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Abstract

To evaluate a novel candidate disease gene, we engaged international collaborators and identified
rare, biallelic, specifically homozygous, loss of function variants in SENP7 in four children from
three unrelated families presenting with neurodevelopmental abnormalities, dysmorphism, and
immunodeficiency. Their clinical presentations were characterized by hypogammaglobulinemia,
intermittent neutropenia, and ultimately death in infancy for all four patients. SENP7 is a sentrin-
specific protease involved in posttranslational modification of proteins essential for cell regulation,
via a process referred to as deSUMOylation. We propose that deficiency of deSUMOylation may
represent a novel mechanism of primary immunodeficiency.
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Primary immunodeficiencies, or inborn errors of immunity (IEI), are an increasingly
appreciated heterogeneous group of diseases that predispose infants and children to
infection, as well as autoimmune disorders and malignancies.! Early identification of these
disorders is imperative as there can be significant associated morbidity and mortality. With
the advent of massively parallel sequencing, novel IEls are being discovered annually.l. The
identification of novel genetic causes of IEls can simultaneously facilitate an increase in
our collective understanding of the underlying mechanisms and pathways of the immune
system. In other words, discovery of a novel IEI gene in an affected patient can potentially
enable us to work “backwards” to then uncover a new cellular pathway essential to human
immunology.

Immune regulation requires well-orchestrated protein regulation. Posttranslational
modification of proteins through the attachment of a small ubiquitin-like modifier (SUMO)
protein, a process referred to as SUMOylation, can modulate the function and localization of
the target protein, affecting many cellular systems including transcription and DNA binding,
repair and replication.2=7 In particular, SUMO proteins have been widely implicated in the
development and maintenance of the host immune system.8 Cell harmony is maintained by
balancing SUMOylation with the reverse process, SUMO deconjugation (deSUMOylation),
whereby SUMO is removed from a substrate through the action of one of six sentrin-specific
proteases (SENPs 1-3 and 5-7).%-11 DeSUMOylation by SENPs has been shown to likewise
be essential for cell development and activity.12

The actions of SENPs have wide-ranging essential effects on cellular activities, perhaps
most well-demonstrated thus far in neuronal and hematologic developmental processes.
Neuronal differentiation is associated with a net SUMO deconjugation balance, with an
overall decrease in SUMOylation seen in during rodent brain development.* Additionally,
several SENPs have been shown to be increased in subsets of cancer.11 SENP5 in
particular is required for a number of deSUMOylation processes, and its impairment has
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a significant impact on both neuronal and neutrophil differentiation. Di Bacco et al showed
that knockdown of SENP5 resulted in decreased cell proliferation and abnormal nuclear
morphology, consistent with an essential role in mitosis and cytokinesis that has been
demonstrated by other groups.2:19.11 More recently, SENP5 has been demonstrated to play a
role in the neutrophil differentiation of leukemic cells, with inhibition of SENP5 expression
in AML cell lines resulting in significantly attenuated neutrophil differentiation.13

SENP7 encodes a specialized chain-editing enzyme with ubiquitous expression in human
tissues'-16, and promotes stable heterochromatin structure during mitosis.1” SENP7-
mediated deSUMOylation is necessary for sarcomere organization, and deficiency of SENP7
has been shown to result in incompetent chromatin conformation.18 SENP7 has been shown
to be a key regulator of neuronal differentiation, DNA damage detection, and homologous
recombination repair.*12:14 More recently, Senp7 has been reported to be a regulator of lipid
homeostasis in mice.1? In the innate immune system, SENP7 has a role in both the activation
process of the NLRP3 inflammasome and of STING.2%:21 In the adaptive immune system,
SENP7 is responsible for PTEN degradation in response to oxidative stress, thus maintaining
the metabolic fitness and effector function of CD8+ cells in the tumor microenvironment.22

