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Advances in single-cell technology have enabled the measurement of
cell-resolved molecular states across a variety of cell lines and tissues
under a plethora of genetic, chemical, environmental or disease
perturbations. Current methods focus on differential comparison or

are specific to a particular task in a multi-condition setting with purely
statistical perspectives. The quickly growing number, size and complexity
of such studies require a scalable analysis framework that takes existing
biological contextinto account. Here we present pertpy, a Python-based
modular framework for the analysis of large-scale single-cell perturbation
experiments. Pertpy provides access to harmonized perturbation
datasets and metadata databases along with numerous fast and
user-friendly implementations of both established and novel methods,
such as automatic metadata annotation or perturbation distances, to
efficiently analyze perturbation data. As part of the scverse ecosystem,
pertpy interoperates with existing single-cell analysis libraries and is
designed to be easily extended.

Understanding cellular response to stimuliis crucial for describing bio-
logical phenomenaand mechanisms. Single-cell data have increasingly
shifted from observational experimentsto perturbation experiments,
encompassing genetic modifications, chemical treatments, physical
interventions, environmental changes, diseases and combinations
thereof. Technologies such as Perturb-seq', CROP-seq” and Sci-plex®
leverage single-cell readouts to capture perturbations at scale. By moni-
toring resulting shifts in intrinsic cell states, single-cell perturbation
analyses offerinsightsinto changesingene programs, shared and diver-
gentresponses across tissues, drug targets and interactions, changes
in cell type frequency and cell-cell interactions after perturbation.
Statistical and machine-learning-based analysis methods have
beendeveloped forthese complex data, resultinginthe discovery of, for
example, cell states associated with autism risk genes* or stimulation

responses in primary human T cells’. However, the size and complex-
ity of high-throughput perturbation screens can pose considerable
interpretation challenges, lacking meaningful lower-dimensional
representations and additional context regarding cell lines or pertur-
bations. Current perturbation analysis frameworks such as MUSIC®,
ScMAGeCK’, SCEPTRE®, GSFA® and FR-Perturb' primarily focus on
CRISPR perturbation analysis, neglecting other perturbation data
typesand perturbation analysis steps. Furthermore, no current analysis
framework exists that scales to genome-scale datasets”, contextual-
izes data with public annotations and uses common data structures
across tools (Extended Data Table 1). In addition, many tools suffer
from maintenance issues or are confined to the R ecosystem, compli-
cating analysis. Other widely used frameworks in the single-cell field,
such as scirpy” for adaptive immune receptor data and scvi-tools® for
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probabilistic modeling, have demonstrated the importance of enabling
efficient multimodal data analysis while providing flexible building
blocks for developers. Inspired by their impact and the lack of effi-
cient frameworks for perturbation data, we present a new framework
focused on perturbation data within scverse™.

Pertpy, a framework for perturbation analysis in Python, is pur-
pose built to organize, analyze and visualize complex perturbation
datasets. Pertpy is flexible and can be applied to datasets of different
assays, data types, sizes and perturbations, thereby unifying previ-
ous data-type-specific or assay-specific single-problem approaches.
Designed to integrate external metadata with measured data, it ena-
bles unprecedented contextualization of results through swiftly built,
experiment-specific pipelines, leading to more robust outcomes. To
evaluate methods and obtained representations for perturbations, we
implemented aseries of shared metrics. The wide array of use casesand
different types of growing datasets are addressed by pertpy through
its sparse and memory-efficientimplementations, which leverage the
parallelization and graphics processing unit (GPU) acceleration library
JAX®, thereby making them substantially faster than original imple-
mentations (Extended Data Fig. 1). We demonstrate this versatility by
applying pertpy to three different, popular, single-cell RNA sequencing
(scRNA-seq) perturbation use cases. To show how pertpy can discover
new gene programs, we study a CRISPR activation (CRISPRa) screen
(Perturb-seq)'®, projecting it onto ameaningful perturbation space and
evaluating the effect of different preprocessing strategies. Moreover,
we demonstrate how pertpy can be used to deconvolve perturbation
responses into viability-dependent and viability-independent compo-
nents in a large-scale gene expression and drug response screen” by
integrating metadata fromexisting databases. Finally, we decipher com-
positional changes and rank perturbation effects in a triple-negative
breast cancer (TNBC) study®. Whereas previously, a user would sepa-
rately download cell line or perturbation information from scattered
databases while piecing together analysis tools from different, incom-
patible ecosystems, it is now possible to efficiently analyze complex
perturbation datasets end to end with integrated biological context.

We provide online links to tutorials with more than 15 additional
use cases that demonstrate pertpy’s usage with datasets spanning a
variety of cell lines and perturbation conditions, ranging from CRISPR
screens” to inflammation?® and COVID-19 severity states”. Pertpy is
accessible as an extendable, user-friendly, open-source software pack-
age hosted at https://github.com/scverse/pertpy and installable from
PyPI. It comes with comprehensive documentation, tutorials and use
cases available at https://pertpy.readthedocs.io.

Results

Pertpy enables fast and scalable perturbation analyses

Pertpy includes methods for analysis of single and combinatorial
perturbations covering diverse types of perturbation data, including
genetic knockouts, drug screens and disease states. The framework
is designed for flexibility, offering more than 100 composable and
interoperable analysis functions organized in modules that further ease
downstreaminterpretation and visualization (Table 1). These modules
host fundamental building blocks for implementation and methods
that share functionality and can be chained into custom pipelines. To
facilitate setting up these pipelines, pertpy guides analysts througha
general analysis pipeline (Fig. 1) with the goal of elucidating underlying
biological mechanisms by examining how specificinterventions alter
cellular states and interactions.

Theinputs toatypical analysis with pertpy are unimodal scRNA-seq
ormultimodal perturbation readouts stored in AnnData* or MuData*
objects. Although pertpy is primarily designed to explore perturba-
tions such as genetic modifications, drug treatments, exposure to
pathogens and other environmental conditions, its utility extends to
various other perturbation settings, including diverse disease states
where experimental perturbations have not been applied.

Table 1| Summary of implemented methods

Analysis step Tool or algorithm Original authors
Datasets Data loaders Peidli et al.*®
Metadata annotation API requests to public Novel

databases

gRNA assignment Threshold-based Adamson et al. *°
Poisson-Gaussian Repogle etal.”
mixture model

Differential gene ‘Formulaic’ interface Novel

expression

Pooled CRISPR screens Mixscape Papalexi et al. ™

Differential abundance Milo Dann et al.**
scCODA 2.0 Biittner et al.”’
tascCODA 2.0 Ostner et al.*®

MCPs DIALOGUE Jerby-Arnon and

Regev*’
Enrichment Drug2Cell Kanemaru et al.’

Perturbation response Distances and metrics Novel

evaluation Augur Skinnider et al.®®
CINEMA-OT Squair et al.*®
Dong et al.”!
Embedding Perturbation spaces Novel

Thefirst data transformation step assigns guide RNAs (gRNAs) to
cells. These gRNAs are short RNA sequences that direct Cas9 nuclease
tospecificgenomictargets. Insingle-cell CRISPR screens, each cell typi-
cally receives one gRNA (low multiplicity of infection (MOI)), although
some experimental designs allow for multiple guides per cell (high
MOI). This makes accurate guide-to-cell assignment crucial for linking
phenotypic changes to specific genetic modifications. Pertpy provides
athresholding and a Poisson—-Gaussian mixture model" approach that
hasbeen shown to performwellin recent benchmarks*, accommodat-
ingbothlow and highMOIl scenarios. This assignment step isrequired
for downstream analyses, including quality control metrics, perturba-
tion efficiency assessment and statistical aggregation of phenotypic
effects across cells containing identical guides.

In a second step, confounding factors such as unwanted techni-
cal variation and other single-cell-specific quality control issues are
addressed. Technical variation between experimental batches, arising
from differences in sample processing, reagent lots or sequencing
runs, canintroduce systematic biases that confound biological signals.
These so-called batch effects are particularly challenging in perturba-
tion experiments where treatments may be applied across multiple
experimental rounds or where controls are processed separately from
perturbed samples. Complexity is further compounded when studying
combinatorial perturbations, where systematic batch variations could
be mistaken for interaction effects between different treatments. As
pertpy is integrated with the scverse ecosystem, users of pertpy can
seamlessly integrate established batch correction methods** to
disentangle technical artifacts from true perturbation responses.

After diligent quality control, a typical analysis with pertpy starts
by curating the perturbation annotations against ontologies such as
Cell Line Ontology® or Drug Ontology” and enriching the perturba-
tions with additional metadata obtained from Cancer Dependency
Map (DepMap) and Genomics of Drug Sensitivity in Cancer (GDSC)%
for celllines, Connectivity Map (CMap)*° for mechanisms of action and
the PubChem® and ChEMBL* databases for drugs (Methods).

The application of CRISPR can exhibit variable efficacy in affecting
gene expression. Pertpy’s fast Mixscape'’ implementation accounts for
this by classifying targeted cells based on their response to a perturba-
tion, analyzing each cell’s perturbation signature to determine if the
cell was successfully perturbed (Methods and Extended Data Fig. 1).
As the number of applied perturbations increases, comparing and
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Fig.1|Modules of the pertpy framework. a, Unimodal or multimodal single-cell
perturbation data originating from genetic modifications, chemical treatments,
physical interventions, environmental changes or diseases are enriched with
metadata from several databases. During preprocessing, confounding factors
such as cell cycle and batch effects may be removed. Targeted cells are labeled as

successfully or not successfully perturbed. Together, these modules enable the
calculation of ameaningful perturbation space. b, Pertpy enables downstream
analyses, depending on the question of interest. These include differential
expression analysis, response prediction, determination of MCPs, calculation of
distance between perturbations and mechanism of action enrichment.

interpreting thembecomesincreasingly challenging. Pertpy provides
several distinct ways to learn biologically interpretable perturbation
spaces that depart from the individualistic perspective of cells, instead
generating a single embedding per perturbation that summarizes
cellular responses (Methods). This specialized space, termed a per-
turbation space, represents the collective impact of perturbations
on cells and serves as potential input for downstream analysis'**.
Generally, pertpy’s analysis pipeline can be adapted depending on

whether the experiment involved multiple cell types or a number of
experimental perturbations.

