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Research

After a seminal publication in 1977
(Williams et al. 1977), few studies addressing
the possible effects of air pollutants on
human reproduction were published before
the late 1990s, a time when the number of
publications sharply increased. A brief sum-
mary of the main findings is given in Table 1.
Several reviews exist (Glinianaia et al. 2004a,
2004b; Lacasana et al. 2005; Maisonet et al.
2004; Šrám et al. 2005). Although it is still
too early to draw firm conclusions, these data
suggest adverse associations between air pol-
lution, specifically carbon monoxide, nitro-
gen dioxide, sulfur dioxide, and particulate
matter [PM; particularly fine particulate mat-
ter, PM with aerodynamic diameter < 2.5 µm
(PM2.5)], and measures of fetal growth
(assessed at birth) and gestational duration.
For other pollutants (e.g., ozone) and

outcomes (e.g., semen quality or birth
defects), either the evidence to date is weaker
or few data exist.

Objectives

The International Workshop on Air
Pollution and Human Reproduction was
convened 9–11 May 2007 to discuss the cur-
rent body of evidence for effects of atmos-
pheric pollution on human reproduction, to
identify the strengths and weaknesses of pub-
lished epidemiologic studies, to suggest future
directions for research, to foster collaboration,
and to promote dialogue among epidemiolo-
gists, toxicologists, clinicians, and biostatisti-
cians. Several outcomes related to human
reproduction were the focus of the discus-
sions, including pregnancy outcomes [intra-
uterine growth restriction (IUGR), gestational

age] and male reproductive health (semen
quality). We report here on the issues dis-
cussed by the speakers, workshop partici-
pants, and working groups; many of these
issues and ideas were raised and discussed
without any formal process of consensus
building and should therefore not be seen as
being endorsed by all workshop participants.

Results

Study design–related issues. Study designs.
An approach commonly employed in epi-
demiologic studies of air pollution and birth
outcomes is linkage of outcome and covariate
data from birth certificate records with ambi-
ent air quality monitoring data. Its main
advantage is that it allows conducting large
size studies at a very low cost because it relies
on routinely collected data. Its limitations are
exposure misclassification and possibly
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BACKGROUND: There is a growing body of epidemiologic literature reporting associations between
atmospheric pollutants and reproductive outcomes, particularly birth weight and gestational duration. 

OBJECTIVES: The objectives of our international workshop were to discuss the current evidence, to
identify the strengths and weaknesses of published epidemiologic studies, and to suggest future
directions for research. 

DISCUSSION: Participants identified promising exposure assessment tools, including exposure mod-
els with fine spatial and temporal resolution that take into account time–activity patterns. More
knowledge on factors correlated with exposure to air pollution, such as other environmental pollu-
tants with similar temporal variations, and assessment of nutritional factors possibly influencing
birth outcomes would help evaluate importance of residual confounding. Participants proposed a
list of points to report in future publications on this topic to facilitate research syntheses. Nested
case–control studies analyzed using two-phase statistical techniques and development of cohorts
with extensive information on pregnancy behaviors and biological samples are promising study
designs. Issues related to the identification of critical exposure windows and potential biological
mechanisms through which air pollutants may lead to intrauterine growth restriction and pre-
mature birth were reviewed. 

CONCLUSIONS: To make progress, this research field needs input from toxicology, exposure assess-
ment, and clinical research, especially to aid in the identification and exposure assessment of feto-toxic
agents in ambient air, in the development of early markers of adverse reproductive outcomes, and of
relevant biological pathways. In particular, additional research using animal models would help better
delineate the biological mechanisms underpinning the associations reported in human studies.
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confounding. For these reasons, prospective
cohort studies with recruitment of women
before delivery (e.g., Choi et al. 2006) hold
promise: They allow use of biomarkers of
exposure or outcome and conduct personal
monitoring and collection of detailed infor-
mation on behaviors related to exposure and
on confounders, at a much higher cost. These
two designs can be coupled by conducting
case–control studies with collection of addi-
tional information at the individual level for a
sample nested within a cohort constituted
from birth records (Ritz et al. 2007); nested
studies combine the strength of the larger
sample size with more detailed information
for a subset of pregnancies. 

