( BioMied Central

BIVIC Genomics The Open Access Publisher

This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted
PDF and full text (HTML) versions will be made available soon.

Automated workflow-based exploitation of pathway databases provides new
insights into genetic associations of metabolite profiles

BMC Genomics 2013, 14:865 doi:10.1186/1471-2164-14-865

Harish Dharuri (h.k.dharuri@lumc.nl)
Peter Henneman (p.henneman@amc.uva.nl)
Ayse Demirkan (a.demirkan@erasmusmc.nl)

Dennis Owen Mook-Kanamori (dom2018@qatar-med.cornell.edu)
Rui Wang-Sattler (rui.wang-sattler@helmholtz-muenchen.de)
Christian Gieger (christian.gieger@helmholtz-muenchen.de)

Jerzy Adamski (adamski@helmholtz-muenchen.de)
Kristina Hettne (K.M.Hettne@Ilumc.nl)
Marco Roos (M.Roos@Iumc.nl)
Karsten Suhre (karsten@suhre.fr)
Cornelia M Van Duijn (c.vanduijn@erasmusmc.nl)
Ko Willems van Dijk (K.Willems_van_Dijk@Ilumc.nl)
Peter A t Hoen (p.a.c.hoen@Ilumc.nl)

ISSN 1471-2164
Article type Research article
Submission date 9 July 2013
Acceptance date 2 December 2013
Publication date 9 December 2013

Article URL http://www.biomedcentral.com/1471-2164/14/865

Like all articles in BMC journals, this peer-reviewed article can be downloaded, printed and
distributed freely for any purposes (see copyright notice below).

Articles in BMC journals are listed in PubMed and archived at PubMed Central.
For information about publishing your research in BMC journals or any BioMed Central journal, go to

http://www.biomedcentral.com/info/authors/

© 2013 Dharuri et al.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


mailto:h.k.dharuri@lumc.nl
mailto:p.henneman@amc.uva.nl
mailto:a.demirkan@erasmusmc.nl
mailto:dom2018@qatar-med.cornell.edu
mailto:rui.wang-sattler@helmholtz-muenchen.de
mailto:christian.gieger@helmholtz-muenchen.de
mailto:adamski@helmholtz-muenchen.de
mailto:K.M.Hettne@lumc.nl
mailto:M.Roos@lumc.nl
mailto:karsten@suhre.fr
mailto:c.vanduijn@erasmusmc.nl
mailto:K.Willems_van_Dijk@lumc.nl
mailto:p.a.c.hoen@lumc.nl
http://www.biomedcentral.com/1471-2164/14/865
http://www.biomedcentral.com/info/authors/
http://creativecommons.org/licenses/by/2.0

Automated workflow-based exploitation of pathway
databases provides new insights into genetic
associations of metabolite profiles

Harish Dharuri
Email: h.k.dharuri@lumc.nl

Peter Henneman
Email: p.henneman@amc.uva.nl

Ayse Demirkan?
Email: a.demirkan@erasmusmec.nl

Jan Bert van Klinkeh
Email: J.B.van_Klinken@lumc.n

Dennis Owen Mook-Kanamdrf*
Email: dom2018@qatar-med.cornell.edu

Rui Wang-Sattler
Email: rui.wang-sattler@helmholtz-muenchen.de

Christian Giegér
Email: christian.gieger@helmholtz-muenchen.de

Jerzy AdamsKi®
Email: adamski@helmholtz-muenchen.de

Kristina Hettné
Email: K.M.Hetthe@lumc.nl

Marco Roo$
Email: M.Roos@lumc.nl

Karsten Suhr®’
Email: karsten@suhre.fr

Cornelia M Van Duijf
Email: c.vanduijn@erasmusmec.nl

EUROSPAN consortia

Ko Willems van Dijk*°
Email: K.Willems_van_Dijk@lumc.nl

Peter AC 't Hoeh
Corresponding author
Email: p.a.c.hoen@lumc.nl



! Center for Human and Clinical Genetics, Leiden University Medical GeBder
P, PO Box 9600, 2300, RC Leiden, Netherlands

2 Department of Clinical Genetics, DNA Diagnostics Laboratary, Uniyeosit
Amsterdam, Amsterdam, Netherlands

% Genetic Epidemiology Unit, Departments of Epidemiology and Clinical
Genetics, Erasmus University Medical Center, Rotterdam, Netherlands

* Department of Physiology and Biophysics, Weill Cornell Medical College in
Qatar, Education City, Qatar Foundation, PO Box 24144, Doha, State of Qatar

> Research Unit of Molecular Epidemiology, Helmholtz Zentrum Miinchen,
German Research Center for Environmental Health, Neuherberg, Germany