Gene expression changes between experimental conditions are
crucial forunderstanding cellular responses to perturbations. Differential
gene expression analysis helps researchersidentify which genes signifi-
cantly change their expression levels when cells are exposed to different
stimuli or treatments. Although scanpy?* is widely used for single-cell
analysis, itlacks support for complex experimental designs that account
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for multiple conditions, batch effects and nested comparisons simulta-
neously. Pertpy fills this gap by providing an intuitive interface for dif-
ferential gene expression that supports complex designs and contrasts,
which is needed for multi-condition data (Methods). Currently, pertpy
supports PyDESeq2*, edgeR*®, Wilcoxon tests and t-tests. This interface
isaccompanied by a suite of plotting functions including visualizations
suchasvolcano plots, paired sample expression plots and multi-condition
heatmaps. Going beyond differential gene expression at scale, both
annotated metadata and differentially expressed genes can be used as
input for further pertpy modules such as gene set enrichment tests to
uncover the biological effects induced by the perturbations (Methods).

Tracking cell type compositional shifts is crucial for understand-
ing the underlying mechanisms of disease progression, tissue regen-
eration and developmental biology, offering insights into cellular
responses and adaptations. Pertpy offers two distinct methods for
detecting compositional shifts, both utilizingacommon MuData-based
data structure. If labeled groups are available, pertpy provides
accelerated and scalable implementations of scCODA* 2.0 and its
cell type hierarchy-aware extension tascCODA*® 2.0 (Methods and
Extended Data Fig. 1). Both approaches employ Bayesian methods to
elucidate cell type compositional changes. If no labeled groups are
available or continuous proportions are expected, such as during
developmental processes, pertpy implements a scalable version of
Milo, previously unique to the R ecosystem*, which conducts differen-
tial abundance tests by assigning cells to overlapping neighborhoods
within a k-nearest neighbor graph (Methods).

Understanding how cells function together within tissues is a
major challenge. Multicellular programs (MCPs) refer to the orches-
trated activities of various cell types that collaborate to create complex
functional structures at the tissue scale. Pertpy’s fastimplementation of
DIALOGUE* uncovers MCPs through a combination of factor analysis
and hierarchical modeling, owingto afastinput-order-invariant linear
programming solver and a new, fast test to determine significantly
associated MCP genes (Methods).

Not all cell types are equally affected by perturbations. Pertpy’s
fast implementation of Augur (Extended Data Fig. 1) ranks cell types
based on their response to perturbations by training machine learn-
ing models to predict experimental labels within each cell type and
then ranking these cell types by the models’ accuracy metrics across
multiple cross-validation runs (Methods). Furthermore, understand-
ing the dynamics of cellular response to various stimuliis crucial when
experimental exploration of all possible conditions is unfeasible.
CINEMA-OT*, via scalable pertpy implementation, extends this con-
cept by distinguishing between confounding variations and the effect
of perturbations, achieving an optimal transport match that mirrors
counterfactual cell pairings (Methods). These pairings enable analysis
of potentially causal perturbation responses, allowing for individual
treatment effect analysis, clustering of responses, attribution analysis
and examination of synergistic effects.

For accurate statistical comparison and measurement of pertur-
bation effects, it is essential to employ distance metrics between cell
groups. Asuitable metric quantifies divergence or similarity in expres-
sion patterns of cells under different perturbations, enabling inference
of unique or common mechanisms. Different types of distance metrics
make varying assumptions on the shape of the data and emphasize
specific aspects of difference. For instance, optimal transport-based
distances, such asthe Wasserstein distance*’, assume correspondence
between cell populations, whereas the Mahalanobis distance focuses
on covariance structures and scale differences within the data. To cap-
ture a wide range of distance metric types, pertpy implements more
than 18 different metrics, including, but not limited to, the Euclidean
distance (E-distance)™* and the Wasserstein distance (Methods). All
included metrics can also be used for perturbation testing through
Monte Carlo permutation testing, allowing for the statistical evaluation
of perturbation distinguishability and efficacy (Methods).

Builtonthescverse' ecosystem, pertpy ensures seamless interop-
erability with existing single-cell omics workflows and can be combined
with tools such as decoupler-py** and NetworkCommons®* for tasks
such as context-specific inference of protein interaction networks
while being purposefully extensible to address new challenges. Base
classes for additional perturbation spaces, distances, differential gene
expressiontests and other components are provided to facilitate swift
development. We additionally provide a dataset module withmore than
30 publicloadable perturbational single-cell datasetsin AnnDataand
MubData format, building upon and extending scPerturb* to kickstart
analysis, development and benchmarking with pertpy. The meta-
data of the datasets were curated against public ontologies to enable
swift dataset integration and large-scale machine learning, including
foundational models.

Learning and exploring perturbation representations with
pertpy

To demonstrate pertpy’s ability to learn meaningful perturbation
spaces, we examined a publicly available CRISPRa screen dataset ini-
tially presented by Norman et al.’, consisting of 111,255 single-cell
transcriptomes of K562 cells subjected to 287 single gene and gene
pair perturbations (Fig. 2a). We use this dataset to show how genetic
interactions through combinatorial expression of geneslead to cellular
and organismal gene programs and phenotypes. We further use pertpy
toinvestigate how different perturbation-specific preprocessing strate-
gies affect the outcome. In particular, we examine whether different
strategies may inadvertently remove true biological signals, such as
the cell cycle effects induced by CDKN2A perturbations.

After initial preprocessing (Methods), we test three
perturbation-specific processing strategies: (1) computing cell-specific
perturbationsignatures based on the 20 nearest neighbor control cells
ofaperturbed cell andfiltering out targeted cells that escaped pertur-
bationbased on this signature (Methods); (2) computing cell-specific
perturbation signatures using all control cells within the same Gel
Bead-in-Emulsion (GEM) group (that is, cells processed in the same
sequencing lane) to detect and filter out unperturbed cells (Methods);
and (3) no perturbation-signature-based filtering of cells.

Pertpy’s Mixscape'’ implementation supports strategies (1)
and (2), facilitating comparison of preprocessing strategies. After
applying each of the three strategies, we project the normalized gene
expression of the remaining cells into a perturbation space using
the penultimate layer of our multilayer perceptron (MLP)-based
discriminator classifier for each processing strategy (Methods and
Extended DataFig. 2). We found that all strategies yielded similar per-
turbation spaces (Extended DataFig. 2i), suggesting that, for this data-
set, theapproach without perturbation-signature-based cell filtering
is preferable. This is expected because the CRISPRaapproach used for
this dataset does not suffer from cells escaping a perturbation through
in-frame mutations, as would be expected in CRISPR-Cas9 screens.

Examining this perturbation space, we observe that explicitly
training the classifier to distinguish between individual perturba-
tions resultsin clustering of perturbations with similar effects on the
cell, asindicated by the affected gene program as originally labeled
by Norman et al.®. We assessed the importance of individual input
genesin the classifier’sassignment of a cell to a specific perturbation
using integrated gradients*® (Methods). By averaging these feature
importances for each annotated gene program, we demonstrate
that the classifier prioritizes the respective targeted genes from the
set of 4,000 highly variable input genes (for example, KLFI for the
pro-growth program), highlighting their relevance to the prediction
(Extended DataFig. 3a). Inaddition to validating known annotations,
evaluating data in perturbation space also allows for refinement of
previous annotations. For instance, the perturbation 7P73, character-
ized as a pioneer factor gene program in the original publication’,
clusterswith the Gl cell cycle perturbations whenembedded using the
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discriminator classifier. This can be explained by the profound influ-
ence of TP73 on the cell cycle”. Moreover, what the original authors
identified and labeled as a single pro-growth gene program cluster can
now be differentiated into two distinct clusters (mean squared error
(MSE) distance between the two subclusters: 0.46; mean pairwise MSE
distance between all gene programs: 0.29; Extended Data Fig. 3b).
Indeed, we found that although both clusters comprise perturba-
tions targeting genes important for cell growth, one cluster mainly
targets genes encoding Kriippel-like factors (KLFs), whereas the
other comprises perturbations of mitogen-activated protein kinase
(MAPK) encoding genes. Projection of data into the perturbation
spacealsoallows for anin-depth exploration of clusters without gene
program annotation, enabling identification of a previously unan-
notated cluster comprising perturbations with a downregulating

effect on the neutrophil degranulation pathway (Fig. 2b). This use
case demonstrates the simplicity and effectiveness of combining
several of pertpy’s modules into a new analysis pipeline, spanning
from quality control over perturbation space to the annotation of
previously unlabeled gene programs.

