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In Brief
Modanovo is a transformer-
based de novo peptide 
sequencing model that expands 
Casanovo to identify both 
modified and unmodified 
peptides. Trained on a large 
dataset spanning 19 biologically 
relevant amino acid–PTM 
combinations, it achieves robust 
performance across 
phosphorylation, acetylation, 
and ubiquitination while 
maintaining strong performance 
on unmodified peptides. 
Modanovo outperforms existing 
PTM-aware de novo peptide 
sequencing methods and 
complements database 
searches, enabling confident 
recovery of peptides and novel 
phosphosites, thereby providing 
a broadly applicable framework 
for comprehensive PTM-
inclusive de novo sequencing.
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Highlights

• Large dataset of PSM covering 19 biologically relevant amino acid-PTM combinations.
• De novo peptide sequencing model with 92% average precision across PTMs.
• Beats previous models on their restricted PTM set and matches Casanovo on unmodified.
• Beats database search in both 19 amino acid-PTM-restricted and open-search modes.
• Reveals new P-sites complementing database search on monkeypox virus-infected cells.
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Modanovo: A Unified Model for 
Post-translational Modification-Aware De Novo 
Sequencing Using Experimental Spectra From 
In Vivo and Synthetic Peptides
Daniela Klaproth-Andrade 1 , Yanik Bruns 1 , Wassim Gabriel 2 , Christian Nix 1 ,
Valter Bergant 3,4 , Andreas Pichlmair 3,5 , Mathias Wilhelm 2,6,* , and
Julien Gagneur 1,6,7,8,*

Post-translational modifications (PTMs) play a central 
role in cellular regulation and are implicated in numerous 
diseases. Database searching remains the standard for 
identifying modified peptides from tandem mass spectra 
but is hindered by the combinatorial expansion of modi-
fication types and sites. De novo peptide sequencing of-
fers an attractive alternative, yet existing methods remain 
limited to unmodified peptides or a narrow set of PTMs. 
Here, we curated a large dataset of spectra from 
endogenous and synthetic peptides from ProteomeTools 
spanning 19 biologically relevant amino acid-PTM com-
binations, covering phosphorylation, acetylation, and 
ubiquitination. We used this dataset to develop Mod-
anovo, an extension of the Casanovo transformer archi-
tecture for de novo peptide sequencing. Modanovo 
achieved robust performance across these amino acid-
PTM combinations (median area under the precision-
coverage curve 0.92), while maintaining performance on 
unmodified peptides (0.93), nearly identical to Casanovo 
(0.94). The model outperformed π-PrimeNovo-PTM and 
InstaNovo-P and showed increased precision and 
complementarity to the database search tool MSFragger. 
Robustness was confirmed across independent datasets, 
particularly at peptide lengths frequently represented in 
the curated dataset. Applied to a phosphoproteomics 
dataset from monkeypox virus-infected cells, Modanovo 
recovered numerous confident peptides not reported by 
database search, including new viral phosphosites sup-
ported by spectral evidence, thereby demonstrating its 
complementarity to database-driven identification ap-
proaches. These results establish Modanovo as a broadly

applicable model for comprehensive de novo sequencing 
of both modified and unmodified peptides.

Post-translational modifications (PTMs) enhance the func-
tional diversity of proteins by altering amino acid side chains 
after translation (1). These chemical modifications are relevant 
to protein activity, localization, and interactions and are often 
implicated in disease (2). As a result, identifying PTMs is a 
central goal in proteomics and is essential for understanding 
many biological processes and diseases (3).
Bottom-up proteomics, typically using liquid 

chromatography-tandem mass spectrometry, is the primary 
method for large-scale protein and PTM identification (4, 5). 
Here, proteins are enzymatically digested into peptides, 
which are first analyzed in a first mass spectrometry scan to 
measure their mass-to-charge (m/z) ratios (6–8). Selected 
precursor ions are then isolated and fragmented, and the 
resulting fragment ions are measured in a second scan, 
producing a tandem mass spectrum (9, 10). Peptide se-
quences can, in principle, be inferred from mass differences 
between fragment ions (11, 12), but this remains challenging 
due to spectral noise, missing peaks, co-fragmented pep-
tides, and ambiguity in ion series assignment. Consequently, 
peptide identification, which serves as the foundation for 
subsequent protein inference and quantification, is typically 
performed through database searching (13, 14). Here, 
experimental spectra are matched against theoretical spectra 
generated from the reference proteome of the organism of
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interest (15, 16). However, including PTMs in the context of 
database searching exponentially increases the search 
space, making exhaustive searches increasingly difficult (17). 
An alternative or complementary avenue to database 

search is de novo peptide sequencing (DNPS), which by-
passes the reference database entirely, enabling the discov-
ery of novel peptides, rare PTMs, and proteins from 

unsequenced organisms (18). Recent DNPS tools, including 
transformer-based models like Casanovo (19–21), have ach-
ieved strong results on benchmark datasets (22). However, 
identifying post-translationally modified peptides remains a 
major challenge. Casanovo and most of its peer-reviewed 
successor models (23–29) support only the seven amino 
acid-PTM combinations defined in the first release of the 
MassIVE-KB human spectral libraries (30), which include 
N-terminal modifications (acetylation, carbamylation, loss of 
ammonia), deamidation, and oxidation. In contrast, π-Prime-
Novo (25) expands PTM coverage by fine-tuning on additional 
PTMs one at a time. It was trained separately for each of the 
PTM types contained in a dataset covering multiple PTMs 
(31), demonstrating flexibility through multiple single-PTM 

models, though the trained weights for all models have not 
been released publicly. A phosphorylation-specific π-Prime-
Novo model trained on the 2020-Cell-LUAD dataset (32) has 
been released publicly. Similarly, the latest release of Insta-
Novo broadened its PTM coverage by adding support for 
phosphorylation (33). Although this single-PTM approach 
increases PTM diversity, it requires training individual 
models for each PTM, which is limited by the scarcity of 
large, diverse PTM datasets and the substantial computa-
tional costs of per-PTM training. Furthermore, in cases 
where multiple PTM types are of interest, each corre-
sponding model must be run separately, and the user must 
determine which identification to trust, resulting in an 
approach that is user-biased and less practical for broad or 
ambiguous modification searches.
To the best of our knowledge, DNPS models that can 

simultaneously identify a broad spectrum of PTM types within 
a single unified framework while maintaining robust perfor-
mance on unmodified peptides are lacking. This limitation 
partly arises from the scarcity of large-scale, high-quality 
experimental datasets covering diverse PTMs.
Here, we compiled a sequence-annotated dataset of tan-

dem mass spectra including unmodified peptides and 19 
amino acid-PTM combinations, drawing from the MassIVE-
KB spectral libraries (30) and the MULTI-PTM dataset, 
which is part of PROSPECT-PTM (34, 35) and ProteomeTools 
(36). Using this resource, we developed Modanovo, a unified 
DNPS model built on the Casanovo architecture and 
expanding its PTM coverage by 12 amino acid-PTM combi-
nations. Modanovo supports 39 tokens for canonical and 
modified residues, enabling broad PTM coverage without

training separate models and while maintaining strong per-
formance on unmodified peptides. Importantly, Modanovo 
identifies ubiquitinated, acetylated, and phosphorylated 
peptides, among others, reflecting PTMs with broad roles in 
protein regulation and cellular function. We demonstrate the 
utility of Modanovo by analyzing human foreskin fibroblast 
(HFF) cells infected with monkeypox virus (MPXV), revealing 
relevant new phosphorylated peptides missed by conven-
tional database search.