® Institute of Genetic Epidemiology, Helmholtz Zentrum Miinchen, German
Research Center for Environmental Health, Neuherberg, Germany

” Institute of Experimental Genetics, Genome Analysis Center, Helmholtz
Zentrum Minchen, German Research Center for Environmental Health,
Neuherberg, Germany

8 Chair of Experimental Genetics, Technische Universitat Miinchen, Munich,
Germany

? Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum Munchen,
German Research Center for Environmental Health, Neuherberg, Germany

1% bepartment of Endocrinology, Leiden University Medical Center, S4-P, PO
Box 9600, 2300, RC Leiden, Netherlands

Abstract

Background

Genome-wide association studies (GWAS) have identified many oansingle nucleotide

polymorphisms (SNPs) that associate with clinical phenotypes, haise tSNPs usually
explain just a small part of the heritability and have relatinebdest effect sizes. In contrgst,
SNPs that associate with metabolite levels generally ex@lahigher percentage of the
genetic variation and demonstrate larger effect sizes, thelldiscovery of SNPs associated
with metabolite levels is challenging since testing all imgiles measured in typicgl
metabolomics studies with all SNPs comes with a severe neutgpting penalty. We haye
developed an automated workflow approach that utilizes prior knowleflfpgochemica
pathways present in databases like KEGG and BioCyc to geaesataller SNP set relevant
to the metabolite. This paper explores the opportunities and challengles analysis qf
GWAS of metabolomic phenotypes and provides novel insights into theigdéasis o
metabolic variation through the re-analysis of published GWAS datasets.




Results

Re-analysis of the published GWAS dataset from lllig etNatfre Genetics, 2010) using a
pathway-based workflow (http://www.myexperiment.org/packs/319.html), rooed
previously identified hits and identified a new locus of human matahadividuality,
associating Aldehyde dehydrogenase familyl ALOHH1L1) with serine/glycine ratios in
blood. Replication in an independent GWAS dataset of phospholipids (DemirBanRitoS
Genetics, 2012) identified two novel loci supported by additional literauidence GPAM
(Glycerol-3 phosphate acyltransferase) &RE (Cystathionine beta-synthase). In addition,
the workflow approach provided novel insight into the affected pathwaysedevance df
some of these gene-metabolite pairs in disease development and progression.

Conclusions

We demonstrate the utility of automated exploitation of background knowladgent ir
pathway databases for the analysis of GWAS datasets dbohe@tac phenotypes. We report
novel loci and potential biochemical mechanisms that contribute to dersianding of the
genetic basis of metabolic variation and its relationship toasksedevelopment and
progression.

Keywords

Genome-wide association, Metabolite, Genotype-phenotype prioritization, Broatios,
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Background

GWAS have resulted in the identification of novel genetic loci @ated with a variety of
diseases and clinical phenotypes. However, a disease or clinical ygeeisthe end point of
the behaviour of numerous genes and pathways in addition to environméuo&lces. This
at least partly explains the general observation that thet sffee of genetic association with
clinical phenotypes is rather small. Spurred by recent technalageelopments in the field
of metabolomics, interest in genome wide association studiesneiidbolite levels in blood
[1-4] is gathering momentum. Metabolites are intermediate phenotgnéisies that lie
between genes and clinical end points [5,6]. Due to their proximityntenayme/gene,
metabolites may offer greater effect sizes for GWAS ttliaucal phenotypes [7]. Moreover,
the pathways in which the metabolite plays a role may prowisiglit into the underlying
biological mechanism responsible for the development of the associated disease.

Typically, in metabolomics GWAS, hundreds of metabolites aréededor genetic
association. However, association of all SNPs with all measuegdbolites comes with
considerable multiple testing problems. Recent publications have latsm ghat testing
ratios of metabolites for genetic association results in margjel effect sizes; however this
further exacerbates the multiple testing problem which precludesirge SNP-metabolite
pairs from reaching genome-wide significance. Several approblobegne based tests [8,9]
and pathway analysis [10] have been proposed to overcome this limitatioadefquate
statistical power in GWAS. All these approaches have been suggestbe context of
GWAS with clinical phenotypes but genetic association with bodites presents its own set



of unique opportunities and challenges. Herewith, we explore the uwilityackground
knowledge present in metabolic pathway databases to increase theipatestification of
metabolite Quantitative Trait Loci (mQTL).