The time-series approach has proven use-
ful to study the acute cardio-respiratory effects
of air pollution and has been adapted to stud-
ies of preterm birth and fetal death (Pereira et
al. 1998; Sagiv et al. 2005). However, unlike
the traditional time-series analysis in which
the population at risk (e.g., of cardiac death)
remains relatively stable across time, the popu-
lation at risk of adverse birth outcomes is con-
stantly changing throughout the year. Given
that the seasonality of birth has been reported
to differ by factors related to socioeconomic
status (Bobak and Gjonca 2001), composition
of the population at risk may differ across sea-
sons. Thus, application of time-series or
case–crossover designs to reproductive out-
comes may require additional considerations.
Generally, these approaches relying only on
temporal variations in exposure appear com-
plementary to the above-mentioned designs
relying on cohorts or birth records, which usu-
ally take advantage of both spatial and tempo-
ral exposure contrasts.

Confounding. Because air pollution levels
vary in time and space, any factor influencing

reproduction and varying with time or space in
a way similar to air pollutants is a potential con-
founder (Figure 1). However, some common
pregnancy complications (e.g., preeclampsia)
associated with adverse birth outcomes might
be caused by air pollutants and should therefore
probably not be treated as confounders. The
workshop discussions focused on socio-
economic status, season, and nutrition. 

Socioeconomic status and related factors
are associated with the occurrence of adverse
reproductive outcomes (Parker et al. 1994).
Part of this association may be explained by
variables that we can control for, such as
active or passive smoking, parity, body mass
index, and occupational and residential expo-
sures to other pollutants. However, some
residual influence of socioeconomic status on
reproductive outcomes may remain after con-
trolling for these factors. Because socio-
economic status may also be associated with
air pollution levels in neighborhoods
(Woodruff et al. 2003), it is a potential con-
founder. Higher levels of primary traffic-
related air pollutants are often observed in the
city center than in the suburbs; in many U.S.
cities, people from poorer socioeconomic
classes more often live in the city center than
in the suburbs and thus are exposed to higher
levels of these pollutants. An opposite pattern
may exist in some European cities, where city
centers are more often inhabited by residents
with higher socioeconomic status. Thus, as
exemplified for typical U.S. and European
cities, the direction of the implied confound-
ing bias in studies without efficient adjust-
ment for socioeconomic status might depend
on the study area. An issue remains about
how to measure socioeconomic status to con-
trol for it in studies of air pollution and repro-
duction—for example, about the best way to

combine characteristics such as income, edu-
cational level or occupation of either partner,
ethnicity, type of health insurance; different
measures of socioeconomic status probably
need to be constructed in each country. 

Season is associated with air pollution
levels. Moreover, some data suggest that pre-
mature births are associated with season (Lee
et al. 2006), although part of this association
might in fact be attributable to seasonality in
air pollutants levels. The underlying cause for
an association between premature birth and
season might also be exposure to other envi-
ronmental factors that vary as well with sea-
son, such as drinking-water pollutants or
infectious diseases; in this case, season should
be seen as a potential confounder in studies of
air pollution and premature birth. Because
season of birth is influenced by the duration of
pregnancy, which in turn may be shortened by
exposure to air pollutants, and because con-
founders should, by definition, not be affected
by exposure (Rothman and Greenland 1998),
the more appropriate adjustment might be for
season of conception rather than season of
birth. To minimize residual confounding, it
may also be necessary to explore smoothing
approaches such as spline regression (Salam
et al. 2005) rather than employing a simple
qualitative approach for coding season. In
some settings, the association of season with
air pollution might be very strong (particularly
with trimester-specific air pollution levels); in
this case, controlling for season might produce
overadjustment or make the estimates associ-
ated with air pollution unstable. Ideally, it
would be more appropriate to adjust for the
seasonally varying factors underlying any asso-
ciation between season and birth outcome.
For similar reasons, season is also a potential
confounder in studies of semen quality.
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Table 1. Overview of current evidence concerning the possible effects of air pollutants on human reproduction. 

