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Abstract 

Background 

Genome-wide association studies (GWAS) have identified many common single nucleotide 
polymorphisms (SNPs) that associate with clinical phenotypes, but these SNPs usually 
explain just a small part of the heritability and have relatively modest effect sizes. In contrast, 
SNPs that associate with metabolite levels generally explain a higher percentage of the 
genetic variation and demonstrate larger effect sizes. Still, the discovery of SNPs associated 
with metabolite levels is challenging since testing all metabolites measured in typical 
metabolomics studies with all SNPs comes with a severe multiple testing penalty. We have 
developed an automated workflow approach that utilizes prior knowledge of biochemical 
pathways present in databases like KEGG and BioCyc to generate a smaller SNP set relevant 
to the metabolite. This paper explores the opportunities and challenges in the analysis of 
GWAS of metabolomic phenotypes and provides novel insights into the genetic basis of 
metabolic variation through the re-analysis of published GWAS datasets. 



Results 

Re-analysis of the published GWAS dataset from Illig et al. (Nature Genetics, 2010) using a 
pathway-based workflow (http://www.myexperiment.org/packs/319.html), confirmed 
previously identified hits and identified a new locus of human metabolic individuality, 
associating Aldehyde dehydrogenase family1 L1 (ALDH1L1) with serine/glycine ratios in 
blood. Replication in an independent GWAS dataset of phospholipids (Demirkan et al., PLoS 
Genetics, 2012) identified two novel loci supported by additional literature evidence: GPAM 
(Glycerol-3 phosphate acyltransferase) and CBS (Cystathionine beta-synthase). In addition, 
the workflow approach provided novel insight into the affected pathways and relevance of 
some of these gene-metabolite pairs in disease development and progression. 

Conclusions 

We demonstrate the utility of automated exploitation of background knowledge present in 
pathway databases for the analysis of GWAS datasets of metabolomic phenotypes. We report 
novel loci and potential biochemical mechanisms that contribute to our understanding of the 
genetic basis of metabolic variation and its relationship to disease development and 
progression. 
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Background 

GWAS have resulted in the identification of novel genetic loci associated with a variety of 
diseases and clinical phenotypes. However, a disease or clinical phenotype is the end point of 
the behaviour of numerous genes and pathways in addition to environmental influences. This 
at least partly explains the general observation that the effect size of genetic association with 
clinical phenotypes is rather small. Spurred by recent technological developments in the field 
of metabolomics, interest in genome wide association studies with metabolite levels in blood 
[1-4] is gathering momentum. Metabolites are intermediate phenotypes, entities that lie 
between genes and clinical end points [5,6]. Due to their proximity to an enzyme/gene, 
metabolites may offer greater effect sizes for GWAS than clinical phenotypes [7]. Moreover, 
the pathways in which the metabolite plays a role may provide insight into the underlying 
biological mechanism responsible for the development of the associated disease. 

Typically, in metabolomics GWAS, hundreds of metabolites are tested for genetic 
association. However, association of all SNPs with all measured metabolites comes with 
considerable multiple testing problems. Recent publications have also shown that testing 
ratios of metabolites for genetic association results in much larger effect sizes; however this 
further exacerbates the multiple testing problem which precludes genuine SNP-metabolite 
pairs from reaching genome-wide significance. Several approaches like gene based tests [8,9] 
and pathway analysis [10] have been proposed to overcome this limitation of inadequate 
statistical power in GWAS. All these approaches have been suggested in the context of 
GWAS with clinical phenotypes but genetic association with metabolites presents its own set 



of unique opportunities and challenges. Herewith, we explore the utility of background 
knowledge present in metabolic pathway databases to increase the power in identification of 
metabolite Quantitative Trait Loci (mQTL). 

Our approach involves selective testing of SNPs near genes in pathways supposedly relevant 
to the metabolite levels, as a way to reduce the multiple testing burden in GWAS. 
Background knowledge pertaining to a metabolite is retrieved through systematic 
interrogation of metabolic pathway databases which describe biochemical pathways, 
reactions, and enzymes relevant to human metabolism. Several pathway databases have been 
created by groups around the world, while the intent of these efforts remains the elucidation 
of biological mechanism, the databases however, differ quite significantly in their content, 
size, user accessibility, download formats and most importantly availability and type of web 
services for machine-enabled interrogation of the database [11]. In this publication, as a proof 
of principle, we have chosen to focus on two important metabolic pathway databases, KEGG 
[12] and BioCyc [13]. KEGG is an integrated database resource of seventeen databases which 
provide system, genomic and chemical information. The pathway database consists of both 
metabolic and non-metabolic pathways and is constructed by a team of curators based on 
information available in the literature. BioCyc is a collection of pathway/genome databases 
that describe the genome and metabolic pathways of several organisms. The database that 
describes human genomes and pathways, HumanCyc was interrogated in this study. In our 
approach, for every metabolite under consideration, genes acting in the vicinity of the 
metabolite are determined using knowledge present in databases mentioned above. We thus 
generate an integrated set of genes that represent entities with influence over the metabolite. 
A workflow management system called Taverna [14] was used to generate these gene sets 
and the SNPs associated with these genes. The workflows that were designed for this purpose 
have been submitted to a workflow repository at 
http://www.myexperiment.org/packs/319.html [15]. 

