechanism of action from 
DepMap50, GDSC29 and CMap30 (Methods). After annotation, pertpy 
enables immediate visualization for exploratory analysis (Fig. 3a). 
Additionally, annotated bulk expression allows users to compare RNA 
profiles of their cell lines with established public datasets, provid-
ing rapid quality control functionality. Comparative analysis of the 
dataset revealed an average Pearsonʼs correlation coefficient of 0.88 
across all cell lines (Fig. 3b), demonstrating substantial consistency 
with the cell line passages cataloged in the DepMap CCLE database 
and enabling the integration of additional screening data from the 
DepMap PRISM project51.

Pertpy significantly streamlines the replication and exten-
sion of the original analyses by McFarland et al.17. We used pertpy 
to fetch and annotate area under the dose−response curve (AUC) 
values for each cell line and perturbation pair from GDSC and PRISM 
(Methods). This allows us to easily replicate the original statistical 
method to uncover viability-dependent and viability-independent 
gene expression associations. We selected a different drug from 
the original analysis17, the BRAF inhibitor dabrafenib52, and used 
pertpy to compute post-treatment log fold changes across 95 
cell lines (Methods). We interpret the intercept and slope of the 
linear regression on dabrafenib sensitivity (1 − AUC) to be the 
viability-independent and viability-dependent responses of the 
respective gene to dabrafenib (Methods and Fig. 3c,d). Notably, 
we found that cancer-progression-linked genes ETV4, CDKN2D and 
MYEOV53 displayed significant variation in their fitted response 
parameters (Fig. 3c,d). Additionally, our analysis identified enrich-
ment of genes involved in interferon signaling in viability-dependent 
genes, consistent with initiation of an immune-mediated cell death 
response to dabrafenib (Fig. 3d). Interestingly, protein translation 
pathway genes were upregulated in the viability-independent effects 
of dabrafenib, a response previously noted with dabrafenib54 but with 
no mechanistic information until now. This mechanism is distinct 
from dabrafenib’s putative mechanism of action, BRAF inhibition, 
which targets an orthogonal cell survival pathway. Pertpy’s ability to 
efficiently manage, analyze and supplement complex experimental 
design with additional datasets underscores its utility in conducting 
sophisticated biology-informed analyses. This streamlined approach 
greatly enhances the depth of biological insights discoverable.

Pertpy enables deciphering effects of perturbations on 
cellular systems
Understanding the complex interplay between the immune system and 
the tumor microenvironment (TME) is crucial for unraveling cancer 
progression. This is particularly important in solid tumor entities, such 
as TNBC, a rare, aggressive breast cancer subtype that lacks estrogen, 
progesterone and human epidermal receptors, rendering it unrespon-
sive to standard receptor-targeted therapies55. Single-cell transcrip-
tomics of breast cancer tumors has uncovered distinct T cell subtypes 
and the involvement of plasmacytoid dendritic cells in promoting 
immunosuppression within the TME in TNBC through tumor−immune 
crosstalk56, which is a significant driver of treatment resistance57. Stud-
ies have further elucidated TNBC-specific features and differential 
responses to neoadjuvant chemotherapy (NACT) and immunotherapy, 
highlighting the role of programmed cell death protein 1 (PD-1) and 
programmed cell death ligand 1 (PD-L1) pathways in modulating treat-
ment outcomes58. Therefore, we set out to demonstrate how pertpy can 
be used to investigate treatment responses using a publicly available 
dataset of 22 patients with TNBC treated with NACT with and without 
additional PD-L1 inhibitor paclitaxel18, initially presented by Zhang 
et al.18 (Methods and Fig. 4a,b).

To rank perturbation effects, we used pertpy to calculate the MSE 
distance between pre-treatment and post-treatment patients of the 
four groups, selected for its strong performance on independent 
benchmarks59. We found that patients responding to NACT alone had 
a greater distance between pre-treatment and post-treatment expres-
sion profiles compared to responders to anti-PD-L1 and NACT combina-
tion therapy, implying that the latter led to potentially a less intense 
response or was used in cases with a worse prognosis.

To identify cell types involved in treatment response, we investi-
gated shifts in cell type composition induced by the treatment. Track-
ing cell type shifts is essential for understanding disease progression, 
tissue regeneration and treatment responses, revealing key insights 
into cellular adaptations. We applied pertpy’s implementation of the 
Bayesian model scCODA37 2.0 to the dataset per treatment (Methods). 
We found compositional shifts for NACT treatment in CD4 central 
memory, CD8 effector memory, CD8 tissue-resident memory and 
naive T cells between disease stages but not for combination therapy 
(Fig. 4d). To better understand whether cell types that are subject to 
compositional shifts are a part of a common cell circuit, we set out to 
find shared gene expression signatures in several cell types that jointly 
act as tissue-level units, so-called MCPs40.

We applied pertpy’s implementation of DIALOGUE40, which finds 
MCPs using matrix decomposition in conjunction with a novel, fast 
input-order-invariant linear programming solver, to the TNBC treat-
ment dataset, calculating 10 MCPs that can be assessed for associa-
tion with treatment response (Methods). Exploratory analysis of 
average MCP2 scores across seven distinct cell types in each patient 
(Extended Data Table 2) indicated a potential association with treat-
ment response for both treatment groups, based on cell-type-specific 
t-tests (adjusted P ≤ 1.1 × 10−1) (Extended Data Figs. 3a,b and 4a,b). 
Initial investigations of the MCP2-associated genes suggest involve-
ment in heat shock protein activity and cytokine signaling (Methods, 
Extended Data Fig. 4 and extended data materials), including an interac-
tion between interleukin 7 (IL-7) and its receptor IL-7R in T cells, which 
are known to have an antitumor role across diverse cancers60. Increased 
IL-7 activity may contribute to suboptimal treatment outcomes by 
affecting T cell behavior and elevating levels of MCP2-associated genes 
JUN, FOS and FOSB (Extended Data Table 3 and Extended Data Fig. 5), 
which are key components of the AP-1 complex that can either inhibit 
or promote tumor growth, depending on the context61.

Discussion
Pertpy facilitates the end-to-end analysis of complex perturbation 
datasets with a versatile toolbox of interoperable components, encom-
passing metadata annotation, data analysis and visualization tools. 
Through shared infrastructure and modules and with collaboration 
with original authors, we developed improved versions of widely used 
methods that were originally unmaintained or easily available only to 
the R community, making them widely available to the Python com-
munity as well. Our community effort will ensure that all of these meth-
ods are jointly maintained and further developed. We demonstrated 
pertpy’s flexibility through several use cases, including the identifica-
tion of perturbation-specific gene programs using a CRISPRa screen 
(Perturb-seq) dataset, deconvolution of viability-related response 
signatures in a chemical perturbation dataset and deciphering treat-
ment response to drugs in TNBC. Many further use cases can be found 
in pertpy’s extensive online tutorials.