Reproductive health outcome
(strength of evidence) Exposure assessment Study design Illustrative references

Male reproductive health
Semen quality (–/+) AQMS, biomarkers Longitudinal or cross-sectional Rosa et al. 2003; Rubes et al. 2005

Female reproductive health
Hormonal function (LD) Experimental (rats) Archibong et al. 2002

Couples’ fecundity (LD) AQMS Pregnancy-based retrospective study; 
experimental (mice) Dejmek et al. 2000; Mohallem et al. 2005

Pregnancy and fetal health
Stillbirth (LD) AQMS Time series Pereira et al. 1998
Prematurity (–/+) AQMS Birth register–based study; time series Huynh et al. 2006; Sagiv et al. 2005; 

Wilhelm and Ritz 2003
Congenital malformations (–/+) AQMS Birth defect register–based study Ritz et al. 2002
Intrauterine growth, birth weight (+) AQMS, biomarkers, LUR, Birth register–based study; cohorts of Choi et al. 2006; Ritz and Yu 1999; Rocha

personal monitoring pregnant women; experimental E Silva et al. 2008; Slama et al. 2007
Secondary sex-ratio (LD) AQMS Birth register–based study and experiment (mice) Lichtenfels et al. 2007

Postnatal health
Infant death (+) AQMS Case–control study relying on birth/death Ritz et al. 2006; Woodruff et al. 2006

certificates.
Transgenerational effects

Heritable mutation rate (LD) Personal monitoring Experimental (mice) Somers et al. 2004

Abbreviations: +, suggestive evidence; –/+, mixed or yet inconclusive results; AQMS, air quality monitoring stations; LD, limited data, indicates outcomes little or not studied; LUR, land-
use regression models.



Maternal nutrition before and during
pregnancy may vary strongly by geographic
area, ethnicity, socioeconomic status, and
possibly season and hence with air pollution
levels. Animal experiments suggest an influ-
ence of maternal nutrition on measures of
IUGR (Kind et al. 2006). Currently, very few
epidemiologic studies support an effect of
variations in maternal diet as currently
encountered in industrialized countries on
IUGR (Stein et al. 2004); however, in general
it would be biologically plausible. There is
also recent work showing possible effect meas-
ure modification between nutrition and air
pollutants. Contrary to season or socio-
economic factors, any confounding by nutri-
tional factors might be difficult to quantify
and remove because of measurement errors in
the assessment of nutritional factors.

Studying separately the apparent effects of
the temporal and spatial components of expo-
sure might also constitute an option for
examining potential residual confounding
(Janes et al. 2007). The use of a control expo-
sure window after pregnancy might be
another way to examine potential for residual
confounding by factors spatially correlated
with exposure. 

Effect measure modification. In theory, all
potential confounders are candidates for effect
measure modification (VanderWeele and
Robins 2007). So far, one study estimated
stronger effects of air pollution in neighbor-
hoods with low socioeconomic status in winter
(Ponce et al. 2005), suggesting an increased
vulnerability in these populations. A stronger
effect of air pollution on birth weight was also
reported for parous than for nulliparous
women in a study in which exposure was esti-
mated for the home address; the authors inter-
preted this heterogeneity in effects as a
consequence of the home address–based expo-
sure estimate being more accurate for parous
pregnant women because they are more likely
to stay at home to take care of their other chil-
dren than nulliparous women (Ritz and Yu
1999). A study using biomarkers of exposure
to air pollutants and passive smoking reported
a stronger association between air pollutants
and IUGR among women exposed to passive
smoking (Perera et al. 2005) than among
women not exposed to passive smoking. It has
also been suggested that the sizes of air pollu-
tant effect measure differ for male and female
offspring (Ghosh et al. 2007). Concerning
nutrition, a review (Kannan et al. 2006) and a
recent study (Jedrychowski et al. 2007)
hypothesized that maternal prepregnancy and
gestational nutrition may modulate the harm-
ful effects of prenatal exposures to PM2.5 on
birth outcomes. Experiments based on tran-
scriptome analysis indicate that several groups
of genes involved in immunity and metabolism
of xenobiotics are repressed in the placentas of

rats with diet-induced IUGR (Buffat et al.
2007). This suggests that the mechanisms of
resistance to xenobiotics such as air pollutants
may be altered in the case of IUGR induced by
a poor diet, and gives some support to a
stronger sensitivity to air pollutants for fetuses
exposed to other environmental stressors.