EXPERIMENTAL PROCEDURES

Experimental Design and Statistical Rationale

The primary objective of this study was to develop and evaluate 
Modanovo, a de novo peptide sequencing (DNPS) model capable of 
handling datasets containing 19 amino acid-PTM combinations. A 
detailed description of the data processing workflow and model 
architecture is provided in subsequent sections. Modanovo was 
trained on experimental spectra from in vivo experiments from the 
MassIVE-KB (v1) human spectral libraries (30) and synthetic pep-
tides from the MULTI-PTM dataset (34). Its generalization ability was 
evaluated on three independent publicly available datasets: 21 
PTMs (31), MassIVE-KB (v2), and a dataset of MPXV-infected cells 
(37). To ensure strict separation of peptide sequences, peptide-
spectrum matches (PSMs) were partitioned into training, valida-
tion, and test sets following the non-overlapping peptide splits 
established in the Casanovo study (19). Model performance was 
assessed using standard metrics for DNPS, including peptide-level 
precision-coverage curves and their corresponding area under the 
curve on held-out data. Benchmarking was performed against 
Casanovo, π-PrimeNovo (25), InstaNovo-P (33), and MSFragger (38, 
39). No biological replicates were generated, as the study leveraged 
existing large-scale repositories.

For reproducibility, the source code is publicly available at: https:// 
github.com/gagneurlab/Modanovo. An official code release of Mod-
anovo (v1.0.0) is available on Zenodo at 10.5281/zenodo.17668430 
(40). Trained model weights and data splits, along with identification 
files, are available at 10.57967/hf/6452 (41) and 10.57967/hf/6451 
(42) and 10.5281/zenodo.17640938 (43).

Datasets

MassIVE-KB (v1) Dataset – For model development, we down-
loaded a subset of the MassIVE knowledge base (MassIVE-KB) 
peptide spectral libraries (30) consisting of ~30 million PSMs, which 
were also used for training Casanovo (19, 20). These “high-quality” 
PSMs were identified by applying a very strict PSM-level false dis-
covery rate (FDR) filter and selecting at most 100 PSMs for each 
precursor charge and modified peptide combination (30). The 
dataset includes both unmodified peptides and peptides bearing 
variable PTMs at specific residues. The variable PTM-residue 
combinations were: methionine oxidation (Unimod ID: 35), deami-
dation of asparagine and glutamine (Unimod ID: 7), N-terminal 
acetylation (Unimod ID: 1), N-terminal carbamylation (Unimod ID: 5), 
and N-terminal loss of ammonia (Unimod ID: 385). In addition, all 
cysteine residues were treated as fixed, modified with 
carbamidomethylation.

We considered the same peptide-disjoint training, validation, and 
test sets that were used to develop Casanovo. From these training, 
validation, and test sets, we randomly selected a subset (~9%) of
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~2.1 M, ~0.2 M, and ~0.2 M PSMs, respectively, to be used for 
training and evaluation purposes of our model. Retaining a repre-
sentative proportion of unmodified peptides and those PTMs unique 
to this dataset was intended to prevent forgetting during fine-tuning, 
while subsampling reduced computational cost and emphasized the 
additional PTMs not included in this dataset.

MULTI-PTM Dataset – In the absence of large in vivo datasets 
covering a wide range of PTMs for model development, we com-
plemented our training data with a subset from PROSPECT-PTM 

(34), part of the ProteomeTools project (36). This “MULTI-PTM 

dataset” comprises high-quality tandem mass spectra of synthetic 
peptides with 14 distinct variable PTM-amino acid combinations 
and was used for model training and evaluation. All modifications in 
this dataset are precisely localized, and each peptide contains at 
most one variable PTM in addition to methionine oxidation and the 
fixed carbamidomethylation of cysteine. The included PTM-residue 
combinations are: methionine oxidation; N-terminal and lysine 
acetylation (Unimod ID: 1); arginine citrullination (Unimod ID: 7); 
monomethylation of lysine and arginine (Unimod ID: 34); phos-
phorylation of serine, threonine, and tyrosine (Unimod ID: 21); lysine 
ubiquitinylation (Unimod ID: 121); pyroglutamate formation (pyro-
Glu) from glutamic acid and glutamine (Unimod IDs: 27, 28); and O-
GalNAc and O-GlcNAc modifications of serine and threonine 
(Unimod ID: 43).

We restricted the dataset to PSMs from higher-energy collisional 
dissociation (HCD; beam-type collision-induced dissociation) spectra 
and to those analyzed with an Orbitrap mass analyzer. Moreover, we 
randomly subsetted the dataset to contain at most 100 instances of 
the same unmodified peptide and at most 200 instances of the same 
modified peptide. This resulted in a total of over eight million PSMs, 
which were randomly divided into training, validation, and test sets 
comprising approximately 90%, 5%, and 5% of the data, respec-
tively. The defined sets are disjoint at the peptide level and follow the 
same split strategy as used in Casanovo. Moreover, the modified and 
unmodified counterparts of each peptide sequence were always 
placed in the same split.

21-PTM Dataset – We obtained the raw files and MaxQuant (44) 
identification results for the 21-PTM dataset (31), part of the Pro-
teomeTools project (36), which contains synthetic peptides with 21 
distinct amino acid-PTM combinations, from the PRIDE repository 
PXD009449. We restricted the dataset to PSMs derived from HCD 
fragmentation acquired on Orbitrap mass analyzers. We subset the 
dataset to contain only PTMs present in the MULTI-PTM and 
MassIVE-KB (v1) datasets, resulting in a total of six amino acid-PTM 

combinations. Nevertheless, we continue to refer to it as the “21-PTM 
dataset”, consistent with its common usage in the field. 

MassIVE-kb (v2) Dataset – We downloaded the second release of 
the MassIVE Knowledge Base (MassIVE-KB v.2024–05–24, (30)), 
which extends the variable PTMs cataloged in the first release by 
including phosphorylation and ubiquitination. Consistent with the 
download process for the initial release, we applied stringent quality 
controls by selecting “high-quality” PSMs and limited the dataset to a 
maximum of 100 PSMs per unique combination of precursor charge 
and modified peptide sequence. For this study, we further restricted 
the dataset to PSMs corresponding exclusively to post-translationally 
modified peptides, resulting in ~150 thousand PSMs.

Monkeypox Virus (MPXV) Dataset – We obtained the raw files and 
MaxQuant identification files for the full proteome and 
phosphorylation-enriched datasets of human foreskin fibroblasts 
(HFF) cells infected with monkeypox virus (MPXV) from the PRIDE 
repositories PXD040811 and PXD040889 (37). We discarded decoy 
and secondary peptides so that each experimental spectrum is 
attributed to at most one peptide sequence, namely the one with the 
highest score.

Identification of Post-translationally Modified Peptides With 
Modanovo

Fine-Tuning of a Transformer Model for Peptide Prediction From 

Tandem Mass Spectra – We based Modanovo on the Casanovo 
transformer architecture, which employs a sequence-to-sequence 
framework to predict peptide sequences directly from tandem mass 
spectra. The model formulates peptide sequencing as a next-token 
prediction task, where each token represents either a canonical 
amino acid or a PTM-amino acid combination.

The original Casanovo vocabulary consisted of 28 tokens, 
including the special stop token and seven amino acid-PTM combi-
nations. To accommodate an expanded vocabulary of 40 tokens 
reflecting the inclusion of 12 new PTM-amino acid combinations as 
distinct tokens, we increased the dimensions of the input embedding 
layer and the output projection layer accordingly. The model with 
extended token vocabulary was initialized with pre-trained weights 
from Casanovo (v4.0.0), originally trained on the MassIVE-KB (v1) 
dataset comprising primarily unmodified peptides. Embeddings for 
the new tokens were initialized by averaging those of canonical amino 
acids, providing a meaningful initialization that facilitated efficient 
learning. We fine-tuned the entire model end-to-end on the combined 
training dataset containing spectra from both unmodified and modi-
fied peptides, enabling the model to learn fragmentation patterns 
associated with a broader spectrum of PTMs.

Training was conducted with a learning rate of 1 ⋅ 10 −5 , a dropout 
probability of 0.1, a batch size of 32, and a maximum of 12 epochs. 
Model performance was monitored on the validation set to mitigate 
overfitting, and the model exhibiting the lowest validation loss was 
selected as the final version for all subsequent analyses. All other 
training strategies and preprocessing parameters were kept consis-
tent with the default settings established in Casanovo.