Our approach involves selective testing of SNPs near gempaghways supposedly relevant
to the metabolite levels, as a way to reduce the multiplengediurden in GWAS.
Background knowledge pertaining to a metabolite is retrieved throygtensatic
interrogation of metabolic pathway databases which describe bidzdde pathways,
reactions, and enzymes relevant to human metabolism. Several padwabgses have been
created by groups around the world, while the intent of these eféorains the elucidation
of biological mechanism, the databases however, differ quitefisantly in their content,
size, user accessibility, download formats and most importaveilahbility and type of web
services for machine-enabled interrogation of the database [Xhis Ipublication, as a proof
of principle, we have chosen to focus on two important metabolic pattiatapases, KEGG
[12] and BioCyc [13]. KEGG is an integrated database resource of seventeesamtahiah
provide system, genomic and chemical information. The pathway datedwasists of both
metabolic and non-metabolic pathways and is constructed by a teaurabdrs based on
information available in the literature. BioCyc is a collectiorpathway/genome databases
that describe the genome and metabolic pathways of severalsongarlihe database that
describes human genomes and pathways, HumanCyc was interrogdtedsitudy. In our
approach, for every metabolite under consideration, genes acting imicthigy of the
metabolite are determined using knowledge present in databasesneergbove. We thus
generate an integrated set of genes that represent entitiefivience over the metabolite.
A workflow management system called Taverna [14] was usegrerate these gene sets
and the SNPs associated with these genes. The workflows tleatiessgned for this purpose
have been submitted to a workflow repository at
http://www.myexperiment.org/packs/319.html [15].

A previously published metabolomics dataset by lllig et al. 201@§2] analyzed to evaluate
the sensitivity of the method in picking true positives and to idenbfyel SNP-metabolite
pairs that had hitherto been obscured in the GWA list given the esttirthreshold for
significance. In addition to validating a novel bioinformatics workflamalysis tool, we
identified a new locus of human metabolic individuality, Aldehyde dedgenase familyl
L1 (ALDH1L1). This locus was found associated with serine/glycine ratiogtabwlic trait
that functionally matches the gene function.

Candidate genes identified through the analysis of lllig et dhsda were taken up for
replication in a separate study published by Demirkan et aMfé]reportGPAM (Glycerol-

3 phosphate acyltransferase) &BIS (Cystathionine beta-synthase) as novel loci associated
with phosphatidylcholine moieties.

Results

Our approach can be divided into three stages: (i) Genenatm-sedundant gene set for
every metabolite considered using knowledge in pathway datalies&&EIGG and BioCyc
applying interrogation schemes as shown in Figure 1 and outlimed.(@) For every gene
in the set, generate the set of SNPs within the gene and 50 kimfjaadquences, and create
a SNP set for each metabolite (iii) Match SNPs genefated metabolite with the GWAS



for the same metabolite and store the matches with the p-valjpeded for the association
(Figure 2).

Figure 1 The database interrogation schemed he two interrogation schemes: pathway
schemdA) and reaction schen{B) are shown. The blue color indicates the intermediate
steps to filter out certain pathways/compounds from the two schemes to avoid rnbo-spec
connections.

Figure 2 Strategy to find biologically relevant SNP-metabolite pairs in publishé GWAS
datasets.Background knowledge pertaining to a metabolite is collected from the pathway
databases KEGG and BioCyc in an automated fashion to generate a gen¢/&hivasd to
the synthesis and degradation of the metabolite.

Analysis strategy of databases and Interrogation $&mes

To retrieve a prioritized list of candidate genes assatmith metabolite levels, gene sets
were generated for each metabolite through the pathway schecththe reaction scheme
[Figure 1A and 1B] for the KEGG and BioCyc databases (sabddg The pathway scheme
generates a list of genes that participate in pathwagsam to the synthesis or degradation
of the metabolite. In the reaction scheme, the metabolite isassadeed node and shells of
reactions around the metabolite are explored. The list of genesathbtse the reactions are
retrieved and form the gene set for the given metabolite. For geas/set, a corresponding
SNP set is generated by retrieving SNPs within the flankingb of every gene. In the final
step, the SNP set for a metabolite is matched with the GWAS datased famtle metabolite.
At this stage, the sensitivity of the method is evaluated and dtaotel discoveries are
explored.

Results for each of three classes of metabolites (14 aming aaidsnitine and 2 lipids) are
shown in Table 1. For example, for glycine, interrogation of the KElatabase identified
173 and 432 genes using the pathway and reaction schemes respeathezyas the
corresponding numbers of genes were 90 and 192 for the BioCyc datafasmidn of all
the four interrogation schemes results in a gene set consdtibg3 genes relevant to
glycine metabolism (Table 1). For all the three classes aiflolites, 1246 unique genes
were found, 640 are common to KEGG and BioCyc, the number of gerpseunieach of
the two databases are 379 and 227 respectively (Figure 3).