A previously published metabolomics dataset by Illig et al. 2010 [2] was analyzed to evaluate 
the sensitivity of the method in picking true positives and to identify novel SNP-metabolite 
pairs that had hitherto been obscured in the GWA list given the stringent threshold for 
significance. In addition to validating a novel bioinformatics workflow analysis tool, we 
identified a new locus of human metabolic individuality, Aldehyde dehydrogenase family1 
L1 (ALDH1L1). This locus was found associated with serine/glycine ratios, a metabolic trait 
that functionally matches the gene function. 

Candidate genes identified through the analysis of Illig et al. dataset were taken up for 
replication in a separate study published by Demirkan et al. [4]. We report GPAM (Glycerol-
3 phosphate acyltransferase) and CBS (Cystathionine beta-synthase) as novel loci associated 
with phosphatidylcholine moieties. 

Results 

Our approach can be divided into three stages: (i) Generate a non-redundant gene set for 
every metabolite considered using knowledge in pathway databases like KEGG and BioCyc 
applying interrogation schemes as shown in Figure 1 and outlined below. (ii) For every gene 
in the set, generate the set of SNPs within the gene and 50 kb flanking sequences, and create 
a SNP set for each metabolite (iii) Match SNPs generated for a metabolite with the GWAS 



for the same metabolite and store the matches with the p-values reported for the association 
(Figure 2). 

Figure 1 The database interrogation schemes. The two interrogation schemes: pathway 
scheme (A) and reaction scheme (B) are shown. The blue color indicates the intermediate 
steps to filter out certain pathways/compounds from the two schemes to avoid non-specific 
connections. 

Figure 2 Strategy to find biologically relevant SNP-metabolite pairs in published GWAS 
datasets. Background knowledge pertaining to a metabolite is collected from the pathway 
databases KEGG and BioCyc in an automated fashion to generate a gene/SNP set relevant to 
the synthesis and degradation of the metabolite. 

Analysis strategy of databases and Interrogation schemes 

To retrieve a prioritized list of candidate genes associated with metabolite levels, gene sets 
were generated for each metabolite through the pathway scheme and the reaction scheme 
[Figure 1A and 1B] for the KEGG and BioCyc databases (see Method). The pathway scheme 
generates a list of genes that participate in pathways relevant to the synthesis or degradation 
of the metabolite. In the reaction scheme, the metabolite is used as a seed node and shells of 
reactions around the metabolite are explored. The list of genes that catalyse the reactions are 
retrieved and form the gene set for the given metabolite. For every gene set, a corresponding 
SNP set is generated by retrieving SNPs within the flanking 50 kb of every gene. In the final 
step, the SNP set for a metabolite is matched with the GWAS dataset for the same metabolite. 
At this stage, the sensitivity of the method is evaluated and potential novel discoveries are 
explored. 

Results for each of three classes of metabolites (14 amino acids, 1 carnitine and 2 lipids) are 
shown in Table 1. For example, for glycine, interrogation of the KEGG database identified 
173 and 432 genes using the pathway and reaction schemes respectively, whereas the 
corresponding numbers of genes were 90 and 192 for the BioCyc database. The union of all 
the four interrogation schemes results in a gene set consisting of 523 genes relevant to 
glycine metabolism (Table 1). For all the three classes of metabolites, 1246 unique genes 
were found, 640 are common to KEGG and BioCyc, the number of genes unique to each of 
the two databases are 379 and 227 respectively (Figure 3). 



Table 1 Gene and SNP sets generated by the database: interrogation schemes for each 
of the metabolites 
Metabolite BioCyc 

Pathway 
BioCyc 
Reaction 

KEGG 
Pathway 

KEGG 
Reaction 

Size of 
unique 
Gene set1 

Size of 
unique 
SNP set2 

Number 
of tests3 

Arginine 20 104 57 179 257 10788 10788 
Glutamine 51 132 100 282 388 15591 15591 
Glycine 90 192 173 432 523 20767 20767 
Histidine 8 9 45 155 181 7126 7126 
Leucine 8 0 44 83 117 5037 5037 
Methionine 27 104 35 243 284 11532 11532 
Ornithine 16 150 103 159 247 10089 10089 
Phenylalanine 6 113 25 163 196 8419 8419 
Proline 10 12 57 83 119 5075 5075 
Serine 37 135 152 219 360 14996 14996 
Threonine 1 11 39 49 75 2633 2633 
Tryptophan 15 19 78 221 261 10419 10419 
Tyrosine 14 106 61 158 219 9365 9365 
Valine 15 93 80 137 211 9365 9365 
Carnitine 32 206 81 94 263 11239 460799 
Phosphatidylcholine 188 361 312 343 640 31676 2914192 
Sphingomyelin 160 331 189 241 460 21290 319350 
Sum 698 2078 1631 3241 4801 205407 3835543 
Unique Set 399 806 703 768 1246 55952 55952 

The number of genes for each metabolite and the corresponding database:interrogation 
scheme is shown. 1 The size of the union of the gene set obtained from all the four 
database:interrogation schemes. 2 The size of the corresponding SNP set. 3 The number of 
tests is the same as the size of the SNP set for the amino acids whereas for aggregated entities 
like the lipids and carnitine the SNP set is multiplied by the number of compounds present in 
that class. 