Evaluation and Alternative Methods

Peptide Prediction Score – For ranking and evaluation, each PSM 

was associated with a confidence score. For Modanovo and Casa-
novo, a peptide-level score was calculated as the mean of the amino 
acid scores, taken directly from the model’s softmax output at each 
decoding step. To stabilize residue-level confidences, each amino 
acid score was averaged with the overall peptide score. If the pre-
dicted sequence did not match the precursor mass within the 
specified tolerance, a penalty of −1 was applied to the peptide-level 
score.

For π-PrimeNovo, peptide confidence was defined as the mean 
predicted probability across all residues in a sequence, as reported 
by the non-autoregressive transformer. For MSFragger, peptide 
scores were taken from the search engine’s reported spectral 
matching score (Hyperscore).

Evaluation Metrics – During model training and evaluation, isoleu-
cine and leucine were treated as indistinguishable due to their iden-
tical masses. Additionally, pyroglutamate formation from glutamic 
acid and glutamine is treated as a single PTM-amino acid combina-
tion, reflecting the chemical equivalence of the resulting pyrogluta-
mate residue.

We evaluated the model performance of each DNPS tool using 
peptide-level precision-coverage curves. For each spectrum, we 
compared the peptide predicted by a tool to the corresponding 
peptide identified by a database search engine at a specified FDR 
threshold. The score refers to the confidence score assigned by the 
tool. A PSM was considered correct if it exactly matched the 
database-identified peptide, allowing for substitutions mentioned 
above. PSMs with a ground truth database identification but no 
prediction were considered incorrect and assigned the lowest 
possible score. Precision and coverage were computed across
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varying score thresholds t among all PSMs identified by the database 
search engine, and were defined as:

precision (t) = 
# correct PSMs with score ≥ t

#PSMs with score ≥ t

coverage (t) = 
# PSMs with score ≥ t

#PSMs

The area under the precision-coverage curve (AUPCC) was 
computed using the trapezoidal method as implemented in the 
function “auc” of the scikit-learn package (45). In addition to the 
AUPCC, we often reported the final precision (at coverage 1) for 
each tool, which is equivalent to the peptide recall obtained by the 
tool in comparison to the ground truth identifications.

To compute peptide-level precision-coverage curves for a given 
PTM-amino acid combination, we include all ground truth peptides 
that contain that specific modification, regardless of whether addi-
tional modifications are also present. For example, the ground truth 
peptide “PEPT[+79.966]IDEK[+14.016]” contributes to both the 
peptide-level precision-coverage curves for phosphorylated threo-
nine (T[+79.966]) and monomethylated lysine (K[+14.016]).

Peptide Alignment – Peptide alignments were obtained by running 
blastp (version 2.12.0+) against sequences of the reviewed human 
proteome, including isoforms (Uniprot, Taxon ID 9606) and Monkeypox 
virus proteins (GenBank: ON563414.3), downloaded from the PRIDE 
repository PXD040811. As a scoring matrix, we used the identity 
matrix, modified such that leucine and isoleucine were considered 
equivalent. All other blastp settings were set to their default values. We 
restricted the output of blastp to at most one hit per queried peptide 
sequence. If the search returned multiple hits, we selected the hit with 
the lowest e-value. We defined a query peptide to be a perfect align-
ment if the peptide is identical to the target peptide (except for dif-
ferences between leucine and isoleucine).

Validation with Prosit – We obtained Prosit (46) spectrum pre-
dictions through Koina (47) for unmodified peptide identifications in the 
MPXV dataset using Prosit. Peptides longer than 30 residues, shorter 
than seven residues, or with a charge state exceeding six were 
excluded. We ran Prosit using a normalized collision energy of 30, 
which yielded the highest spectral angles for most sequences deemed 
correct when compared with MaxQuant predictions. Prosit-predicted 
spectra for a given peptide sequence were matched to the corre-
sponding experimental spectra by aligning each Prosit-predicted peak 
to the nearest experimental peak within a 20 ppm tolerance window, if 
present. The normalized spectral angle (SA) between the predicted and 
experimental spectra was defined as:

SA = 
∑ 

i
I pred i ⋅ I exp i

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑ 
i
I pred i

2
√ 

⋅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑ 
i
I exp i

2
√ 

where I pred i and I exp i denote the intensities of the i-th matched 
peak in the predicted and experimental spectra, respectively. Both 
experimental and theoretical intensities were normalized using 
base-peak normalization before SA computation. If no experi-
mental peak was found within the tolerance window to match an 
expected peak, the intensity I exp i was set to zero. The SA ranged 
from 0 to 1, with values closer to one indicating greater similarity.

Empirical Precision Estimates on the MPXV Dataset – We obtained 
empirical precision estimates on the phosphorylation-enriched and 
full proteome samples of the MPXV dataset by leveraging PSMs 
identified with MaxQuant as a reference. For each score threshold of 
Modanovo, we calculated the proportion of PSMs that could be 
matched to a MaxQuant peptide identification. This proportion was

used as an empirical estimate of the precision at that threshold. By 
scanning across thresholds, we determined the score cutoffs that 
corresponded to target precision levels of 80%, 90%, and 95% for 
the full proteome and phospho-enriched samples separately. These 
empirically derived cutoffs were then applied to the set of PSMs 
without MaxQuant peptide identifications, enabling the extension of 
the empirical precision estimates to all identifications.

MPXV H5 Structure Modeling With AlphaFold and Electrostatic 
Surface Potential Analysis – In silico prediction of the structure of the 
MPXV H5 dimer was performed using the colab version of AlphaFold 
2.3.1 (48) in the multichain mode using default parameters. The 
electrostatic surface potential of the modeled structure of the MPXV 
H5 dimer was calculated using the PyMOL plugin APBS electro-
statics. Molecular graphics depictions were produced with the 
PyMOL software (49).

Alternative Methods – Casanovo. We downloaded the Casanovo 
(v4.0.0) model weights from https://github.com/Noble-Lab/ 
casanovo/releases/tag/v4.0.0. Casanovo was trained on the 
MassIVE-KB (v1) dataset, and we obtained the corresponding 
training, validation, and test splits in April 2024 from https://noble.gs. 
washington.edu/~melih/mskb_casanovo_splits.zip. 

π-PrimeNovo-PTM. We cloned the π-PrimeNovoPTM (25) code 
from https://github.com/PHOENIXcenter/pi-PrimeNovo/tree/main/pi-
PrimeNovo-PTM and downloaded the model weights fine-tuned for 
phosphorylation. This model was trained on the 2020-Cell-LUAD 
dataset, which focuses on human lung adenocarcinoma and includes 
103 LUAD tumor samples along with their matched non-cancerous 
adjacent tissues (32). This π-PrimeNovo-PTM model represents 
phosphorylation using a dedicated token “B” with a corresponding 
mass of 79.9663. For evaluation, we accepted predicted sequences 
as correct provided the phosphorylation was localized to the correct 
serine, threonine, or tyrosine residue, irrespective of whether the “B” 
token preceded or followed the residue.

InstaNovo-P. We installed and executed InstaNovo (v1.1.4) 
following the instructions provided on its PyPI page (https://pypi.org/ 
project/instanovo). We ran the model using the publicly available 
phosphorylation fine-tuned weights, which were downloaded from 

the v1.1.2 release on GitHub (https://github.com/instadeepai/ 
InstaNovo/releases/tag/1.1.2).

MSFragger. We ran MSFragger (v4.1 (38, 39)) on the MULTI-PTM 

dataset through the FragPipe interface (v22.0) using both closed and 
open search configurations. Carbamidomethylation of cysteine was 
specified as a fixed modification. In the closed-search setting, all PTM-
amino acid combinations covered by Modanovo were explicitly spec-
ified as variable modifications in the search parameters. In the open 
search setting, at most three modifications per sequence were 
considered, with PTM mass tolerances ranging from −20 to +250 Da, 
and PTM-Shepherd (50) was subsequently applied for PTM charac-
terization and localization. Spectra were searched against a forward 
and reverse version of the reviewed human proteome, without isoforms 
(UniProt, Taxon ID 9606, containing 20,596 proteins and downloaded 
November 17, 2023). The search was performed using tryptic digestion 
with precursor and fragment mass tolerances set to 20 ppm. PSM-level 
FDR filtering was performed using Percolator with an FDR threshold of 
0.01. Peptide-level and protein-level FDR thresholds were set to one to 
avoid additional filtering beyond the spectrum level.

