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De novo peptide sequencing model with 92% average precision across PTMs.
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Beats database search in both 19 amino acid-PTM-restricted and open-search modes.
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Modanovo: A Unified Model for
Post-translational Modification-Aware De Novo
Sequencing Using Experimental Spectra From
In Vivo and Synthetic Peptides

Daniela Klaproth-Andrade'@, Yanik Bruns', Wassim Gabriel”, Christian Nix'®,
Valter Bergant®“®, Andreas Pichlmair®°, Mathias Wilhelm*® @, and

Julien Gagneur':%7":"

Post-translational modifications (PTMs) play a central
role in cellular regulation and are implicated in numerous
diseases. Database searching remains the standard for
identifying modified peptides from tandem mass spectra
but is hindered by the combinatorial expansion of modi-
fication types and sites. De novo peptide sequencing of-
fers an attractive alternative, yet existing methods remain
limited to unmodified peptides or a narrow set of PTMs.
Here, we curated a large dataset of spectra from
endogenous and synthetic peptides from ProteomeTools
spanning 19 biologically relevant amino acid-PTM com-
binations, covering phosphorylation, acetylation, and
ubiquitination. We used this dataset to develop Mod-
anovo, an extension of the Casanovo transformer archi-
tecture for de novo peptide sequencing. Modanovo
achieved robust performance across these amino acid-
PTM combinations (median area under the precision-
coverage curve 0.92), while maintaining performance on
unmodified peptides (0.93), nearly identical to Casanovo
(0.94). The model outperformed w-PrimeNovo-PTM and
InstaNovo-P and showed increased precision and
complementarity to the database search tool MSFragger.
Robustness was confirmed across independent datasets,
particularly at peptide lengths frequently represented in
the curated dataset. Applied to a phosphoproteomics
dataset from monkeypox virus-infected cells, Modanovo
recovered numerous confident peptides not reported by
database search, including new viral phosphosites sup-
ported by spectral evidence, thereby demonstrating its
complementarity to database-driven identification ap-
proaches. These results establish Modanovo as a broadly

applicable model for comprehensive de novo sequencing
of both modified and unmodified peptides.

Post-translational modifications (PTMs) enhance the func-
tional diversity of proteins by altering amino acid side chains
after translation (1). These chemical modifications are relevant
to protein activity, localization, and interactions and are often
implicated in disease (2). As a result, identifying PTMs is a
central goal in proteomics and is essential for understanding
many biological processes and diseases (3).

Bottom-up proteomics, typically using liquid
chromatography-tandem mass spectrometry, is the primary
method for large-scale protein and PTM identification (4, 5).
Here, proteins are enzymatically digested into peptides,
which are first analyzed in a first mass spectrometry scan to
measure their mass-to-charge (m/z) ratios (6-8). Selected
precursor ions are then isolated and fragmented, and the
resulting fragment ions are measured in a second scan,
producing a tandem mass spectrum (9, 10). Peptide se-
quences can, in principle, be inferred from mass differences
between fragment ions (11, 12), but this remains challenging
due to spectral noise, missing peaks, co-fragmented pep-
tides, and ambiguity in ion series assignment. Consequently,
peptide identification, which serves as the foundation for
subsequent protein inference and quantification, is typically
performed through database searching (13, 14). Here,
experimental spectra are matched against theoretical spectra
generated from the reference proteome of the organism of
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interest (15, 16). However, including PTMs in the context of
database searching exponentially increases the search
space, making exhaustive searches increasingly difficult (17).

An alternative or complementary avenue to database
search is de novo peptide sequencing (DNPS), which by-
passes the reference database entirely, enabling the discov-
ery of novel peptides, rare PTMs, and proteins from
unsequenced organisms (18). Recent DNPS tools, including
transformer-based models like Casanovo (19-21), have ach-
ieved strong results on benchmark datasets (22). However,
identifying post-translationally modified peptides remains a
major challenge. Casanovo and most of its peer-reviewed
successor models (23-29) support only the seven amino
acid-PTM combinations defined in the first release of the
MassIVE-KB human spectral libraries (30), which include
N-terminal modifications (acetylation, carbamylation, loss of
ammonia), deamidation, and oxidation. In contrast, x-Prime-
Novo (25) expands PTM coverage by fine-tuning on additional
PTMs one at a time. It was trained separately for each of the
PTM types contained in a dataset covering multiple PTMs
(381), demonstrating flexibility through multiple single-PTM
models, though the trained weights for all models have not
been released publicly. A phosphorylation-specific n-Prime-
Novo model trained on the 2020-Cell-LUAD dataset (32) has
been released publicly. Similarly, the latest release of Insta-
Novo broadened its PTM coverage by adding support for
phosphorylation (33). Although this single-PTM approach
increases PTM diversity, it requires training individual
models for each PTM, which is limited by the scarcity of
large, diverse PTM datasets and the substantial computa-
tional costs of per-PTM training. Furthermore, in cases
where multiple PTM types are of interest, each corre-
sponding model must be run separately, and the user must
determine which identification to trust, resulting in an
approach that is user-biased and less practical for broad or
ambiguous modification searches.

To the best of our knowledge, DNPS models that can
simultaneously identify a broad spectrum of PTM types within
a single unified framework while maintaining robust perfor-
mance on unmodified peptides are lacking. This limitation
partly arises from the scarcity of large-scale, high-quality
experimental datasets covering diverse PTMs.

Here, we compiled a sequence-annotated dataset of tan-
dem mass spectra including unmodified peptides and 19
amino acid-PTM combinations, drawing from the MassIVE-
KB spectral libraries (30) and the MULTI-PTM dataset,
which is part of PROSPECT-PTM (34, 35) and ProteomeTools
(86). Using this resource, we developed Modanovo, a unified
DNPS model built on the Casanovo architecture and
expanding its PTM coverage by 12 amino acid-PTM combi-
nations. Modanovo supports 39 tokens for canonical and
modified residues, enabling broad PTM coverage without

training separate models and while maintaining strong per-
formance on unmodified peptides. Importantly, Modanovo
identifies ubiquitinated, acetylated, and phosphorylated
peptides, among others, reflecting PTMs with broad roles in
protein regulation and cellular function. We demonstrate the
utility of Modanovo by analyzing human foreskin fibroblast
(HFF) cells infected with monkeypox virus (MPXV), revealing
relevant new phosphorylated peptides missed by conven-
tional database search.

EXPERIMENTAL PROCEDURES
Experimental Design and Statistical Rationale

The primary objective of this study was to develop and evaluate
Modanovo, a de novo peptide sequencing (DNPS) model capable of
handling datasets containing 19 amino acid-PTM combinations. A
detailed description of the data processing workflow and model
architecture is provided in subsequent sections. Modanovo was
trained on experimental spectra from in vivo experiments from the
MassIVE-KB (v1) human spectral libraries (30) and synthetic pep-
tides from the MULTI-PTM dataset (34). Its generalization ability was
evaluated on three independent publicly available datasets: 21
PTMs (31), MassIVE-KB (v2), and a dataset of MPXV-infected cells
(87). To ensure strict separation of peptide sequences, peptide-
spectrum matches (PSMs) were partitioned into training, valida-
tion, and test sets following the non-overlapping peptide splits
established in the Casanovo study (19). Model performance was
assessed using standard metrics for DNPS, including peptide-level
precision-coverage curves and their corresponding area under the
curve on held-out data. Benchmarking was performed against
Casanovo, n-PrimeNovo (25), InstaNovo-P (33), and MSFragger (38,
39). No biological replicates were generated, as the study leveraged
existing large-scale repositories.