As perturbation datasets grow larger and incorporate additional 
modalities such as spatial transcriptomics, we anticipate the develop-
ment of specialized methods for analyzing multimodal perturbation 
data. By combining efforts such as Squidpy62 and pertpy, additional 
functionality designed for spatial perturbations to uncover, for exam-
ple, differentially regulated neighborhoods, could be made widely 
available. To scale to datasets with hundreds of millions of cells, such as 
the recently published Tahoe-100M63 dataset, further optimizations in 
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pertpy through out-of-memory implementations using Dask are neces-
sary, following the approach pioneered by recent Scanpy improvements.

Finally, we expect pertpy to support the creation of perturba-
tion atlases through harmonized data collection, the generation of 
meaningful perturbation spaces and the evaluation of these spaces 
using pertpy’s distance metrics. Such atlases can comprehensively 
characterize cell types under various conditions to capture the wide 
array of inducible cell states beyond their basal states. Enabled by per-
turbation dataset collections such as scperturb43 (available in pertpy) 
and PerturBase64 (extends scperturb with more recent datasets), we 
expect such atlases to become essential for the development of robust 

and generative foundation models where perturbation analysis is a key 
task that can be confidently evaluated with pertpy’s metrics.

We expect pertpy to lead to more robust biological discoveries 
through its capability of enriching measurements with biological meta-
data. As an extendable and interoperable framework, we anticipate that 
pertpy will enable future robust perturbation analysis methods, tack-
ling the growing complexity and multimodality of perturbation data.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
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Methods
Implementation of pertpy
Pertpy is implemented in Python and builds upon several scientific 
open-source libraries, including NumPy70, Scipy71, JAX15, scikit-learn72, 
Pandas72,73, AnnData22, scanpy34, muon23, NumPyro74, OTT-JAX75, blitzG-
SEA69, PyTorch76 and scvi-tools13 for omics data handling and matplot-
lib77 and seaborn78 for data visualization.

Summary table of implemented methods. Pertpy provides implemen-
tations of many novel, but also established, methods that can be easily 
accessed and combined to easily build custom analysis pipelines (Table 1).

gRNA assignment. Assigning relevant guides to each cell is essential in 
genetic perturbation assays, ensuring that the observed cellular responses 
are accurately linked to the intended genetic modifications. This step is 
critical for validating experimental design and interpreting results reliably. 
Pertpy provides two approaches to assigning cells to guides.

First, a simple thresholding model where the most expressed gRNA 
is assigned to a cell if it additionally exceeds an optional user-specified 
count threshold.

Second, a previously published Poisson−Gaussian model11. For 
each guide, cells with non-zero expression are log2 transformed and 
modeled as a mixture of two populations, with cells automatically 
classified as negative if they show zero expression. A cell is labeled 
as positive for a guide if it belongs to the higher-expressing popula-
tion, with a maximum of five guide assignments per cell to prevent 
over-assignment; cells exceeding this threshold are marked as ‘mul-
tiple’, whereas those failing to meet the mixture model threshold for 
any guide are designated as ‘negative’.

Differential gene expression. Differential gene expression analysis 
compares the mean gene expression levels between different condi-
tions or groups to identify genes with statistically significant changes, 
utilizing statistical models to account for between-sample variability 
and control for false discovery rates. Pertpy provides a unified appli-
cation programming interface (API) to support a variety of such mod-
els. The first group of models comprises the t-test and Wilcoxon test 
as simple statistical tests for comparing expression values between 
two groups without covariates. The second group includes models 
of the linear model family that allow modeling complex designs and 
contrasts. Currently included are PyDESeq235, edgeR36 as well as a 
wrapper around statsmodels (https://www.statsmodels.org), which 
provides access to a wide range of regression models, including ordi-
nary least squares regression, robust linear models and generalized 
linear models. Linear model designs can be specified via Wilkinson 
formulas as known from R (through ‘Formulaic’, https://github.com/
matthewwardrop/formulaic). Pseudobulk workflows that account for 
pseudoreplication bias79 are enabled by integration with scanpy’s get.
aggregate() function. Results tables ranked by adjusted P value are pro-
vided as a Pandas data frame and can be visualized using volcano plots.

Analysis of pooled CRISPR screens with mixscape. CRISPR−Cas9 can 
sometimes lead to cells escaping gene perturbation, such as knockout, 
by receiving an ineffective in-frame mutation, underscoring the neces-
sity for computational quality control to predict and enhance their 
specificity and performance. Mixscape classifies targeted cells—that 
is, those identified as perturbed by presence of a gRNA—into success-
fully perturbed (KO) and targeted but not successfully perturbed (NP) 
based on their response. Other perturbations, such as activations or 
inhibitions, are here collectively referred to as ‘KO’ for consistency with 
the original publication.

In particular, the Mixscape pipeline includes the following steps:

	 (1)	Calculate the perturbation-specific signature of every cell, 
which is the difference of the targeted and the closest k (de-
faults to 20) nearest control neighbors.

	 (2)	Identify and remove cells that have ‘escaped’ CRISPR perturba-
tion by estimating the distributions of KO cells. Afterwards, 
the posterior probability that a cell belongs to the KO cells is 
calculated, and the cells are binary assigned based on a fixed 
probability threshold (defaults to 0.5).

	 (3)	Visualize similarities and differences across different perturba-
tions using linear discriminant analysis.

When calculating the perturbation-specific signatures, Mixscape 
makes strong assumptions, such as cells with a perturbation not exhib-
iting compositional differences with respect to variation seen within 
the control cells. Additional limitations include the assumption that 
perturbation effects are additive and separable from underlying cell 
state, the equal weighting of all genes regardless of their relevance to 
the perturbation target and the failure to account for temporal dynam-
ics in cellular responses where early and late responding genes create 
composite signatures.

Generally, the Mixscape pipeline assumes KO data. Applying Mix-
scape to CRISPR interference (CRISPRi) and CRISPRa data is more 
nuanced but still valid under certain conditions. Unlike KO, these 
modalities do not introduce permanent genomic alterations, but vari-
ability in perturbation efficiency can create functionally not effectively 
perturbed cells. Factors such as incomplete transcriptional repression/
activation, gRNA efficiency, chromatin state, CRISPR expression or 
variable effector recruitment (for example, KRAB for CRISPRi and 
VP64 for CRISPRa) can lead to heterogeneous perturbation effects. 
If these effects result in a clear separation between perturbed and 
unperturbed-like transcriptomic states, Mixscape can still be meaning-
fully applied. However, careful validation is needed to ensure that the 
identified unperturbed population reflects true biological variability 
rather than technical artifacts.

We implemented Mixscape following the implementation of the 
original authors19. We further optimized the implementation by using 
PyNNDescent (https://github.com/lmcinnes/pynndescent) for near-
est neighbor search for the calculation of the perturbation signature.