RESULTS

A Dataset for Developing de Novo PTM Identification 
Models

We compiled a dataset combining a subset of the 
MassIVE-KB human spectral libraries (v1), consisting mostly
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of unmodified peptides and seven amino acid-PTM combi-
nations, with a curated subset of spectra from MULTI-PTM 

(part of PROSPECT-PTM (34) and the ProteomeTools proj-
ect (35, 36)). The latter includes synthetic peptides modified 
with a range of biologically relevant post-translational mod-
ifications (PTMs) such as phosphorylation, acetylation, 
ubiquitylation, and methylation, which were crucially missing 
in MassIVE-KB (v1). Due to the scarcity of large, well-
annotated experimental datasets covering diverse PTMs, 
this combination allowed us to leverage both data from 

in vivo experiments as well as from synthetic peptides to 
improve model generalization. In total, this combined data-
set, denoted as development dataset throughout this 
manuscript, consisted of approximately 11 million PSMs 
spanning 20 canonical amino acids and 19 distinct PTM-
amino acid combinations, 12 of them not being covered by 
Casanovo and most of its successor models (Fig. 1, A and B, 
Supplementary Table S1), enabling comprehensive learning

and evaluation across a broad spectrum of peptide 
modifications.

Modanovo Extends Casanovo to 12 new Amino Acid-PTM 

Combinations

Based on this development dataset, we developed Mod-
anovo, a transformer-based model designed to identify 
modified peptides directly from tandem mass spectra. To 
enable this, we fine-tuned Casanovo’s transformer architec-
ture (Fig. 1C), initializing the model with weights from a 
Casanovo model previously trained on MassIVE-KB (v1). To 
accommodate the expanded vocabulary arising from PTM-
amino acid combinations treated as distinct tokens, we 
adjusted the shapes of the input embedding layer and the 
final linear projection layer (Methods). The new parameters 
corresponding to the expanded token set were initialized by 
averaging the weights of existing tokens in their respective 
layers, providing a meaningful starting point rather than

FIG 1. Modanovo identifies post-translationally modified peptide sequences using a mixture of spectra from in vivo experiments 
and synthetic peptides for model development. A, Number of peptide-spectrum matches (PSMs) for modified and unmodified peptides 
used for model development from two different data sources: the MassIVE-KB (v1) human spectral libraries (dark and light green) and from a 
subset of PROSPECT-PTM (MULTI-PTM, dark and light mustard). B, Heatmap showing the number of PSMs used for model development 
across PTM types and modified residues. Rows correspond to PTM types, columns to residues. The side color strip indicates the data source 
(MULTI-PTM, MassIVE-KB, or both). The heatmap is colored on a logarithmic scale, with darker blue shades representing higher PSM counts. 
C, An autoregressive transformer encoder and decoder architecture based on Casanovo allows the identification of post-translationally 
modified peptides directly from tandem mass (MS2) spectra. The model is trained starting with weight initialization from Casanovo’s pre-
trained weights. The model components for the amino acid (AA) embeddings and final linear layer (in blue) are expanded to allow the 
modification of new post-translationally modified residues.
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random initialization. We then fine-tuned the entire model 
end-to-end, allowing it to retain knowledge of canonical 
peptide fragmentation patterns while adapting to the vari-
ability introduced by PTMs.

Modanovo Confidently Identifies Modified synthetic 
peptides

We first assessed whether Modanovo’s performance 
remained comparable to that of Casanovo on unmodified 
peptides and the PTMs covered by Casanovo, which served 
as the starting point of our fine-tuning approach for PTM 

expansion. Specifically, we evaluated both models on the test 
set of the MassIVE-KB (v1) dataset, which was also used to 
originally develop and evaluate Casanovo and primarily con-
sists of unmodified peptides. We found that Modanovo ach-
ieved nearly identical performance to Casanovo overall, with 
an area under the precision-coverage curve (AUPCC) of 0.93 
versus 0.94 (on held-out data here and everywhere else, 
Supplementary Fig. S1A), indicating that it remained well 
suited for identifying unmodified peptides. In terms of AUPCC 
across specific PTM-amino acid combinations, Modanovo 
showed strong agreement with Casanovo (Supplementary 
Fig. S1B), with only minor variations observed across indi-
vidual PTM categories. Slightly larger performance differ-
ences were seen for deamidation and N-terminal loss of 
ammonia. The reduced performance for peptides with 
N-terminal ammonia loss and deamidation may reflect added 
complexity introduced by the inclusion of pyroglutamate and 
citrullination modifications, which result in similar mass shifts 
and may interfere with model discrimination in this mass 
range.
Having confirmed that Modanovo maintained strong per-

formance on unmodified peptides from in vivo experiments 
and the set of PTMs covered by Casanovo, we evaluated 
Modanovo on the MULTI-PTM proportion of the development 
dataset. The MULTI-PTM dataset contained 12 distinct PTM-
amino acid combinations, which did not overlap with those 
covered in Casanovo. Across these distinct PTM-amino acid 
combinations, Modanovo achieved a median AUPCC of 0.92 
([0.70, 0.96] 95% confidence interval) and a median final 
peptide precision of 0.68 ([0.48, 0.74] 95% confidence inter-
val), measured against ground truth peptide sequences re-
ported by PTM-specific MaxQuant (44) searches (Fig. 2A). 
Comparably, on unmodified peptides from the development 
dataset, Modanovo attained a median AUPCC of 0.93 and a 
final peptide precision of 0.71 (Fig. 2A). Particularly, phos-
phorylated peptides were accurately identified by Modanovo, 
with AUPCC values of 0.96, 0.93, and 0.94, and final precision 
values of 0.78, 0.71, and 0.72 for sequences containing 
phosphorylated serine (S[+79.966]), threonine (T[+79.966]), 
and tyrosine (Y[+79.966]) residues, respectively. Comparable 
performance was observed for peptides bearing acetylation 
(K[+42.011] and [+42.011]-), ubiquitination (K[+114.043]), and 
citrullination (R[+0.984]). Notably, Modanovo achieved an

AUPCC of 0.96 for sequences containing pyroglutamate 
residues (E[-18.011] and Q[-17.027]). This performance, 
which surpassed that observed for unmodified peptides, may 
be due to the model successfully learning that pyroglutamate 
formation is restricted to the first residue position in a peptide 
sequence.
In contrast to the consistently high performance observed 

across most PTM types, Modanovo showed reduced per-
formance on peptides containing O-GalNAc and O-GlcNAc 
modifications of serine and threonine (AUPCC of 0.25 and 
0.5). Perhaps, this was partly because these glycosylation 
events produce complex and often heterogeneous fragmen-
tation patterns, with reduced fragment ion coverage and in-
tensity that hinder reliable sequence reconstruction (51). 
Moreover, both modifications are encoded using the same 
token in the model due to their mass equivalence and equal 
Unimod identifier (52), despite their structural differences. The 
challenge is compounded by the limited number of examples 
for these glycopeptides in the dataset (Fig. 2B, ~19,000 gly-
copeptides vs. a mean number of test PSMs per PTM type in 
the MULTI-PTM dataset of 66,109). Interestingly, when 
allowing modified peptide sequences to be considered cor-
rect despite shifts in the O-GalNAc/O-GlcNAc modification 
site between serine and threonine (e.g., treating PEP-
TIS[+203.079]ER and PEPT[+203.079]ISER equivalently), or 
between two serine or threonine residues, the AUPCC 
improved (from 0.25 to 0.58 for serine residues and from 0.50 
to 0.70 for threonine residues, Supplementary Fig. S2), 
although it still fell short of the levels achieved for other PTM 