For reproducibility, the source code is publicly available at: https://
github.com/gagneurlab/Modanovo. An official code release of Mod-
anovo (v1.0.0) is available on Zenodo at 10.5281/zenodo.17668430
(40). Trained model weights and data splits, along with identification
files, are available at 10.57967/hf/6452 (41) and 10.57967/hf/6451
(42) and 10.5281/zenodo.17640938 (43).

Datasets

MassIVE-KB (v1) Dataset—For model development, we down-
loaded a subset of the MassIVE knowledge base (MassIVE-KB)
peptide spectral libraries (30) consisting of ~30 million PSMs, which
were also used for training Casanovo (19, 20). These “high-quality”
PSMs were identified by applying a very strict PSM-level false dis-
covery rate (FDR) filter and selecting at most 100 PSMs for each
precursor charge and modified peptide combination (30). The
dataset includes both unmodified peptides and peptides bearing
variable PTMs at specific residues. The variable PTM-residue
combinations were: methionine oxidation (Unimod ID: 35), deami-
dation of asparagine and glutamine (Unimod ID: 7), N-terminal
acetylation (Unimod ID: 1), N-terminal carbamylation (Unimod ID: 5),
and N-terminal loss of ammonia (Unimod ID: 385). In addition, all
cysteine residues were treated as fixed, modified with
carbamidomethylation.

We considered the same peptide-disjoint training, validation, and
test sets that were used to develop Casanovo. From these training,
validation, and test sets, we randomly selected a subset (~9%) of
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~2.1 M, ~0.2 M, and ~0.2 M PSMs, respectively, to be used for
training and evaluation purposes of our model. Retaining a repre-
sentative proportion of unmodified peptides and those PTMs unique
to this dataset was intended to prevent forgetting during fine-tuning,
while subsampling reduced computational cost and emphasized the
additional PTMs not included in this dataset.

MULTI-PTM Dataset—In the absence of large in vivo datasets
covering a wide range of PTMs for model development, we com-
plemented our training data with a subset from PROSPECT-PTM
(34), part of the ProteomeTools project (36). This “MULTI-PTM
dataset” comprises high-quality tandem mass spectra of synthetic
peptides with 14 distinct variable PTM-amino acid combinations
and was used for model training and evaluation. All modifications in
this dataset are precisely localized, and each peptide contains at
most one variable PTM in addition to methionine oxidation and the
fixed carbamidomethylation of cysteine. The included PTM-residue
combinations are: methionine oxidation; N-terminal and lysine
acetylation (Unimod ID: 1); arginine citrullination (Unimod ID: 7);
monomethylation of lysine and arginine (Unimod ID: 34); phos-
phorylation of serine, threonine, and tyrosine (Unimod ID: 21); lysine
ubiquitinylation (Unimod ID: 121); pyroglutamate formation (pyro-
Glu) from glutamic acid and glutamine (Unimod IDs: 27, 28); and O-
GalNAc and O-GIcNAc modifications of serine and threonine
(Unimod ID: 43).

We restricted the dataset to PSMs from higher-energy collisional
dissociation (HCD; beam-type collision-induced dissociation) spectra
and to those analyzed with an Orbitrap mass analyzer. Moreover, we
randomly subsetted the dataset to contain at most 100 instances of
the same unmodified peptide and at most 200 instances of the same
modified peptide. This resulted in a total of over eight million PSMs,
which were randomly divided into training, validation, and test sets
comprising approximately 90%, 5%, and 5% of the data, respec-
tively. The defined sets are disjoint at the peptide level and follow the
same split strategy as used in Casanovo. Moreover, the modified and
unmodified counterparts of each peptide sequence were always
placed in the same split.

21-PTM Dataset—We obtained the raw files and MaxQuant (44)
identification results for the 21-PTM dataset (31), part of the Pro-
teomeTools project (36), which contains synthetic peptides with 21
distinct amino acid-PTM combinations, from the PRIDE repository
PXD009449. We restricted the dataset to PSMs derived from HCD
fragmentation acquired on Orbitrap mass analyzers. We subset the
dataset to contain only PTMs present in the MULTI-PTM and
MassIVE-KB (v1) datasets, resulting in a total of six amino acid-PTM
combinations. Nevertheless, we continue to refer to it as the “21-PTM
dataset”, consistent with its common usage in the field.

MassIVE-kb (v2) Dataset—We downloaded the second release of
the MassIVE Knowledge Base (MassIVE-KB v.2024-05-24, (30)),
which extends the variable PTMs cataloged in the first release by
including phosphorylation and ubiquitination. Consistent with the
download process for the initial release, we applied stringent quality
controls by selecting “high-quality” PSMs and limited the dataset to a
maximum of 100 PSMs per unique combination of precursor charge
and modified peptide sequence. For this study, we further restricted
the dataset to PSMs corresponding exclusively to post-translationally
modified peptides, resulting in ~150 thousand PSMs.

Monkeypox Virus (MPXV) Dataset—We obtained the raw files and
MaxQuant identification files for the full proteome and
phosphorylation-enriched datasets of human foreskin fibroblasts
(HFF) cells infected with monkeypox virus (MPXV) from the PRIDE
repositories PXD040811 and PXD040889 (37). We discarded decoy
and secondary peptides so that each experimental spectrum is
attributed to at most one peptide sequence, namely the one with the
highest score.

Identification of Post-translationally Modified Peptides With
Modanovo

Fine-Tuning of a Transformer Model for Peptide Prediction From
Tandem Mass Spectra—We based Modanovo on the Casanovo
transformer architecture, which employs a sequence-to-sequence
framework to predict peptide sequences directly from tandem mass
spectra. The model formulates peptide sequencing as a next-token
prediction task, where each token represents either a canonical
amino acid or a PTM-amino acid combination.

The original Casanovo vocabulary consisted of 28 tokens,
including the special stop token and seven amino acid-PTM combi-
nations. To accommodate an expanded vocabulary of 40 tokens
reflecting the inclusion of 12 new PTM-amino acid combinations as
distinct tokens, we increased the dimensions of the input embedding
layer and the output projection layer accordingly. The model with
extended token vocabulary was initialized with pre-trained weights
from Casanovo (v4.0.0), originally trained on the MassIVE-KB (v1)
dataset comprising primarily unmodified peptides. Embeddings for
the new tokens were initialized by averaging those of canonical amino
acids, providing a meaningful initialization that facilitated efficient
learning. We fine-tuned the entire model end-to-end on the combined
training dataset containing spectra from both unmodified and modi-
fied peptides, enabling the model to learn fragmentation patterns
associated with a broader spectrum of PTMs.

Training was conducted with a learning rate of 1. 107%, a dropout
probability of 0.1, a batch size of 32, and a maximum of 12 epochs.
Model performance was monitored on the validation set to mitigate
overfitting, and the model exhibiting the lowest validation loss was
selected as the final version for all subsequent analyses. All other
training strategies and preprocessing parameters were kept consis-
tent with the default settings established in Casanovo.

Evaluation and Alternative Methods

Peptide Prediction Score—For ranking and evaluation, each PSM
was associated with a confidence score. For Modanovo and Casa-
novo, a peptide-level score was calculated as the mean of the amino
acid scores, taken directly from the model’s softmax output at each
decoding step. To stabilize residue-level confidences, each amino
acid score was averaged with the overall peptide score. If the pre-
dicted sequence did not match the precursor mass within the
specified tolerance, a penalty of —1 was applied to the peptide-level
score.