The implementation was verified by comparing the classifica-
tion results between the original Seurat Mixscape implementation 
and the pertpy implementation through a confusion matrix, showing 
high agreement, with 4,674 KO, 13,098 NP and 2,386 non-targeted 
cells correctly classified by both implementations, with only minor 
disagreements (438 cells classified as NP by pertpy but KO by original 
and 133 cells classified as KO by pertpy but NP by original). Addition-
ally, the perturbation signature scores between implementations 
show a strong correlation of 0.97 (P < 0.0001), confirming that 
pertpy’s implementation closely reproduces the original method’s 
quantitative measurements.

Compositional analysis of labeled groups with scCODA and tas-
cCODA. Tracking cell type shifts is crucial for understanding the 
underlying mechanisms of disease progression, tissue regeneration 
and developmental biology, offering insights into cellular responses 
and adaptations. Despite their critical role in biological processes 
such as disease, development, aging and immunity, detecting shifts in 
cell type compositions through scRNA-seq is challenging. Statistical 
analyses must navigate various technical and methodological con-
straints, including limited experimental replicates and compositional 
sum-to-one constraints37. scCODA and its extension tascCODA both 
employ Bayesian methods to elucidate cell type compositional changes, 
with tascCODA being able to also take cell type hierarchies into account.

The implementations of scCODA 2.0 and tascCODA 2.0 are math-
ematically equivalent to the original implementations37,38 but allow 
for accelerated inference by replacing the Hamiltonian Monte Carlo 
algorithm with the no-U-turn sampler from NumPyro74. The joint imple-
mentation also allows users to conveniently apply both methods from 
within the same framework.
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Pertpy further uses MuData23 objects to simultaneously handle 
cell-by-gene and sample-by-cell-type representations of the same 
data, simplifying the data aggregation and model specification steps 
for scCODA 2.0 and tascCODA 2.0 while ensuring compatibility with 
other methods featured in the scverse14 ecosystem. A wide range of 
visualization options through scanpy34, ETE 3 (ref. 80) and ArviZ81 for 
representation of differentially abundant cell types, their hierarchical 
structure and inference diagnostics, respectively, are also provided 
within pertpy.

The implementation was verified by comparing parameter esti-
mates and log2 fold changes with the original implementation across 
multiple test scenarios, including different reference cell types and 
treatment conditions, with results showing nearly identical values 
between implementations (within approximately 0.01 for parameters 
and approximately 0.005 for log2 fold changes).

Compositional analysis of unlabeled groups with Milo. Most meth-
ods for comparing single-cell datasets often rely on identifying discrete 
clusters to test for differences in cell abundance across experimental 
conditions. However, this approach may lack the necessary resolution 
and fail to represent continuous biological processes accurately. To 
address these limitations, Milo was designed to conduct differential 
abundance tests by assigning cells to overlapping neighborhoods 
within a k-nearest neighbor graph.

The implementation of Milo is based on Milopy (https://github.
com/emdann/milopy). It uses the same MuData-based data struc-
ture that the scCODA 2.0 and tascCODA 2.0 implementations also 
use. Here, neighborhood counts are stored in a slot in MuData for 
downstream usage.

The implementation was verified by comparing the results from 
the pertpy implementation and the original miloR package, showing a 
strong correlation (r = 0.987) between log fold change values calculated 
at the cell level. Additionally, precision and recall analysis across differ-
ent significance thresholds demonstrated high concordance between 
the two implementations, with both metrics approaching 1.0 as the 
threshold increases. This confirms that pertpy’s Milo implementation 
accurately reproduces the statistical findings of the original method.

MCPs with DIALOGUE. MCPs, or gene programs, refer to the complex 
regulatory networks and signal transduction pathways that govern the 
behavior, differentiation and communication of cells. DIALOGUE40 is a 
matrix factorization method for identifying these specific gene expres-
sion patterns. The implementation of DIALOGUE in pertpy resembles 
the original implementation40. The main differences are as follows:

•	 The R implementation of MultiCCA has been replaced with 
a Python implementation of the original mathematical 
formulation82, which can be found at https://github.com/theis-
lab/sparsecca. In addition, the Python implementation also has 
the option to solve for the canonical covariate weights w using 
linear programming, allowing for concurrent instead of iterative 
optimization over the pairwise factor matrices. This results in 
weights that are consistent regardless of the order in which cell 
types are passed, which was not previously true.

•	 An additional gene identification method, referred to as 
extrema MCP genes, which selects cells at the extreme val-
ues of the MCP (cells with the top 10% and bottom 10% MCP 
scores in each cell type) and then runs the rank_genes_groups 
function from scanpy with default parameters to perform a 
t-test between the two groups of cells to identify differentially 
expressed genes to provide adjusted P values based on the 
number of tested genes.

Although the extrema MCP genes approach utilizes gene expres-
sion data twice—once for defining MCPs and again for differential 
testing—it avoids statistical circularity common in post-clustering 

analyses83. Unlike traditional clustering approaches where cells are 
forcibly separated based on expression patterns and then the same 
data are used to identify what drives that separation (creating artifi-
cially small P values), the MCP scores represent continuous axes of 
biological variation extracted through independent matrix factoriza-
tion methods, whereas the extrema selection merely applies thresholds 
to these pre-computed scores. The subsequent differential expression 
testing therefore examines distinct biological phenomena rather 
than confirming the same signal, maintaining statistical validity and 
interpretability of the identified gene signatures.

Owing to these differences, the reported MCPs and MCP genes 
will not exactly match those identified in the DIALOGUE R package. 
Notably, users should be aware that the Seurat and scanpy imple-
mentations calculate principal component analysis (PCA) differently, 
resulting in downstream differences in MCP scores. When the same 
PCA representation is used, the MCP values between the R and Python 
implementation have an average Pearsonʼs correlation of 0.96 when 
tested on the sample dataset provided in the R tutorial.

Enrichment with blitzGSEA. Gene set enrichment analysis (GSEA) 
determines whether predefined sets of genes, often associated with 
specific biological functions or pathways, show statistically signif-
icant, concordant differences in expression across two biological 
states or phenotypes. It is used to identify biological processes that 
are overrepresented in a ranked list of genes, typically arising from 
high-throughput experiments. This approach shifts the analysis focus 
from individual genes to the collective behavior of genes within prede-
fined, functionally related groups, facilitating a deeper understanding 
of the biological mechanisms underlying observed changes. Pertpy 
provides access to a variety of metadata databases that provide gene 
sets whose enrichment can be tested for.

We generally followed the enrichment pipeline described in Drug-
2Cell66 to test for the enrichment of gene sets. This pipeline entails:

	 (1)	Fetching gene sets from databases
	 (2)	Scoring gene sets by computing the mean expression of each 

gene group per cell
	 (3)	Performing a differential expression test to get ranked gene 

groups that are upregulated in particular clusters
	 (4)	Determining enriched genes using a hypergeometric test on the 

gene set scores or using blitzGSEA69

The implementation was verified by comparing the results from 
pertpy’s enrichment module and the original Drug2Cell package, 
demonstrating exact equivalence in both overrepresentation and 
enrichment analyses. Tests confirmed that the pertpy implementation 
produces identical results for hypergeometric overrepresentation test-
ing in cell-type-specific pathways and GSEA, with all results being equal.