Pertpy streamlines discovery for complex perturbation
experiments

Advancementsin multiplexing technologies have markedly increased
the number of cell states that can be profiled in one experiment, result-
inginlarge perturbation screens. McFarland et al.” introduced MIX-Seq,
an experimental assay that enables multiplexing of different cell lines
within a single sequencing run. We use pertpy to efficiently analyze a
dataset comprising 172 cell lines and 13 drug treatments”.
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Fig.3|Deconvolution of viability-related response signatures in sCRNA-seq
drugscreendata. a, Overview of the chemical perturbation dataset. Cell

lines and perturbations were annotated with pertpy with additional metadata
facilitating detailed analysis. b, Linear regression model between single-cell
expression dataand GDSC profiles shows high correlation, reinforcing the

high quality of the dataset. ¢, Volcano plot showing the value and significance
(two-sided ¢t-test, Benjamini-Hochberg corrected) of the intercept of the fit linear
regression models for each gene (top), indicating the viability-independent
response. An example linear regression (+95% confidence interval) for the gene

UBALD2 (bottom left) shows that achange in UBALD2 expressioninacellline
isobservable, irrespective of the respective cell line’s sensitivity to dabrafenib
treatment. The top genes were used to perform GSEA (bottom right), with
enrichment Pvalues computed using blitzGSEA®, which applies Kolmogorov-
Smirnov tests and gamma distribution fitting. The figure design s inspired by
Fig. 2cin the original publication that introduces the dataset”. d, The same
asincbut for theslope of the linear regression models, indicating the
viability-dependent response. adj., adjusted; CNS, central nervous system;
FC, fold change; PCC, Pearson correlation coefficient; NA, not available.
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Pertpy reduces annotation and quality control to just a few
steps. Its metadata module annotates cell lines with tissue-of-origin,
cancer type and bulk expression profiles from the disease ontology
OncoTree*® and the Cancer Cell Line Encyclopedia* (CCLE). Com-
poundsare annotated with their targets and mechanism of action from
DepMap’’, GDSC* and CMap* (Methods). After annotation, pertpy
enables immediate visualization for exploratory analysis (Fig. 3a).
Additionally, annotated bulk expression allows users to compare RNA
profiles of their cell lines with established public datasets, provid-
ing rapid quality control functionality. Comparative analysis of the
dataset revealed an average Pearson’s correlation coefficient of 0.88
across all cell lines (Fig. 3b), demonstrating substantial consistency
with the cell line passages cataloged in the DepMap CCLE database
and enabling the integration of additional screening data from the
DepMap PRISM project™.

Pertpy significantly streamlines the replication and exten-
sion of the original analyses by McFarland et al.”. We used pertpy
to fetch and annotate area under the dose-response curve (AUC)
values for each cell line and perturbation pair from GDSC and PRISM
(Methods). This allows us to easily replicate the original statistical
method to uncover viability-dependent and viability-independent
gene expression associations. We selected a different drug from
the original analysis”, the BRAF inhibitor dabrafenib®?, and used
pertpy to compute post-treatment log fold changes across 95
cell lines (Methods). We interpret the intercept and slope of the
linear regression on dabrafenib sensitivity (1- AUC) to be the
viability-independent and viability-dependent responses of the
respective gene to dabrafenib (Methods and Fig. 3c,d). Notably,
we found that cancer-progression-linked genes £ETV4, CDKN2D and
MYEOV** displayed significant variation in their fitted response
parameters (Fig. 3¢,d). Additionally, our analysis identified enrich-
ment of genes involvedininterferonsignalingin viability-dependent
genes, consistent with initiation of an immune-mediated cell death
response to dabrafenib (Fig. 3d). Interestingly, protein translation
pathway genes were upregulated in the viability-independent effects
of dabrafenib, aresponse previously noted with dabrafenib® but with
no mechanistic information until now. This mechanism is distinct
from dabrafenib’s putative mechanism of action, BRAF inhibition,
which targets an orthogonal cell survival pathway. Pertpy’s ability to
efficiently manage, analyze and supplement complex experimental
design with additional datasets underscores its utility in conducting
sophisticated biology-informed analyses. This streamlined approach
greatly enhances the depth of biological insights discoverable.

Pertpy enables deciphering effects of perturbations on
cellular systems

Understanding the complexinterplay between theimmune systemand
the tumor microenvironment (TME) is crucial for unraveling cancer
progression. Thisis particularlyimportantinsolid tumor entities, such
asTNBC, arare, aggressive breast cancer subtype that lacks estrogen,
progesterone and human epidermal receptors, rendering it unrespon-
sive to standard receptor-targeted therapies®. Single-cell transcrip-
tomics of breast cancer tumors has uncovered distinct T cell subtypes
and the involvement of plasmacytoid dendritic cells in promoting
immunosuppressionwithin the TME in TNBC through tumor-immune
crosstalk®®, whichis asignificant driver of treatment resistance”. Stud-
ies have further elucidated TNBC-specific features and differential
responses toneoadjuvant chemotherapy (NACT) and immunotherapy,
highlighting the role of programmed cell death protein 1 (PD-1) and
programmed cell death ligand 1 (PD-L1) pathways in modulating treat-
mentoutcomes®. Therefore, we set out to demonstrate how pertpy can
be used to investigate treatment responses using a publicly available
dataset of 22 patients with TNBC treated with NACT with and without
additional PD-L1inhibitor paclitaxel®, initially presented by Zhang
etal.’® (Methods and Fig. 4a,b).

Torank perturbation effects, we used pertpy to calculate the MSE
distance between pre-treatment and post-treatment patients of the
four groups, selected for its strong performance on independent
benchmarks*’. We found that patients responding to NACT alone had
agreater distance between pre-treatment and post-treatment expres-
sion profiles compared to responders to anti-PD-L1and NACT combina-
tion therapy, implying that the latter led to potentially a less intense
response or was used in cases with aworse prognosis.

To identify cell types involved in treatment response, we investi-
gated shiftsin cell type compositioninduced by the treatment. Track-
ing cell type shiftsis essential for understanding disease progression,
tissue regeneration and treatment responses, revealing key insights
into cellular adaptations. We applied pertpy’s implementation of the
Bayesian model scCODA* 2.0 to the dataset per treatment (Methods).
We found compositional shifts for NACT treatment in CD4 central
memory, CD8 effector memory, CDS8 tissue-resident memory and
naive T cells between disease stages but not for combination therapy
(Fig. 4d). To better understand whether cell types that are subject to
compositional shifts are a part of acommon cell circuit, we set out to
find shared gene expression signatures in several cell types that jointly
act as tissue-level units, so-called MCPs*.

We applied pertpy’simplementation of DIALOGUE*°, which finds
MCPs using matrix decomposition in conjunction with a novel, fast
input-order-invariant linear programming solver, to the TNBC treat-
ment dataset, calculating 10 MCPs that can be assessed for associa-
tion with treatment response (Methods). Exploratory analysis of
average MCP2 scores across seven distinct cell types in each patient
(Extended Data Table 2) indicated a potential association with treat-
ment response for both treatment groups, based on cell-type-specific
t-tests (adjusted P<1.1x107") (Extended Data Figs. 3a,b and 4a,b).
Initial investigations of the MCP2-associated genes suggest involve-
mentin heat shock protein activity and cytokine signaling (Methods,
Extended DataFig.4 and extended data materials), including aninterac-
tionbetweeninterleukin7 (IL-7) and its receptor IL-7Rin T cells, which
areknown to have an antitumor role across diverse cancers®’. Increased
IL-7 activity may contribute to suboptimal treatment outcomes by
affecting T cellbehavior and elevating levels of MCP2-associated genes
JUN, FOS and FOSB (Extended Data Table 3 and Extended Data Fig. 5),
which are key components of the AP-1complex that can either inhibit
or promote tumor growth, depending on the context®.

Discussion

Pertpy facilitates the end-to-end analysis of complex perturbation
datasets with aversatile toolbox of interoperable components, encom-
passing metadata annotation, data analysis and visualization tools.
Through shared infrastructure and modules and with collaboration
with original authors, we developed improved versions of widely used
methods that were originally unmaintained or easily available only to
the R community, making them widely available to the Python com-
munity as well. Our community effort will ensure that all of these meth-
ods are jointly maintained and further developed. We demonstrated
pertpy’s flexibility through several use cases, including the identifica-
tion of perturbation-specific gene programs using a CRISPRa screen
(Perturb-seq) dataset, deconvolution of viability-related response
signatures in a chemical perturbation dataset and deciphering treat-
ment response todrugsin TNBC. Many further use cases can be found
in pertpy’s extensive online tutorials.

As perturbation datasets grow larger and incorporate additional
modalities such as spatial transcriptomics, we anticipate the develop-
ment of specialized methods for analyzing multimodal perturbation
data. By combining efforts such as Squidpy®® and pertpy, additional
functionality designed for spatial perturbations to uncover, for exam-
ple, differentially regulated neighborhoods, could be made widely
available. To scale to datasets with hundreds of millions of cells, such as
therecently published Tahoe-100M® dataset, further optimizationsin
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Fig. 4 | Pertpy identifies complex perturbation effects in multicellular tissue
asdemonstrated ona TNBC treatment dataset. a, Schematic overview of

the experimental design. b, scRNA-seq of tissue from 15 patients with TNBC,
comparing pre-treatment and post-treatment responses to anti-PD-L1 therapy
and NACT. ¢, MSE distance between treatment responses shows higher distances
between partial responses and stable disease. d, scCODA analysis shows
significant compositional changes for patients treated with chemotherapy.

For the chemotherapy cohort, the number of biological replicateswasn=3

pre-treatment (partial response), n = 3 pre-treatment (stable disease), n =3
post-treatment (partial response) and n = 3 post-treatment (stable disease).

For the anti-PD-L1cohort, the corresponding numbers were n = 4 pre-treatment
(partial response), n = 5 pre-treatment (stable disease), n = 2 post-treatment (partial
response) and n =4 post-treatment (stable disease). Box plotsindicate the median
and quartiles. ILC, innate lymphoid cell; T,,,, centralmemory T; T,,,, effector
memory T; T, tissue-resident memory T; treat., treatment.

pertpy through out-of-memory implementations using Dask are neces-
sary, following the approach pioneered by recent Scanpy improvements.