For n-PrimeNovo, peptide confidence was defined as the mean
predicted probability across all residues in a sequence, as reported
by the non-autoregressive transformer. For MSFragger, peptide
scores were taken from the search engine’s reported spectral
matching score (Hyperscore).

Evaluation Metrics—During model training and evaluation, isoleu-
cine and leucine were treated as indistinguishable due to their iden-
tical masses. Additionally, pyroglutamate formation from glutamic
acid and glutamine is treated as a single PTM-amino acid combina-
tion, reflecting the chemical equivalence of the resulting pyrogluta-
mate residue.

We evaluated the model performance of each DNPS tool using
peptide-level precision-coverage curves. For each spectrum, we
compared the peptide predicted by a tool to the corresponding
peptide identified by a database search engine at a specified FDR
threshold. The score refers to the confidence score assigned by the
tool. A PSM was considered correct if it exactly matched the
database-identified peptide, allowing for substitutions mentioned
above. PSMs with a ground truth database identification but no
prediction were considered incorrect and assigned the lowest
possible score. Precision and coverage were computed across
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varying score thresholds t among all PSMs identified by the database
search engine, and were defined as:

# correct PSMs with score > t

ision () =
precision (t) #PSMs with score > t

# PSMs with score >t
#PSMs

coverage () =

The area under the precision-coverage curve (AUPCC) was
computed using the trapezoidal method as implemented in the
function “auc” of the scikit-learn package (45). In addition to the
AUPCC, we often reported the final precision (at coverage 1) for
each tool, which is equivalent to the peptide recall obtained by the
tool in comparison to the ground truth identifications.

To compute peptide-level precision-coverage curves for a given
PTM-amino acid combination, we include all ground truth peptides
that contain that specific modification, regardless of whether addi-
tional modifications are also present. For example, the ground truth
peptide “PEPT[+79.966]IDEK[+14.016]” contributes to both the
peptide-level precision-coverage curves for phosphorylated threo-
nine (T[+79.966]) and monomethylated lysine (K[+14.016]).

Peptide Alignment—Peptide alignments were obtained by running
blastp (version 2.12.0+) against sequences of the reviewed human
proteome, including isoforms (Uniprot, Taxon ID 9606) and Monkeypox
virus proteins (GenBank: ON563414.3), downloaded from the PRIDE
repository PXD040811. As a scoring matrix, we used the identity
matrix, modified such that leucine and isoleucine were considered
equivalent. All other blastp settings were set to their default values. We
restricted the output of blastp to at most one hit per queried peptide
sequence. If the search returned multiple hits, we selected the hit with
the lowest e-value. We defined a query peptide to be a perfect align-
ment if the peptide is identical to the target peptide (except for dif-
ferences between leucine and isoleucine).

Validation with Prosit—We obtained Prosit (46) spectrum pre-
dictions through Koina (47) for unmodified peptide identifications in the
MPXV dataset using Prosit. Peptides longer than 30 residues, shorter
than seven residues, or with a charge state exceeding six were
excluded. We ran Prosit using a normalized collision energy of 30,
which yielded the highest spectral angles for most sequences deemed
correct when compared with MaxQuant predictions. Prosit-predicted
spectra for a given peptide sequence were matched to the corre-
sponding experimental spectra by aligning each Prosit-predicted peak
to the nearest experimental peak within a 20 ppm tolerance window, if
present. The normalized spectral angle (SA) between the predicted and
experimental spectra was defined as:

Dlored, * lexp,
i

A /Z’pred, z. A /Z/expfz

where lpeq, and ley, denote the intensities of the i-th matched
peak in the predicted and experimental spectra, respectively. Both
experimental and theoretical intensities were normalized using
base-peak normalization before SA computation. If no experi-
mental peak was found within the tolerance window to match an
expected peak, the intensity /ey, was set to zero. The SA ranged
from 0 to 1, with values closer to one indicating greater similarity.

Empirical Precision Estimates on the MPXV Dataset—We obtained
empirical precision estimates on the phosphorylation-enriched and
full proteome samples of the MPXV dataset by leveraging PSMs
identified with MaxQuant as a reference. For each score threshold of
Modanovo, we calculated the proportion of PSMs that could be
matched to a MaxQuant peptide identification. This proportion was

SA=

used as an empirical estimate of the precision at that threshold. By
scanning across thresholds, we determined the score cutoffs that
corresponded to target precision levels of 80%, 90%, and 95% for
the full proteome and phospho-enriched samples separately. These
empirically derived cutoffs were then applied to the set of PSMs
without MaxQuant peptide identifications, enabling the extension of
the empirical precision estimates to all identifications.

MPXV H5 Structure Modeling With AlphaFold and Electrostatic
Surface Potential Analysis—In silico prediction of the structure of the
MPXV H5 dimer was performed using the colab version of AlphaFold
2.3.1 (48) in the multichain mode using default parameters. The
electrostatic surface potential of the modeled structure of the MPXV
H5 dimer was calculated using the PyMOL plugin APBS electro-
statics. Molecular graphics depictions were produced with the
PyMOL software (49).

Alternative Methods— Casanovo. We downloaded the Casanovo
(v4.0.0) model weights from https://github.com/Noble-Lab/
casanovo/releases/tag/v4.0.0. Casanovo was trained on the
MassIVE-KB (v1) dataset, and we obtained the corresponding
training, validation, and test splits in April 2024 from https://noble.gs.
washington.edu/~melih/mskb_casanovo_splits.zip.

n-PrimeNovo-PTM. We cloned the n-PrimeNovoPTM (25) code
from https://github.com/PHOENIXcenter/pi-PrimeNovo/tree/main/pi-
PrimeNovo-PTM and downloaded the model weights fine-tuned for
phosphorylation. This model was trained on the 2020-Cell-LUAD
dataset, which focuses on human lung adenocarcinoma and includes
103 LUAD tumor samples along with their matched non-cancerous
adjacent tissues (32). This =n-PrimeNovo-PTM model represents
phosphorylation using a dedicated token “B” with a corresponding
mass of 79.9663. For evaluation, we accepted predicted sequences
as correct provided the phosphorylation was localized to the correct
serine, threonine, or tyrosine residue, irrespective of whether the “B”
token preceded or followed the residue.

InstaNovo-P. We installed and executed InstaNovo (v1.1.4)
following the instructions provided on its PyPI page (https://pypi.org/
project/instanovo). We ran the model using the publicly available
phosphorylation fine-tuned weights, which were downloaded from
the v1.1.2 release on GitHub (https://github.com/instadeepai/
InstaNovo/releases/tag/1.1.2).

MSFragger. We ran MSFragger (v4.1 (38, 39)) on the MULTI-PTM
dataset through the FragPipe interface (v22.0) using both closed and
open search configurations. Carbamidomethylation of cysteine was
specified as a fixed modification. In the closed-search setting, all PTM-
amino acid combinations covered by Modanovo were explicitly spec-
ified as variable modifications in the search parameters. In the open
search setting, at most three modifications per sequence were
considered, with PTM mass tolerances ranging from —-20 to +250 Da,
and PTM-Shepherd (50) was subsequently applied for PTM charac-
terization and localization. Spectra were searched against a forward
and reverse version of the reviewed human proteome, without isoforms
(UniProt, Taxon ID 9606, containing 20,596 proteins and downloaded
November 17, 2023). The search was performed using tryptic digestion
with precursor and fragment mass tolerances set to 20 ppm. PSM-level
FDR filtering was performed using Percolator with an FDR threshold of
0.01. Peptide-level and protein-level FDR thresholds were set to one to
avoid additional filtering beyond the spectrum level.