Table 1Gene and SNP sets generated by the database: interrogation schemesefich
of the metabolites
Metabolite BioCyc BioCyc KEGG KEGG Size of  Size of  Number
Pathway Reaction Pathway Reaction unique unique  of tests
Gene set  SNP set

Arginine 20 104 57 179 257 10788 10788
Glutamine 51 132 100 282 388 15591 15591
Glycine 90 192 173 432 523 20767 20767
Histidine 8 9 45 155 181 7126 7126
Leucine 8 0 44 83 117 5037 5037
Methionine 27 104 35 243 284 11532 11532
Ornithine 16 150 103 159 247 10089 10089
Phenylalanine 6 113 25 163 196 8419 8419
Proline 10 12 57 83 119 5075 5075
Serine 37 135 152 219 360 14996 14996
Threonine 1 11 39 49 75 2633 2633
Tryptophan 15 19 78 221 261 10419 10419
Tyrosine 14 106 61 158 219 9365 9365
Valine 15 93 80 137 211 9365 9365
Carnitine 32 206 81 94 263 11239 460799
Phosphatidylcholin&88 361 312 343 640 31676 2914192
Sphingomyelin 160 331 189 241 460 21290 319350
Sum 698 2078 1631 3241 4801 205407 3835543
Unique Set 399 806 703 768 1246 55952 55952

The number of genes for each metabolite and the corresponding datdba®sgation
scheme is shown' The size of the union of the gene set obtained from all the four
database:interrogation schem&dhe size of the corresponding SNP Sethe number of
tests is the same as the size of the SNP set for the amidsowhereas for aggregated entities
like the lipids and carnitine the SNP set is multiplied byrthmber of compounds present in
that class.

Figure 3 Gene set overlap for the KEGG and BioCyc database$he Venn diagram

depicts the overlap between the non-redundant gene set for KEGG and the Bio@yditneta
pathway database. These genes correspond to the combined set from the pathway and
reaction interrogation schemes. The total number of unique genes that our melth®d yi
1246

Statistical threshold

The number of unique SNPs generated for each of the metabolitesnis 81 Table 1. For
aggregated metabolites like phosphatidylcholines, sphingomyelins antinesriine size of
the unique SNP set is multiplied by the number of metabolitesatatithin each class to
yield the total number of tests. For example, the size of thguerSNP set for carnitine is
11,239; this is multiplied by the number of carnitines which is 4¥jdid a total number of
460,799 tests for these compounds, as shown in the last column of Table uinTbéal

SNPs derived from our set of metabolites is 3,835,543. The multiplagektieshold for

metabolite concentrations using a Bonferroni correction at a nomwalup of 0.05 is 1.3E-
08 (0.05/3,835,543). In contrast, the p-value threshold for significant associat®NRs

with the same metabolite concentrations in the lllig et al. ystwduld be 5.96E-10



(0.05/162*517,840). This represents a reduction of the multiple testing burdémtytao
orders of magnitude, regardless of the dependency between the SNPs or ngtabolite

It has been demonstrated that GWAS of metabolite ratios roferst statistical associations
and point to biological mechanisms related to the interconversion w@ibotée pairs. To
investigate the association of SNPs with metabolite ratiosyemerated the union of SNP
sets for all combinations of metabolites (Additional file 1. ®al3). In the case of
aggregated metabolites like the lipids and carnitines, the union of the SidPnsitiplied by
the number of compounds that fall within each class. For examplanibie of the SNP set
for arginine and carnitine is 20,000, this is multiplied by 41 to yie&l tbtal number of
820,000 tests for this group of ratios. The number of tests for ratiosngbounds within
classes such as phosphatidylcholines is equal to the size of the 8NBuset multiplied by
the number of combinations, n*(n-1)/2, which in this case would be 92*91/2 = 4186. In
choosing combinations of ratios, we have assumed that the associatilue fjevaa linear
regression model using a metabolite ratio of A/B is equivalenhat computed using it's
reciprocal, B/A. The evidence for lack of independence of a ratth is reciprocal is
provided by the lllig et al. study where a comparison of assmesga computed using
untransformed and log-scaled ratios did not detect significanrefifes. This implies that
we may consider the p-values computed using A/B and B/A to be approximately equal

The sum of the number of tests for all ratios is 423,645,558 as shown itioAdHfile 1:
Table S3. The multiple testing threshold for the ratios using Bamfiecorrection at nominal
p-value of 0.05 is 1.18E-10. This represents a multiple threshold redugtisvotorders of
magnitude over the genome-wide threshold estimated by lllig et al. vgh8cB3E-12.