types. This improvement showed that while the model 
sometimes struggled to localize the modification to the exact 
residue, it more often correctly called the modification at the 
peptide level and recovered the underlying unmodified pep-
tide sequence. These shifts likely reflect the inherent difficulty 
of pinpointing the modification site when spectra lack clear 
site-determining fragment ions. Similarly, the somewhat 
decreased performance of monomethylated peptides could 
be partly attributed to disagreements in the localization sites 
between the ground truth and predicted peptide sequences. 
Allowing for different monomethylation sites increased the 
AUPCC from 0.83 to 0.85 for arginine residues and from 0.85 
to 0.91 for lysine residues (Supplementary Fig. S2).
Overall, a moderate positive correlation was observed be-

tween the AUPCC and the number of PSMs in the test set, but 
the relationship was not statistically significant (Fig. 2B, Spear-
man’s ρ = 0.45, p = 0.13). This suggests that factors beyond 
dataset size, such as fragmentation behavior or the structural 
properties of specific PTMs, played an important role in model 
performance. Notably, some PTMs with relatively few examples, 
such as citrullination, still achieved competitive AUPCC values, 
while others with larger sample sizes, such as arginine mono-
methylation, performed more modestly. These findings indicate 
that PTM-specific learnability may outweigh the absolute 
amount of training data in determining predictive accuracy.
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FIG 2. Model performance on the test set of the development dataset. A, Precision-coverage curves at the peptide level for the 12 new 
PTM-amino acid combinations covered by Modanovo, as well as methionine oxidation. PTM types (Acetylation, Citrullination, Mono-
methylation, OGalNAc/OGlcNAc, Oxidation, Phosphorylation, Pyro-glu, and Ubiquitination) are shown in the different panels, and colors 
represent different PTM-residue combinations. Performance for unmodified peptides (light grey) is shown in each panel for comparison.
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We reasoned that achieving high performance on longer 
peptides is more challenging, since every amino acid and its 
modifications must be correctly identified, the spectra of long 
peptides are often of lower quality, and errors accumulate due 
to the autoregressive nature of the transformer model. 
Therefore, we evaluated the impact of peptide length on 
Modanovo performance. Peptides on the MULTI-PTM subset 
were 12 residues long in median (Fig. 2C). Modanovo ach-
ieved improved or comparable median AUPCC across PTM-
residue combinations, relative to the overall median AUPCC 
(0.92), for peptides up to 13 residues in length (Fig. 2D). 
However, model performance declined for longer peptides. 
For example, the AUPCC for sequences containing phos-
phorylated serine dropped from 0.93 to 0.78 when comparing 
peptides of length 12 to 13 to those of length 13 to 14. Similar 
observations were made on the Massive-KB (v1) dataset for 
both Modanovo and Casanovo, whose performance 
decreased for peptides longer than the median length of 14 
(Supplementary Fig. S3). These findings suggest that Mod-
anovo performs most reliably within the peptide length range 
it was most frequently exposed during training.
Among state-of-the-art DNPS tools claiming to expand 

PTM coverage beyond Casanovo’s vocabulary, publicly 
available model weights are limited to versions supporting 
phosphorylation only. Therefore, we compared Modanovo to 
π-PrimeNovo-PTM (25) and InstaNovo-P (33) on phosphory-
lated peptides from the development dataset. Modanovo 
substantially outperformed π-PrimeNovo-PTM and modestly 
improved InstaNovo-P on all phosphorylated sequences of 
the dataset (Supplementary Fig. S4).
Having established Modanovo as a DNPS model covering 

12 new amino acid-PTM combinations, we next asked 
whether it could serve as a useful complementary tool to 
state-of-the-art database search approaches. For this, we 
first compared the performance of Modanovo on the 12 new 
amino acid-PTM combinations to that of MSFragger (38), 
applying a 1% PSM-level FDR. As a realistic database search 
reflecting the application setting, in which multiple PTMs are 
of interest and the ground truth is unknown, we ran 
MSFragger against the full human proteome, allowing for the 
same set of possible modifications as Modanovo (Methods). 
We note that this database search setup differed substantially 
from the one initially used to establish high-quality ground 
truth annotations (34), where targeted searches were

performed with MaxQuant, each restricted to the relevant 
modification and using a database limited to the synthesized 
peptides. Overall, Modanovo outperformed MSFragger in 
identifying modified peptides across all PTM types (Fig. 2E), 
highlighting its strong ability to identify correct PSMs even at 
high precision levels. Moreover, we ran MSFragger in an open 
search setting and applied PTM-Shepherd for PTM charac-
terization and localization (Methods), reflecting a realistic 
scenario in which users have no prior knowledge of the 
modifications present in the samples. While the search 
summary correctly recovered all PTM types, except citrulli-
nation, at ≥1% PSM frequency in the MULTI-PTM dataset, 
the superiority of Modanovo remained evident 
(Supplementary Fig. S5), underscoring the added value of 
DNPS approaches in such applications.

Modanovo Generalizes to Independent Datasets

To evaluate Modanovo’s generalizability, we applied it to 
two distinct datasets: the “21-PTM dataset” (31), consisting 
of modified synthetic peptides, and a modified-only subset of 
the latest release of MassIVE-KB (v2), which, in contrast to 
the first release, included phosphorylated, acetylated, and 
ubiquitinated residues. We focused our assessment on the 12 
new amino acid-PTM combinations covered by Modanovo, 
resulting in six and five amino acid-PTM combinations from 

the 21-PTM and MassIVE-KB (v2) datasets. For consistency 
with common usage in the field, we still refer to the first 
dataset as the “21-PTM dataset”, even though only a subset 
of PTMs was considered here.
While model performance generally decreased compared 

to that observed in the development dataset, it remained 
strong across a diverse range of amino acid-PTM combina-
tions (Fig. 3A, Supplementary Fig. S6), though the quality of 
identification varied depending on the dataset and modifica-
tion. For instance, the model identified peptides with lysine 
ubiquitylation (K[+114.043]) with an AUPCC of 0.93 and 0.82 
on the 21-PTM and MassIVE-KB (v2) datasets, respectively, 
compared to 0.95 on the development dataset. Similarly, it 
reached an AUPCC of 0.89 for lysine acetylation (K[+42.011]) 
on the 21-PTM dataset, compared to 0.91 for the develop-
ment dataset. The AUPCC was generally lower on MassIVE-
KB (v2) for the remaining PTM types (acetylation and 
phosphorylation, Fig. 3A), with the most pronounced drop 
observed for phosphorylation (mean AUPCC: 0.94 vs. 0.65).

Precision-coverage curves for the remaining PTM-amino acid combinations, which were covered by Casanovo before, are found in 
Supplementary Fig. S1. B, Area under the precision-coverage curve (AUPCC) against the number of peptide-spectrum matches (PSMs) per 
PTM-residue combination on the test set, using the same color scheme as in panel A. Statistical significance was assessed using Spearman 
correlation (ρ = 0.45, p = 0.13). C, Distribution of peptide sequence lengths in the test set of the MULTI-PTM dataset. The dashed vertical line 
marks the median peptide length. D, AUPCC at the peptide level across peptide length bins, evaluated on the test set. Each point represents a 
PTM-amino acid combination, using the same color scheme as in panel A. Bins were constructed to contain approximately equal numbers of 
PSMs. The dashed grey line indicates the AUPCC across all peptide lengths. E, Precision-coverage curves at the peptide level comparing 
Modanovo (blue) to MSFragger (claimed 1% FDR, orange) on the test set of the MULTI-PTM dataset, faceted by the different PTM types. 
MSFragger often does not propose a peptide for a given spectrum. These are ranked last and cause the hyperbole sections in the higher 
coverage range.
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However, this decrease in performance was largely explained 
by differences in peptide length distributions: MassIVE-KB 
(v2) contains a greater proportion of longer peptides than 
the 21-PTM and development datasets (median lengths: 19, 
14, and 12, Supplementary Fig. S7). When controlling for 
peptide length, the AUPCC remained comparable between 
the three datasets (Fig. 3B), indicating that Modanovo’s 
learned representations generalize well to in vivo-derived 
spectra. This consistent performance at matched lengths 
supports the conclusion that Modanovo is capable of accu-
rately identifying modified peptides from complex biological 
samples, despite being trained primarily on data from syn-
thetic peptides.
Unlike the peptides in the development dataset, the 21-PTM 

dataset contains sequences with more than one PTM type 
(beyond methionine oxidation). To evaluate Modanovo’s ability 
to generalize to these more complex cases, which were not 
seen during training, we stratified performance by PTM-type 
combinations. The model was able to sequence multiply 
modified peptides for most combinations (Supplementary 
Fig. S8). For example, Modanovo achieved an AUPCC of 
0.74 for peptides containing both acetylated and mono-
methylated residues (K[+42.011] and R[+14.016]), which, while 
lower than the values observed for singly modified peptides 
(0.76 for monomethylation and 0.95 for acetylation), still indi-
cated reasonable generalization to peptides carrying multiple 
co-occurring modifications despite being trained only on 
singly modified peptides (apart from optional methionine 
oxidation).
Phosphorylation site (P-site) localization remains a long-

standing challenge in mass spectrometry-based proteomics. 
To assess Modanovo’s robustness to this ambiguity, we 
evaluated its ability to identify phosphorylated peptides in the