Finally, we expect pertpy to support the creation of perturba-
tion atlases through harmonized data collection, the generation of
meaningful perturbation spaces and the evaluation of these spaces
using pertpy’s distance metrics. Such atlases can comprehensively
characterize cell types under various conditions to capture the wide
array ofinducible cell states beyond their basal states. Enabled by per-
turbation dataset collections such as scperturb® (available in pertpy)
and PerturBase®* (extends scperturb with more recent datasets), we
expectsuch atlases tobecome essential for the development of robust

and generative foundation models where perturbation analysisis a key
task that can be confidently evaluated with pertpy’s metrics.

We expect pertpy to lead to more robust biological discoveries
throughits capability of enriching measurements with biological meta-
data. Asan extendable and interoperable framework, we anticipate that
pertpy will enable future robust perturbation analysis methods, tack-
ling the growing complexity and multimodality of perturbation data.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
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Methods

Implementation of pertpy

Pertpy is implemented in Python and builds upon several scientific
open-source libraries, including NumPy”°, Scipy”, JAX", scikit-learn’?,
Pandas’>”?, AnnData”, scanpy’*, muon®, NumPyro™, OTT-JAX”, blitzG-
SEA®’, PyTorch™ and scvi-tools” for omics data handling and matplot-
lib”” and seaborn’® for data visualization.

Summary table of implemented methods. Pertpy providesimplemen-
tations of many novel, but also established, methods that can be easily
accessed and combined to easily build custom analysis pipelines (Table 1).

dgRNA assignment. Assigning relevant guides to each cell is essential in
genetic perturbationassays, ensuring that the observed cellular responses
are accurately linked to the intended genetic modifications. This step is
criticalfor validating experimental design and interpreting results reliably.
Pertpy provides two approaches to assigning cells to guides.

First,asimplethresholdingmodel where the most expressed gRNA
isassigned toacellifitadditionally exceeds an optional user-specified
count threshold.

Second, a previously published Poisson-Gaussian model". For
each guide, cells with non-zero expression are log, transformed and
modeled as a mixture of two populations, with cells automatically
classified as negative if they show zero expression. A cell is labeled
as positive for a guide if it belongs to the higher-expressing popula-
tion, with a maximum of five guide assignments per cell to prevent
over-assignment; cells exceeding this threshold are marked as ‘mul-
tiple’, whereas those failing to meet the mixture model threshold for
any guide are designated as ‘negative’.

Differential gene expression. Differential gene expression analysis
compares the mean gene expression levels between different condi-
tions or groups to identify genes with statistically significant changes,
utilizing statistical models to account for between-sample variability
and control for false discovery rates. Pertpy provides a unified appli-
cation programminginterface (API) to supportavariety of such mod-
els. The first group of models comprises the ¢-test and Wilcoxon test
as simple statistical tests for comparing expression values between
two groups without covariates. The second group includes models
of the linear model family that allow modeling complex designs and
contrasts. Currently included are PyDESeq2*, edgeR* as well as a
wrapper around statsmodels (https:/www.statsmodels.org), which
provides access to a wide range of regression models, including ordi-
nary least squares regression, robust linear models and generalized
linear models. Linear model designs can be specified via Wilkinson
formulas as known from R (through ‘Formulaic’, https://github.com/
matthewwardrop/formulaic). Pseudobulk workflows that account for
pseudoreplication bias’ are enabled by integration with scanpy’s get.
aggregate() function. Results tables ranked by adjusted Pvalue are pro-
vided as aPandas data frame and can be visualized using volcano plots.

Analysis of pooled CRISPR screens with mixscape. CRISPR-Cas9 can
sometimes lead to cells escaping gene perturbation, such as knockout,
by receiving anineffective in-frame mutation, underscoring the neces-
sity for computational quality control to predict and enhance their
specificity and performance. Mixscape classifies targeted cells—that
is, those identified as perturbed by presence of agRNA—into success-
fully perturbed (KO) and targeted but not successfully perturbed (NP)
based on their response. Other perturbations, such as activations or
inhibitions, are here collectively referred to as ‘KO’ for consistency with
the original publication.

In particular, the Mixscape pipeline includes the following steps:

(1) Calculate the perturbation-specific signature of every cell,
which is the difference of the targeted and the closest k (de-
faults to 20) nearest control neighbors.

(2) Identify and remove cells that have ‘escaped’ CRISPR perturba-
tion by estimating the distributions of KO cells. Afterwards,
the posterior probability that a cell belongs to the KO cells is
calculated, and the cells are binary assigned based on a fixed
probability threshold (defaults to 0.5).

(3) Visualize similarities and differences across different perturba-
tions using linear discriminant analysis.

When calculating the perturbation-specific signatures, Mixscape
makes strong assumptions, such as cells with a perturbation not exhib-
iting compositional differences with respect to variation seen within
the control cells. Additional limitations include the assumption that
perturbation effects are additive and separable from underlying cell
state, the equal weighting of all genes regardless of their relevance to
the perturbation target and the failure toaccount for temporal dynam-
icsin cellular responses where early and late responding genes create
composite signatures.

Generally, the Mixscape pipeline assumes KO data. Applying Mix-
scape to CRISPR interference (CRISPRi) and CRISPRa data is more
nuanced but still valid under certain conditions. Unlike KO, these
modalities do notintroduce permanent genomic alterations, but vari-
ability in perturbation efficiency can create functionally not effectively
perturbed cells. Factors suchasincomplete transcriptional repression/
activation, gRNA efficiency, chromatin state, CRISPR expression or
variable effector recruitment (for example, KRAB for CRISPRi and
VP64 for CRISPRa) can lead to heterogeneous perturbation effects.
If these effects result in a clear separation between perturbed and
unperturbed-like transcriptomic states, Mixscape can still be meaning-
fully applied. However, careful validation is needed to ensure that the
identified unperturbed population reflects true biological variability
rather than technical artifacts.

We implemented Mixscape following the implementation of the
original authors". We further optimized the implementation by using
PyNNDescent (https://github.com/Imcinnes/pynndescent) for near-
estneighbor search for the calculation of the perturbation signature.

The implementation was verified by comparing the classifica-
tion results between the original Seurat Mixscape implementation
and the pertpy implementation through a confusion matrix, showing
high agreement, with 4,674 KO, 13,098 NP and 2,386 non-targeted
cells correctly classified by both implementations, with only minor
disagreements (438 cells classified as NP by pertpy but KO by original
and 133 cells classified as KO by pertpy but NP by original). Addition-
ally, the perturbation signature scores between implementations
show a strong correlation of 0.97 (P<0.0001), confirming that
pertpy’s implementation closely reproduces the original method’s
quantitative measurements.

Compositional analysis of labeled groups with scCODA and tas-
cCODA. Tracking cell type shifts is crucial for understanding the
underlying mechanisms of disease progression, tissue regeneration
and developmental biology, offering insights into cellular responses
and adaptations. Despite their critical role in biological processes
such as disease, development, aging and immunity, detecting shiftsin
cell type compositions through scRNA-seq is challenging. Statistical
analyses must navigate various technical and methodological con-
straints, including limited experimental replicates and compositional
sum-to-one constraints®. scCODA and its extension tascCODA both
employ Bayesian methods to elucidate cell type compositional changes,
with tascCODA being able to also take cell type hierarchiesintoaccount.

Theimplementations of scCODA 2.0 and tascCODA 2.0 are math-
ematically equivalent to the original implementations®® but allow
for accelerated inference by replacing the Hamiltonian Monte Carlo
algorithmwith the no-U-turn sampler from NumPyro™. The jointimple-
mentation also allows users to conveniently apply both methods from
within the same framework.
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Pertpy further uses MuData” objects to simultaneously handle
cell-by-gene and sample-by-cell-type representations of the same
data, simplifying the data aggregation and model specification steps
for scCODA 2.0 and tascCODA 2.0 while ensuring compatibility with
other methods featured in the scverse'* ecosystem. A wide range of
visualization options through scanpy®*, ETE 3 (ref. 80) and ArviZ® for
representation of differentially abundant cell types, their hierarchical
structure and inference diagnostics, respectively, are also provided
within pertpy.

The implementation was verified by comparing parameter esti-
mates and log, fold changes with the original implementation across
multiple test scenarios, including different reference cell types and
treatment conditions, with results showing nearly identical values
betweenimplementations (within approximately 0.01for parameters
and approximately 0.005 for log, fold changes).

Compositional analysis of unlabeled groups with Milo. Most meth-
ods for comparing single-cell datasets oftenrely onidentifying discrete
clusters to test for differences in cell abundance across experimental
conditions. However, thisapproach may lack the necessary resolution
and fail to represent continuous biological processes accurately. To
address these limitations, Milo was designed to conduct differential
abundance tests by assigning cells to overlapping neighborhoods
within a k-nearest neighbor graph.

The implementation of Milo is based on Milopy (https://github.
com/emdann/milopy). It uses the same MuData-based data struc-
ture that the scCODA 2.0 and tascCODA 2.0 implementations also
use. Here, neighborhood counts are stored in a slot in MuData for
downstream usage.

The implementation was verified by comparing the results from
the pertpy implementation and the original miloR package, showing a
strong correlation (r= 0.987) between log fold change values calculated
atthecelllevel. Additionally, precision and recall analysis across differ-
entsignificance thresholds demonstrated high concordance between
the two implementations, with both metrics approaching 1.0 as the
thresholdincreases. This confirms that pertpy’s Miloimplementation
accurately reproduces the statistical findings of the original method.

MCPs with DIALOGUE. MCPs, or gene programs, refer to the complex
regulatory networks and signal transduction pathways that govern the
behavior, differentiation and communication of cells. DIALOGUE* is a
matrix factorization method for identifying these specific gene expres-
sion patterns. Theimplementation of DIALOGUE in pertpy resembles
the original implementation*°. The main differences are as follows:

» The Rimplementation of MultiCCA has been replaced with
a Python implementation of the original mathematical
formulation®, which can be found at https://github.com/theis-
lab/sparsecca. In addition, the Python implementation also has
the option to solve for the canonical covariate weights w using
linear programming, allowing for concurrent instead of iterative
optimization over the pairwise factor matrices. This resultsin
weights that are consistent regardless of the order in which cell
types are passed, which was not previously true.