Gene–environment interactions with
functional genetic polymorphisms implied in
the possible biological pathways of action of
air pollutants are also worth considering;
Wang et al. (2000) highlighted different size
effects for maternal occupational exposure to
benzene on gestational duration depending on
polymorphisms in genes coding for enzymes
involved in phase I and phase II metabolism
of xenobiotics (CYP1A1 and GSTT1). 

Exposure assessment. Pollutants consid-
ered. Most studies have focused on routinely
measured “criteria” pollutants for which data
are more easily available [i.e., CO, NO2, O3,
PM2.5, and PM10 (PM with aerodynamic
diameter < 10 µm)]. Future studies may want
to address specific pollutant sources such as
road traffic (distinguishing truck and diesel
traffic from the other types of vehicles) or
pollutants with specific hypotheses regarding
biological mechanisms such as ultrafine
particulate matter (< 0.1 µm in aerodynamic
diameter, either mass or particle number con-
centration) or polycyclic aromatic hydro-
carbons (PAHs). They may also consider
expanding their scope to include the evalua-
tion of mixtures of pollutants and possibly
determine the composition of PM because
the composition, source, and toxicity of
equal-size PM can vary according to time and
location (Hopke et al. 2006). This may help
explain similarities or differences in results for
the same criteria pollutant type reported for
different regions. 

Finally, although most studies have
focused on average exposures, considering the
effect of peaks in exposure might provide
additional insights. 

Traditional approaches. Air pollution
measurements from existing networks of
ambient monitoring stations are often used to
assess exposure to air pollution within a given
distance from a station (typically, studies have
used limits from < 1.7 km up to 8 km) or
within a given administrative unit (e.g.,
county). Such approaches allow including
large numbers of births. However, they are
hindered by exposure misclassification due to
unmeasured time–activity patterns, time
spent indoors, and local heterogeneity for cer-
tain pollutants. Furthermore, a fairly large
proportion of women (20–30%) may move
during pregnancy (Canfield et al. 2006),
making exposure assessment based only on
delivery residence problematic.

In principle, simulation studies could be
conducted to estimate the extent of exposure
variability and contribution of various sources
to the total exposure to optimize the exposure
assessment [see, e.g., Whitaker et al. (2003)
for an example from another field]. Because
one cannot a priori predict the effect of expo-
sure measurement error (Jurek et al. 2005),
sensitivity analyses (Lash and Fink 2003;
Zeger et al. 2000) with detailed information
concerning the direction and degree of expo-
sure misclassification (e.g., from studies in
which several approaches are simultaneously
used to assess exposure) would allow quantify-
ing the bias induced by the different sources
of measurement error in each study.

GIS (geographic information system)–
based approaches. Several approaches allow
taking into account small area variations in
pollution (e.g., presence of a road). Indices

Atmospheric pollution and human reproduction
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Figure 1. Hypothesized relations between air pollution, IUGR, and extraneous factors possibly acting as
confounders in an epidemiologic study of air pollution effects on IUGR. Abbreviations: ETS, environmental
tobacco smoke; BMI, body mass index; SES, marker of socioeconomic status (e.g., maternal education).
Arrows indicate plausible effects of a factor over another not mediated by another factor present in the dia-
gram. A dotted arrow indicates a plausible although not established relation. An arrow from a factor A that
intersects an arrow from B to C indicates that A may modify the effect of B on C (Weinberg 2007).
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such as distance from the closest road or dis-
tance-weighted traffic density (Wilhelm and
Ritz 2003) constitute a simple source model
potentially available in many locales. Exposure
estimates can also be derived with land-use
regression (LUR) methods, air dispersion
models (Brauer et al. 2003; Nieuwenhuijsen
et al. 2006), or two-stage geostatistical
approaches incorporating monitoring station
data and information on temporally or spa-
tially varying covariates (Fanshawe et al.
2007). The resulting increase in spatial resolu-
tion of exposure models should not be
achieved at the cost of a poorer temporal reso-
lution. Indeed, the critical exposure window
for many reproductive outcomes may be short
(days, months, or trimesters) and LUR models
typically yield yearly exposure estimates. One
option is to incorporate temporal variability
into LUR models based on measures from
background monitoring stations (Brauer et al.
2008; Slama et al. 2007). However, further
studies may be needed to determine how well
background stations reflect temporal variability
at traffic locations.