MassIVE-KB (v2) and 21-PTM datasets while allowing for 
alternative P-site placements relative to those assigned by 
database searching. While performance remained unchanged 
on the 21-PTM dataset when accepting predictions with 
different P-sites, either on the same residue type or on a 
different phosphorylatable residue, it increased for the 
MassIVE-KB (v2) dataset (Supplementary Fig. S9). For 
example, among peptides with a phosphorylated tyrosine as 
the ground truth, the AUPCC improved from 0.74 to 0.79 
when predictions placing the phosphate on serine or threo-
nine residues were also considered correct. These results 
underscore Modanovo’s flexibility in recovering plausible 
phosphopeptides despite the inherent uncertainty of P-site 
assignment.
We further compared Modanovo to the publicly available 

π-PrimeNovo-PTM (25) and InstaNovo-P (33) models, which 
allow the prediction of phosphorylated residues, ensuring that 
all tools were evaluated on the same set of PSMs after 
removing any PSMs used for training of any tool. Consistent 
with the observations in the development dataset 
(Supplementary Fig. S4), Modanovo consistently achieved a 
higher AUPCC than π-PrimeNovo-PTM across all three 
phosphorylated residues (Fig. 3C, Supplementary Fig. S10), 
with gains of 0.41 vs. 0.34 for tyrosine, 0.52 vs. 0.39 for 
threonine, and 0.64 vs. 0.55 for serine, on the MassIVE-KB 
(v2) dataset; and substantially outperformed π-PrimeNovo-
PTM on the 21-PTM dataset. These results suggest that 
explicitly modeling PTM-amino acid combinations (e.g., 
S[+79.966]) as single tokens, rather than treating the PTM 

mass shift (e.g., [+79.966]) as an independent token that can 
appear anywhere in the sequence, may contribute to 
improved predictive performance. Combined with training on 
a larger and more diverse dataset containing several PTM

A B C

FIG 3. Model performance on alternative datasets and comparison to other methods. A, Area under the precision-coverage curve 
(AUPCC) for the different PTM types contained in the three different datasets, MassIVE-KB (v2, green), MULTI-PTM (blue), and 21 PTMs (light 
brown). Data points represent individual PTM-residue combinations, restricted to the overlap between amino acid-PTM combinations present 
in the MassIVE-KB or 21-PTM dataset and new 12 amino acid-PTM combinations introduced in Modanovo. B, AUPCC across peptide length 
bins for the three different datasets, MassIVE-KB (v2, green), MULTI-PTM (blue), and 21 PTMs (light brown). Each point represents an amino 
acid-PTM combination. Bins were constructed to contain approximately equal numbers of PSMs. C, AUPCC for the different phosphorylated 
residues by Modanovo (blue) compared to π-PrimeNovo-PTM (brown) and InstaNovo-P (violet) on the MassIVE-KB (v2), MULTI-PTM, and 21-
PTM datasets.
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types, this design choice could help better capture biologi-
cally plausible fragmentation patterns across different PTM 

types. Compared to InstaNovo-P, Modanovo showed 
improved performance on the MULTI-PTM and 21-PTM 

datasets (AUPCC values of 0.91 vs. 0.82 on the 21-PTM 

dataset, and similar values on the MULTI-PTM dataset). On 
the MassIVE-KB (v2) dataset, it outperformed InstaNovo-P on 
tyrosine-phosphorylated sequences (AUPCC values of 0.41 
vs. 0.22), while exhibiting minor reductions on threonine/ 
serine-phosphorylated sequences (AUPCC values of 0.52 
vs. 0.54 and 0.64 vs. 0.69), an acceptable trade-off given 
Modanovo’s substantially broader PTM coverage.

Modanovo Identifies Phosphopeptides from Monkeypox 
Virus-Infected Samples

Having established Modanovo as a DNPS tool capable of 
confidently identifying post-translationally modified peptide 
sequences from tandem mass spectra, we applied it to a 
time-resolved dataset of human foreskin fibroblast (HFF) cells 
infected with monkeypox virus (MPXV), comprising both full 
proteome and phosphoproteome measurements (37). This 
recently published dataset represents a compelling use case, 
as it captures the complex interplay of PTMs in both the virus 
and the host during the course of infection. Furthermore, 
DNPS approaches are particularly attractive in viral prote-
omics, since viral genomes frequently undergo mutations that 
can complicate database-driven peptide identification. The 
dataset was originally analyzed with the database search 
engine MaxQuant. Here, we evaluated the extent to which 
Modanovo provides complementary insights to this initial 
analysis.
MaxQuant identified a peptide sequence at 1% FDR for 

only 15% and 30% of the spectra in the phospho-enriched 
samples and full proteome samples, respectively. Consid-
ering these identifications as ground truth, Modanovo 
demonstrated strong performance on unmodified peptides 
and peptides containing only common modifications (N-ter-
minal acetylation or methionine oxidation), achieving an 
AUPCC of 0.95 and 0.88 on phosphorylation-enriched and full 
proteome samples, respectively (Fig. 4A, Supplementary 
Fig. S11). This was consistent with the performance on the 
development dataset (AUPCC of 0.93) and further confirmed 
the robustness of the model. For peptides containing a single 
phosphorylated residue, the AUPCC decreased to 0.78. While 
this represents a drop in performance, it remained compa-
rable to Modanovo’s performance on unmodified peptides 
and phosphopeptides of similar lengths in the development 
dataset (Fig. 2D, Supplementary Fig. S12). Hence, the lower 
performance on phosphopeptides in the MPXV dataset is 
attributable to a shift in peptide length distribution: the me-
dian sequence lengths were 16 and 17 amino acids for singly 
and multiply phosphorylated peptides, respectively 
(Supplementary Fig. S13), longer than those typically 
observed during training. As expected, model performance

declined with increasing proportions of missing y-ion frag-
ments (Supplementary Fig. S13). Notably, the model perfor-
mance for singly phosphorylated peptides closely matched 
that of unmodified peptides when controlling for the propor-
tion of missing y-ions (Supplementary Fig. S14). Overall, 
Modanovo maintained competitive performance when using 
MaxQuant identifications as ground truth, highlighting its 
ability to generalize to more complex datasets with longer 
peptides and variable fragment coverage.
We next analyzed Modanovo peptide predictions beyond 

the spectra identified by MaxQuant. For this, we set cutoffs 
on Modanovo confidence scores by leveraging the 
MaxQuant-identified PSMs as ground truth to map score 
cutoffs to precision estimates (Methods). As an initial positive 
control, we observed that, despite having no prior information 
on the sample preparation or enrichment strategy, Modanovo 
predominantly predicted unmodified peptides and peptides 
containing only common modifications (N-terminal acetyla-
tion or methionine oxidation) in the full proteome samples and 
phosphopeptides in the phospho-enriched samples for high 
precision estimates (Supplementary Fig. S15).
As an orthogonal proxy for peptide plausibility, we 