« Anadditional gene identification method, referred to as
extrema MCP genes, which selects cells at the extreme val-
ues of the MCP (cells with the top 10% and bottom 10% MCP
scores in each cell type) and then runs the rank_genes_groups
function from scanpy with default parameters to perform a
t-test between the two groups of cells to identify differentially
expressed genes to provide adjusted P values based on the
number of tested genes.

Although the extrema MCP genes approach utilizes gene expres-
sion data twice—once for defining MCPs and again for differential
testing—it avoids statistical circularity common in post-clustering

analyses®. Unlike traditional clustering approaches where cells are
forcibly separated based on expression patterns and then the same
data are used to identify what drives that separation (creating artifi-
cially small P values), the MCP scores represent continuous axes of
biological variation extracted through independent matrix factoriza-
tion methods, whereas the extremaselection merely applies thresholds
tothese pre-computed scores. The subsequent differential expression
testing therefore examines distinct biological phenomena rather
than confirming the same signal, maintaining statistical validity and
interpretability of the identified gene signatures.

Owing to these differences, the reported MCPs and MCP genes
will not exactly match those identified in the DIALOGUE R package.
Notably, users should be aware that the Seurat and scanpy imple-
mentations calculate principal component analysis (PCA) differently,
resulting in downstream differences in MCP scores. When the same
PCArepresentationis used, the MCP values between the Rand Python
implementation have an average Pearson’s correlation of 0.96 when
tested on the sample dataset provided in the R tutorial.

Enrichment with blitzGSEA. Gene set enrichment analysis (GSEA)
determines whether predefined sets of genes, often associated with
specific biological functions or pathways, show statistically signif-
icant, concordant differences in expression across two biological
states or phenotypes. It is used to identify biological processes that
are overrepresented in a ranked list of genes, typically arising from
high-throughput experiments. This approach shifts the analysis focus
fromindividual genesto the collective behavior of genes within prede-
fined, functionally related groups, facilitating adeeper understanding
of the biological mechanisms underlying observed changes. Pertpy
provides access to a variety of metadata databases that provide gene
sets whose enrichment can be tested for.

We generally followed the enrichment pipeline described in Drug-
2Cell** to test for the enrichment of gene sets. This pipeline entails:

(1) Fetching gene sets from databases

(2) Scoring gene sets by computing the mean expression of each
gene group per cell

(3) Performing a differential expression test to get ranked gene
groups that are upregulated in particular clusters

(4) Determining enriched genes using a hypergeometric test on the
gene set scores or using blitzGSEA®

The implementation was verified by comparing the results from
pertpy’s enrichment module and the original Drug2Cell package,
demonstrating exact equivalence in both overrepresentation and
enrichment analyses. Tests confirmed that the pertpy implementation
producesidentical results for hypergeometric overrepresentation test-
ingincell-type-specific pathways and GSEA, with all results being equal.

Distances, metrics and permutation tests. Distance metrics serve as
animportantbaselineintwo primary tasks in single-cell perturbation
analysis: (1) identifying relative heterogeneity and response and (2)
evaluating and training single-cell perturbation models. To this end,
various commonly used distance metrics have been implemented to
be easily applied to single-cell AnnData objects with accompanying
perturbation or disease labels. In the following, we present the 16
distances, in order of performance according to Ji et al.*’, that are
implemented in pertpy. We use x* to denote the gene expressionin cell
kand x;and y;for the expression of geneiin the perturbed and control
conditions, respectively.

« MSE
Determines the mean squared distance between the mean vec-
tors of two groups.

1
MSE = (6 -3’
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« Maximum mean discrepancy (MMD)
Evaluates the discrepancy between the empirical distributions
of two groups using kernel-based methods. Let ndenote the
number of samples and k(- - thelinear kernel function.

2 _

MMD? = lzlg k(d, x/) — 2 ;jzl k(x, y7)
oD Z Zk(y /)

i=1j#i

» Euclideandistance
Calculates the Euclidean distance between the means of the two

groups.
Euclidean distance = 1/ X(x; —y,‘)2

+ Energy distance'*

Computes a statistical energy distance between two groups
based on mean pairwise distances within and between groups.
We define

Oxy = NMZZHXI

i=1j=1

Ox = N(1 ZZHXI x|

11]1

and 6y accordingly, where 6 denotes the mean pairwise distance
between samples. The energy distance is then calculated as

E(X,Y) = 26y — 65— by

» Kolmogorov-Smirnov test distance
Applies the Kolmogorov-Smirnov statistic to measure the maxi-
mum distance between the empirical cumulative distributions
of two groups. We define the empirical distribution function for
geneias
f@=f ¥y <z kell, ..., N}Y

over all cells of the control condition and, analogously, f,(z) for

perturbed cells. For each gene, the maximum distance between

bothdistribution functions max |fi(2) _fi(z)| iscomputed, and the
z>0

results are averaged over all genes to yield a single distance value.

+ Mean absolute error (MAE)
Measures the mean absolute difference between the mean vec-
tors of two groups.

1
MAE = EZIXi—yf\

+ Two-sided t-test statistic
Uses the t-test statistic to compare the means of two groups
under the assumption of unequal variances. Let s and s} denote
the variances of gene i for perturbed and control, n, and n, the
sample sizes for perturbed and control and ¢ a small factor to

avoid dividing by zero.

t:l Xi —Ji
ner s

« Cosine distance
Computes the cosine of the angle between the mean vectors of
the two groups.
x-y
bl

Cosine distance =1 —

where -denotes the dot product.

« Pearson’s distance

Uses Pearson’s correlation to assess the linear correlation
between the mean vectors of two groups, returning 1 minus the
correlation coefficient. Let x and y denote the mean expression
over all genes. -

2 =00 - Y)
\/Z % —0° 3 (9 —.Z)z

Coefficient of determination distance

Calculates the coefficient of determination (R?) between the
mean vectors of two groups. Note that, unlike most other
distances listed here, R*is not symmetric/has not been
symmetrized.

R L Xi—y) y,
> G-

where x is the mean expression over all genes in the perturbed
condition.

Classifier control probability

To compute the classifier class projection distance between per-
turbations Pand control condition C, we train a linear regression
classifier to distinguish between C and P, with 20% of P held out
for testing. To calculate the distance for perturbation class P, we
obtain the average post-softmax classification probabilities of
all cellsin P;and return the probability of class C.

Kendall’s tau distance

Applies Kendall’s tau, a measure of ordinal association, between
the mean vectors of two groups. We define C as the number of
concordant pairs, D as the number of discordant pairs, X as the
number of ties in x’s ranking and Y as the number of tiesin y’s
ranking.

o =<1_ (C-D) )n(n—l)
i JC+D+X)C+D+Y) 4

Spearman’s rank distance
Similar to Pearson’s distance but uses Spearman’s rank correla-
tion to measure nonlinear relationships.

6xd?
p = —l
n(nz-1)
where d; represents the difference in rank of gene i across both
samples.
Wasserstein distance
Also known as Earth Mover’s Distance, computes the cost of
optimally transporting mass from one distribution to another.
Let W(p, g) be the first-order Wasserstein distance between
probability distributions p and g, I"(p, g) the set of all joint
distributions with marginals p and g and c(x, y) the cost of
transporting a unit of mass from x to y,and X and Y are the
support sets of p and g, respectively.

W(p,q) = infyerr) f cOe )y, y)
XXY

Symmetric Kullback-Leibler divergence

Measures how one probability distribution diverges from a
second. In the case of discrete inputs, the Kullback-Leibler
divergence is calculated as follows:

Da(PIQ) = 3 Plog( o)

e Q)
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where P and Q are discrete probability distributions.For non-
discrete inputs, the Kullback-Leibler divergence is computed as
3+ (O -y’

Sy,
KL= In2 4 2% —° - _
Z Sx,- Z*Syzl_

N =

where s denotes the standard deviation.

- Classifier class projection
The classifier class projection distance between perturbation P;
and control condition C; is calculated by training a linear
regression classifier on all x ¢ P;and all C, subsequently
retrieving the average post-softmax classification probabilities
of all cells x, and returning the probability of class C;.
The following distance was also implemented in pertpy but was
not part of the aforementioned benchmark:

» Negative binomial log likelihood

Fits a negative binomial distribution to one group and uses it to
compute the log likelihood of the other group’s data. For each gene i
thatis not overdispersed in x, we fit a negative binomial distribution
with parameters y;and 6;. The distance between two categories x and
yisthen computed as the average negative log likelihood of y given
the parameters of the distribution fit on x for each gene i—thatis,

N
l/ﬂ Zl ex,»(l()g(ex,») - lOg(ex,» + ﬂx;)) +yi(log(ﬂx;) - log( ex,» + ﬂx,»))
i=

+In(I(y; + 6y,)) — In(1'(By,)) — In(I'(y; + D)

The ‘distances’ module allows users to quickly fetch the pairwise dis-
tances between any set of categorically labeled cells. The ‘distance_
tests’ module allows users to compute a P value through Monte Carlo
permutation testing, thereby providing a confidence value for any
given distance. This can be particularly comforting in cases in which
distances have been used as proxies for real biological response in
gene expression space.

Note that, although we refer to all of the above as ‘distances’, they
do not all meet the mathematical definition of a distance; deviations
from the standard distance axioms are detailed in Ji et al.”’. Although
these distances can be used with any single-cell measurement, it
should be noted that the ranking above was performed in the context
of single-cell transcriptomics.