Distances, metrics and permutation tests. Distance metrics serve as 
an important baseline in two primary tasks in single-cell perturbation 
analysis: (1) identifying relative heterogeneity and response and (2) 
evaluating and training single-cell perturbation models. To this end, 
various commonly used distance metrics have been implemented to 
be easily applied to single-cell AnnData objects with accompanying 
perturbation or disease labels. In the following, we present the 16 
distances, in order of performance according to Ji et al.59, that are 
implemented in pertpy. We use xk to denote the gene expression in cell 
k  and xi and yi for the expression of gene i in the perturbed and control 
conditions, respectively.

•	 MSE 
Determines the mean squared distance between the mean vec-
tors of two groups.

MSE = 1
n∑(xi − yi)

2
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•	 Maximum mean discrepancy (MMD) 
Evaluates the discrepancy between the empirical distributions 
of two groups using kernel-based methods. Let n denote the 
number of samples and k(⋅, ⋅) the linear kernel function.

MMD2 = 1
N(N−1)

N
∑
i=1

N
∑
j≠i
k(xi, x j) − 2

NM

N
∑
i=1

M
∑
j=1
k(xi, y j)

+ 1
M(M−1)

M
∑
i=1

M
∑
j≠i
k( yi, y j)

•	 Euclidean distance 
Calculates the Euclidean distance between the means of the two 
groups.

Euclideandistance = √Σ(xi − yi)
2

•	 Energy distance11,43 
Computes a statistical energy distance between two groups 
based on mean pairwise distances within and between groups. 
We define

δXY =
1
NM

M
∑
i=1

N
∑
j=1

||||xi − y j|||| ,

δX =
1

N(1 − N)

N
∑
i=1

N
∑
j=1

||||xi − x j||||

�and δY  accordingly, where δ denotes the mean pairwise distance 
between samples. The energy distance is then calculated as

E(X,Y ) = 2δXY − δX − δY

•	 Kolmogorov−Smirnov test distance 
Applies the Kolmogorov−Smirnov statistic to measure the maxi-
mum distance between the empirical cumulative distributions 
of two groups. We define the empirical distribution function for 
gene i as

fi(z) = ||{ yki ∶ y
k
i ≤ z, k ∈ {1, … , N }||

�over all cells of the control condition and, analogously, ̂fi(z) for 
perturbed cells. For each gene, the maximum distance between 
both distribution functions max

z≥0
|| fi(z) − ̂fi(z)|| is computed, and the 

results are averaged over all genes to yield a single distance value.

•	 Mean absolute error (MAE) 
Measures the mean absolute difference between the mean vec-
tors of two groups.

MAE = 1
n∑|xi − yi|

•	 Two-sided t-test statistic 
Uses the t-test statistic to compare the means of two groups 
under the assumption of unequal variances. Let s2xi and s2yi denote 
the variances of gene i for perturbed and control, nx  and ny the 
sample sizes for perturbed and control and ϵ a small factor to 
avoid dividing by zero.

t = 1
n ∑

xi − yi

√
s2xi
nx+ϵ

+ s2yi
ny+ϵ

•	 Cosine distance 
Computes the cosine of the angle between the mean vectors of 
the two groups.

Cosinedistance = 1 − x ⋅ y
|x| ⋅ |y|

where - denotes the dot product.

•	 Pearson’s distance 
Uses Pearson’s correlation to assess the linear correlation 
between the mean vectors of two groups, returning 1 minus the 
correlation coefficient. Let x  and y denote the mean expression 
over all genes.

r = 1 −
∑(xi − x)( yi − y)

√∑(xi − x)
2∑( yi − y)

2

•	 Coefficient of determination distance 
Calculates the coefficient of determination (R2) between the 
mean vectors of two groups. Note that, unlike most other 
distances listed here, R2 is not symmetric/has not been 
symmetrized.

R2 = ∑(xi − yi)
2

∑(xi − x)
2

�where x  is the mean expression over all genes in the perturbed 
condition.

•	 Classifier control probability 
To compute the classifier class projection distance between per-
turbations P and control condition C, we train a linear regression 
classifier to distinguish between C and P, with 20% of P held out 
for testing. To calculate the distance for perturbation class Pi, we 
obtain the average post-softmax classification probabilities of 
all cells in Pi and return the probability of class C.

•	 Kendallʼs tau distance 
Applies Kendall’s tau, a measure of ordinal association, between 
the mean vectors of two groups. We define C as the number of 
concordant pairs, D as the number of discordant pairs, X as the 
number of ties in x’s ranking and Y as the number of ties in y’s 
ranking.

τ′xy = (1 − (C − D)
√(C + D + X )(C + D + Y )

) n(n − 1)4

•	 Spearman’s rank distance 
Similar to Pearson’s distance but uses Spearman’s rank correla-
tion to measure nonlinear relationships.

ρ =
6Σd 2i
n(n2 − 1)

�where di represents the difference in rank of gene i across both 
samples.

•	 Wasserstein distance 
Also known as Earth Mover’s Distance, computes the cost of 
optimally transporting mass from one distribution to another. 
Let W(p,q) be the first-order Wasserstein distance between 
probability distributions p and q, Γ (p,q) the set of all joint 
distributions with marginals p and q and c(x, y) the cost of 
transporting a unit of mass from x  to y, and X  and Y  are the 
support sets of p and q, respectively.

W(p,q) = infγ∈Γ (p,q)∫
X×Y

c(x, y)dγ(x, y)

•	 Symmetric Kullback−Leibler divergence 
Measures how one probability distribution diverges from a 
second. In the case of discrete inputs, the Kullback−Leibler 
divergence is calculated as follows:

DKL(P||Q) = ∑
x∈Ω

P(x) log ( P(x)Q(x) )
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�where P  and Q are discrete probability distributions.For non- 
discrete inputs, the Kullback−Leibler divergence is computed as

KL = ∑ ln
syi
sxi

+
s2xi + (xi − yi)

2

2 ∗ s2yi
− 1
2

where s denotes the standard deviation.
•	 Classifier class projection 

The classifier class projection distance between perturbation Pi 
and control condition Ci is calculated by training a linear 
regression classifier on all x ∉ Pi and all C, subsequently 
retrieving the average post-softmax classification probabilities 
of all cells xi and returning the probability of class Ci. 
The following distance was also implemented in pertpy but was 
not part of the aforementioned benchmark:

•	 Negative binomial log likelihood
Fits a negative binomial distribution to one group and uses it to 

compute the log likelihood of the other group’s data. For each gene i 
that is not overdispersed in x, we fit a negative binomial distribution 
with parameters μi and θi. The distance between two categories x  and 
y is then computed as the average negative log likelihood of y given 

the parameters of the distribution fit on x  for each gene i—that is,

1/n
N
∑
i=1
θxi (log(θxi ) − log(θxi + μxi )) + yi(log(μxi ) − log(θxi + μxi ))

+ln(Γ ( yi + θxi )) − ln(Γ (θxi )) − ln(Γ ( yi + 1))

The ‘distances’ module allows users to quickly fetch the pairwise dis-
tances between any set of categorically labeled cells. The ‘distance_
tests’ module allows users to compute a P value through Monte Carlo 
permutation testing, thereby providing a confidence value for any 
given distance. This can be particularly comforting in cases in which 
distances have been used as proxies for real biological response in 
gene expression space.