RESULTS
A Dataset for Developing de Novo PTM Identification
Models

We compiled a dataset combining a subset of the
MassIVE-KB human spectral libraries (v1), consisting mostly
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of unmodified peptides and seven amino acid-PTM combi-
nations, with a curated subset of spectra from MULTI-PTM
(part of PROSPECT-PTM (34) and the ProteomeTools proj-
ect (35, 36)). The latter includes synthetic peptides modified
with a range of biologically relevant post-translational mod-
ifications (PTMs) such as phosphorylation, acetylation,
ubiquitylation, and methylation, which were crucially missing
in MassIVE-KB (v1). Due to the scarcity of large, well-
annotated experimental datasets covering diverse PTMs,
this combination allowed us to leverage both data from
in vivo experiments as well as from synthetic peptides to
improve model generalization. In total, this combined data-
set, denoted as development dataset throughout this
manuscript, consisted of approximately 11 million PSMs
spanning 20 canonical amino acids and 19 distinct PTM-
amino acid combinations, 12 of them not being covered by
Casanovo and most of its successor models (Fig. 1, A and B,
Supplementary Table S1), enabling comprehensive learning
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and evaluation across a broad spectrum of peptide
modifications.

Modanovo Extends Casanovo to 12 new Amino Acid-PTM
Combinations

Based on this development dataset, we developed Mod-
anovo, a transformer-based model designed to identify
modified peptides directly from tandem mass spectra. To
enable this, we fine-tuned Casanovo’s transformer architec-
ture (Fig. 1C), initializing the model with weights from a
Casanovo model previously trained on MassIVE-KB (v1). To
accommodate the expanded vocabulary arising from PTM-
amino acid combinations treated as distinct tokens, we
adjusted the shapes of the input embedding layer and the
final linear projection layer (Methods). The new parameters
corresponding to the expanded token set were initialized by
averaging the weights of existing tokens in their respective
layers, providing a meaningful starting point rather than

C
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Fic 1. Modanovo identifies post-translationally modified peptide sequences using a mixture of spectra from in vivo experiments
and synthetic peptides for model development. A, Number of peptide-spectrum matches (PSMs) for modified and unmodified peptides
used for model development from two different data sources: the MassIVE-KB (v1) human spectral libraries (dark and light green) and from a
subset of PROSPECT-PTM (MULTI-PTM, dark and light mustard). B, Heatmap showing the number of PSMs used for model development
across PTM types and modified residues. Rows correspond to PTM types, columns to residues. The side color strip indicates the data source
(MULTI-PTM, MassIVE-KB, or both). The heatmap is colored on a logarithmic scale, with darker blue shades representing higher PSM counts.
C, An autoregressive transformer encoder and decoder architecture based on Casanovo allows the identification of post-translationally
modified peptides directly from tandem mass (MS2) spectra. The model is trained starting with weight initialization from Casanovo’s pre-
trained weights. The model components for the amino acid (AA) embeddings and final linear layer (in blue) are expanded to allow the

modification of new post-translationally modified residues.
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random initialization. We then fine-tuned the entire model
end-to-end, allowing it to retain knowledge of canonical
peptide fragmentation patterns while adapting to the vari-
ability introduced by PTMs.

Modanovo Confidently Identifies Modified synthetic
peptides

We first assessed whether Modanovo’s performance
remained comparable to that of Casanovo on unmodified
peptides and the PTMs covered by Casanovo, which served
as the starting point of our fine-tuning approach for PTM
expansion. Specifically, we evaluated both models on the test
set of the MassIVE-KB (v1) dataset, which was also used to
originally develop and evaluate Casanovo and primarily con-
sists of unmodified peptides. We found that Modanovo ach-
ieved nearly identical performance to Casanovo overall, with
an area under the precision-coverage curve (AUPCC) of 0.93
versus 0.94 (on held-out data here and everywhere else,
Supplementary Fig. S1A), indicating that it remained well
suited for identifying unmodified peptides. In terms of AUPCC
across specific PTM-amino acid combinations, Modanovo
showed strong agreement with Casanovo (Supplementary
Fig. S1B), with only minor variations observed across indi-
vidual PTM categories. Slightly larger performance differ-
ences were seen for deamidation and N-terminal loss of
ammonia. The reduced performance for peptides with
N-terminal ammonia loss and deamidation may reflect added
complexity introduced by the inclusion of pyroglutamate and
citrullination modifications, which result in similar mass shifts
and may interfere with model discrimination in this mass
range.

Having confirmed that Modanovo maintained strong per-
formance on unmodified peptides from in vivo experiments
and the set of PTMs covered by Casanovo, we evaluated
Modanovo on the MULTI-PTM proportion of the development
dataset. The MULTI-PTM dataset contained 12 distinct PTM-
amino acid combinations, which did not overlap with those
covered in Casanovo. Across these distinct PTM-amino acid
combinations, Modanovo achieved a median AUPCC of 0.92
([0.70, 0.96] 95% confidence interval) and a median final
peptide precision of 0.68 ([0.48, 0.74] 95% confidence inter-
val), measured against ground truth peptide sequences re-
ported by PTM-specific MaxQuant (44) searches (Fig. 2A).
Comparably, on unmodified peptides from the development
dataset, Modanovo attained a median AUPCC of 0.93 and a
final peptide precision of 0.71 (Fig. 2A). Particularly, phos-
phorylated peptides were accurately identified by Modanovo,
with AUPCC values of 0.96, 0.93, and 0.94, and final precision
values of 0.78, 0.71, and 0.72 for sequences containing
phosphorylated serine (S[+79.966]), threonine (T[+79.966]),
and tyrosine (Y[+79.966]) residues, respectively. Comparable
performance was observed for peptides bearing acetylation
(K[+42.011] and [+42.011]-), ubiquitination (K[+114.043]), and
citrullination (R[+0.984]). Notably, Modanovo achieved an

AUPCC of 0.96 for sequences containing pyroglutamate
residues (E[-18.011] and Q[-17.027]). This performance,
which surpassed that observed for unmodified peptides, may
be due to the model successfully learning that pyroglutamate
formation is restricted to the first residue position in a peptide
sequence.

In contrast to the consistently high performance observed
across most PTM types, Modanovo showed reduced per-
formance on peptides containing O-GalNAc and O-GlcNAc
modifications of serine and threonine (AUPCC of 0.25 and
0.5). Perhaps, this was partly because these glycosylation
events produce complex and often heterogeneous fragmen-
tation patterns, with reduced fragment ion coverage and in-
tensity that hinder reliable sequence reconstruction (51).
Moreover, both modifications are encoded using the same
token in the model due to their mass equivalence and equal
Unimod identifier (52), despite their structural differences. The
challenge is compounded by the limited number of examples
for these glycopeptides in the dataset (Fig. 2B, ~19,000 gly-
copeptides vs. a mean number of test PSMs per PTM type in
the MULTI-PTM dataset of 66,109). Interestingly, when
allowing modified peptide sequences to be considered cor-
rect despite shifts in the O-GalNAc/O-GIcNAc modification
site between serine and threonine (e.g., treating PEP-
TIS[+203.079]ER and PEPT[+203.079]ISER equivalently), or
between two serine or threonine residues, the AUPCC
improved (from 0.25 to 0.58 for serine residues and from 0.50
to 0.70 for threonine residues, Supplementary Fig. S2),
although it still fell short of the levels achieved for other PTM
types. This improvement showed that while the model
sometimes struggled to localize the modification to the exact
residue, it more often correctly called the modification at the
peptide level and recovered the underlying unmodified pep-
tide sequence. These shifts likely reflect the inherent difficulty
of pinpointing the modification site when spectra lack clear
site-determining fragment ions. Similarly, the somewhat
decreased performance of monomethylated peptides could
be partly attributed to disagreements in the localization sites
between the ground truth and predicted peptide sequences.
Allowing for different monomethylation sites increased the
AUPCC from 0.83 to 0.85 for arginine residues and from 0.85
to 0.91 for lysine residues (Supplementary Fig. S2).