Recently, SENP7was implicated in human disease in a single consanguineous family with
four affected infants born to unaffected parents.23 The clinical presentation of those affected
infants included congenital arthrogryposis, developmental delay, neutropenia, recurrent
infections, respiratory failure, and death in early infancy (under 4 months of age).23

Exome sequencing determined that all four affected siblings shared a homozygous stop-gain
mutation in SENP7(c.1474C>T; p.GIn492%), thus, SENP7was suggested as a potential
candidate disease gene.23

Herein we report a multisystemic disorder caused by biallelic- that is homozygous,

or compound heterozygous- loss of function mutations in gene encoding SENP7,
encompassing hypogammaglobulinemia, neutropenia, recurrent infection, neurologic
features, and uniform early fatality. We describe four infants from three unrelated families,
all of whom died prior to their first birthday, in whom we identified unique germline
autosomal recessive stop-gain mutations in SENP7. Our three affected families share
phenotypic overlap with the family described by Samra et al?3, and the mechanism in all
cases was a loss of function of the SENP7 protein. Taken together, these findings support

a novel gene-disease association and indicate that biallelic loss of function mutations in
SENP7 cause a previously unrecognized inborn error of immunity with syndromic features.
Furthermore, identification of this IEI implicates deSUMOylation as an essential process in
normal development of the human immune system.

Written informed consent was provided by the parents for all three families. Illumina
(HiSeq2000) whole genome sequencing (WGS) was performed on the proband, affected
sibling and their parents as previously described.24 Reads were aligned to the human
reference genome (hg19) and variants called by the DRAGEN platform (v2.1). Variants were
annotated by CASSANDRAZ® and prioritized based on inheritance, predicted pathogenicity
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of the variant and known gene function. We established an international collaboration

via Genematcher26 and located two additional unrelated, affected patients with similar
genotype and phenotype (Figure 1B; Table 1). Singleton exome sequencing was performed
on patient F2-11-1, followed by Sanger sequencing of both parents to confirm heterozygosity
in the parents (Supplemental Methods). Patient-parent trio exome sequencing (WES)

was performed within a national framework for patients with ultra-rare disorders for
individual F3-11-1 using Twist Human Exome 2.0 Plus kits with comprehensive exome

and mitochondrial DNA spike-ins. Sequencing was performed on a NovaSeq6000 platform
(IMlumina). (Supplemental Methods).

Genome-wide sequencing (WGS or WES) was performed on each patient and their parents,
by three separate institutions following their own protocols.24 In all patients, homozygous
stop-gain (truncating) variants were identified in the gene SENP7 (Figure 1A and 1B).
SENP7was independently considered a strong candidate disease gene by each group owing
to its transcript function, expression in affected organ systems, and the intolerance of the
gene to homozygous loss of function variants in the population.2” SENP7 contains fewer
loss of function variants than expected by chance in a healthy population and no other
reports of homozygous LoF (loss of function) mutations in this gene exist in the literature or
in Genematcher.26.27

Clinical review of the patients’ records showed strong, overlapping phenotypes, as well as
significant phenotypic overlap with the family described by Samra et al (Table 1).23 All
patients were born to consanguineous parents of diverse ethnicities (Figure 1A, Table I).
Pregnancy was uncomplicated for the majority of families, with the exception of premature
birth at 32 weeks’ gestational age for the sibling in Family 1. The other three affected
children were born at term, with two requiring cesarean section for non-reassuring fetal heart
rate tracings. All four infants required admission to the neonatal intensive care unit (NICU)
at birth for respiratory failure necessitating endotracheal intubation. All four were found

to have hypogammaglobinemia and suffered from recurrent infections despite receiving
intravenous immunoglobulin (IVIG) replacement. There was no report of quantitative
immunoglobulin levels in Samra et al’s family23, thus it is presently not clear if hypo/
agammaglobulinemia is a universally shared finding for all patients with loss of function
mutations in SENP7 (Table I, Supplemental Table 2). Three of the four infants (Families 1
and 2) were also noted to have varying levels of neutropenia that were clinically refractory
to treatment with granulocyte colony stimulating factor (G-CSF). Likewise, two of the three
affected infants described by Samra et al also displayed congenital neutropenia that was