Note that, although we refer to all of the above as ‘distances’, they 
do not all meet the mathematical definition of a distance; deviations 
from the standard distance axioms are detailed in Ji et al.59. Although 
these distances can be used with any single-cell measurement, it 
should be noted that the ranking above was performed in the context 
of single-cell transcriptomics.

We also implemented two metrics for evaluating expression pre-
diction models. To evaluate if perturbation prediction leads to mean-
ingful biological conclusions, we implemented a differential expression 
correlation metric. This metric uses Spearmanʼs correlation to com-
pare differential gene ranking from the scanpy rank_genes_groups func-
tion performed on control versus real perturbed data and on control 
versus predicted perturbed data. To evaluate if the distribution of gene 
expression means versus variances corresponds to real data, we used 
a similar method as proposed previously84. The distribution of expres-
sion mean−variance two-dimensional relationship was estimated with 
kernel density for both real and predicted perturbed data. The distance 
between the two densities was estimated based on the difference of 
values sampled across the whole data range.

Perturbation ranking with Augur. Augur aims to rank or prioritize 
cell types according to their response to experimental perturba-
tions. The fundamental idea is that, in the space of molecular meas-
urements, cells reacting heavily to induced perturbations are more 
easily separated into perturbed and unperturbed than cell types with 
little or no response. This separability is quantified by measuring how 
well experimental labels (for example, treatment and control) can 
be predicted within each cell type. Augur trains a machine learning 
model predicting experimental labels for each cell type in multiple 
cross-validation runs and then prioritizes cell type response according 
to metric scores measuring the accuracy of the model. For categorical 

data, Augur uses the AUC, and, for numerical data, it uses the concord-
ance correlation coefficient.

Our implementation of Augur follows the original implementa-
tion67,68. We further optimized it by parallelizing the training of the 
predictive models. Moreover, the pertpy implementation allows for 
gene selection using either the originally used variance based imple-
mentation or scanpy’s highly variable genes.

The implementation was verified by comparing the results from 
pertpy’s Augur implementation and the original R-based Augur pack-
age, showing excellent agreement in both default and velocity mode. 
The AUC scores from both implementations were highly consistent 
across all tested cell types, with all data points falling within 4% of the 
expected y = x line. This close correspondence was observed in both 
analysis modes, confirming that pertpy’s implementation faithfully 
reproduces the computational methodology of the original R package.

Causal identification of single-cell experimental perturbation 
effects with CINEMA-OT. Cellular responses to environmental sig-
nals are crucial for understanding biological processes. Effectively 
extracting biological insights from such data, especially through 
single-cell perturbation analysis, remains challenging due to a lack of 
methods that can directly account for underlying confounding varia-
tions. CINEMA-OT distinguishes between confounding variations and 
the effects of perturbations, achieving an optimal transport match 
that mirrors counterfactual cell pairings. These pairings allow for the 
analysis of causal perturbation responses, enabling novel approaches, 
including individual treatment effect analysis, clustering of responses, 
attribution analysis and the examination of synergistic effects.

The implementation of CINEMA-OT is based on the original 
implementation41. We used OTT-JAX79 to make the implementation 
portable across hardware. It can, therefore, also be run on GPUs. Nota-
bly, the JAX-based implementation may initially run slower than the 
NumPy-based version due to the overhead of just-in-time compilation.

The implementation was verified by comparing the results from 
pertpy’s CINEMA-OT implementation and the original CINEMA-OT pack-
age. Tests showed strong agreement between both implementations, 
with a relative Frobenius norm difference of less than 0.1 (0.0973) for the 
optimal transport transformed confounders. Additionally, single-cell 
treatment effects showed exceptionally high correlation between 
implementations, with mean Pearsonʼs correlation of 0.989 and mean 
Spearmanʼs correlation of 0.983 across all genes. Both implementations 
consistently revealed the same biological insight regarding distinct treat-
ment effects in monocytes, confirming that pertpy’s implementation 
faithfully reproduces the computational methods of the original tool.

Perturbation spaces. Pertpy discriminates between two fundamental 
domains to embed and analyze data: the ‘cell space’ and the ‘perturba-
tion space’. In this paradigm, the cell space represents configurations 
where discrete data points represent individual cells. Conversely, the 
perturbation space departs from the individualistic perspective of cells 
and, instead, categorizes cells based on similar response to perturba-
tion or expressed phenotype where discrete data points represent 
individual perturbations. This specialized space enables comprehend-
ing the collective impact of perturbations on cells. We differentiate 
between perturbation spaces (where we create one data point for all 
cells of one perturbation) and cluster spaces (where we cluster all cells 
and then test how well the clustering overlaps with the perturbations).

Pseudobulk space. This space takes the pseudobulk of a covariate such 
as the condition to represent the respective perturbations using the 
Python implementation of DecoupleR44 (https://github.com/saezlab/
decoupler-py), which can subsequently be embedded.

Centroid space. The centroid space calculates the centroids as the 
mean of the points of a condition for a pre-calculated embedding. Next, 
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it finds the closest actual point to that centroid, which determines the 
perturbation space point for that specific condition.

MLP classifier space. The MLP classifier space trains a feed-forward 
neural network to predict which perturbation has been applied to a 
given cell. By default, a neural network with one hidden layer of 512 
neurons and batch normalization is created and trained using a batch 
size of 256. However, all these hyperparameters can be customized by 
the user to suit the specific requirements of the dataset. We account for 
class imbalances by oversampling perturbations with fewer instances. 
The MLP is trained using cross-entropy loss until detection of overfitting 
(early stopping) or until it reaches the maximum number of epochs to 
train, set to 40 by default. To obtain perturbation-informed embeddings 
of the cells, the cell representations in the last hidden layer are extracted. 
Another perturbation space, such as pseudobulk, can be applied down-
stream to obtain a per-perturbation embedding if required. For creation 
and training of the MLP, we leverage the PyTorch library.

Logistic regression classifier space. The logistic regression classifier 
space generates perturbation embeddings, as opposed to per-cell embed-
dings computed by the MLP classifier space. A logistic regression classifier 
is trained for each perturbation individually to determine if the respective 
perturbation was applied to a cell or not. Depending on user preference, 
the classifier can be trained on the high-dimensional feature space or 
on a pre-computed embedding, such as one obtained through PCA. For 
each perturbation, we extract the coefficients of the logistic regression 
classifier, trained until convergence or reaching the maximum number 
of iterations (1,000 by default), to derive a per-perturbation embedding. 
We use scikit-learn’s implementation for the logistic regression classifier.