Figure 3 Gene set overlap for the KEGG and BioCyc databases. The Venn diagram 
depicts the overlap between the non-redundant gene set for KEGG and the BioCyc metabolic 
pathway database. These genes correspond to the combined set from the pathway and 
reaction interrogation schemes. The total number of unique genes that our method yields is 
1246. 

Statistical threshold 

The number of unique SNPs generated for each of the metabolites is shown in Table 1. For 
aggregated metabolites like phosphatidylcholines, sphingomyelins and carnitines the size of 
the unique SNP set is multiplied by the number of metabolites that fall within each class to 
yield the total number of tests. For example, the size of the unique SNP set for carnitine is 
11,239; this is multiplied by the number of carnitines which is 41, to yield a total number of 
460,799 tests for these compounds, as shown in the last column of Table 1. The sum of all 
SNPs derived from our set of metabolites is 3,835,543. The multiple testing threshold for 
metabolite concentrations using a Bonferroni correction at a nominal p-value of 0.05 is 1.3E-
08 (0.05/3,835,543). In contrast, the p-value threshold for significant association of SNPs 
with the same metabolite concentrations in the Illig et al. study would be 5.96E-10 



(0.05/162*517,840). This represents a reduction of the multiple testing burden by about two 
orders of magnitude, regardless of the dependency between the SNPs or metabolites. 

It has been demonstrated that GWAS of metabolite ratios offer robust statistical associations 
and point to biological mechanisms related to the interconversion of metabolite pairs. To 
investigate the association of SNPs with metabolite ratios, we generated the union of SNP 
sets for all combinations of metabolites (Additional file 1: Table S3). In the case of 
aggregated metabolites like the lipids and carnitines, the union of the SNP set is multiplied by 
the number of compounds that fall within each class. For example, the union of the SNP set 
for arginine and carnitine is 20,000, this is multiplied by 41 to yield the total number of 
820,000 tests for this group of ratios. The number of tests for ratios of compounds within 
classes such as phosphatidylcholines is equal to the size of the unique SNP set multiplied by 
the number of combinations, n*(n-1)/2, which in this case would be 92*91/2 = 4186. In 
choosing combinations of ratios, we have assumed that the association p-value for a linear 
regression model using a metabolite ratio of A/B is equivalent to that computed using it’s 
reciprocal, B/A. The evidence for lack of independence of a ratio and its reciprocal is 
provided by the Illig et al. study where a comparison of associations computed using 
untransformed and log-scaled ratios did not detect significant differences. This implies that 
we may consider the p-values computed using A/B and B/A to be approximately equal. 

The sum of the number of tests for all ratios is 423,645,558 as shown in Additional file 1: 
Table S3. The multiple testing threshold for the ratios using Bonferroni correction at nominal 
p-value of 0.05 is 1.18E-10. This represents a multiple threshold reduction by two orders of 
magnitude over the genome-wide threshold estimated by Illig et al. which is 3.63E-12. 

Proof of principle: sensitivity 

The sensitivity of the method was evaluated based on its ability to identify the top hits in the 
previously published Illig et al. genome-wide association study. The overall sensitivity of the 
method as well as the interrogation specific breakdown is shown in Table 2. For example, for 
the BioCyc pathway scheme the size of the unique gene set generated for all the metabolites 
is shown to be 399. The number of genes that are among the 15 top hits in the Illig et al. 
study for this database:interrogation scheme is 8 which results in a sensitivity measure of 
0.53. A metabolite specific breakdown of each of these schemes and the genes with a p-value 
cut-off of 1E-02 is shown in Additional file 1: Table S5. 