We also implemented two metrics for evaluating expression pre-
diction models. To evaluate if perturbation prediction leads to mean-
ingful biological conclusions, weimplemented a differential expression
correlation metric. This metric uses Spearman’s correlation to com-
pare differential gene ranking from the scanpy rank_genes_groups func-
tion performed on control versus real perturbed data and on control
versus predicted perturbed data. To evaluate if the distribution of gene
expression means versus variances corresponds to real data, we used
asimilar method as proposed previously®*. The distribution of expres-
sion mean-variance two-dimensional relationship was estimated with
kernel density for both real and predicted perturbed data. The distance
between the two densities was estimated based on the difference of
values sampled across the whole data range.

Perturbation ranking with Augur. Augur aims to rank or prioritize
cell types according to their response to experimental perturba-
tions. The fundamental idea is that, in the space of molecular meas-
urements, cells reacting heavily to induced perturbations are more
easily separated into perturbed and unperturbed than cell types with
little or no response. This separability is quantified by measuring how
well experimental labels (for example, treatment and control) can
be predicted within each cell type. Augur trains a machine learning
model predicting experimental labels for each cell type in multiple
cross-validation runs and then prioritizes cell type response according
to metric scores measuring the accuracy of the model. For categorical

data, Augur uses the AUC, and, for numerical data, it uses the concord-
ance correlation coefficient.

Our implementation of Augur follows the original implementa-
tion® %, We further optimized it by parallelizing the training of the
predictive models. Moreover, the pertpy implementation allows for
gene selection using either the originally used variance based imple-
mentation or scanpy’s highly variable genes.

The implementation was verified by comparing the results from
pertpy’s Augurimplementation and the original R-based Augur pack-
age, showing excellent agreement in both default and velocity mode.
The AUC scores from both implementations were highly consistent
across all tested cell types, with all data points falling within 4% of the
expected y =x line. This close correspondence was observed in both
analysis modes, confirming that pertpy’s implementation faithfully
reproduces the computational methodology of the original R package.

Causal identification of single-cell experimental perturbation
effects with CINEMA-OT. Cellular responses to environmental sig-
nals are crucial for understanding biological processes. Effectively
extracting biological insights from such data, especially through
single-cell perturbation analysis, remains challenging due to alack of
methods that can directly account for underlying confounding varia-
tions. CINEMA-OT distinguishes between confounding variations and
the effects of perturbations, achieving an optimal transport match
that mirrors counterfactual cell pairings. These pairings allow for the
analysis of causal perturbation responses, enabling novel approaches,
includingindividual treatment effect analysis, clustering of responses,
attribution analysis and the examination of synergistic effects.

The implementation of CINEMA-OT is based on the original
implementation*. We used OTT-JAX”’ to make the implementation
portableacross hardware. It can, therefore, also be run on GPUs. Nota-
bly, the JAX-based implementation may initially run slower than the
NumPy-based version due to the overhead of just-in-time compilation.

The implementation was verified by comparing the results from
pertpy’s CINEMA-OT implementation and the original CINEMA-OT pack-
age. Tests showed strong agreement between both implementations,
with arelative Frobenius norm difference of less than 0.1(0.0973) for the
optimal transport transformed confounders. Additionally, single-cell
treatment effects showed exceptionally high correlation between
implementations, with mean Pearson’s correlation of 0.989 and mean
Spearman’s correlation of 0.983 across all genes. Bothimplementations
consistently revealed the same biological insight regarding distinct treat-
ment effects in monocytes, confirming that pertpy’s implementation
faithfully reproduces the computational methods of the original tool.

Perturbation spaces. Pertpy discriminates between two fundamental
domainsto embed and analyze data: the ‘cell space’ and the ‘perturba-
tionspace’. In this paradigm, the cell space represents configurations
where discrete data points representindividual cells. Conversely, the
perturbation space departs from the individualistic perspective of cells
and, instead, categorizes cells based on similar response to perturba-
tion or expressed phenotype where discrete data points represent
individual perturbations. This specialized space enables comprehend-
ing the collective impact of perturbations on cells. We differentiate
between perturbation spaces (wWhere we create one data point for all
cells of one perturbation) and cluster spaces (where we cluster all cells
andthentest how well the clustering overlaps with the perturbations).

Pseudobulk space. This space takes the pseudobulk of acovariate such
as the condition to represent the respective perturbations using the
Pythonimplementation of DecoupleR** (https://github.com/saezlab/
decoupler-py), which can subsequently be embedded.

Centroid space. The centroid space calculates the centroids as the
mean of the points of a condition for a pre-calculated embedding. Next,
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itfinds the closest actual point to that centroid, which determines the
perturbation space point for that specific condition.

MLP classifier space. The MLP classifier space trains a feed-forward
neural network to predict which perturbation has been applied to a
given cell. By default, a neural network with one hidden layer of 512
neurons and batch normalization is created and trained using a batch
size of 256. However, all these hyperparameters can be customized by
the user to suit the specific requirements of the dataset. We account for
classimbalances by oversampling perturbations with fewer instances.
The MLPis trained using cross-entropy loss until detection of overfitting
(early stopping) or until it reaches the maximum number of epochs to
train, set to 40 by default. To obtain perturbation-informed embeddings
ofthecells, the cellrepresentationsinthe last hidden layer are extracted.
Another perturbation space, such as pseudobulk, canbe applied down-
streamto obtainaper-perturbationembeddingifrequired. For creation
and training of the MLP, we leverage the PyTorch library.

Logistic regression classifier space. The logistic regression classifier
space generates perturbationembeddings, asopposedto per-cellembed-
dings computed by the MLP classifier space. Alogistic regression classifier
istrained for each perturbationindividually to determineifthe respective
perturbationwasapplied toacell or not. Depending on user preference,
the classifier can be trained on the high-dimensional feature space or
onapre-computed embedding, such as one obtained through PCA. For
each perturbation, we extract the coefficients of the logistic regression
classifier, trained until convergence or reaching the maximum number
ofiterations (1,000 by default), to derive a per-perturbationembedding.
We usescikit-learn’simplementation for the logistic regression classifier.

DBSCAN space. DBSCAN® (density-based spatial clustering of applica-
tions with noise) is a clustering algorithm that identifies clustersin a
dataset based on the density of data points, grouping together points
that are closely packed while marking points in low-density regions
as outliers. Pertpy’s implementation of a DBSCAN space is based on
scikit-learn’s DBSCAN implementation.

k-means space. k-means is a clustering algorithm that partitions a
dataset into k distinct, non-overlapping clusters by minimizing the
distance between data points and the centroid of their assigned cluster.
Ititeratively adjusts the positions of centroids to reduce the total vari-
ance within clusters, makingit suitable for identifying spherical-shaped
clustersinfeature space. Pertpy’simplementation of a k-means space
uses k-means clustering asimplemented in scikit-learn.

Label transfer. Label transfer in single-cell analysis involves using
annotations of a dataset to predict the states of unannotated data
points, leveraging similarities in gene expression patterns or nearest
neighbors. Pertpy’s label transfer function uses PyNNDescent to find
the closest neighbors for all data points and then uses majority voting
to label unlabeled data points.

Thelabel transfer function further quantifies uncertainty, where
eachneighbor’s contributionis weighted by its connectivity strength
(derived fromthe distance in gene expression space). These weighted
contributions are first converted into aone-hot encoded matrix where
each column represents a label category. The uncertainty score for
eachtransferredlabelis then calculated as the Shannon entropy of the
weighted label distributioninthe cell's neighborhood—if all neighbors
have the same label, the entropy (and, thus, uncertainty) is 0, whereas
diverse labels among neighbors result in higher entropy values. This
uncertainty score provides a quantitative measure of prediction con-
fidence, where higher valuesindicate more heterogeneous neighbor-
hoods and, thus, less reliable label transfers.

Any obtained labels through label transfer must be diligently
verified. Label transfer can propagate biases from the reference

annotations, leading to incorrect annotations if the reference is not
representative of the target data. Differences in batch effects, technical
noise or biological variability can distort nearest neighbor relation-
ships, reducing thereliability of transferred labels. Additionally, major-
ity voting can fail in cases where distinct perturbations and cell states
areunderrepresented, leading to misclassification of rare populations.

Metadata support. Pertpy provides access to several databases that
contain additional metadata for cell lines, mechanisms of actions
and drugs. Onrequest, the database content gets cached locally, and
the respective information gets stored in the appropriate slots of the
passed AnnData object.

Cell line. Pertpy provides access to DepMap (https://depmap.org/
portal/, version 23Q4) and GDSC?. The following information can
be obtained:

« Cellline identification: Comprehensive details such as cell line
names, aliases, DepMap IDs and CCLE®*® names

+ Geneticinformation: Data on genetic aberrations prevalentin
cancer cell lines, including mutations, copy number alterations,
fusion genes and comprehensive gene expression profiles

- Dependency scores: Quantitative assessments of gene essenti-
ality that showcases the impact of specific genes on the viability
of cancer cell lines

- Drugsensitivity: Detailed measurements of how cancer
cell lines respond to various drugs, with metrics such as
half-maximal inhibitory concentration (IC,,) values providing
insights into the effectiveness and potential toxicity of thera-
peutic compounds

- Lineage and type: Information categorizing cell lines based on
their tissue of origin and the type of cancer they represent

« Molecular subtypes: Classifications based on detailed genetic,
epigenetic and proteomic analyses, which help in understanding
the heterogeneity within and across cancer types

« Phenotypic data: Observations on cell growth rates and
morphological characteristics, which can correlate with genetic
traits and drug responses

« Genomic profiling: Includes high-resolution data from
whole-exome and whole-genome sequencing efforts, offering a
comprehensive view of the genetic landscape of cell lines

» Proteomics profiling: Protein intensity values acquired using
data-independent acquisition mass spectrometry (DIA-MS)
from DepMap Sanger.