DBSCAN space. DBSCAN85 (density-based spatial clustering of applica-
tions with noise) is a clustering algorithm that identifies clusters in a 
dataset based on the density of data points, grouping together points 
that are closely packed while marking points in low-density regions 
as outliers. Pertpy’s implementation of a DBSCAN space is based on 
scikit-learn’s DBSCAN implementation.

k-means space. k-means is a clustering algorithm that partitions a 
dataset into k distinct, non-overlapping clusters by minimizing the 
distance between data points and the centroid of their assigned cluster. 
It iteratively adjusts the positions of centroids to reduce the total vari-
ance within clusters, making it suitable for identifying spherical-shaped 
clusters in feature space. Pertpy’s implementation of a k-means space 
uses k-means clustering as implemented in scikit-learn.

Label transfer. Label transfer in single-cell analysis involves using 
annotations of a dataset to predict the states of unannotated data 
points, leveraging similarities in gene expression patterns or nearest 
neighbors. Pertpy’s label transfer function uses PyNNDescent to find 
the closest neighbors for all data points and then uses majority voting 
to label unlabeled data points.

The label transfer function further quantifies uncertainty, where 
each neighbor’s contribution is weighted by its connectivity strength 
(derived from the distance in gene expression space). These weighted 
contributions are first converted into a one-hot encoded matrix where 
each column represents a label category. The uncertainty score for 
each transferred label is then calculated as the Shannon entropy of the 
weighted label distribution in the cell’s neighborhood—if all neighbors 
have the same label, the entropy (and, thus, uncertainty) is 0, whereas 
diverse labels among neighbors result in higher entropy values. This 
uncertainty score provides a quantitative measure of prediction con-
fidence, where higher values indicate more heterogeneous neighbor-
hoods and, thus, less reliable label transfers.

Any obtained labels through label transfer must be diligently 
verified. Label transfer can propagate biases from the reference 

annotations, leading to incorrect annotations if the reference is not 
representative of the target data. Differences in batch effects, technical 
noise or biological variability can distort nearest neighbor relation-
ships, reducing the reliability of transferred labels. Additionally, major-
ity voting can fail in cases where distinct perturbations and cell states 
are underrepresented, leading to misclassification of rare populations.

Metadata support. Pertpy provides access to several databases that 
contain additional metadata for cell lines, mechanisms of actions 
and drugs. On request, the database content gets cached locally, and 
the respective information gets stored in the appropriate slots of the 
passed AnnData object.

Cell line. Pertpy provides access to DepMap (https://depmap.org/
portal/, version 23Q4) and GDSC29. The following information can 
be obtained:

•	 Cell line identification: Comprehensive details such as cell line 
names, aliases, DepMap IDs and CCLE86 names

•	 Genetic information: Data on genetic aberrations prevalent in 
cancer cell lines, including mutations, copy number alterations, 
fusion genes and comprehensive gene expression profiles

•	 Dependency scores: Quantitative assessments of gene essenti-
ality that showcases the impact of specific genes on the viability 
of cancer cell lines

•	 Drug sensitivity: Detailed measurements of how cancer 
cell lines respond to various drugs, with metrics such as 
half-maximal inhibitory concentration (IC50) values providing 
insights into the effectiveness and potential toxicity of thera-
peutic compounds

•	 Lineage and type: Information categorizing cell lines based on 
their tissue of origin and the type of cancer they represent

•	 Molecular subtypes: Classifications based on detailed genetic, 
epigenetic and proteomic analyses, which help in understanding 
the heterogeneity within and across cancer types

•	 Phenotypic data: Observations on cell growth rates and 
morphological characteristics, which can correlate with genetic 
traits and drug responses

•	 Genomic profiling: Includes high-resolution data from 
whole-exome and whole-genome sequencing efforts, offering a 
comprehensive view of the genetic landscape of cell lines

•	 Proteomics profiling: Protein intensity values acquired using 
data-independent acquisition mass spectrometry (DIA-MS) 
from DepMap Sanger.

Mechanism of action. Pertpy provides access to CMAP30, also com-
monly referred to as CMap and LINCS Unified Environment (CLUE), 
which hosts the infrastructure. CMAP is a resource designed to 
help researchers discover functional connections among diseases, 
genetic perturbation and drug action. The following information can 
be obtained:

•	 Compound names: The name of the compound of genetic 
perturbagen

•	 Mechanism of action: The specific biochemical interactions 
through which compounds exert their effects on cellular func-
tions. This includes detailed descriptions of whether a com-
pound acts as an inhibitor, activator or modulator of particular 
molecular targets.

•	 Target: The sets of genes or proteins that directly interacted 
with or were affected by the perturbagen

Drug. Pertpy provides access to PubChem31 using PubChemPy 
(https://github.com/mcs07/PubChemPy). PubChem is a compre-
hensive resource for chemical information, primarily known for its 
vast database of chemical molecules. The following information can 
be obtained:
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•	 Chemical identifiers: Each chemical in PubChem is assigned 
unique identifiers, including CAS numbers, InChI strings and 
SMILES notation. 
Pertpy further provides access to the ChEMBL32 database. 
ChEMBL is a comprehensive database maintained by the Euro-
pean Bioinformatics Institute, part of the European Molecular 
Biology Laboratory. It provides a vast collection of data on 
bioactive molecules with drug-like properties. The following 
information can be fetched:

•	 Compounds: The names of the compounds
•	 Targets: The target gene sets of the compounds

Benchmarking runtime. To evaluate computational efficiency, we 
measured execution time and resource consumption for all tools imple-
mented in pertpy. Following their respective tutorials, we developed 
scripts with standard workflows on exemplary data in their original 
implementation. We further wrapped all of these scripts in a repro-
ducible Snakemake87 pipeline using Conda environments that we 
defined per tool implementation to create isolated and reproducible 
runtime environments.

These scripts were executed on a system with an AMD EPYC 9754 
128-core processor and 500 GB RAM in a Linux environment. This 
setup ensured accurate and reproducible timing measurements. Each 
script was run three times to guarantee consistency. We upsampled or 
downsampled example datasets with a set seed to evaluate each tool at 
5,000, 10,000, 50,000, 100,000, 500,000 or 1,000,000 cells. Timing 
and memory use was recorded with Snakemake’s benchmark feature. 
The results are shown in a box plot (Extended Data Fig. 1), which com-
pares the execution time in seconds and memory usage in megabytes 
across each tool and implementation.

Use cases
For the following analyses, we used the latest pertpy version (0.10.0). 
We deposited a full Conda environment to reproduce our results in the 
associated reproducibility repository, together with all result tables 
of our analysis.