Overall, a moderate positive correlation was observed be-
tween the AUPCC and the number of PSMs in the test set, but
the relationship was not statistically significant (Fig. 2B, Spear-
man’s p = 0.45, p = 0.13). This suggests that factors beyond
dataset size, such as fragmentation behavior or the structural
properties of specific PTMs, played an important role in model
performance. Notably, some PTMs with relatively few examples,
such as citrullination, still achieved competitive AUPCC values,
while others with larger sample sizes, such as arginine mono-
methylation, performed more modestly. These findings indicate
that PTM-specific learnability may outweigh the absolute
amount of training data in determining predictive accuracy.
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Fic 2. Model performance on the test set of the development dataset. A, Precision-coverage curves at the peptide level for the 12 new
PTM-amino acid combinations covered by Modanovo, as well as methionine oxidation. PTM types (Acetylation, Citrullination, Mono-
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We reasoned that achieving high performance on longer
peptides is more challenging, since every amino acid and its
modifications must be correctly identified, the spectra of long
peptides are often of lower quality, and errors accumulate due
to the autoregressive nature of the transformer model.
Therefore, we evaluated the impact of peptide length on
Modanovo performance. Peptides on the MULTI-PTM subset
were 12 residues long in median (Fig. 2C). Modanovo ach-
ieved improved or comparable median AUPCC across PTM-
residue combinations, relative to the overall median AUPCC
(0.92), for peptides up to 13 residues in length (Fig. 2D).
However, model performance declined for longer peptides.
For example, the AUPCC for sequences containing phos-
phorylated serine dropped from 0.93 to 0.78 when comparing
peptides of length 12 to 13 to those of length 13 to 14. Similar
observations were made on the Massive-KB (v1) dataset for
both Modanovo and Casanovo, whose performance
decreased for peptides longer than the median length of 14
(Supplementary Fig. S3). These findings suggest that Mod-
anovo performs most reliably within the peptide length range
it was most frequently exposed during training.

Among state-of-the-art DNPS tools claiming to expand
PTM coverage beyond Casanovo’s vocabulary, publicly
available model weights are limited to versions supporting
phosphorylation only. Therefore, we compared Modanovo to
n-PrimeNovo-PTM (25) and InstaNovo-P (33) on phosphory-
lated peptides from the development dataset. Modanovo
substantially outperformed n-PrimeNovo-PTM and modestly
improved InstaNovo-P on all phosphorylated sequences of
the dataset (Supplementary Fig. S4).

Having established Modanovo as a DNPS model covering
12 new amino acid-PTM combinations, we next asked
whether it could serve as a useful complementary tool to
state-of-the-art database search approaches. For this, we
first compared the performance of Modanovo on the 12 new
amino acid-PTM combinations to that of MSFragger (38),
applying a 1% PSM-level FDR. As a realistic database search
reflecting the application setting, in which multiple PTMs are
of interest and the ground truth is unknown, we ran
MSFragger against the full human proteome, allowing for the
same set of possible modifications as Modanovo (Methods).
We note that this database search setup differed substantially
from the one initially used to establish high-quality ground
truth annotations (34), where targeted searches were

performed with MaxQuant, each restricted to the relevant
modification and using a database limited to the synthesized
peptides. Overall, Modanovo outperformed MSFragger in
identifying modified peptides across all PTM types (Fig. 2E),
highlighting its strong ability to identify correct PSMs even at
high precision levels. Moreover, we ran MSFragger in an open
search setting and applied PTM-Shepherd for PTM charac-
terization and localization (Methods), reflecting a realistic
scenario in which users have no prior knowledge of the
modifications present in the samples. While the search
summary correctly recovered all PTM types, except citrulli-
nation, at >1% PSM frequency in the MULTI-PTM dataset,
the  superiority of Modanovo remained evident
(Supplementary Fig. S5), underscoring the added value of
DNPS approaches in such applications.

Modanovo Generalizes to Independent Datasets

To evaluate Modanovo’s generalizability, we applied it to
two distinct datasets: the “21-PTM dataset” (31), consisting
of modified synthetic peptides, and a modified-only subset of
the latest release of MassIVE-KB (v2), which, in contrast to
the first release, included phosphorylated, acetylated, and
ubiquitinated residues. We focused our assessment on the 12
new amino acid-PTM combinations covered by Modanovo,
resulting in six and five amino acid-PTM combinations from
the 21-PTM and MassIVE-KB (v2) datasets. For consistency
with common usage in the field, we still refer to the first
dataset as the “21-PTM dataset”, even though only a subset
of PTMs was considered here.

While model performance generally decreased compared
to that observed in the development dataset, it remained
strong across a diverse range of amino acid-PTM combina-
tions (Fig. 3A, Supplementary Fig. S6), though the quality of
identification varied depending on the dataset and modifica-
tion. For instance, the model identified peptides with lysine
ubiquitylation (K[+114.043]) with an AUPCC of 0.93 and 0.82
on the 21-PTM and MassIVE-KB (v2) datasets, respectively,
compared to 0.95 on the development dataset. Similarly, it
reached an AUPCC of 0.89 for lysine acetylation (K[+42.011])
on the 21-PTM dataset, compared to 0.91 for the develop-
ment dataset. The AUPCC was generally lower on MassIVE-
KB (v2) for the remaining PTM types (acetylation and
phosphorylation, Fig. 3A), with the most pronounced drop
observed for phosphorylation (mean AUPCC: 0.94 vs. 0.65).

Precision-coverage curves for the remaining PTM-amino acid combinations, which were covered by Casanovo before, are found in
Supplementary Fig. S1. B, Area under the precision-coverage curve (AUPCC) against the number of peptide-spectrum matches (PSMs) per
PTM-residue combination on the test set, using the same color scheme as in panel A. Statistical significance was assessed using Spearman
correlation (p = 0.45, p = 0.13). C, Distribution of peptide sequence lengths in the test set of the MULTI-PTM dataset. The dashed vertical line
marks the median peptide length. D, AUPCC at the peptide level across peptide length bins, evaluated on the test set. Each point represents a
PTM-amino acid combination, using the same color scheme as in panel A. Bins were constructed to contain approximately equal numbers of
PSMs. The dashed grey line indicates the AUPCC across all peptide lengths. E, Precision-coverage curves at the peptide level comparing
Modanovo (blue) to MSFragger (claimed 1% FDR, orange) on the test set of the MULTI-PTM dataset, faceted by the different PTM types.
MSFragger often does not propose a peptide for a given spectrum. These are ranked last and cause the hyperbole sections in the higher

coverage range.
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PTM datasets.

However, this decrease in performance was largely explained
by differences in peptide length distributions: MassIVE-KB
(v2) contains a greater proportion of longer peptides than
the 21-PTM and development datasets (median lengths: 19,
14, and 12, Supplementary Fig. S7). When controlling for
peptide length, the AUPCC remained comparable between
the three datasets (Fig. 3B), indicating that Modanovo’s
learned representations generalize well to in vivo-derived
spectra. This consistent performance at matched lengths
supports the conclusion that Modanovo is capable of accu-
rately identifying modified peptides from complex biological
samples, despite being trained primarily on data from syn-
thetic peptides.