Proof of principle: sensitivity

The sensitivity of the method was evaluated based on its abilitentify the top hits in the
previously published lllig et al. genome-wide association study. Thalbgensitivity of the
method as well as the interrogation specific breakdown is shoWabie 2. For example, for
the BioCyc pathway scheme the size of the unique gene seagghtor all the metabolites
is shown to be 399. The number of genes that are among the 15 topthésllirg et al.
study for this database:interrogation scheme is 8 whichtsesul sensitivity measure of
0.53. A metabolite specific breakdown of each of these schemes agehteewith a p-value
cut-off of 1E-02 is shown in Additional file 1: Table S5.

Table 2 Performance of the database:interrogation schemes in GWAS dataset analysi

Database: Size of Top hits from lllig et al. study identified by the ~Sensitivity®

Interrogation scheme Gene Set method?

BioCyc Pathway 399 ACADL, ACADM, ACSL_1, CPSL, FADSL, 0.53
PHGDH, SCD, SPTLC3

BioCyc Reaction 806 ACADM, ACADS ACS.1, CPSL, FADSL, SCD,  0.47
SPTLC3

KEGG Pathway 703 ACADL, ACADM, ACADS ACS.1, CPSl, 0.67
ELOVL2, FADSL, PHGDH, SCD, SPTLC3

KEGG Reaction 768 ACADL, ACADM, ACADS AC3.1, CPSL, 0.53
PHGDH, SCD, SPTLC3

Pooled Set 1246 ACADL, ACADM, ACADS ACS.1, CPSl, 0.67

ELOVL2, FADSL, PHGDH, D, SPTLC3




Snapshot of the matches between our method and the association dathefridliig et al.
2010 study for each of the database:interrogation schecoeresponds to the unique set of
genes generated for all the metabolites for the given dasabi@rrogation scheme.
“corresponds to the top hits in the lllig et al. publication that wessent in the gene set for
the given database:interrogation schetBensitivity is a measure of the actual positives that
have been captured by our method and is equal to the ratio of the numtogr luts
identified by the method over the total number of top hits in thedtligl. publication which

is 15.

Overall, combining the results from the four database:interrogatibemes helped identify
10 of the 15 top associations (67% sensitivity) published by lllig et al.

Novel discovery in the lllig et al dataset

Analysis of the first stage or the “discovery stage” data&0D29 samples from the lllig et
al. dataset yielded several associations with p-values indidati\essociation, but that did
not meet the significance threshold applied by lllig et al. Aatioas with p-value less than
1E-02 were evaluated in the combined “replication stage” datadlt M09 samples.
Analysis of SNPs in theéALDH1L1 (aldehyde dehydrogenase family 1 L1) gene locus
lowered the p-value of association with serine/glycine ratio #o83E-09 in the discovery
dataset to 5.13E-12 in the combined dataset. This is well belovhimshold of 1.18E-10,
but above the threshold to be applied when considering all associatioreehe®MPs and
metabolite ratios. Furthermore, the original publication did notcséles association for
replication because of the threshold set in the first stageeartalysis. This is an example of
the method pointing to potential true positives in a genome-wide schtha association of
ALDHI1L1 with the trait is being reported as a novel discovery.

Statistical threshold in the replication study

The analysis of the lllig et al. dataset identified severabpically relevant candidate genes
with p-values less than 1E-02. A list of 56 of these genes assbciaith
phosphatidylcholines and sphingomyelins were investigated in an indepeshagyntn the
GWAS dataset of phospholipids published by Demirkan et al. The numberawhes
between the two datasets was: 56 phosphatidylcholines and 6 sphingoniyefimgkan et
al. also performed GWAS for within class molar proportions for theseties. We took
these into consideration in addition to the GWAS of absolute concentralioaefore, the
total number of metabolites and proportions investigated in the Damekal. GWAS
dataset was 124. A principal component analysis based on the metpodqurdy Li et al.
[16] was performed on this set of metabolites resulting in 5Sictefédy independent
variables. As we considered 2413 independent SNPs in the candidatéorlotiese
metabolites, the statistical threshold, applying Bonferroni ctioreat a nominal p-value of
0.05, for the replication study was 4.06E-07 (0.05/2413*51).

Novel discoveries in the replication study

Table 3 shows the top hits in the meta-analysis of candidate gleme$ied in the lllig et al.
dataset for replication. The meta-analysis was performed @&iogffer's Z-score based
method of combining p-values [17]. Since the SNPs in the loci replicathé Demirkan et

al. dataset had relatively lov values with the SNPs reported in the lllig et al. dataset, we
could not perform a traditional meta-analysis where strict ¢jakdisequilibrium criteria are



applied. Therefore, we combined the lowest p-value per gene and salgjhonal
supporting evidence for potential allelic heterogeneity (see Discussi@myentioned earlier,
the p-value threshold for the replication study is set at 4.06E-07. BNRs vicinity of the
genesCBS, GPAM, ADCY8, CNR1, HSD17B12, MBOAT1, PECR, PLCB1 and TECR pass
this threshold.