Mechanism of action. Pertpy provides access to CMAP*’, also com-
monly referred to as CMap and LINCS Unified Environment (CLUE),
which hosts the infrastructure. CMAP is a resource designed to
help researchers discover functional connections among diseases,
genetic perturbation and drug action. The following information can
be obtained:

« Compound names: The name of the compound of genetic
perturbagen

« Mechanism of action: The specific biochemical interactions
through which compounds exert their effects on cellular func-
tions. This includes detailed descriptions of whether a com-
pound acts as an inhibitor, activator or modulator of particular
molecular targets.

- Target: The sets of genes or proteins that directly interacted
with or were affected by the perturbagen

Drug. Pertpy provides access to PubChem® using PubChemPy
(https://github.com/mcs07/PubChemPy). PubChem is a compre-
hensive resource for chemical information, primarily known for its
vast database of chemical molecules. The following information can
be obtained:

Nature Methods


http://www.nature.com/naturemethods
https://depmap.org/portal/
https://depmap.org/portal/
https://github.com/mcs07/PubChemPy

Article

https://doi.org/10.1038/s41592-025-02909-7

« Chemicalidentifiers: Each chemical in PubChemis assigned
unique identifiers, including CAS numbers, InChl strings and
SMILES notation.

Pertpy further provides access to the ChEMBL* database.
ChEMBL is a comprehensive database maintained by the Euro-
pean Bioinformatics Institute, part of the European Molecular
Biology Laboratory. It provides a vast collection of data on
bioactive molecules with drug-like properties. The following
information can be fetched:

« Compounds: The names of the compounds

- Targets: The target gene sets of the compounds

Benchmarking runtime. To evaluate computational efficiency, we
measured execution time and resource consumption for all tools imple-
mented in pertpy. Following their respective tutorials, we developed
scripts with standard workflows on exemplary data in their original
implementation. We further wrapped all of these scripts in a repro-
ducible Snakemake® pipeline using Conda environments that we
defined per toolimplementation to create isolated and reproducible
runtime environments.

These scripts were executed on a system with an AMD EPYC 9754
128-core processor and 500 GB RAM in a Linux environment. This
setup ensured accurate and reproducible timing measurements. Each
script was run three times to guarantee consistency. We upsampled or
downsampled example datasets with aset seed to evaluate each tool at
5,000,10,000,50,000,100,000,500,000 0r1,000,000 cells. Timing
and memory use was recorded with Snakemake’s benchmark feature.
The results are shown in abox plot (Extended Data Fig. 1), which com-
pares the execution time in seconds and memory usage in megabytes
across each tool and implementation.

Use cases

For the following analyses, we used the latest pertpy version (0.10.0).
We deposited afull Condaenvironment toreproduce our resultsin the
associated reproducibility repository, together with all result tables
of our analysis.

Analysis of the CRISPR screen dataset. We obtained the original
dataset from the original publication'®, together with the labels of the
gene programs. The dataset contained 111,255 cells and 19,018 genes.
We followed the standard scanpy preprocessing pipeline to log normal-
ize the data, calculate 4,000 highly variable genes, obtain PCA com-
ponents and embed the data into a uniform manifold approximation
and projection (UMAP) space for visualization purposes. Moreover,
we scored cell cycle genes using the list of Tirosh et al.®,

Afterwards, we compared three distinct processing strategies: (1)
perturbation signature computation and cell filtering based on the 20
nearest neighbor control cells, (2) perturbation signature computation
and cellfiltering based on all control cells within the same gene group
and (3) no perturbation-signature-based cell filtering. For strategies
(1) and (2), we used pertpy’simplementation of Mixscape to calculate
the perturbation signature (with ref _selection_mode = ‘nn’ for strategy
(1) and ref_selection_mode = ‘split_by’ for strategy (2) in pt.tl.Mixscape.
perturbation_signature), which was subsequently embedded into
UMAP space. Next, we applied Mixscape to the perturbation signature
to calculate the perturbation scores that are binarized to label cells as
successfully and unsuccessfully perturbed.

We applied pertpy’s MLP-based classifier to the gene expression
datafromeach processing strategy (with cells filtered out for strategies
(1) and (2)) and embedded the pseudobulk of the penultimate layer
feature values with UMAP. To quantify the similarity of the perturbation
spaces produced by each processing strategy, we used scikit-learn to
calculate thessilhouette score for each perturbation from the UMAP of
the perturbation space. We then averaged the silhouette scores for each
gene program. The silhouette score varies between—-1and +1, where a

higher score indicates that the perturbation embeddingis well aligned
withits corresponding gene program cluster and poorly aligned with
other gene program clusters.

We further used pertpy’s distance module to compute the MSE
distance between the two subclusters formed from perturbations
annotated as pro-growth. To assess the importance of individual genes
(input features) for predicting perturbations, we calculated integrated
gradients*® using captum (captum.attr.IntegratedGradients). We com-
puted the attribution for each cell using its respective perturbation
label as the target and then averaged the feature importances across
all cells annotated with the same gene program.

To identify gene programs affected by perturbations in an unan-
notated cluster inthe UMAP, we performed GSEA on either upregulated
or downregulated genes (adjusted Pvalue cutoff of 0.01) in the cluster
ofinterest, identifying the top three upregulated and downregulated
Reactome® pathways for the cluster.

Analysis of the chemical perturbation dataset. We obtained the data-
set fromthe original publication of the study, which already contained
annotations of cell lines, cell line quality, channel, disease, dose units,
dose values and many more fields that are documented in our analysis
notebook. We filtered out cells perturbed by CRISPR, leaving 154,710
cellsand 32,738 genes of 172 cell lines, treated with 13 different drugs.
We applied standard preprocessing by filtering genes that were present
in fewer than 30 cells and log normalizing the counts. In total, 4,000
highly variable genes were computed using the highly_variable_genes
function of scanpy and used as the basis for downstream analyses,
except when examining viability-dependent and viability-independent
drugresponses.

Next, we fetched all available cell line metadata from DepMap
and GDSC, using pertpy to annotate the cell lines by their DepMap ID
with cell lineages, compound targets and mechanism of action using
CMAP*°, We further added drug sensitivities of cell lines to anticancer
therapeutics from GDSC* and PRISM (DepMap).

Pseudobulks were generated using pertpy’s PseudobulkSpace
function by perturbation. We used the expression of the cell lines
labeled as ‘control’ as baselines. Bulk RNA expression data were fetched
from the CCLE using the data from the Broad Institute via pertpy. We
used pertpy to calculate row-wise correlations of the expression pro-
files of the cell lines to obtain Pearson’s correlation values and Pvalues.

Finally, we used pertpy to disentangle drug responses into com-
ponents that are independent of and dependent on the sensitivity
of a certain cell line to a drug. We followed the approach presented
in the paper introducing the original dataset” but replaced func-
tionalities with pertpy’s own implementation whenever possible.
Although previous work focused on the drug trametinib, we here
investigated treatment responses to dabrafenib. We used pertpy’s
annotate_from_gdsc function to query the AUC values for each cell
line-drug combination using the GDSC1, GDSC2 and PRISM data-
bases. We rank normalize the AUC values within each database and
then compute the mean of all available values for)each cell line. The
dabrafenib sensitivity is then defined as1 minus the mean AUC. Next,
we computed the expression log fold change between treated cells
and control based on raw counts for each cell line individually, using
pertpy’simplementation of edgeR. Then, for each gene, the following
linear regression model was fit:

log —FCgene = Intercept + Slope x Dabrafenib sensitivity of cell lines

The fit model enables the decomposition of the observed change
in gene expression in the treatment group into two components: a
viability-independent response (intercept) and a viability-dependent
response (slope). Genes with aBenjamini-Hochberg-corrected Pvalue
less than 0.01for either the slope or intercept were considered signifi-
cant and subsequently used for GSEA using the blitzGSEA® API.
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Analysis of the TNBC treatment dataset. We obtained the dataset
from the original publication'®, which comprises scRNA-seq and assay
for transposase-accessible chromatin with sequencing (ATAC-seq)
data from 22 patients with advanced TNBC, treated with paclitaxel
alone or in combination with the anti-PD-L1 therapy atezolizumab.
We focused on the transcriptomic data that encompass 489,490
high-quality immune cells with 27,085 measured genes across 99
high-resolution cell types. We restricted the dataset to tumor biopsy
samples (excluding peripheral blood) and included only patients
who exhibited either a partial response to treatment or stable disease
(excluding one patient with progressive disease), resulting in a final
cohort of 15 patients. We filtered genes with fewer than 10 cells, log
normalized the data and selected highly variable genes using scanpy
defaults. We calculated aPCA representation using scanpy with default
settings that uses the ‘arpack’ solver. For the following analyses, we
filtered the dataset to only keep cell types that were retained in all
response groups.

To determine compositional changes, we applied pertpy’simple-
mentation of scCODA per treatment. scCODA’s automatic reference
cell type detection determined intermediate monocytes as the refer-
ence cell type, which we used for both treatments for consistency.
Compositional changes with a false discovery rate of 0.1 (10%) were
marked as credible effects.

We calculated the MSE distance between the respective groupsina
pairwise fashion using pertpy’s ‘distance’ module on the PCA represen-
tation. Werepeated this process three times for both treatments jointly,
only chemotherapy treatment and only anti-PD-L1and chemotherapy
combination treatment.

DIALOGUE decomposition analysis was carried out exclusively
on pre-treatment tumor samples. The sample labeled ‘Pre_P010 _t’
was excluded because it demonstrated low diversity in cell types. The
analysis was confined to cell types that had a minimum of three cells
persampleinthe remaining patient samples. The number of MCPs was
to set 10, with normalization enabled and the ‘LP’ solver. We pooled
patients receiving both treatments for this analysis, as DIALOGUE
requires thatall cell types analyzed be present in all patients.