Unlike the peptides in the development dataset, the 21-PTM
dataset contains sequences with more than one PTM type
(beyond methionine oxidation). To evaluate Modanovo’s ability
to generalize to these more complex cases, which were not
seen during training, we stratified performance by PTM-type
combinations. The model was able to sequence multiply
modified peptides for most combinations (Supplementary
Fig. S8). For example, Modanovo achieved an AUPCC of
0.74 for peptides containing both acetylated and mono-
methylated residues (K[+42.011] and R[+14.016]), which, while
lower than the values observed for singly modified peptides
(0.76 for monomethylation and 0.95 for acetylation), still indi-
cated reasonable generalization to peptides carrying multiple
co-occurring modifications despite being trained only on
singly modified peptides (apart from optional methionine
oxidation).

Phosphorylation site (P-site) localization remains a long-
standing challenge in mass spectrometry-based proteomics.
To assess Modanovo’s robustness to this ambiguity, we
evaluated its ability to identify phosphorylated peptides in the

MassIVE-KB (v2) and 21-PTM datasets while allowing for
alternative P-site placements relative to those assigned by
database searching. While performance remained unchanged
on the 21-PTM dataset when accepting predictions with
different P-sites, either on the same residue type or on a
different phosphorylatable residue, it increased for the
MassIVE-KB (v2) dataset (Supplementary Fig. S9). For
example, among peptides with a phosphorylated tyrosine as
the ground truth, the AUPCC improved from 0.74 to 0.79
when predictions placing the phosphate on serine or threo-
nine residues were also considered correct. These results
underscore Modanovo’s flexibility in recovering plausible
phosphopeptides despite the inherent uncertainty of P-site
assignment.

We further compared Modanovo to the publicly available
n-PrimeNovo-PTM (25) and InstaNovo-P (33) models, which
allow the prediction of phosphorylated residues, ensuring that
all tools were evaluated on the same set of PSMs after
removing any PSMs used for training of any tool. Consistent
with the observations in the development dataset
(Supplementary Fig. S4), Modanovo consistently achieved a
higher AUPCC than =n-PrimeNovo-PTM across all three
phosphorylated residues (Fig. 3C, Supplementary Fig. S10),
with gains of 0.41 vs. 0.34 for tyrosine, 0.52 vs. 0.39 for
threonine, and 0.64 vs. 0.55 for serine, on the MassIVE-KB
(v2) dataset; and substantially outperformed zn-PrimeNovo-
PTM on the 21-PTM dataset. These results suggest that
explicity modeling PTM-amino acid combinations (e.g.,
S[+79.966]) as single tokens, rather than treating the PTM
mass shift (e.g., [+79.966]) as an independent token that can
appear anywhere in the sequence, may contribute to
improved predictive performance. Combined with training on
a larger and more diverse dataset containing several PTM
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types, this design choice could help better capture biologi-
cally plausible fragmentation patterns across different PTM
types. Compared to InstaNovo-P, Modanovo showed
improved performance on the MULTI-PTM and 21-PTM
datasets (AUPCC values of 0.91 vs. 0.82 on the 21-PTM
dataset, and similar values on the MULTI-PTM dataset). On
the MassIVE-KB (v2) dataset, it outperformed InstaNovo-P on
tyrosine-phosphorylated sequences (AUPCC values of 0.41
vs. 0.22), while exhibiting minor reductions on threonine/
serine-phosphorylated sequences (AUPCC values of 0.52
vs. 0.54 and 0.64 vs. 0.69), an acceptable trade-off given
Modanovo’s substantially broader PTM coverage.

Modanovo Identifies Phosphopeptides from Monkeypox
Virus-Infected Samples

Having established Modanovo as a DNPS tool capable of
confidently identifying post-translationally modified peptide
sequences from tandem mass spectra, we applied it to a
time-resolved dataset of human foreskin fibroblast (HFF) cells
infected with monkeypox virus (MPXV), comprising both full
proteome and phosphoproteome measurements (37). This
recently published dataset represents a compelling use case,
as it captures the complex interplay of PTMs in both the virus
and the host during the course of infection. Furthermore,
DNPS approaches are particularly attractive in viral prote-
omics, since viral genomes frequently undergo mutations that
can complicate database-driven peptide identification. The
dataset was originally analyzed with the database search
engine MaxQuant. Here, we evaluated the extent to which
Modanovo provides complementary insights to this initial
analysis.

MaxQuant identified a peptide sequence at 1% FDR for
only 15% and 30% of the spectra in the phospho-enriched
samples and full proteome samples, respectively. Consid-
ering these identifications as ground truth, Modanovo
demonstrated strong performance on unmodified peptides
and peptides containing only common modifications (N-ter-
minal acetylation or methionine oxidation), achieving an
AUPCC of 0.95 and 0.88 on phosphorylation-enriched and full
proteome samples, respectively (Fig. 4A, Supplementary
Fig. S11). This was consistent with the performance on the
development dataset (AUPCC of 0.93) and further confirmed
the robustness of the model. For peptides containing a single
phosphorylated residue, the AUPCC decreased to 0.78. While
this represents a drop in performance, it remained compa-
rable to Modanovo’s performance on unmodified peptides
and phosphopeptides of similar lengths in the development
dataset (Fig. 2D, Supplementary Fig. S12). Hence, the lower
performance on phosphopeptides in the MPXV dataset is
attributable to a shift in peptide length distribution: the me-
dian sequence lengths were 16 and 17 amino acids for singly
and multiply phosphorylated peptides, respectively
(Supplementary Fig. S13), longer than those typically
observed during training. As expected, model performance

declined with increasing proportions of missing y-ion frag-
ments (Supplementary Fig. S13). Notably, the model perfor-
mance for singly phosphorylated peptides closely matched
that of unmodified peptides when controlling for the propor-
tion of missing y-ions (Supplementary Fig. S14). Overall,
Modanovo maintained competitive performance when using
MaxQuant identifications as ground truth, highlighting its
ability to generalize to more complex datasets with longer
peptides and variable fragment coverage.

We next analyzed Modanovo peptide predictions beyond
the spectra identified by MaxQuant. For this, we set cutoffs
on Modanovo confidence scores by leveraging the
MaxQuant-identified PSMs as ground truth to map score
cutoffs to precision estimates (Methods). As an initial positive
control, we observed that, despite having no prior information
on the sample preparation or enrichment strategy, Modanovo
predominantly predicted unmodified peptides and peptides
containing only common modifications (N-terminal acetyla-
tion or methionine oxidation) in the full proteome samples and
phosphopeptides in the phospho-enriched samples for high
precision estimates (Supplementary Fig. S15).