Analysis of the CRISPR screen dataset. We obtained the original 
dataset from the original publication16, together with the labels of the 
gene programs. The dataset contained 111,255 cells and 19,018 genes. 
We followed the standard scanpy preprocessing pipeline to log normal-
ize the data, calculate 4,000 highly variable genes, obtain PCA com-
ponents and embed the data into a uniform manifold approximation 
and projection (UMAP) space for visualization purposes. Moreover, 
we scored cell cycle genes using the list of Tirosh et al.88.

Afterwards, we compared three distinct processing strategies: (1) 
perturbation signature computation and cell filtering based on the 20 
nearest neighbor control cells, (2) perturbation signature computation 
and cell filtering based on all control cells within the same gene group 
and (3) no perturbation-signature-based cell filtering. For strategies 
(1) and (2), we used pertpy’s implementation of Mixscape to calculate 
the perturbation signature (with ref_selection_mode = ‘nn’ for strategy 
(1) and ref_selection_mode = ‘split_by’ for strategy (2) in pt.tl.Mixscape.
perturbation_signature), which was subsequently embedded into 
UMAP space. Next, we applied Mixscape to the perturbation signature 
to calculate the perturbation scores that are binarized to label cells as 
successfully and unsuccessfully perturbed.

We applied pertpy’s MLP-based classifier to the gene expression 
data from each processing strategy (with cells filtered out for strategies 
(1) and (2)) and embedded the pseudobulk of the penultimate layer 
feature values with UMAP. To quantify the similarity of the perturbation 
spaces produced by each processing strategy, we used scikit-learn to 
calculate the silhouette score for each perturbation from the UMAP of 
the perturbation space. We then averaged the silhouette scores for each 
gene program. The silhouette score varies between −1 and +1, where a 

higher score indicates that the perturbation embedding is well aligned 
with its corresponding gene program cluster and poorly aligned with 
other gene program clusters.

We further used pertpy’s distance module to compute the MSE 
distance between the two subclusters formed from perturbations 
annotated as pro-growth. To assess the importance of individual genes 
(input features) for predicting perturbations, we calculated integrated 
gradients46 using captum (captum.attr.IntegratedGradients). We com-
puted the attribution for each cell using its respective perturbation 
label as the target and then averaged the feature importances across 
all cells annotated with the same gene program.

To identify gene programs affected by perturbations in an unan-
notated cluster in the UMAP, we performed GSEA on either upregulated 
or downregulated genes (adjusted P value cutoff of 0.01) in the cluster 
of interest, identifying the top three upregulated and downregulated 
Reactome89 pathways for the cluster.

Analysis of the chemical perturbation dataset. We obtained the data-
set from the original publication of the study, which already contained 
annotations of cell lines, cell line quality, channel, disease, dose units, 
dose values and many more fields that are documented in our analysis 
notebook. We filtered out cells perturbed by CRISPR, leaving 154,710 
cells and 32,738 genes of 172 cell lines, treated with 13 different drugs. 
We applied standard preprocessing by filtering genes that were present 
in fewer than 30 cells and log normalizing the counts. In total, 4,000 
highly variable genes were computed using the highly_variable_genes 
function of scanpy and used as the basis for downstream analyses, 
except when examining viability-dependent and viability-independent 
drug responses.

Next, we fetched all available cell line metadata from DepMap 
and GDSC, using pertpy to annotate the cell lines by their DepMap ID 
with cell lineages, compound targets and mechanism of action using 
CMAP30. We further added drug sensitivities of cell lines to anticancer 
therapeutics from GDSC29 and PRISM (DepMap).

Pseudobulks were generated using pertpy’s PseudobulkSpace 
function by perturbation. We used the expression of the cell lines 
labeled as ‘control’ as baselines. Bulk RNA expression data were fetched 
from the CCLE using the data from the Broad Institute via pertpy. We 
used pertpy to calculate row-wise correlations of the expression pro-
files of the cell lines to obtain Pearsonʼs correlation values and P values.

Finally, we used pertpy to disentangle drug responses into com-
ponents that are independent of and dependent on the sensitivity 
of a certain cell line to a drug. We followed the approach presented 
in the paper introducing the original dataset17 but replaced func-
tionalities with pertpy’s own implementation whenever possible. 
Although previous work focused on the drug trametinib, we here 
investigated treatment responses to dabrafenib. We used pertpy’s 
annotate_from_gdsc function to query the AUC values for each cell 
line−drug combination using the GDSC1, GDSC2 and PRISM data-
bases. We rank normalize the AUC values within each database and 
then compute the mean of all available values for)each cell line. The 
dabrafenib sensitivity is then defined as 1 minus the mean AUC. Next, 
we computed the expression log fold change between treated cells 
and control based on raw counts for each cell line individually, using 
pertpy’s implementation of edgeR. Then, for each gene, the following 
linear regression model was fit:

log−FCGene = Intercept + Slope × Dabrafenib sensitivity of cell lines

The fit model enables the decomposition of the observed change 
in gene expression in the treatment group into two components: a 
viability-independent response (intercept) and a viability-dependent 
response (slope). Genes with a Benjamini−Hochberg-corrected P value 
less than 0.01 for either the slope or intercept were considered signifi-
cant and subsequently used for GSEA using the blitzGSEA69 API.
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Analysis of the TNBC treatment dataset. We obtained the dataset 
from the original publication18, which comprises scRNA-seq and assay 
for transposase-accessible chromatin with sequencing (ATAC−seq) 
data from 22 patients with advanced TNBC, treated with paclitaxel 
alone or in combination with the anti-PD-L1 therapy atezolizumab. 
We focused on the transcriptomic data that encompass 489,490 
high-quality immune cells with 27,085 measured genes across 99 
high-resolution cell types. We restricted the dataset to tumor biopsy 
samples (excluding peripheral blood) and included only patients 
who exhibited either a partial response to treatment or stable disease 
(excluding one patient with progressive disease), resulting in a final 
cohort of 15 patients. We filtered genes with fewer than 10 cells, log 
normalized the data and selected highly variable genes using scanpy 
defaults. We calculated a PCA representation using scanpy with default 
settings that uses the ‘arpack’ solver. For the following analyses, we 
filtered the dataset to only keep cell types that were retained in all 
response groups.

To determine compositional changes, we applied pertpy’s imple-
mentation of scCODA per treatment. scCODA’s automatic reference 
cell type detection determined intermediate monocytes as the refer-
ence cell type, which we used for both treatments for consistency. 
Compositional changes with a false discovery rate of 0.1 (10%) were 
marked as credible effects.

We calculated the MSE distance between the respective groups in a 
pairwise fashion using pertpy’s ‘distance’ module on the PCA represen-
tation. We repeated this process three times for both treatments jointly, 
only chemotherapy treatment and only anti-PD-L1 and chemotherapy 
combination treatment.