Considering each microenvironment.
Because women may spend a considerable
amount of their time outside their residence,
exposure estimates need to be derived for
other locations, such as at work and in trans-
port, to create an integrated personal exposure
estimate. The transport environment may
make a significant contribution to total expo-
sure, even when the time spent in this envi-
ronment is short (Kaur et al. 2007; Zhu et al.
2007). Time microenvironment activity
diaries have been used to capture people’s
movement; global positioning systems also
offer possibilities (Nethery et al. 2007). 

Personal dosimetry. When a sufficient
number of measurements are taken (e.g., dur-
ing the course of pregnancy), personal monitor-
ing (e.g., Choi et al. 2006; Jedrychowski et al.
2007) may provide an estimate of exposure less
prone to misclassification than ecologic or semi-
individual approaches; implementation costs
for the latter, however, are an order of magni-
tude smaller per individual. Simulation studies
that address power (Armstrong 1987) and bias
considerations might help determine if the
financial resources in a given study are best
invested into increasing sample size or improv-
ing accuracy of exposure assessment. 

Biomarkers of exposure. The use of bio-
markers of exposure for outdoor air pollutants
is currently limited. Some applications
include measurement of adducts between
PAHs and DNA in maternal or cord blood
(Perera et al. 2005), urinary metabolites of
benzene, pulmonary markers of combustion
of fossil fuels (Kulkarni et al. 2006), and
assessment of cotinine, a metabolite of nico-
tine, in blood or urine. Compared with stud-
ies of respiratory morbidity, studies of human

reproduction involve special considerations
because of physiologic filters (lung epi-
thelium, placental barrier) between the envi-
ronment and the target organs (e.g., the
placenta, gonads, hypothalamo–pituitary
axis). Environmental levels may poorly
approximate the dose absorbed by these target
organs; for example, correlations of 0.5 to 0.7
between personal exposure to PAH present in
PM2.5 and PAH–DNA adducts in white
blood cells have been reported among women
(Binková et al. 1996); more moderate correla-
tions (in the 0.2–0.3 range) have been
reported in white blood cells PAH–DNA
adducts between maternal blood collected
within 1 day postpartum and umbilical cord
blood collected at delivery (e.g., Perera et al.
2004). Consequently, correlations between
atmospheric PAH levels and PAH–DNA levels
in cord blood might be weak. Further work is
probably warranted to identify and validate bio-
markers specific of traffic-related air pollutants. 

A limitation is that metabolites of pollu-
tants usually have short half-lives in the
body. Thus, researchers employing such bio-
markers need to target the relevant exposure
window, or perform repeated measurements,
unless validation studies show little intraindi-
vidual variations in the concentration of the
biomarkers considered. In this regard, the
assay of adducts between pollutant metabo-
lites and either DNA or proteins (Castano-
Vinyals et al. 2004) constitutes an interesting
option, as the half-life of these DNA or pro-
tein adducts might be longer than that of
unbound metabolites. 