As an orthogonal proxy for peptide plausibility, we
assessed the agreement between the experimental spectrum
and the Prosit-predicted spectrum (46), using the spectral
angle as a similarity metric (0 for no similarity, one for highest
similarity, Methods). At the time of this analysis, the available
Prosit model did not handle PTMs beyond methionine
oxidation. Therefore, this analysis had to be restricted to
unmodified peptides (and those containing only methionine
oxidation). We stratified spectra by agreement between
Modanovo and MaxQuant annotations. When considering all
Modanovo predictions without applying any precision esti-
mate, spectral angles were highest for sequences matching
MaxQuant and lowest for spectra not identified by MaxQuant,
presumably representing lower-quality spectra (Fig. 4B). A
similar trend was observed when restricting to predictions
with precursor mass agreement, although differences in me-
dian spectral angles were less pronounced. At the 90% pre-
cision threshold, Modanovo predictions matching MaxQuant
showed high spectral similarity (median SA: 0.81), closely
comparable to Modanovo-only predictions for spectra
without MaxQuant identifications (median SA: 0.80; Fig. 4B).
At 95% precision threshold, spectral angles increased slightly
across all groups, reaching 0.84 for both MaxQuant-matching
and Modanovo-only predictions. For spectra where Mod-
anovo and MaxQuant disagreed, spectral similarity also
improved with confidence, with median SA values of 0.80 and
0.90 at the 90% and 95% thresholds, respectively (Fig. 4B).
These results support the validity of many high-confidence
Modanovo identifications and demonstrate that the model’s
confidence score is an effective indicator of prediction quality.
This is even evident for spectra not annotated by MaxQuant
or where the two methods disagree, cases likely to be more
challenging for peptide identification.
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Fic 4. Modanovo applied to a dataset of monkeypox virus (MPXV)-infected human foreskin fibroblast (HFF) cells. A, Area under the
precision-coverage curve (AUPCC) obtained with Modanovo’s predictions with MaxQuant peptides as ground truth sequences for comparison
for the full proteome samples and phosphorylation-enriched samples with the MaxQuant sequence having multiple phosphorylated residues
(light mustard), one phosphorylation residue (mustard), and no phosphorylation residues (green). B, Spectral angles obtained from the
comparison of experimental spectra and Prosit-predicted spectra for Modanovo’s prediction for the whole set of predictions (“All”), for pre-
dictions with mass matching the precursor mass-to-charge (m/z) and at different precision estimates (80%, 90% and 95%), and for Mod-
anovo’s predictions matching the identified MaxQuant sequence (light brown), not matching the MaxQuant sequence (dark brown), and for
spectra without a MaxQuant identification (blue). C, Proportion of peptide-spectrum matches (PSMs) with perfect BLAST alignments for the
phosphorylation-enriched (terracotta) and full proteome (green) samples for all PSMs predicted by Modanovo (“All”), the PSMs predicted by
Modanovo with calculated mass matching the precursor m/z (“Mass matches precursor”), and at different precision estimates (80%, 90%, and
95%). D, Proportion of PSMs with perfect BLAST alignments and mass consistent with the precursor m/z for the phosphorylation-enriched
(right) and full proteome (leff) samples, sorted by Modanovo’s score for phosphorylated peptides (mustard), unmodified peptides, or pep-
tides only containing methionine oxidation or N-terminal acetylation (green) and peptides containing other PTM types covered by Modanovo
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As a further source of evidence of the plausibility of Mod-
anovo identifications, we next evaluated the proportion of
Modanovo-predicted peptides that perfectly aligned to the
human or the MPXV proteome, allowing isoleucine-leucine
mismatches (Methods). For PSMs from the phospho-
enriched samples, the proportion of perfect alignments
remained high, reaching 0.94 at an estimated precision of
95%, and 0.80 at 90% precision (Fig. 4C, Methods). In
comparison, perfect alignment rates for the full proteome
samples were slightly lower, reaching 0.84 and 0.72 at the
95% and 90% precision thresholds, respectively. Moreover,
in both full proteome and phospho-enriched samples, PSMs
corresponding to unmodified peptides or those containing
only common modifications (methionine oxidation or N-ter-
minal acetylation) exhibited consistently high alignment rates
across the confidence range (Fig. 4D). For example, in the top
10,000 PSMs by confidence, the perfect alignment rate
exceeded 93% and 77% for unmodified peptides on the full
proteome samples and phospho-enriched samples, respec-
tively (Fig. 4D). Notably, PSMs predicted to contain a phos-
phorylation event also maintained high perfect alignment
rates, particularly in the phospho-enriched samples, where
they reached a proportion of 0.93 perfect alignments in the
top 10,000 PSMs and outperformed other PTM types across
nearly the entire confidence spectrum. These results partic-
ularly support the reliability of phosphorylation predictions in
the phospho-enriched samples.

We next assessed the novelty and complementarity of
Modanovo’s predictions relative to database search by
comparing the set of perfectly aligning peptides identified by
Modanovo and MaxQuant to the reference proteomes with
computed mass matching the experimental precursor, strat-
ified by sample type and species of origin (human vs. MPXV;
Fig. 4E). Notably, Modanovo identified a substantial number
of MPXV peptides in their unmodified version that were
missed by MaxQuant, particularly in the phospho-enriched
samples. Specifically, Modanovo recovered 72 unique
MPXV peptides in the phospho-enriched dataset that were
not identified by MaxQuant, more than twice the number of
peptides uniquely identified by MaxQuant (n = 32), and 1037
MPXV peptides in the full proteome dataset, compared to 239
unique to MaxQuant. While the proportion of shared peptides
was higher for human than for viral sequences, this is

expected given the higher abundance of host proteins and
potential database coverage biases.

Allowing for alignment mismatches is particularly relevant in
the context of viral proteomes, which often exhibit high
sequence variability due to rapid mutation rates, strain differ-
ences, or incomplete annotation of viral coding sequences.
When allowing for amino acid mismatches during alignment in
the phospho-enriched samples, Modanovo’s advantage
became more pronounced: the number of unique MPXV
peptides increased by 129 and 247 when allowing for one and
two mismatches, respectively (Supplementary Fig. S16).
Moreover, aligning predicted peptides against a six-frame
translation of the viral genome rather than the reference pro-
teome alone revealed an additional set of unique MPXV
peptides: 153 and 314 were identified by Modanovo under
one-mismatch and two-mismatch conditions, respectively
(Supplementary Fig. S16). These results highlight Modanovo’s
strength in discovering peptides from viral proteins, particu-
larly under phospho-enriched conditions where modified viral
peptides may evade database search detection.

Moreover, we examined the organismal origin of Mod-
anovo’s predictions by assessing the proportion of PSMs with
perfect alignments to the human or MPXV proteome, stratified
by PTM type and infection condition (Fig. 4F). Across all
modification types, the majority of predicted peptides aligned
to the expected species: human sequences appeared in both
sample types (mock and MPXV-infected), while MPXV-
specific peptides were observed almost exclusively in infec-
ted samples. Furthermore, to investigate temporal dynamics
of host and viral peptide detection, we quantified the number
of Modanovo-predicted PSMs from MPXV-infected samples
with perfect alignment to the human or MPXV proteome
across different time points post-infection (Fig. 4G). MPXV-
derived peptides increased markedly over time. In contrast,
human peptide counts remained relatively stable across all
time points, regardless of modification type. Together, these
results highlight Modanovo’s ability to recover biologically
meaningful peptide sequences and capture dynamic changes
in viral expression and post-translational modification pat-
terns across infection time points.