assessed the agreement between the experimental spectrum 

and the Prosit-predicted spectrum (46), using the spectral 
angle as a similarity metric (0 for no similarity, one for highest 
similarity, Methods). At the time of this analysis, the available 
Prosit model did not handle PTMs beyond methionine 
oxidation. Therefore, this analysis had to be restricted to 
unmodified peptides (and those containing only methionine 
oxidation). We stratified spectra by agreement between 
Modanovo and MaxQuant annotations. When considering all 
Modanovo predictions without applying any precision esti-
mate, spectral angles were highest for sequences matching 
MaxQuant and lowest for spectra not identified by MaxQuant, 
presumably representing lower-quality spectra (Fig. 4B). A 
similar trend was observed when restricting to predictions 
with precursor mass agreement, although differences in me-
dian spectral angles were less pronounced. At the 90% pre-
cision threshold, Modanovo predictions matching MaxQuant 
showed high spectral similarity (median SA: 0.81), closely 
comparable to Modanovo-only predictions for spectra 
without MaxQuant identifications (median SA: 0.80; Fig. 4B). 
At 95% precision threshold, spectral angles increased slightly 
across all groups, reaching 0.84 for both MaxQuant-matching 
and Modanovo-only predictions. For spectra where Mod-
anovo and MaxQuant disagreed, spectral similarity also 
improved with confidence, with median SA values of 0.80 and 
0.90 at the 90% and 95% thresholds, respectively (Fig. 4B). 
These results support the validity of many high-confidence 
Modanovo identifications and demonstrate that the model’s 
confidence score is an effective indicator of prediction quality. 
This is even evident for spectra not annotated by MaxQuant 
or where the two methods disagree, cases likely to be more 
challenging for peptide identification.
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FIG 4. Modanovo applied to a dataset of monkeypox virus (MPXV)-infected human foreskin fibroblast (HFF) cells. A, Area under the 
precision-coverage curve (AUPCC) obtained with Modanovo’s predictions with MaxQuant peptides as ground truth sequences for comparison 
for the full proteome samples and phosphorylation-enriched samples with the MaxQuant sequence having multiple phosphorylated residues 
(light mustard), one phosphorylation residue (mustard), and no phosphorylation residues (green). B, Spectral angles obtained from the 
comparison of experimental spectra and Prosit-predicted spectra for Modanovo’s prediction for the whole set of predictions (“All”), for pre-
dictions with mass matching the precursor mass-to-charge (m/z) and at different precision estimates (80%, 90% and 95%), and for Mod-
anovo’s predictions matching the identified MaxQuant sequence (light brown), not matching the MaxQuant sequence (dark brown), and for 
spectra without a MaxQuant identification (blue). C, Proportion of peptide-spectrum matches (PSMs) with perfect BLAST alignments for the 
phosphorylation-enriched (terracotta) and full proteome (green) samples for all PSMs predicted by Modanovo (“All”), the PSMs predicted by 
Modanovo with calculated mass matching the precursor m/z (“Mass matches precursor”), and at different precision estimates (80%, 90%, and 
95%). D, Proportion of PSMs with perfect BLAST alignments and mass consistent with the precursor m/z for the phosphorylation-enriched 
(right) and full proteome (left) samples, sorted by Modanovo’s score for phosphorylated peptides (mustard), unmodified peptides, or pep-
tides only containing methionine oxidation or N-terminal acetylation (green) and peptides containing other PTM types covered by Modanovo
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As a further source of evidence of the plausibility of Mod-
anovo identifications, we next evaluated the proportion of 
Modanovo-predicted peptides that perfectly aligned to the 
human or the MPXV proteome, allowing isoleucine-leucine 
mismatches (Methods). For PSMs from the phospho-
enriched samples, the proportion of perfect alignments 
remained high, reaching 0.94 at an estimated precision of 
95%, and 0.80 at 90% precision (Fig. 4C, Methods). In 
comparison, perfect alignment rates for the full proteome 
samples were slightly lower, reaching 0.84 and 0.72 at the 
95% and 90% precision thresholds, respectively. Moreover, 
in both full proteome and phospho-enriched samples, PSMs 
corresponding to unmodified peptides or those containing 
only common modifications (methionine oxidation or N-ter-
minal acetylation) exhibited consistently high alignment rates 
across the confidence range (Fig. 4D). For example, in the top 
10,000 PSMs by confidence, the perfect alignment rate 
exceeded 93% and 77% for unmodified peptides on the full 
proteome samples and phospho-enriched samples, respec-
tively (Fig. 4D). Notably, PSMs predicted to contain a phos-
phorylation event also maintained high perfect alignment 
rates, particularly in the phospho-enriched samples, where 
they reached a proportion of 0.93 perfect alignments in the 
top 10,000 PSMs and outperformed other PTM types across 
nearly the entire confidence spectrum. These results partic-
ularly support the reliability of phosphorylation predictions in 
the phospho-enriched samples.
We next assessed the novelty and complementarity of 

Modanovo’s predictions relative to database search by 
comparing the set of perfectly aligning peptides identified by 
Modanovo and MaxQuant to the reference proteomes with 
computed mass matching the experimental precursor, strat-
ified by sample type and species of origin (human vs. MPXV; 
Fig. 4E). Notably, Modanovo identified a substantial number 
of MPXV peptides in their unmodified version that were 
missed by MaxQuant, particularly in the phospho-enriched 
samples. Specifically, Modanovo recovered 72 unique 
MPXV peptides in the phospho-enriched dataset that were 
not identified by MaxQuant, more than twice the number of 
peptides uniquely identified by MaxQuant (n = 32), and 1037 
MPXV peptides in the full proteome dataset, compared to 239 
unique to MaxQuant. While the proportion of shared peptides 
was higher for human than for viral sequences, this is

expected given the higher abundance of host proteins and 
potential database coverage biases.
Allowing for alignment mismatches is particularly relevant in 

the context of viral proteomes, which often exhibit high 
sequence variability due to rapid mutation rates, strain differ-
ences, or incomplete annotation of viral coding sequences. 
When allowing for amino acid mismatches during alignment in 
the phospho-enriched samples, Modanovo’s advantage 
became more pronounced: the number of unique MPXV 
peptides increased by 129 and 247 when allowing for one and 
two mismatches, respectively (Supplementary Fig. S16). 
Moreover, aligning predicted peptides against a six-frame 
translation of the viral genome rather than the reference pro-
teome alone revealed an additional set of unique MPXV 
peptides: 153 and 314 were identified by Modanovo under 
one-mismatch and two-mismatch conditions, respectively 
(Supplementary Fig. S16). These results highlight Modanovo’s 
strength in discovering peptides from viral proteins, particu-
larly under phospho-enriched conditions where modified viral 
peptides may evade database search detection.
Moreover, we examined the organismal origin of Mod-

anovo’s predictions by assessing the proportion of PSMs with 
perfect alignments to the human or MPXV proteome, stratified 
by PTM type and infection condition (Fig. 4F). Across all 
modification types, the majority of predicted peptides aligned 
to the expected species: human sequences appeared in both 
sample types (mock and MPXV-infected), while MPXV-
specific peptides were observed almost exclusively in infec-
ted samples. Furthermore, to investigate temporal dynamics 
of host and viral peptide detection, we quantified the number 
of Modanovo-predicted PSMs from MPXV-infected samples 
with perfect alignment to the human or MPXV proteome 
across different time points post-infection (Fig. 4G). MPXV-
derived peptides increased markedly over time. In contrast, 
human peptide counts remained relatively stable across all 
time points, regardless of modification type. Together, these 
results highlight Modanovo’s ability to recover biologically 
meaningful peptide sequences and capture dynamic changes 
in viral expression and post-translational modification pat-
terns across infection time points.
Multiple seminal poxvirus studies have highlighted the 

importance of phosphorylation dynamics during infection (37, 
53–56). We inspected phosphorylation sites identified in the