Table 2 Performance of the database:interrogation schemes in GWAS dataset analysis 
Database: 
Interrogation scheme 

Size of 
Gene Set1 

Top hits from Illig et al. study identified by the 
method2 

Sensitivity3 

BioCyc Pathway 399 ACADL, ACADM, ACSL1, CPS1, FADS1, 
PHGDH, SCD, SPTLC3 

0.53 

BioCyc Reaction 806 ACADM, ACADS, ACSL1, CPS1, FADS1, SCD, 
SPTLC3 

0.47 

KEGG Pathway 703 ACADL, ACADM, ACADS, ACSL1, CPS1, 
ELOVL2, FADS1, PHGDH, SCD, SPTLC3 

0.67 

KEGG Reaction 768 ACADL, ACADM, ACADS, ACSL1, CPS1, 
PHGDH, SCD, SPTLC3 

0.53 

Pooled Set 1246 ACADL, ACADM, ACADS, ACSL1, CPS1, 
ELOVL2, FADS1, PHGDH, SCD, SPTLC3 

0.67 



Snapshot of the matches between our method and the association data from the Illig et al. 
2010 study for each of the database:interrogation scheme. 1 corresponds to the unique set of 
genes generated for all the metabolites for the given database:interrogation scheme. 
2corresponds to the top hits in the Illig et al. publication that were present in the gene set for 
the given database:interrogation scheme. 3Sensitivity is a measure of the actual positives that 
have been captured by our method and is equal to the ratio of the number of top hits 
identified by the method over the total number of top hits in the Illig et al. publication which 
is 15. 

Overall, combining the results from the four database:interrogation schemes helped identify 
10 of the 15 top associations (67% sensitivity) published by Illig et al. 

Novel discovery in the Illig et al dataset 

Analysis of the first stage or the “discovery stage” dataset of 1029 samples from the Illig et 
al. dataset yielded several associations with p-values indicative for association, but that did 
not meet the significance threshold applied by Illig et al. Associations with p-value less than 
1E-02 were evaluated in the combined “replication stage” dataset with 1809 samples. 
Analysis of SNPs in the ALDH1L1 (aldehyde dehydrogenase family 1 L1) gene locus 
lowered the p-value of association with serine/glycine ratio from 4.83E-09 in the discovery 
dataset to 5.13E-12 in the combined dataset. This is well below our threshold of 1.18E-10, 
but above the threshold to be applied when considering all associations between SNPs and 
metabolite ratios. Furthermore, the original publication did not select this association for 
replication because of the threshold set in the first stage of the analysis. This is an example of 
the method pointing to potential true positives in a genome-wide scan and the association of 
ALDH1L1 with the trait is being reported as a novel discovery. 

Statistical threshold in the replication study 

The analysis of the Illig et al. dataset identified several biologically relevant candidate genes 
with p-values less than 1E-02. A list of 56 of these genes associated with 
phosphatidylcholines and sphingomyelins were investigated in an independent study in the 
GWAS dataset of phospholipids published by Demirkan et al. The number of matches 
between the two datasets was: 56 phosphatidylcholines and 6 sphingomyelins. Demirkan et 
al. also performed GWAS for within class molar proportions for these moieties. We took 
these into consideration in addition to the GWAS of absolute concentrations. Therefore, the 
total number of metabolites and proportions investigated in the Demirkan et al. GWAS 
dataset was 124. A principal component analysis based on the method proposed by Li et al. 
[16] was performed on this set of metabolites resulting in 51 effectively independent 
variables. As we considered 2413 independent SNPs in the candidate loci for these 
metabolites, the statistical threshold, applying Bonferroni correction at a nominal p-value of 
0.05, for the replication study was 4.06E-07 (0.05/2413*51). 

Novel discoveries in the replication study 

Table 3 shows the top hits in the meta-analysis of candidate genes identified in the Illig et al. 
dataset for replication. The meta-analysis was performed using Stouffer’s Z-score based 
method of combining p-values [17]. Since the SNPs in the loci replicated in the Demirkan et 
al. dataset had relatively low r2 values with the SNPs reported in the Illig et al. dataset, we 
could not perform a traditional meta-analysis where strict linkage disequilibrium criteria are 



applied. Therefore, we combined the lowest p-value per gene and sought additional 
supporting evidence for potential allelic heterogeneity (see Discussion). As mentioned earlier, 
the p-value threshold for the replication study is set at 4.06E-07. SNPs in the vicinity of the 
genes CBS, GPAM, ADCY8, CNR1, HSD17B12, MBOAT1, PECR, PLCB1 and TECR pass 
this threshold. 



Table 3 Replication of candidate genes in the Demirkan et al. dataset 
Gene Trait  SNP from the Illig et al. dataset p-value1 SNP from the Demirkan et al. dataset p-value2 combined p-value3 
ADCY8 PC ae C40:6 rs11786743 4.03E-05 rs913819 6.73E-04 2.15E-07 
CBS* PC ae C40:6 rs2839631 5.67E-06 rs378376 5.17E-04 2.90E-08 
CNR1 PC ae C38:2 rs10485168 2.42E-04 rs9359765 4.61E-04 7.54E-07 
GPAM* PC ae C34:3 rs2246253 1.25E-04 rs2419603 1.76E-04 1.56E-07 
HSD17B12 PC aa C34:4 rs2862999 2.66E-05 rs11037685 6.13E-04 1.35E-07 
MBOAT1 PC ae C40:6 rs9465673 1.11E-04 rs694094 4.47E-04 3.53E-07 
PECR PC aa C38:0 rs3770536 5.55E-04 rs3770562 9.43E-05 3.79E-07 
PLCB1 PC aa C30:0 rs6056188 9.55E-06 rs17363114 1.96E-03 2.06E-07 
TECR PC aa C32:0 rs7252966 1.69E-05 rs7254215 2.09E-03 3.57E-07 

Top hits from the meta-analysis of candidate genes identified in the Illig et al. study and replicated in the Demirkan et al. dataset. 1,2,3p-value of 
association of the SNP with the trait in the Illig et al., Demirkan et al. and combined p-value respectively. * indicates genes for which further 
evidence was found. 