Table 3Replication of candidate genes in the Demirkan et al. dataset

Gene Trait SNP from the lllig et al. dataset  p-value' SNP from the Demirkan et al. dataset p-value® combined p-valué
ADCY8 PC ae C40:6 rs11786743 4.03E-05 rs913819 6.73E-04 2.15E-07
CBS PC ae C40:6 rs2839631 5.67E-06 rs378376 5.17E-04 .90E208
CNR1 PC ae C38:2 rs10485168 2.42E-04 rs9359765 4.61E-04 7.54E-07
GPAM’ PC ae C34:3 rs2246253 1.25E-04 rs2419603 1.76E-04 1.56E-07
HSD17B12 PC aa C34:4 rs2862999 2.66E-05 rs11037685 6.13E-04 1.35E-07
MBOAT1 PC ae C40:6 rs9465673 1.11E-04 rs694094 4.47E-04 .53E307
PECR PC aa C38:0 rs3770536 5.55E-04 rs3770562 9.43E-05 3.79E-07
PLCB1 PC aa C30:0 rs6056188 9.55E-06 rs17363114 1.96E-03 2.06E-07
TECR PC aa C32:0 rs7252966 1.69E-05 rs7254215 2.09E-03 3.57E-07

Top hits from the meta-analysis of candidate genes identifigekilllig et al. study and replicated in the*Demirkan et ahgt “p-value of
association of the SNP with the trait in the lllig et al., D&am et al. and combined p-value respectivelyndicates genes for which further
evidence was found.



Discussion

Genome wide association studies with metabolites as phendigpesdentified several loci
that explain human metabolic individuality. However, the large metahmiinel being tested
results in a severe multiple testing burden that precludes genuren®tdbolite pairs from
consideration when they fail to reach the stringent threshold feststait significance. Our
method aims to address this problem by selectively testing featesperate in reactions and
pathways relevant to the metabolite. The goal is to reducestfeeity of the multiple testing
burden and identify potential true positives in the list of genome-asdeciations. Taverna,
a workflow management system was used to generate the SldPelitet pairs. We have
deposited the workflows at a repository called myexperiment.org,ngnakieasier for the
scientific community to interpret, repeat and reproduce theltréBhe sensitivity of the
method, defined as retrieval of previously identified associatiomggls as evident from the
proof of principle study carried out on the genome scan publishedidpetilal. Replication
studies on some of the promising SNP-metabolite pairs identifie¢khebmethod pointed to a
novel and statistically significant association at #deDH1L1 locus with serine/glycine
ratios. Additional replication studies of phosphatidylcholines and sphiygjora uncovered
significant gene-wise associations WiiBS, GPAM, ADCY8, CNR1, HSD17B12, MBOATL,
PECR, PLCB1 andTECR.

Databases, interrogation schemes and software tool

The pathway databases have technical and conceptual differencesh§tlimandate
interrogation of multiple databases and integration of the redoteypretation of these
results requires a close coordination between biologists and compiatetisss. Workflow
management systems in general and Taverna [Additional file 1:inSRhrticular is an
example of a software tool that is intuitive enough for the biologisiie at the same time
offering the flexibility for exploring the algorithmic aspsdor the computer scientist [18]. In
using Taverna as a software tool and depositing the workflows inrdpesitory
myexperiment.org, we have attempted to make the method and itralatransparent to
users, thus facilitating its retrieval, reuse and reproduction lwgr ahdependent scientists
[19].

Sensitivity of the method

As a sensitivity measure of our method, we evaluated its aailfiick the top hits in the lllig
et al. publication [2]. Some 60% of the top associations were idensfiecessfully. A
similar analysis of GWAS dataset published by Suhre et aki¢BJed a sensitivity of 54%
(20 out of 37 hits) (data not shown). However, 4 of the “misses” in theeSattal. dataset
were peptide fragments that do not have an entry in the pathwayaskesa which is a
prerequisite for our method to work.

We interpret the high sensitivity of our method in three wayst ifireinforces the rationale
that GWAS with metabolomic phenotypes provides a functional approadte tetudy of

human genetic variation [1]. In other words, the known function of theciased gene and
the biochemical characteristics of the affected metabolite suppch other in ways that
lends itself to a narrative on the underlying biological mechar&oond, while the pathway
databases have a long way to go in achieving a comprehensive amatatidelineation of
biological processes, they, however, are a good resource of itfamnma so far as the top



hits in a GWAS with metabolomic phenotypes are concerned. Onlyutvof the 15 top hits
in the study by lllig et al. were genes with unknown functidiisEKHH1, SYNE2), and two
others were hitherto uncharacterized solute transpoe@&l6A9, S.C22A4). Third, a good
sensitivity measure is a validation of our method and reflectcataprehensive data
collection ability through integration of disparate data sources alimhtibn of appropriate
interrogation strategies.