not clinically affected by receiving G-CSF (Table 1).23 In addition to the immunologic and
hematologic abnormalities, all patients displayed a severe neurologic phenotype manifested
by limb hypertonia (4/4 infants, Table 1), arthrogryposis of the upper extremities (2/4),
seizures (3/4), global developmental delay (4/4), and failure to thrive necessitating place of
a surgical feeding tube (4/4). Despite cardiorespiratory support, broad-spectrum antibiotics,
G-CSF (2/4), and immunoglobulin replacement therapy (3/4), all patients died between the
ages of 5 and 9.5 months. Detailed clinical courses are provided for each of the four patients
in the Supplemental Material.
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Discussion

We describe four patients from three unrelated families found to have homozygous loss

of function mutations in SENP7, manifesting clinically as a universally fatal inborn error

of immunity with multisystemic features. A homozygous stop-gain variant in SENP7was
recently independently identified as a potential disease candidate in a single consanguineous
family with strikingly overlapping features to the three affected families presented

here, most notably neurodevelopmental abnormalities, neutropenia, immunodeficiency, and
without exception, death in infancy.23 Collectively, these data suggest that biallelic loss of
function mutations in SENP7 cause a previously unrecognized inborn error of immunity
with syndromic features.

Identification of this IEI implicates the process of deSUMOylation as essential for the
normal development of the human immune system. DeSUMOylation, in which the small
ubiquitin-like modifier (SUMO) protein is removed from a substrate, is necessary for cell
homeostasis, and is facilitated by SENPs.9-12 The known wide-ranging essential effects of
SENPs on cellular activities have previously been best demonstrated /n vitro in the neuronal
and hematological developmental processes?, and notably, our patients were the most
clinically affected in these two systems. All patients displayed hypogammaglobulinemia,
but despite treatment with antibiotics and immunoglobulin replacement therapy, all of the
patients died in infancy. Similarly, the affected infants in the family reported by Samra et al
also died in infancy despite treatment with antibiotics (3/3) and G-CSF (2/3).23 Overlapping
phenotypic features between the seven described patients in total included respiratory failure
shortly after birth, limb hypertonia, failure to thrive, and dysmorphic facies.23

SENP7 has been demonstrated to be a regulator of DNA repair and mitosis and is

required for homologous recombination, resistance to DNA damaging agents, and chromatin
relaxation in DNA damage response.}4 Mutations in DNA repair genes (e.g., Artemis, DNA
ligase 1V) have been shown to result in severe combined immunodeficiency (SCID).28:29
The established role of SENP7 as a known modulator of DNA repairl4 postulates a
reasonable mechanism for the hypogammaglobulinemia observed in all four of the patients
presented here.

All four patients clinically were severely affected by viral disease (Supplemental Table 2).
SENP?7 acts to suppress viral replication through regulation of CHD3, IRF3 and KAP1.21
Both IRF3 and CHD3 are involved in HSV-1 repression, and Sernp7 KO mice have impaired
viral DNA sensing and were more susceptible to herpes simplex virus (HSV-1) infection.?!
This posits a plausible mechanism for the severe viral infections in our described patients.