Discussion 

Genome wide association studies with metabolites as phenotypes have identified several loci 
that explain human metabolic individuality. However, the large metabolite panel being tested 
results in a severe multiple testing burden that precludes genuine SNP-metabolite pairs from 
consideration when they fail to reach the stringent threshold for statistical significance. Our 
method aims to address this problem by selectively testing genes that operate in reactions and 
pathways relevant to the metabolite. The goal is to reduce the severity of the multiple testing 
burden and identify potential true positives in the list of genome-wide associations. Taverna, 
a workflow management system was used to generate the SNP-metabolite pairs. We have 
deposited the workflows at a repository called myexperiment.org, making it easier for the 
scientific community to interpret, repeat and reproduce the result. The sensitivity of the 
method, defined as retrieval of previously identified associations, is high, as evident from the 
proof of principle study carried out on the genome scan published by Illig et al. Replication 
studies on some of the promising SNP-metabolite pairs identified by the method pointed to a 
novel and statistically significant association at the ALDH1L1 locus with serine/glycine 
ratios. Additional replication studies of phosphatidylcholines and sphingomyelins uncovered 
significant gene-wise associations with CBS, GPAM, ADCY8, CNR1, HSD17B12, MBOAT1, 
PECR, PLCB1 and TECR. 

Databases, interrogation schemes and software tool 

The pathway databases have technical and conceptual differences [11] that mandate 
interrogation of multiple databases and integration of the results. Interpretation of these 
results requires a close coordination between biologists and computer scientists. Workflow 
management systems in general and Taverna [Additional file 1: S2] in particular is an 
example of a software tool that is intuitive enough for the biologist, while at the same time 
offering the flexibility for exploring the algorithmic aspects for the computer scientist [18]. In 
using Taverna as a software tool and depositing the workflows in the repository 
myexperiment.org, we have attempted to make the method and the rationale transparent to 
users, thus facilitating its retrieval, reuse and reproduction by other independent scientists 
[19]. 

Sensitivity of the method 

As a sensitivity measure of our method, we evaluated its ability to pick the top hits in the Illig 
et al. publication [2]. Some 60% of the top associations were identified successfully. A 
similar analysis of GWAS dataset published by Suhre et al. [3] yielded a sensitivity of 54% 
(20 out of 37 hits) (data not shown). However, 4 of the “misses” in the Suhre et al. dataset 
were peptide fragments that do not have an entry in the pathway databases, which is a 
prerequisite for our method to work. 

We interpret the high sensitivity of our method in three ways; first it reinforces the rationale 
that GWAS with metabolomic phenotypes provides a functional approach to the study of 
human genetic variation [1]. In other words, the known function of the associated gene and 
the biochemical characteristics of the affected metabolite support each other in ways that 
lends itself to a narrative on the underlying biological mechanism. Second, while the pathway 
databases have a long way to go in achieving a comprehensive annotation and delineation of 
biological processes, they, however, are a good resource of information in so far as the top 



hits in a GWAS with metabolomic phenotypes are concerned. Only two out of the 15 top hits 
in the study by Illig et al. were genes with unknown functions (PLEKHH1, SYNE2), and two 
others were hitherto uncharacterized solute transporters (SLC16A9, SLC22A4). Third, a good 
sensitivity measure is a validation of our method and reflects its comprehensive data 
collection ability through integration of disparate data sources and utilization of appropriate 
interrogation strategies. 

Novel discoveries 

Our analysis of the GWAS dataset of the Illig et al. publication based on the first step of the 
“discovery design” yielded several interesting associations that had not been reported among 
the top hits in the publication. We selected a few of the promising associations for replication 
in the combined dataset of 1809 subjects. One of the genes, Aldehyde dehydrogenase family 
1 L1 (ALDH1L1) was found associated with the ratio of serine/glycine with a p-value of 
5.13E-12 in the combined set of 1809 subjects. ALDH1L1 also known as 10-
formyltetrahydrofolate dehydrogenase (10-FTHFDH, FDH) catalyzes the NADP+ dependent 
oxidation of 10-formyltetrahydrofolate to CO2 and tetrahydrofolate (THF) [20] as shown in 
Figure 4. It plays an important role in folate metabolism [21-25]. Among other functions, 
ALDH1L1 has been known to deplete cellular 10-formyltetrahydrofolate pool resulting in a 
loss of de novo purine biosynthesis [23], maintain cellular folate concentrations by regulating 
the availability of THF [22], but most importantly, it has been shown to compete with the 
enzyme serine hydroxymethyl transferase (SHMT) for the polyglutamyltetrahydrofolates [25] 
. The latter enzyme catalyzes the conversion of serine to glycine as shown in Figure 4. It has 
also been shown that glycine to serine inter-conversion by SHMT accounts for approximately 
41% of whole body glycine flux inclusive of both mitochondrial and cytoplasmic processes 
[26]. 