DIALOGUE decomposition analysis was carried out exclusively 
on pre-treatment tumor samples. The sample labeled ‘Pre_P010_t’ 
was excluded because it demonstrated low diversity in cell types. The 
analysis was confined to cell types that had a minimum of three cells 
per sample in the remaining patient samples. The number of MCPs was 
to set 10, with normalization enabled and the ‘LP’ solver. We pooled 
patients receiving both treatments for this analysis, as DIALOGUE 
requires that all cell types analyzed be present in all patients.

When testing for associations between MCPs and treatment 
response, we applied a hierarchical testing approach by first exam-
ining cell types within each MCP individually. A predictive MCP for 
treatment response was determined using a t-test for independent 
samples for each cell type within each MCP. To adjust for the number 
of cell types tested, the Benjamini−Hochberg correction method was 
applied. Although we corrected for multiple testing across cell types, 
we acknowledge that additional correction across all MCPs would 
be more conservative. We chose this approach to balance statisti-
cal stringency with the exploratory nature of our analysis, as overly 
conservative correction might obscure biologically meaningful 
patterns in this high-dimensional dataset with limited sample size. 
The biological relevance of our findings is further supported by the 
consistent directionality of MCP2 effects across multiple function-
ally distinct immune cell populations, an outcome highly unlikely 
to occur by chance alone. Instead, we opted for more stringent 
thresholds in subsequent gene-level analyses, where we identified 
significantly associated genes with extremely low adjusted P values.

To identify significantly associated genes with the MCPs per cell 
type, cells at the extreme ends of the MCP distribution were selected—
specifically, those in the top 10% and bottom 10% of MCP scores for each 
cell type. The scanpy rank_genes_groups function with default param-
eters was subsequently used. This function conducts a t-test between 
the two cell groups to pinpoint genes that are differentially expressed, 
offering an adjusted P value that accounts for the total number of genes 
assessed. We filtered for heat shock proteins to determine HSPA1B to 
be significantly differentially expressed for naive T cells (adjusted 
P ≤ 2.9 × 10−272), CD8 effector memory cells (adjusted P ≤ 1.2 × 10−172), 
CD4 regulatory T cells (adjusted P ≤ 5.3 × 10−41), plasma B cells (adjusted 

P ≤ 6.5 × 10−34), CD4 central memory T cells (adjusted P ≤ 1.1 × 10−1) and 
memory B cells (adjusted P ≤ 6.5 × 10−37).

To determine if the identified genes played a role in altered cell−
cell interactions, gene comparisons were made for each cell type 
against the NicheNet database of protein−protein interactions, using 
gene names as identifiers90. An interaction was classified as MCP associ-
ated if both the corresponding receptor and ligand were present among 
the significant genes (adjusted P value less than 0.01) from two differ-
ent cell types. An interaction was deemed MCP ligand associated if the 
ligand was linked to an MCP in one cell type and the receptor exhibited 
a normalized mean expression over 1 in another cell type. Similarly, an 
interaction was considered MCP receptor associated if the receptor 
was connected to an MCP in one cell type and the ligand had at least 
10 counts in the other cell type.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All used datasets are available through out-of-the-box dataloaders in 
pertpy. We obtained the CRISPR screen dataset from Norman et al.16, 
which is available in the Gene Expression Omnibus (GEO) (GSE133344). 
We obtained the chemical perturbation dataset from McFarland et al.17, 
which the authors made available on figshare at https://figshare.
com/s/139f64b495dea9d88c70. We obtained the TNBC dataset from 
Zhang et al.18, which is available in the GEO with accession numbers 
GSE169246, GSE136206 and GSE123814.

Code availability
The pertpy source code is available at https://github.com/scverse/
pertpy under the Apache 2.0 license. Further documentation, tutorials 
and examples are available at https://pertpy.readthedocs.io. Scripts, 
notebooks and analysis results to reproduce our analysis and figures 
are available at https://github.com/theislab/pertpy-reproducibility.
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Extended Data Fig. 1 | Runtime and memory benchmark. (a) Runtime and (b) memory usage comparison of tools between pertpy’s implementation and 
correspondingly the existing R implementation or the formerly published original implementation.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Comparison of preprocessing strategies. (a) UMAP 
representation of the perturbation signature, computed by comparing a cell’s 
expression to its nearest neighbor control cells, thereby removing confounding 
factors such as cell cycle effects. (b) Mixscape classifies cells as successfully 
perturbed or targeted but not successfully perturbed. (c) Example perturbation 
score density plot for a combination gene activation. (d) MLPClassifier space 
computed after removing cells identified as not perturbed (NP). (e–h) Same as 

panels a–d, but for pertpy’s Mixscape implementation, where the perturbation 
signature is computed by comparing a cell’s expression to that of all control 
cells within the same GEM group (batch of cells processed in the same lane 
on a 10x Genomics chip). (i) Mean silhouette score per gene program for the 
two Mixscape preprocessing strategies shown in panels a–h, as well as for no 
Mixscape application (Fig. 2).
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Extended Data Fig. 3 | Integrated gradients analysis. (a) Top 15 genes 
identified per gene program as most important for predicting the corresponding 
perturbation (single gene or gene pair) using the MLPClassifier. Gene importance 
was determined using integrated gradients (Methods). Attribution scores 

are shown for each gene, averaged across all cells within the respective gene 
program. Genes directly targeted by at least one perturbation within the gene 
program group are highlighted in red. (b) Pairwise MSE distances between gene 
programs in the perturbation space.
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Extended Data Fig. 4 | Multicellular programs associated with treatment 
response. (a) DIALOGUE analysis shows several multicellular programs 
(MCPs) potentially associated with treatment efficacy. P-values are from 
independent-sample t-tests with Benjamini–Hochberg correction. Exact p-values 

are provided in Extended Data Table 2. (b) Pairplot of MCP 2.The diagonal shows a 
cell type specific kernel density estimate of the mean score for each MCP by sample. 
In the lower triangle’s scatter plots, each point denotes an average patient score for 
the cell types labeled on the corresponding row (x-axis) and column (y-axis).
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Extended Data Fig. 5 | Cell type specificity of multicellular programs and 
MCP2 gene scores. (a) Pair plots for MCP 2. The kernel density estimate along 
the diagonal shows the average score for each MCP by sample, specific to the 
indicated cell type. In the lower triangle’s scatter plots, each point signifies the 
average measurement from a patient for the cell types denoted by the respective 

row (x-axis) and column (y-axis). MCP 2 separates poor response to the PDL-1 
inhibitors. (b) MCP 2 extrema genes per cell type. Shown are the respective five 
genes with the highest and lowest scores for MCP 2. HSPA1B, which is significantly 
increased in MCP2 for all tested cell types (Methods), has been previously 
identified as a prognostic biomarker in breast cancer91,92.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-025-02909-7

Extended Data Table 1 | Comparison of pertpy to other perturbation analysis frameworks
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Extended Data Table 2 | DIALOGUE multicellular program adjusted p-values per cell type
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Extended Data Table 3 | Adjusted p-values from the DIALOGUE extrema test for MCP2 across cell types and 
AP-1-associated genes
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