Critical exposure windows. Because of typ-
ically strong seasonal variations in air pollution
levels, there are opportunities to study whether
specific periods of pregnancy and of spermato-
genesis are more sensitive to air pollutants
than others. However, teasing out the critical
windows of exposure is challenging because
a) different pollutants may act during different
periods of pregnancy, b) routinely measured
(and thus evaluated) pollutants may only be
proxy markers of the pollutant(s) affecting
health, and c) pollutant mixtures differ across
locations and time. Windows of highest sensi-
tivity reported in studies on air pollution and
IUGR that assessed all trimesters or months of
pregnancy are presented in Supplemental
Material, Figure 1 (online at http://www.
ehponline.org/members/2008/11074/suppl.
pdf). For each pollutant, there have been very
few studies with similar methodologies (e.g.,
as far as mutual adjustment for other time
windows is concerned), which limits between-
studies comparisons. Most studies on IUGR
used trimester-specific exposure windows. Yet
when there are no strong a priori biologic
hypotheses, investigating finer time scales
(e.g., months) might be a more informative
and appropriate approach.

Identification of critical exposure win-
dows from biological knowledge. Animal
experiments (Rocha E Silva et al. 2008) and
biological knowledge should guide the defini-
tion of exposure windows. In the case of car-
diac malformations, for example, one may
focus specifically on exposure that occurred no
later than in the second month of pregnancy,
which corresponds to a period of rapid fetal
heart formation. Because current biological
knowledge is more limited for other reproduc-
tive outcomes, epidemiologic studies some-
times also use a data-driven approach [relying
on models summarized in Supplemental
Material, Table 1 (online at http://www.
ehponline.org/members/2008/11074/suppl.
pdf)] by reporting the effect estimates associ-
ated with different exposure windows. We
now focus on methodologic issues raised by
this approach.

Methodologic issues. In studies of preterm
delivery relying on binomial regression, a
methodologic issue in exposure assessment was
pointed out by C. Weinberg at the workshop:
The time window is sometimes defined with
respect to the date of birth (e.g., a 6-week
period before birth). In the case of a birth at 34
gestational weeks, this will correspond to the
period from 29 to 34 gestational weeks,
whereas for a birth at 41 gestational weeks, this
corresponds to the period from weeks 36 to
41, which includes the period from 37 to 41
weeks, when a premature birth cannot occur
anymore by definition. Alternatively one could
employ a matched case–control design in
which exposures are averaged over the same
gestational period (e.g., from 29 to 34 gesta-
tional weeks) for the cases and the matched
controls (Huynh et al. 2006). A survival model
is another recommended analytical approach,
possibly incorporating time-dependent vari-
ables (O’ Neill et al. 2003). Last, one could
simply truncate exposure at the gestational cut-
off for premature births. Such approaches are
also recommended when studying spontaneous
abortion or stillbirth. 

Other methodologic issues were men-
tioned. Exposures earlier in pregnancy may be
more prone to measurement error than those
later in pregnancy, both because maternal res-
idence—often used to assign exposure—is
usually known only at birth and because
women may spend more time at home later
than earlier in pregnancy (Nethery 2007). 

Another issue is that correcting gestational
age using first trimester ultrasound measure-
ments may lead to underestimating effects of
environmental pollutants on birth outcomes,
if these effects already manifest early in preg-
nancy and influence fetal growth at the time
of the first ultrasound measurement (Slama
et al., in press). 

Pre- and postevent exposures. Studies
could examine pre- and postpregnancy
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windows of exposure. Prepregnancy exposure
to air pollutants might entail genetic or epige-
netic effects on the male or female gametes
(Somers et al. 2004), which might in turn
influence pregnancy outcomes. 

Slama et al. (2007) have suggested that
comparing the estimated effect of pregnancy
exposure with that of postnatal exposure (e.g.,
the 9 months following birth, if one assumes
that the relevant exposure window corre-
sponds to the whole pregnancy) may help in
discarding specific biases as the explanation of
the association between air pollution and
reproductive outcomes. Depending on the
correlations between postnatal and pregnancy
exposures, associations of postnatal exposure
with pregnancy outcome would be expected
to be weaker than that of pregnancy exposure,
if pregnancy exposure has a causal effect.
Although there was no consensus among par-
ticipants on this issue, the idea might be fur-
ther explored by simulations. 