Figure 4 Role of ALDH1L1 in the cytosolic one-carbon pool metabolism. A simplified 
schematic of the one-carbon pool metabolism in the cytosol is depicted. ALDH1L1: Aldehyde 
Dehydrogenase 1 Family, Member L1; THF: tetrahydrofolate; SHMT: Serine 
hydrxymethyltransferase. 

To further investigate the potential of our approach to uncover novel genetic associations, we 
extended the analysis to an additional independent GWAS dataset [4]. Candidate genes 
identified in the Illig et al. dataset in association with phosphatidylcholines and 
sphingomyelins were considered for replication in the dataset provided by Demirkan et al. 
[4]. We discuss here two novel findings for which additional evidence was obtained. 

SNPs near glycerol-3 phosphate acyltransferase (GPAM) are associated with PC ae C34:3 
moieties in the Illig et al. and Demirkan et al. datasets with p-values of 1.25E-04 and 1.75E-
04, respectively, with a meta-analysis p-value of 1.56E-07. GPAM encodes a mitochondrial 
protein that esterifies the acyl group from acyl-coA to the sn-1 position of glycerol-3-
phosphate. It is a rate-limiting enzyme that catalyzes the initial step in the biosynthesis of 
triacylglycerols and phospholipids [27]. A recent study showed that in breast cancer, GPAM 
expression is strongly correlated with survival rates, clinico-pathological features as well as 
metabolomic and lipidomic profiles [28]. Interestingly, the study identified the metabolite PC 
C34:3 as the most significantly altered metabolite with respect to GPAM expression in breast 
cancer patients. This suggests that, for this particular example, genetic control is primarily at 
the level of gene expression, with secondary effects on enzyme levels and metabolic 



conversion rates. The example also highlights the potential influence of genetic variation of 
metabolic pathways on disease. 

A large number of genes identified by our method in the context of phospholipids participate 
in fatty acid metabolism and are therefore likely to affect the levels of groups of 
phosphatidylcholines and sphingomyelins. For example, GPAM esterifies the acyl group from 
acyl-ACP to the sn-1 position of glycerol-3-phosphate, and is therefore relevant to both acyl-
acyl and acyl-alkyl moieties. The lowest p-value of association, at this locus, with a 
phosphatidylcholine moiety in the Illig et al. study is with PC ae C36:3, while in the 
Demirkan et al. study it is PC aa C36:3. Since both associations make biological sense, future 
work should incorporate joint modelling of suitable phospholipid moieties to help identify 
loci that are biologically relevant but fail to reach the statistical threshold in GWAS analysis. 
We have reported such best case associations for phosphatidylcholines in Additional file 1: 
Table S6. 

SNPs near Cystathionine beta-synthase (CBS) are associated with PC ae C40:6 moieties in 
the Illig et al. and Demirkan et al. datasets with p-values of 5.67E-06 and 5.17E-04, 
respectively, with a meta-analysis p-value of 2.9E-08. Mutations in CBS cause 
hyperhomocysteinemia [29], which is marked by elevated levels of homocysteine. Several 
studies have associated altered phosphatidylcholine biosynthesis with 
hyperhomocysteinemia/CBS deficiency [30-33]. In one of the studies [30], 
phosphatidylcholine levels and the activity of the enzyme lecithin-cholesterol acyltransferase 
(LCAT) were significantly lower in CBS deficient mice than in wild type mice. While there is 
considerable literature evidence for the role of CBS in phosphatidylcholine metabolism, the 
stringent p-value threshold obscures this association in the list of GWAS results. 

The low r2 values for significant SNPs in GPAM, CBS and other loci between the Illig et al. 
and Demirkan et al. datasets could be explained by allelic heterogeneity. The latter is a 
phenomenon where multiple alleles from one gene influence a trait. However, in some cases 
it may be that the two apparently independent SNPs are tagging a third SNP [34]. This may 
be the case for the two SNPs (rs2839631, rs378376) near CBS which have an r2 of 0.067 and 
are associated with C40:6 phosphatidylcholines in both the datasets. However, both SNPs are 
in LD with cis-eQTLs in the region (for example, rs719037, r2 ~ 0.4). This is suggestive of 
the SNPs exerting their effect through the expression levels of the CBS enzyme, as was 
suggested for GPAM. Apparent allelic heterogeneity may preclude identification in a standard 
meta-analysis, but would justify further investigation of independent or dependent signals at 
loci showing this phenomenon. 