When testing for associations between MCPs and treatment
response, we applied a hierarchical testing approach by first exam-
ining cell types within each MCP individually. A predictive MCP for
treatment response was determined using a ¢-test for independent
samples for each cell type within each MCP. To adjust for the number
of celltypestested, the Benjamini-Hochberg correction method was
applied. Althoughwe corrected for multiple testing across cell types,
we acknowledge that additional correction across all MCPs would
be more conservative. We chose this approach to balance statisti-
cal stringency with the exploratory nature of our analysis, as overly
conservative correction might obscure biologically meaningful
patterns in this high-dimensional dataset with limited sample size.
Thebiological relevance of our findings is further supported by the
consistent directionality of MCP2 effects across multiple function-
ally distinct immune cell populations, an outcome highly unlikely
to occur by chance alone. Instead, we opted for more stringent
thresholds in subsequent gene-level analyses, where we identified
significantly associated genes with extremely low adjusted Pvalues.

To identify significantly associated genes with the MCPs per cell
type, cellsat the extreme ends of the MCP distribution were selected—
specifically, thoseinthetop10%and bottom10% of MCP scores for each
celltype. The scanpy rank_genes_groups function with default param-
eters was subsequently used. This function conducts at-test between
the two cell groups to pinpoint genes that are differentially expressed,
offering anadjusted Pvalue that accounts for the total number of genes
assessed. We filtered for heat shock proteins to determine HSPAIB to
be significantly differentially expressed for naive T cells (adjusted
P<2.9x107%?), CD8 effector memory cells (adjusted P< 1.2 x1077?),
CD4 regulatory T cells (adjusted P < 5.3 x 10™*), plasmaB cells (adjusted

P<6.5x107*),CD4 central memory T cells (adjusted P<1.1x10™) and
memory B cells (adjusted P< 6.5 x107%),

To determine if the identified genes played a role in altered cell-
cell interactions, gene comparisons were made for each cell type
againstthe NicheNet database of protein—protein interactions, using
gene names asidentifiers’. Aninteraction was classified as MCP associ-
atedifboththe corresponding receptor and ligand were presentamong
thesignificant genes (adjusted Pvalue less than 0.01) from two differ-
ent celltypes. Aninteraction was deemed MCP ligand associated if the
ligand was linked to an MCP in one cell type and the receptor exhibited
anormalized mean expression over lin another cell type. Similarly, an
interaction was considered MCP receptor associated if the receptor
was connected to an MCP in one cell type and the ligand had at least
10 countsin the other cell type.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Allused datasets are available through out-of-the-box dataloaders in
pertpy. We obtained the CRISPR screen dataset from Norman et al.’®,
whichisavailablein the Gene Expression Omnibus (GEO) (GSE133344).
We obtained the chemical perturbation dataset from McFarland etal.”,
which the authors made available on figshare at https://figshare.
com/s/139f64b495dea9d88c70. We obtained the TNBC dataset from
Zhang et al.’®, which is available in the GEO with accession numbers
GSE169246, GSE136206 and GSE123814.

Code availability

The pertpy source code is available at https://github.com/scverse/
pertpy under the Apache 2.0 license. Further documentation, tutorials
and examples are available at https://pertpy.readthedocs.io. Scripts,
notebooks and analysis results to reproduce our analysis and figures
areavailable at https://github.com/theislab/pertpy-reproducibility.
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Extended Data Fig. 1| Runtime and memory benchmark. (a) Runtime and (b) memory usage comparison of tools between pertpy’simplementation and
correspondingly the existing R implementation or the formerly published original implementation.
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Extended Data Fig. 2| Comparison of preprocessing strategies. (a) UMAP
representation of the perturbation signature, computed by comparingacell’s
expression toits nearest neighbor control cells, thereby removing confounding
factors suchas cell cycle effects. (b) Mixscape classifies cells as successfully
perturbed or targeted but not successfully perturbed. (c) Example perturbation
score density plot for acombination gene activation. (d) MLPClassifier space
computed after removing cells identified as not perturbed (NP). (e-h) Same as

panels a-d, but for pertpy’s Mixscape implementation, where the perturbation
signature is computed by comparing a cell’s expression to that of all control
cells within the same GEM group (batch of cells processed in the same lane

on al0x Genomics chip). (i) Mean silhouette score per gene program for the
two Mixscape preprocessing strategies shown in panels a-h, as well as for no
Mixscape application (Fig. 2).
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Extended Data Fig. 3 | Integrated gradients analysis. (a) Top 15genes
identified per gene program as most important for predicting the corresponding
perturbation (single gene or gene pair) using the MLPClassifier. Gene importance
was determined using integrated gradients (Methods). Attribution scores
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program group are highlighted in red. (b) Pairwise MSE distances between gene
programsin the perturbation space.
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Extended DataFig. 4 | Multicellular programs associated with treatment
response. (a) DIALOGUE analysis shows several multicellular programs

(MCPs) potentially associated with treatment efficacy. P-values are from
independent-sample t-tests with Benjamini-Hochberg correction. Exact p-values
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Inthe lower triangle’s scatter plots, each point denotes an average patient score for
the cell types labeled on the corresponding row (x-axis) and column (y-axis).
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Extended DataFig. 5| Cell type specificity of multicellular programs and
MCP2gene scores. (a) Pair plots for MCP 2. The kernel density estimate along
the diagonal shows the average score for each MCP by sample, specific to the
indicated cell type. In the lower triangle’s scatter plots, each point signifies the
average measurement from a patient for the cell types denoted by the respective

row (x-axis) and column (y-axis). MCP 2 separates poor response to the PDL-1
inhibitors. (b) MCP 2 extrema genes per cell type. Shown are the respective five
genes with the highest and lowest scores for MCP 2. HSPA1B, which is significantly
increased in MCP2 for all tested cell types (Methods), has been previously
identified as a prognostic biomarker in breast cancer®%
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Extended Data Table 1| Comparison of pertpy to other perturbation analysis frameworks

Toolbox MUSIC ScMAGeCK SCEPTRE GSFA FR-Perturb pertpy

Programming R R R R R, Python Python

language

Ecosystem - Bioconductor - - - scverse

License Apache-2.0 BSD GPL-3.0 MIT GPL-3.0 MIT

Dataloaders - - - - - Yes

Metadata - - - - - Yes

annotation

Guide - - Yes - - Yes, e.qg.

assignment Poisson-Gauss
ian mixture
model

Differential Performed, but | Performed, but | - Performed, but | - Yes, general

gene not generalized | not generalized not generalized interface

expression

CRISPR Yes, core Yes, core Yes, core Yes, core Yes, core Yes, mixscape

perturbation functionality functionality functionality functionality functionality

analysis

Compositional - - - - - Yes, scCODA

analysis 2.0, tascCODA
2.0

Multicellular - - - Yes, latent Yes, latent Yes,

programs factors factors DIALOGUE

Distances & Yes, Yes, e.g. - - Yes, Euclidean | Yes, e.q.

metrics topic-based selection distance e-distance

scores

Response Yes - - - Yes Yes, e.g. Augur

prediction

Perturbation Yes, via topics | Yes, linear - Yes, latent Yes, latent Yes, e.g.

embeddings regression factors factors Pseudobulk

model
Visualizations Yes Yes Yes Yes - Yes
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Extended Data Table 2 | DIALOGUE multicellular program adjusted p-values per cell type

MCP 1 MCP 2 MCP3 ([ MCP4 | MCP5 | MCP6 | MCP7 | MCP8 [ MCP9 | MCP 10

Memory B cells 0.6829 0.1022 0.9515 0.9911 0.2550 | 0.7412 | 0.9577 ([ 0.8645 | 0.9990 | 0.7723

CD4 central memory | 0.4999 0.1022 0.9515 0.8197 0.3515 | 0.7412 | 0.9577 | 0.7628 | 0.9990 | 0.2804
T cells

CD4 regulatory T 0.4999 0.1022 0.9515 | 0.9761 0.2637 | 0.6213 | 0.9577 | 0.9589 [ 0.9990 | 0.4192
cells
CDs8 0.4999 0.1392 0.9515 0.8674 | 0.2637 | 0.7880 | 0.9577 | 0.8214 | 0.9990 | 0.7723

mucosal-associated
invariant T cells

CD8 effector memory | 0.4999 0.1115 0.9515 0.8674 | 0.6207 | 0.7880 | 0.9577 | 0.7628 [ 0.9990 | 0.7723
T cells

CD8 tissue-resident 0.4999 0.1392 0.9515 0.8197 0.6823 | 0.5370 | 0.9577 | 0.7628 | 0.9990 | 0.2804
memory T cells

Naive T cells 0.4999 0.1022 0.9515 0.8197 0.2550 | 0.5370 | 0.9577 | 0.7628 | 0.9990 | 0.2804
Intermediate 0.9240 0.1115 0.9515 0.8197 0.6823 [ 0.5370 | 0.9577 | 0.8962 | 0.9990 | 0.2804
monocytes

Plasma B cells 0.9240 0.1022 0.9515 0.9911 0.2550 [ 0.7880 | 0.9577 | 0.7628 | 0.9990 | 0.7723
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Extended Data Table 3 | Adjusted p-values from the DIALOGUE extrema test for MCP2 across cell types and

AP-1-associated genes

Cell Type JUN FOS FOSB
CD4 regulatory T cells 4.28 e-48 922 e-13 7.13e-23
CD4 central memory T cells 6.02 e-65 3.94 e-66 1.78 e-117
CDS8 effector memory T cells | 4.71e-119 5.57 e-115 3.10 e-186
Intermediate monocytes 0.025122 0.827241 8.0e-6
Memory B cells 1.54 e-193 5.39 e-98 1.17 e-142
Naive T cells 2.15e-297 1.14 e-221 1.49 e-185
Plasma B cells 1.05 e-26 1.57 e-34 1.18 e-17
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