Biological mechanisms. Alteration of
maternal–placental exchanges. Alterations of
utero–placental and umbilical blood flow,
and transplacental glucose and oxygen trans-
port influence fetal growth (Pardi et al.
2002). PM levels have been associated with
plasma viscosity and endothelial function in
nonpregnant adults (Pope and Dockery
2006). Further investigation is necessary to
document whether these effects also exist
among pregnant women—who differ from
other adults in terms of heart rate, plasma vis-
cosity, and insulin resistance (Kaaja and Greer
2005). If so, air pollution-induced changes in
plasma viscosity and artery vasoconstriction
may in turn influence maternal–placental
exchanges and hence fetal growth (Figure 2).
This hypothesis could be tested in studies
with Doppler measurements of umbilical
artery blood flow, which have already been
used in studies on maternal exposure to ciga-
rette smoke (Kalinka et al. 2005). Also, some
of the studies linking short-term changes in
air pollutants to endothelial function or
inflammatory response [reviewed, e.g., by
Pope and Dockery (2006)] could be repeated
among pregnant women.

Endocrine disruption. Air pollutants such
as heavy metals (cadmium) or diesel exhaust as
a whole may interfere with steroidogenesis, may
affect progesterone production (Takeda et al.
2004; Tomei et al. 2007), and may thus act as
endocrine disrupters. Among pregnant women,
endocrine disruption might be involved in
causing IUGR (Kanaka-Gantenbein et al.
2003). Endocrine disruption is also a poten-
tially relevant mechanism for effects on male
fecundity; male exposures in adulthood, but
also during fetal life, should be considered
(Sharpe and Irvine 2004).

Oxidative pathways and alteration of
maternal host–defense mechanisms. PM can

induce a broad polyclonal expression of
cytokines and chemokines in respiratory
epithelium (Sioutas et al. 2005), but also
maybe at extrapulmonary sites. Engel et al.
(2005) reported that common genetic vari-
ants in proinflammatory cytokine genes were
associated with spontaneous preterm birth.
Future work could study if the effect of PM
on preterm birth is modified by polymor-
phisms in proinflammatory cytokine genes.
Oxidative stress pathways are also possibly
relevant for male reproductive outcomes,
because reactive oxygen species levels have
been found to be negatively correlated with
sperm motility and concentration (Agarwal
et al. 2006). Finally, PM-induced inflamma-
tory processes may modulate host defenses
and alter maternal immunity, thus leading to
increased susceptibility to infections. These
infections may in turn induce preterm labor
or IUGR (Figure 2).

Paternally mediated effects on birth out-
comes. Paternal influences should be consid-
ered because of the possible influence of air
pollution on semen quality and on heritable
mutation rates of male origin (Somers et al.
2004). These male effects might in turn influ-
ence reproductive outcomes, although the evi-
dence is currently limited. Attempts to
examine in human the influence of air pollu-
tion on heritable mutation rates, such as done
by Somers et al. (2004) in mice, are worth
considering.

Animal models. Animal experiments, as
well as studies of pregnant women with
collection of biological samples may help
examine the relevance of these mechanisms.
Experimental studies reported alterations of
reproductive function in rodents in relation

to air pollution (Archibong et al. 2002;
Mohallem et al. 2005; Rocha E Silva et al.
2008). The relevance of such results for
human reproduction is difficult to discern
and human placentation and fetal develop-
ment (Carter 2007). The guinea pig is a good
model for studying placental transfer and fetal
growth restriction and the sheep is a well
established model for fetal physiology but of
limited value for placental research (Carter
2007). The best animal models are nonhu-
man primates even though their placentation
is somewhat different because of their paucity
of interstitial trophoblast cells. 

Public health implications. Pregnant
women often want to know what they can do
to increase the likelihood of the delivery of a
healthy child [see Centre for Health and
Environment Research (2007) for examples
of recommendations given to pregnant
women]. Air pollution is also a societal con-
cern. Exposure to ambient air pollution is
ubiquitous, and even if increased risks of
adverse reproductive outcomes due to such
exposures are relatively small, they can have a
big impact measured in terms of attributable
cases at the population level. One cost–benefit
analysis estimated that 200 cases of postneona-
tal mortality and 10,000 low-birth-weight
deliveries would be prevented in the United
States between 1990 and 2010 solely through
the reduction in air pollutant concentrations
expected to occur because of the U.S. Clean
Air Act (Wong et al. 2004). 