Challenges and future direction 

In general, our effort was directed at exploring the utility of machine-enabled interrogation of 
metabolic pathway databases in prioritizing SNP-metabolite associations in a GWAS dataset. 
While the method’s sensitivity and ability to make novel discovery are encouraging, 
considerable progress needs to be made in metabolite disambiguation to achieve a relevant 
and comprehensive gene set for a given metabolite. This problem is particularly acute for 
phospholipids like phosphatidylcholines and sphingomyelins and various forms of the fatty 
acid transporters of L-carnitine. For example, the metabolomics technology used in the Illig 
et al. study differentiated more than 90 forms of phosphatidylcholines based on alkyl or acyl 
bonds and single or double bonds on the side chains. However, the pathway databases do not 
yet contain information for the complex structures. This forces users to analyze these 



metabolites at a higher aggregation level. Another issue that requires attention is the bias 
introduced in selecting genes for inclusion in the gene set. We have formulated simple rules 
for interrogation [Additional file 1: S1] that facilitates unbiased generation of gene sets for 
any given metabolite. 

Another challenge arises due to the high correlation between metabolites, particularly the 
phospholipids like phosphatidylcholines and sphingomyelins. These moieties are associated 
with loci relevant to fatty acid metabolism. While the variation at these loci effects the levels 
of fatty acids and thereby the phospholipid pool, to a large extent, these loci are not specific 
for any particular phospholipid moiety. As a result, several loci exhibit a pleiotropic effect for 
biologically related metabolic phenotypes in general and phospholipids in particular [Shown 
in Additional file 1: Table S7] We have demonstrated that background knowledge and 
evidence-based approach is ideally suited to identify such candidate genes, however future 
work should focus on statistical methodologies with sufficient power to detect such 
pleiotropic loci in GWAS of intermediate phenotypes. In summary, future work includes 
integration of more pathway databases, metabolite disambiguation, consideration of allelic 
heterogeneity and multivariate statistical techniques that take into account the high degree of 
correlation between the metabolites. 

Conclusions 

A measurement of metabolites as intermediate phenotypes is a potentially powerful approach 
to uncover the influence of genetic variation on disease susceptibility and progression. 
However, we still face many hurdles in the interpretation of GWAS data. In this study, we 
investigated the utility of background knowledge present in pathway databases in extending 
our understanding of the genetic basis of metabolic variation. We developed a bioinformatics 
method that prioritizes SNP-metabolite associations in a GWAS based on metabolic pathway 
information present in the KEGG and BioCyc databases. The validity of the method is 
demonstrated by re-analysing published GWAS datasets and identifying previously known 
associations. We report a new locus of human metabolic individuality, ALDH1L1 (Aldehyde 
dehydrogenase family 1 L1) associated with serine/glycine ratios. Replication studies in an 
independent GWAS of phospholipids identified GPAM (Glycerol-3 phosphate 
acyltransferase) and CBS (Cystathionine beta-synthase) as novel loci, and this was further 
supported by additional literature evidence. The utility of a workflow management system in 
facilitating novel biological discoveries and as a tool for efficient sharing of computational 
protocols is demonstrated. 

Methods 

Gwas data set for proof of principle studies 

The GWAS dataset published by Illig et al. 2010 [2] was used to evaluate the validity of the 
method. Illig et al. employed a two-stage discovery design in the KORA F4 population cohort 
with 1029 male and female individuals in the first stage and 780 individuals in the second 
stage. Loci with p-value of association <10-7 for metabolite concentrations and p-value < 10-9 
for concentration ratios were taken up for the second stage independent testing in 780 
individuals. The joint p-values of association for all the 1809 individuals were then computed 
and 15 loci were reported whose strength of association increased after the second stage of 
the discovery process. The authors note that “although this approach is less well powered 



than a full genome-wide joint analysis, it reflects the historical way in which [they] selected 
SNPs for follow-up“. This means that if we can identify potential true positives using the 
1029 samples, we can validate them in the full dataset, since this has not been done in the 
Illig et al. study for all hits with p-value > 10-7 for metabolite concentrations and p-value > 
10-9 for concentration ratios. Therefore, the GWAS dataset based on 1029 samples was 
analyzed for our proof of principle studies. Additionally, to evaluate novel associations 
identified by the method in the discovery stage dataset, the strength of the signal was assessed 
in the combined GWAS dataset for 1809 subjects. 

GWAS dataset for follow-up studies 

Candidate loci identified in the Illig et al. dataset by our method were taken up for follow-up 
studies in the dataset published by Demirkan et al. The latter conducted a meta-analysis of 
GWAS on plasma levels of ceramides, phosphatidylcholines, lysophosphatidylcholines, 
sphingomyelins, phosphatidylethanolamines and plasmalogens in five European populations: 
the Erasmus Rucphen Family (ERF) study, conducted in the Netherlands, (2) the MICROS 
study from the Tyrol region in Italy, (3) the Northern Swedish Population Health Survey 
(NSPHS) in 

Norrbotten, Sweden, (4) the Orkney Complex Disease Study (ORCADES) in Scotland, and 
(5) the CROAS (CROATIA_Vis) study conducted on Vis Island, Croatia. Broadly, the 
metabolite overlap between the Illig et al. dataset and Demirkan A et al. dataset was confined 
to the class of phosphatidylcholines, lysophosphatidylcholines and sphingomyelins. More 
specifically, the overlap represented 62 phospholipid moieties. Also, 56 candidate genes were 
identified for follow up in the Illig et al. dataset. We choose to focus on SNPs in the flanking 
50 kb region of these genes for the follow-up study in the Demirkan A et al. dataset. 