(grey). For clarity, the first 100 PSMs are omitted. E, Proportion of unique peptides with perfect BLAST alignment and mass consistent with the 
precursor m/z for the phosphorylation-enriched (right) and full proteome (left) samples obtained by querying against the human and MPXV 
proteome for sequences only identified by Modanovo (blue), Modanovo and MaxQuant (MQ, light blue), and only MaxQuant (brown). F, 
Proportion of PSMs with perfect BLAST alignments and mass consistent with the precursor m/z for the phosphorylation-enriched (right) and 
full proteome (left) samples obtained by querying against the human and MPXV proteome for MPXV-infected samples (terracotta) and mock 
samples (blue). G, Number of PSMs with perfect BLAST alignments and mass consistent with the precursor m/z for the phosphorylation-
enriched (right) and full proteome (left) samples for samples measured at different hours post-infection for MPXV peptides (light terracotta) 
and human peptides (light blue). H, In silico predicted structure of the MPXV H5 dimer by AlphaFold (48) overlaid with electrostatic surface 
potential analysis of non-phosphorylated form. Phosphosites S12/13/T15, S27, S134/137/140 and S176/181 are highlighted in gold, and sites 
T55/56 and S116 in teal and labelled.
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MPXV multifunctional protein Cop-H5 (57). H5 was high-
lighted in the study that originally introduced this dataset as 
the most heavily phosphorylated viral protein with multiple 
known regulatory phosphosites (37). As an illustrative 
example, Modanovo consistently detected phosphosites at 
residues S12, S13, and T15 (cluster 1); S27; S134, S137, and 
S140 (cluster 2); S176, and S181; in agreement with those 
previously reported using MaxQuant (37). Phosphorylation of 
sites in cluster two and S176 was previously shown to 
regulate double-strand DNA binding activity, suggesting a 
dynamic role of this protein during the life cycle of this 
double-strand DNA virus (37). MaxQuant uniquely reported 
additional sites at S46 and T47, whereas Modanovo uniquely 
identified sites at T55, T56, and S116. One peptide was 
detected for sites T55 and T56 in two spectra, which were so 
far not described. For the target phosphosites at S116, 
Modanovo identified six distinct peptide sequences across 
105 spectra, without a corresponding peptide reported by 
MaxQuant, predominantly at the later hours post-infection 
(12h and 24h, Supplementary Fig. S17). These PSMs 
showed high confidence scores and MS2 spectral evidence 
(Supplementary Fig. S18). The analogous phosphosite to 
S116 in the vaccinia virus (S109) in Cop-H5 has been re-
ported previously as part of F10/H1 viral kinase/phosphatase 
phospho-network, a pivotal viral mechanism driving the 
phosphorylation dynamics during poxvirus lifecycle (56, 58). 
These three phosphosites fall within a predicted N-terminal 
unstructured region of the protein, and to highly charged 
amino acid stretches thereof as inferred from AlphaFold 
structural (48) and electrostatic models (Fig. 4H). These three 
sites, uniquely identified by Modanovo, could thereby hint at 
functional sites of a Cop-H5 disordered region, potentially 
regulating its activities or di/multimerization potential. Taken 
together, these observations provide a proof-of-concept 
illustration of how DNPS can detect biologically relevant 
phosphosites and demonstrate how the approach can com-
plement standard database search pipelines.

DISCUSSION

In this work, we curated a comprehensive dataset 
comprising a large number of peptide-spectrum matches 
(PSMs) from both in vivo experiments and synthetic peptides, 
including both unmodified peptides and post-translationally 
modified peptides containing 19 distinct amino acid-PTM 

combinations. This dataset enables model development and 
benchmarking of de novo peptide sequencing (DNPS) algo-
rithms supporting modified peptides. Leveraging this dataset, 
we developed Modanovo, built by extending Casanovo to 
support 19 PTM-amino acid combinations within a single, 
unified model, without sacrificing performance on unmodified 
peptides. Modanovo achieved strong performance across a 
broad spectrum of modifications on the development dataset 
and on independent datasets, validating it as a robust and

practical extension suitable for downstream applications. The 
application to a monkeypox virus (MPXV) dataset demon-
strated the complementarity of Modanovo to a state-of-the-
art database search approach, revealing hundreds of well-
supported peptides missed by database search and new 
MPXV phosphosites.
The comparison between open-search MSFragger and 

Modanovo on the MULTI-PTM dataset, where Modanovo 
performed favorably, highlights how a PTM-aware DNPS 
model can serve as an effective first-pass PTM discovery 
step: de novo predictions can reveal which modifications are 
present even without prior specification, driven mainly by 
mass-over-charge evidence and potentially augmented by 
fragment intensity information. These confidently detected 
PTMs can then be used to constrain a subsequent closed-
search database run, reducing the search space and 
improving identification performance.
Modanovo was trained on synthetic peptides for most PTM 

types. Synthetic peptide data are less noisy and miss fewer 
fragment peaks than data from “real” experiments. Neverthe-
less, these differences did not pose significant challenges during 
model transfer, underscoring the robustness of the learned 
representations. Nonetheless, the accurate prediction of longer, 
heavily modified peptides remains difficult. This challenge arises 
from three main sources. First, spectra of longer peptides are 
more likely to miss some fragment peaks. Second, autore-
gressive transformer decoders inherently accumulate errors as 
sequences grow longer, making each subsequent prediction 
increasingly susceptible to earlier inaccuracies. Third, the data-
set used for training contains few long synthetic modified pep-
tides. Several avenues could be pursued to mitigate this 
limitation in future DNPS work on modified peptides. One option 
is to synthesize longer, modified peptides to enrich training 
datasets; however, this remains experimentally challenging. An 
alternative strategy is to synthesize only the long unmodified 
peptides, where current synthesis methods are more reliable, 
and then introduce specific modifications chemically or enzy-
matically. Although this approach is limited to certain PTMs, 
advances in chemoselective ligation and enzymatic modification 
systems are expanding the range of modifications that can be 
installed ex vivo (59). Another direction is to incorporate addi-
tional high-quality in vivo spectra of modified peptides from re-
positories such as MassIVE-KB and PRIDE. While this could 
increase coverage and diversity, it introduces notable compli-
cations: FDR is typically controlled only within individual pro-
jects, and although the MassIVE-KB (v2) spectral library re-
identifies datasets and re-assesses confidence scores to 
ensure cross-project comparability, it still contains only a small 
number of confidently identified modified peptides. More 
broadly, database-derived “ground truth” from in vivo experi-
ments can be particularly unreliable for PTMs, where errors in 
site localization may directly translate into labels that misguide 
model training. Beyond the acquisition of new data, data-
augmentation strategies, such as those explored in recent
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Prosit work with expanded PTM coverage (35), could offer a 
complementary approach to broaden the training distribution 
without relying solely on experimentally derived PSMs. Overall, 
combining richer PTM-datasets consisting of longer peptides 
with non-autoregressive decoding strategies may offer a 
promising direction to further reduce length-related constraints. 
In addition to token-expansion approaches, including our 

work, π-PrimeNovo-PTM, and the recent model InstaNovo-P 
(33), one avenue for enhancement lies in the integration of 
open modification search tools, which could further expand 
PTM coverage without requiring explicit enumeration of all 
PTM-amino acid pairs during training. In this context, 
leveraging embeddings from chemical foundation models 
could enable representations that go beyond the mere residue 
masses, potentially resolving current ambiguities between 
residues of identical mass, such as isoleucine versus leucine, 
or O-GalNAc versus O-GlcNAc. In addition, coupling Mod-
anovo with tools such as Prosit or data-driven rescoring 
pipelines such as Oktoberfest (60) may improve site localiza-
tion by adding additional information such as retention times, 
particularly in spectra lacking strong site-determining fragment 
ions. The development and evaluation of such future tools 
could readily leverage the development dataset we provide, 
along with its splits into training, validation, and test sets.
In this study, we have applied Modanovo to datasets for 

which the reference proteome is known a priori. Remarkably, 
this still showed added value over database search. The 
advantages of DNPS are expected to be even more pro-
nounced in scenarios where the reference proteome is 
poorly annotated, undergoes adaptive mutations, i.e., 
through selective pressure, or when proteome sequence 
information is unavailable. These scenarios arise in studies 
of how RNA modifications affect protein sequence, in rapidly 
mutating tumours and RNA viruses, and in phospho-
metaproteomics, where diverse microbial proteomes and 
widespread phosphorylation pose major challenges for 
database-driven approaches.
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