Possible effects of air pollutants to
consider. Adverse reproductive outcomes might
have long-term consequences. IUGR and pre-
maturity have both been linked to increased
risk of neonatal mortality, to childhood
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Figure 2. Possible biological mechanisms by which air pollutants could influence IUGR or prematurity. IL,
interleukin.
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diseases, and to adult diseases such as heart
diseases and diabetes (Barker 2004). The asso-
ciations between IUGR and neonatal mortal-
ity (Wilcox 2001) and between IUGR and
health in adulthood (Sinclair et al. 2007) may
not be attributable to a causal effect of IUGR
per se but rather to some of the determinants
of IUGR. Therefore, the long-term health
consequences of air pollution–mediated
adverse birth outcomes can probably not be
well predicted from the known associations
between birth weight and health in adult-
hood, and thus need to be directly assessed.
The situation might differ for the long-term
consequences of air pollution-mediated
premature births. 

Conclusion 

Research exploring the effects of air pollution
on human reproduction is a young field.
Many of the current methodologic issues are
shared with other research areas focused on
health effects of air pollutants. We indicate
here some of its specificities. 

Air pollution levels and probably fetal
sensitivity to environmental pollutants vary
sharply over time, so exposure models should
aim toward a fine temporal resolution (this
also applies to other reproductive outcomes
such as menstrual cycle function). Pregnancy

is a period of life with specific time–activity,
work, and residential mobility patterns, which
must be taken into account. Not only mater-
nal but also paternal exposures are possibly
important. In addition to spatial confounding
(i.e., by factors spatially correlated with expo-
sure), which may also exist in other environ-
mental studies, reproductive studies can be
affected by temporal confounding due to risk
factors that vary seasonally with exposure. In
terms of identifying biological mechanisms,
close collaboration between epidemiology and
other basic science disciplines is still missing.
The identification of a plausible set of biologi-
cal mechanisms by biologists, toxicologists,
and epidemiologists would give more weight
to the associations reported in human obser-
vational studies. Given the heterogeneous
chemical and physical nature of pollutants
such as PM, there is no reason to believe in
the existence of a unique biological mecha-
nism likely to explain PM effects on complex
events such as fetal growth and premature
birth. 

Recommendations

• In addition to the already broadly targeted
reproductive outcomes discussed above,
other perinatal end points may be sensitive
to air pollutant exposures and could be con-

sidered in future studies to broaden the case
for reproductive outcomes (Table 2).

• We suggested points to report (possibly in
online supplements of journals) in the inter-
est of facilitating comparisons across studies
in future epidemiologic studies on air pollu-
tion and human reproduction (Table 3).

• The spatial resolution of exposure models is
often inadequate and is in need of improve-
ment (e.g., by using dispersion and LUR
models); these models should also include a
temporal component. Time–activity patterns
of subjects should be taken into account.

• The development of biomarkers of exposure
to traffic-related air pollutants should be
encouraged—specifically biomarkers reflect-
ing the dose absorbed by relevant target
organs such as the feto-placental unit. This
would allow quantification of how the feto-
placental dose relates to maternal dose, to
environmental levels of pollutants and to the
occurrence of adverse reproductive outcomes.

• Investigating the short-term effects of air
pollution on endothelial function, inflam-
matory response, and blood pressure of
pregnant women could help understanding
if these are possible pathways for air pollu-
tants effects on reproductive outcomes.

• Animal experiments are needed to help
identify relevant biological mechanisms.

• The research field has developed through
studies on a large number of births making
use of existing air quality monitoring and
electronic birth certificate data; the utility of
this design has been recognized, but it
should not be considered the only option.
Studies that collect detailed exposure and
covariate information and biological sam-
ples, possibly in nested subgroups of larger
populations, should be further encouraged.

• Study designs that have proven useful in
assessing air pollution impacts on other
health outcomes (e.g., time-series, case–
crossover designs) could be further explored
in the context of reproductive outcomes.
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