Metabolites considered for the generation of gene sets 

Gene sets are defined as entities that participate in pathways and reactions relevant to the 
metabolite and hence hold the potential to influence its levels. The goal was to generate gene 
sets for the compounds that were measured in the Illig et al. 2010 publication: 14 amino acids 
(Arginine, Glutamine, Glycine, Histidine, Methionine, Ornithine, Phenylalanine, Proline, 
Serine, Threonine, Tryptophan, Tyrosine, Valine, and Leucine), 41 Carnitines, 92 
Phosphatidylcholines and 15 Sphingomyelins. In addition to the metabolites mentioned 
above, Illig et al. also measured Hexose. We did not consider this metabolite for investigation 
because pathway information surrounding hexose is lacking. While metabolites like glucose 
and fructose could have been considered as proxies, we did not pursue this because of the 
enormous size of the resulting gene set, combined with a lack of confidence in the relevance 
of many of these genes to the metabolite measured by the metabolomics platform. 

Pathway databases and interrogation schemes 

The metabolic pathway databases KEGG (release 63) [12] and BioCyc (version 16) [13] were 
accessed for retrieving background knowledge surrounding metabolites. Two interrogation 
schemes were employed: pathway scheme and reaction scheme (Figure 1). In a pathway 
scheme, for a given metabolite, all the pathways that it participates in are determined 
followed by the retrieval of all the genes that participate in these pathways (Figure 1A). In a 
reaction scheme, given a metabolite, all the reactions that it is part of and the compounds that 
participate in these reactions are determined. The compounds obtained at this point are 



subjected to the same strategy as in the previous step in that all the reactions that these 
compounds participate in are determined. This can be visualized as expanding by a radius of 
2 steps in the reaction space of every metabolite. Finally, the enzymes that drive all these 
reactions are determined (Figure 1B). As an intermediate step certain compounds were 
filtered out in order to avoid non-specific connections. The details about the filtration step 
and the compounds that were filtered are provided in the Additional file 1: S4. In all there are 
four schemes: kegg:pathway, kegg:reaction, biocyc:pathway, and biocyc:reaction. The set of 
non-redundant genes combined from all the schemes then forms the gene set for any given 
metabolite. 

Software used to generate gene and SNP sets 

Taverna version 2.4 [14], a workflow management system was used to generate metabolite 
specific gene sets as well as for the generation of SNPs present in the 50 kb flanking region 
of each gene. Taverna allows users access to remote data resources like KEGG, BioCyc, 
Ensembl, NCBI etc. and data management systems like Biomart through implementation of 
web services. Each component in a workflow is responsible for a particular function and 
many such components need to be chained together in a pipeline to create a workflow that 
performs a certain task. The pipeline depicted in Figure 1 is implemented in a Taverna 
workflow through appropriate linking of remote web services and local scripts. Web services 
are software systems that facilitate machine to machine interaction over a network. Taverna 
allows the inclusion of different kinds of web services like Web Services Description 
Language (WSDL) and REpresentational State Transfer (REST). The services provided by 
the KEGG database were implemented using the REST services made available in the 
Taverna workbench. The BioCyc database was accessed through the REST interface using 
the BioVelo language. The latter is a query language designed to let the users write precise 
queries against the pathway/genome databases, available at BioCyc, to retrieve pathways, 
reactions, compounds, genes etc. All the workflows were designed following best practices 
for workflow design [35]. 

Workflow accessibility 

To facilitate retrieval and reproducibility, the workflows have been deposited in a repository 
at http://www.myexperiment.org/packs/319.html. While the focus of this paper was on a 
specific set of metabolites; using appropriate identifiers from the KEGG or BioCyc database 
users will be able to generate gene sets for other metabolites. To generate a gene set for any 
metabolite using the KEGG or BioCyc database, users have to input the metabolite identifier 
for that database and the output is a text file containing the entrez gene identifiers. For 
example, to generate a gene set for the metabolite Arginine, for either the pathway or reaction 
scheme using the KEGG database, users input the KEGG identifier for Arginine: C00062. 
Similarly, to obtain a gene set using the BioCyc database, the input for the same metabolite is 
“L-arginine”. The workflows may also be repurposed to suit other objectives, for example, to 
filter out non-specific connections, we remove hub metabolites like ATP, NADP and other 
entities like co-enzymes; however, users may change the filtration criteria if they find it too 
stringent for their objectives. A detailed tutorial on how to access and run these workflows is 
provided in the Additional file 1: S2. 
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