In summary, we describe a novel 1EI caused by loss of function mutations in SENP?,
leading to pleotropic immune defects, and we present these three families as early examples
of human disease caused by deSUMOylation defects. Given the many essential roles that
deSUMOylation plays in cell homeostasis!?, the severe multisystemic disease observed in
our patients with loss of function mutations in SENP7 is reckonable. More studies of the
wide-ranging effects of SENP7 knockdown in both cell lines and animal models will be
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necessary to comprehensively delineate its role in immune system function, in the context of
its wide-ranging interactions in various cell activities.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

A) Family pedigrees; B) Variant information

MAF: minor allele frequency
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Features of 4 patients with homozygous loss of function mutations in SENP7and 3 previously reported
patients from the Samra et al 2023 family23

Patient Sibling (F1- Patient (F2- Patient Samra et al Samra et Samra et
(F1-11-4) 11-1) 11-1) (F3-11-1) patient I11-4 al patient al patient
111-3 11-7
Demographics
Gestational age (weeks) 37 32 37+3 38 34 34 42
Sex F F F F M F M
Race/Ethnicity Guatemalan | Guatemalan Arab Turkish Unk Unk Unk
Pregnancy nfa PPROM *** n/a n/a nfa nfa nfa
Method of delivery C/s “for Unk C/s /s *for C/s *for breech C/s “for NSVD
NRFHT ** NRFHT *x and fetal breech and
distress fetal
distress
NICU admission (y/n) Yes Yes Yes Yes Yes Yes Yes
Clinical Features -immunologic
Congenital/neonatal Yes Yes Yes (neonatal) No Yes (neonatal) No Yes
neutropenia
Hypogammaglobulinemia Yes Yes Yes Yes Unk Unk Unk
Recurrent infections Yes Yes Yes Yes Yes No Yes
Infection/Immune-related Antibiotics, Antibiotics, Antibiotics, Antibiotics, Antibiotics, No Antibiotics
therapies attempted GCSF ¥ GCSF*™** IVIG/ antiviral GCSE ™
IVIG/ SCIG ™™ ”I‘s/f any.
SCIG AR A A A
SCIG A A A A
Clinical Features- nonimmune
Cardiac arrest Yes Yes Yes Yes Yes Yes Yes
Respiratory failure Yes Yes Yes Yes Yes Yes Yes
Microcephaly No Yes No No No No Yes
Limb hypertonia Yes Yes Yes Yes Yes Yes Yes
Seizures No Yes Yes Yes Unk Unk Unk
Neuroimaging MRI brain MRI brain CT head: MRI brain MRI brain Unk Unk
1mo: 5mo: normal | hydrocephalus, 9mo: neonatal:
prominent Dandy Walker normal delayed
extra-axial Malformation myelination,
fluid symmetric
spaces, white matter
otherwise hyperintensities
normal in basal ganglia
and
periventricular
Clinically significant No(PFO) No No (2 ASDs) No No No No
cardiac defects (bicuspid
aortic
valve)
Microretrognathia Yes Unk No Yes No Yes Yes
Single palmar crease Yes No Yes No No No Yes
Low set ears No Yes Yes Yes No No Yes
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Patient Sibling (F1- Patient (F2- Patient Samra et al Samra et Samra et
(F1-11-4) 11-1) 11-1) (F3-11-1) patient I11-4 al patient al patient
111-3 -7
Camptodactyly of fingers Yes No Yes No Unk Unk Unk
Hypoplastic thumbs Yes No Yes (left) No Unk Unk Unk
Arthrogryposis No Yes- upper Yes- upper Unk Yes-upper Yes-upper Yes-upper
extremities extremities extremities and lower and lower
extremities | extremities
Hypothyroidism Yes Yes Yes No Unk Unk Unk
(subclinical)
Failure to thrive Yes Yes Yes Yes Yes Yes Yes
G tube for feeding Yes Yes Yes Yes (J- No Nasogastric | Nasogastric
tube) tube tube
Death in infancy Yes (5mo) Yes (8.5mo) Yes (9.5mo) Yes (9mo) Yes (<4mo) Yes (<4mo) | Yes (<4mo)

*
C/S = Cesarian section

*ok

NRFHT = non-reassuring fetal heart rate tracing

Aok

GCSF = granulocyte colony stimulating factor

Ak AA

PPROM = preterm premature rupture of membranes

Hok A A

IVIG = intravenous immunoglobulin, SCIG = subcutaneous immunoglobulin
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