Novel discoveries

Our analysis of the GWAS dataset of the lllig et al. publicabased on the first step of the
“discovery design” yielded several interesting associatioashad not been reported among
the top hits in the publication. We selected a few of the promasiagciations for replication
in the combined dataset of 1809 subjects. One of the genes, Aldehydieodeimase family
1 L1 (ALDH1L1) was found associated with the ratio of serine/glycine withvalye of
5.13E-12 in the combined set of 1809 subjec#d.DH1L1 also known as 10-
formyltetrahydrofolate dehydrogenas®FTHFDH, FDH) catalyzes the NADPdependent
oxidation of 10-formyltetrahydrofolate to G@nd tetrahydrofolate (THF) [20] as shown in
Figure 4. It plays an important role in folate metabolism [21-25jong other functions,
ALDH1L1 has been known to deplete cellular 10-formyltetrahydrofolate pealtireg in a
loss ofde novo purine biosynthesis [23], maintain cellular folate concentrationgdpylating
the availability of THF [22], but most importantly, it has been ghaav compete with the
enzyme serine hydroxymethyl transferaSdNIT) for the polyglutamyltetrahydrofolates [25]
. The latter enzyme catalyzes the conversion of serine tanglas shown in Figure 4. It has
also been shown that glycine to serine inter-conversid8Hd§T accounts for approximately
41% of whole body glycine flux inclusive of both mitochondrial and cytoplagrocesses
[26].

Figure 4 Role of ALDH1L1 in the cytosolic one-carbon pool metabolismA simplified
schematic of the one-carbon pool metabolism in the cytosol is depitieéilL1: Aldehyde
Dehydrogenase 1 Family, Member OHF: tetrahydrofolateSHMT: Serine
hydrxymethyltransferase.

To further investigate the potential of our approach to uncover novel gasstciations, we
extended the analysis to an additional independent GWAS datasetafd]id&te genes
identified in the lllig et al. dataset in association with phospyatdlines and
sphingomyelins were considered for replication in the dataset probil€&kemirkan et al.
[4]. We discuss here two novel findings for which additional evidence was obtained.

SNPs near glycerol-3 phosphate acyltransfer&®Al1) are associated with PC ae C34:3
moieties in the lllig et al. and Demirkan et al. dataseth pAvalues of 1.25E-04 and 1.75E-
04, respectively, with a meta-analysis p-value of 1.56E3FPAM encodes a mitochondrial
protein that esterifies the acyl group from acyl-coA to thel gosition of glycerol-3-
phosphate. It is a rate-limiting enzyme that catalyzes thialistep in the biosynthesis of
triacylglycerols and phospholipids [27]. A recent study showed thatgast canceGPAM
expression is strongly correlated with survival rates, clinicbgdagical features as well as
metabolomic and lipidomic profiles [28]. Interestingly, the study ifledtthe metabolite PC
C34:3 as the most significantly altered metabolite with respeBPAM expression in breast
cancer patients. This suggests that, for this particular @eammenetic control is primarily at
the level of gene expression, with secondary effects on eniguets and metabolic



conversion rates. The example also highlights the potential icffuehgenetic variation of
metabolic pathways on disease.

A large number of genes identified by our method in the context of pblisiols participate
in fatty acid metabolism and are therefore likely to affdué ievels of groups of
phosphatidylcholines and sphingomyelins. For exan@lR&M esterifies the acyl group from
acyl-ACP to the sn-1 position of glycerol-3-phosphate, and is theredtagvant to both acyl-
acyl and acyl-alkyl moieties. The lowest p-value of assiocia at this locus, with a
phosphatidylcholine moiety in the lllig et al. study is with P€ @36:3, while in the
Demirkan et al. study it is PC aa C36:3. Since both associatiake liological sense, future
work should incorporate joint modelling of suitable phospholipid moieties o idehtify
loci that are biologically relevant but fail to reach theistigal threshold in GWAS analysis.
We have reported such best case associations for phosphatidylciolAgditional file 1:
Table S6.