Multiple seminal poxvirus studies have highlighted the
importance of phosphorylation dynamics during infection (37,
53-56). We inspected phosphorylation sites identified in the

(grey). For clarity, the first 100 PSMs are omitted. E, Proportion of unique peptides with perfect BLAST alignment and mass consistent with the
precursor m/z for the phosphorylation-enriched (right) and full proteome (left) samples obtained by querying against the human and MPXV
proteome for sequences only identified by Modanovo (blue), Modanovo and MaxQuant (MQ, light blue), and only MaxQuant (brown). F,
Proportion of PSMs with perfect BLAST alignments and mass consistent with the precursor m/z for the phosphorylation-enriched (right) and
full proteome (left) samples obtained by querying against the human and MPXV proteome for MPXV-infected samples (terracotta) and mock
samples (blue). G, Number of PSMs with perfect BLAST alignments and mass consistent with the precursor m/z for the phosphorylation-
enriched (right) and full proteome (left) samples for samples measured at different hours post-infection for MPXV peptides (light terracotta)
and human peptides (light blue). H, In silico predicted structure of the MPXV H5 dimer by AlphaFold (48) overlaid with electrostatic surface
potential analysis of non-phosphorylated form. Phosphosites S12/13/T15, S27, S134/137/140 and S176/181 are highlighted in gold, and sites

T55/56 and S116 in teal and labelled.
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MPXV multifunctional protein Cop-H5 (57). H5 was high-
lighted in the study that originally introduced this dataset as
the most heavily phosphorylated viral protein with multiple
known regulatory phosphosites (37). As an illustrative
example, Modanovo consistently detected phosphosites at
residues S12, S13, and T15 (cluster 1); S27; S134, S137, and
S140 (cluster 2); S176, and S181; in agreement with those
previously reported using MaxQuant (37). Phosphorylation of
sites in cluster two and S176 was previously shown to
regulate double-strand DNA binding activity, suggesting a
dynamic role of this protein during the life cycle of this
double-strand DNA virus (37). MaxQuant uniquely reported
additional sites at S46 and T47, whereas Modanovo uniquely
identified sites at T55, T56, and S116. One peptide was
detected for sites T55 and T56 in two spectra, which were so
far not described. For the target phosphosites at S116,
Modanovo identified six distinct peptide sequences across
105 spectra, without a corresponding peptide reported by
MaxQuant, predominantly at the later hours post-infection
(12h and 24h, Supplementary Fig. S17). These PSMs
showed high confidence scores and MS2 spectral evidence
(Supplementary Fig. S18). The analogous phosphosite to
S116 in the vaccinia virus (S109) in Cop-H5 has been re-
ported previously as part of F10/H1 viral kinase/phosphatase
phospho-network, a pivotal viral mechanism driving the
phosphorylation dynamics during poxvirus lifecycle (56, 58).
These three phosphosites fall within a predicted N-terminal
unstructured region of the protein, and to highly charged
amino acid stretches thereof as inferred from AlphaFold
structural (48) and electrostatic models (Fig. 4H). These three
sites, uniquely identified by Modanovo, could thereby hint at
functional sites of a Cop-H5 disordered region, potentially
regulating its activities or di/multimerization potential. Taken
together, these observations provide a proof-of-concept
illustration of how DNPS can detect biologically relevant
phosphosites and demonstrate how the approach can com-
plement standard database search pipelines.

DISCUSSION

In this work, we curated a comprehensive dataset
comprising a large number of peptide-spectrum matches
(PSMs) from both in vivo experiments and synthetic peptides,
including both unmodified peptides and post-translationally
modified peptides containing 19 distinct amino acid-PTM
combinations. This dataset enables model development and
benchmarking of de novo peptide sequencing (DNPS) algo-
rithms supporting modified peptides. Leveraging this dataset,
we developed Modanovo, built by extending Casanovo to
support 19 PTM-amino acid combinations within a single,
unified model, without sacrificing performance on unmodified
peptides. Modanovo achieved strong performance across a
broad spectrum of modifications on the development dataset
and on independent datasets, validating it as a robust and

practical extension suitable for downstream applications. The
application to a monkeypox virus (MPXV) dataset demon-
strated the complementarity of Modanovo to a state-of-the-
art database search approach, revealing hundreds of well-
supported peptides missed by database search and new
MPXV phosphosites.

The comparison between open-search MSFragger and
Modanovo on the MULTI-PTM dataset, where Modanovo
performed favorably, highlights how a PTM-aware DNPS
model can serve as an effective first-pass PTM discovery
step: de novo predictions can reveal which modifications are
present even without prior specification, driven mainly by
mass-over-charge evidence and potentially augmented by
fragment intensity information. These confidently detected
PTMs can then be used to constrain a subsequent closed-
search database run, reducing the search space and
improving identification performance.

Modanovo was trained on synthetic peptides for most PTM
types. Synthetic peptide data are less noisy and miss fewer
fragment peaks than data from “real” experiments. Neverthe-
less, these differences did not pose significant challenges during
model transfer, underscoring the robustness of the learned
representations. Nonetheless, the accurate prediction of longer,
heavily modified peptides remains difficult. This challenge arises
from three main sources. First, spectra of longer peptides are
more likely to miss some fragment peaks. Second, autore-
gressive transformer decoders inherently accumulate errors as
sequences grow longer, making each subsequent prediction
increasingly susceptible to earlier inaccuracies. Third, the data-
set used for training contains few long synthetic modified pep-
tides. Several avenues could be pursued to mitigate this
limitation in future DNPS work on modified peptides. One option
is to synthesize longer, modified peptides to enrich training
datasets; however, this remains experimentally challenging. An
alternative strategy is to synthesize only the long unmodified
peptides, where current synthesis methods are more reliable,
and then introduce specific modifications chemically or enzy-
matically. Although this approach is limited to certain PTMs,
advances in chemoselective ligation and enzymatic modification
systems are expanding the range of modifications that can be
installed ex vivo (59). Another direction is to incorporate addi-
tional high-quality in vivo spectra of modified peptides from re-
positories such as MassIVE-KB and PRIDE. While this could
increase coverage and diversity, it introduces notable compli-
cations: FDR is typically controlled only within individual pro-
jects, and although the MassIVE-KB (v2) spectral library re-
identifies datasets and re-assesses confidence scores to
ensure cross-project comparability, it still contains only a small
number of confidently identified modified peptides. More
broadly, database-derived “ground truth” from in vivo experi-
ments can be particularly unreliable for PTMs, where errors in
site localization may directly translate into labels that misguide
model training. Beyond the acquisition of new data, data-
augmentation strategies, such as those explored in recent
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Prosit work with expanded PTM coverage (35), could offer a
complementary approach to broaden the training distribution
without relying solely on experimentally derived PSMs. Overall,
combining richer PTM-datasets consisting of longer peptides
with non-autoregressive decoding strategies may offer a
promising direction to further reduce length-related constraints.

In addition to token-expansion approaches, including our
work, n-PrimeNovo-PTM, and the recent model InstaNovo-P
(33), one avenue for enhancement lies in the integration of
open modification search tools, which could further expand
PTM coverage without requiring explicit enumeration of all
PTM-amino acid pairs during training. In this context,
leveraging embeddings from chemical foundation models
could enable representations that go beyond the mere residue
masses, potentially resolving current ambiguities between
residues of identical mass, such as isoleucine versus leucine,
or O-GaINAc versus O-GIcNAc. In addition, coupling Mod-
anovo with tools such as Prosit or data-driven rescoring
pipelines such as Oktoberfest (60) may improve site localiza-
tion by adding additional information such as retention times,
particularly in spectra lacking strong site-determining fragment
ions. The development and evaluation of such future tools
could readily leverage the development dataset we provide,
along with its splits into training, validation, and test sets.

In this study, we have applied Modanovo to datasets for
which the reference proteome is known a priori. Remarkably,
this still showed added value over database search. The
advantages of DNPS are expected to be even more pro-
nounced in scenarios where the reference proteome is
poorly annotated, undergoes adaptive mutations, i.e.,
through selective pressure, or when proteome sequence
information is unavailable. These scenarios arise in studies
of how RNA modifications affect protein sequence, in rapidly
mutating tumours and RNA viruses, and in phospho-
metaproteomics, where diverse microbial proteomes and
widespread phosphorylation pose major challenges for
database-driven approaches.
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