SNPs near Cystathionine beta-syntha3BSj are associated with PC ae C40:6 moieties in
the lllig et al. and Demirkan et al. datasets with p-values of 50&/E&nd 5.17E-04,
respectively, with a meta-analysis p-value of 2.9E-08. Mutations CBS cause
hyperhomocysteinemia [29], which is marked by elevated levels of hmteare. Several
studies have associated altered phosphatidylcholine biosynthesish  wit
hyperhomocysteinemi@BS deficiency [30-33]. In one of the studies [30],
phosphatidylcholine levels and the activity of the enzyme lecithatesterol acyltransferase
(LCAT) were significantly lower irfCBS deficient mice than in wild type mice. While there is
considerable literature evidence for the roleC8fS in phosphatidylcholine metabolism, the
stringent p-value threshold obscures this association in the list of GWASresult

The low £ values for significant SNPs iBPAM, CBS and other loci between the lllig et al.
and Demirkan et al. datasets could be explained by allelic hetezty. The latter is a
phenomenon where multiple alleles from one gene influence a toaiteér, in some cases
it may be that the two apparently independent SNPs are taggimgl &SNP [34]. This may
be the case for the two SNPs (rs2839631, rs378376)YBSwhich have an“rof 0.067 and
are associated with C40:6 phosphatidylcholines in both the datasetsvétploth SNPs are
in LD with cis-eQTLs in the region (for example, rs719037+~r0.4). This is suggestive of
the SNPs exerting their effect through the expression leveteeo€£BS enzyme, as was
suggested foGPAM. Apparent allelic heterogeneity may preclude identification in a standar
meta-analysis, but would justify further investigation of independedependent signals at
loci showing this phenomenon.

Challenges and future direction

In general, our effort was directed at exploring the ytditmachine-enabled interrogation of
metabolic pathway databases in prioritizing SNP-metabol#ecesions in a GWAS dataset.
While the method’'s sensitivity and ability to make novel discova® encouraging,
considerable progress needs to be made in metabolite disambigoasichidve a relevant
and comprehensive gene set for a given metabolite. This problem iculpast acute for
phospholipids like phosphatidylcholines and sphingomyelins and various forre Gdtty
acid transporters of L-carnitine. For example, the metabolonabsidéogy used in the lllig
et al. study differentiated more than 90 forms of phosphatidylchdbagssd on alkyl or acyl
bonds and single or double bonds on the side chains. However, the pathwagetatibnot
yet contain information for the complex structures. This forcessuse analyze these



metabolites at a higher aggregation level. Another issue that escpfitention is the bias
introduced in selecting genes for inclusion in the gene set. Weftiawalated simple rules
for interrogation [Additional file 1: S1] that facilitates undéa generation of gene sets for
any given metabolite.

Another challenge arises due to the high correlation betwestabolites, particularly the
phospholipids like phosphatidylcholines and sphingomyelins. These moiatiessociated
with loci relevant to fatty acid metabolism. While the varia@ithese loci effects the levels
of fatty acids and thereby the phospholipid pool, to a large extest the are not specific
for any particular phospholipid moiety. As a result, severaldrbibit a pleiotropic effect for
biologically related metabolic phenotypes in general and phospholipidsticufg [Shown
in Additional file 1. Table S7] We have demonstrated that background l&dges and
evidence-based approach is ideally suited to identify such céamdidaes, however future
work should focus on statistical methodologies with sufficient powededtect such
pleiotropic loci in GWAS of intermediate phenotypes. In summary, éutwork includes
integration of more pathway databases, metabolite disambiguatiosideration of allelic
heterogeneity and multivariate statistical techniquest#kat into account the high degree of
correlation between the metabolites.

Conclusions

A measurement of metabolites as intermediate phenotypgmiemtially powerful approach
to uncover the influence of genetic variation on disease suscéyptiad progression.
However, we still face many hurdles in the interpretation ofA®/Nata. In this study, we
investigated the utility of background knowledge present in patliatgbases in extending
our understanding of the genetic basis of metabolic variation. Wéogedea bioinformatics
method that prioritizes SNP-metabolite associations in a GW&S8d on metabolic pathway
information present in the KEGG and BioCyc databases. The validitheoimethod is
demonstrated by re-analysing published GWAS datasets and idenidseviously known
associations. We report a new locus of human metabolic individualiH1L1 (Aldehyde
dehydrogenase family 1 L1) associated with serine/gly@ties. Replication studies in an
independent GWAS of phospholipids identifiedsPAM (Glycerol-3 phosphate
acyltransferase) an@BS (Cystathionine beta-synthase) as novel loci, and this was further
supported by additional literature evidence. The utility of a wovkilnanagement system in
facilitating novel biological discoveries and as a tool forcedfit sharing of computational
protocols is demonstrated.

Methods

Gwas data set for proof of principle studies

The GWAS dataset published by lllig et al. 2010 [2] was used toaeathe validity of the
method. lllig et al. employed a two-stage discovery design in the KORA F4 giopuahort
with 1029 male and female individuals in the first stage and 780 indigiduahe second
stage. Loci with p-value of association €1for metabolite concentrations and p-value € 10
for concentration ratios were taken up for the second stage indepeedéng in 780
individuals. The joint p-values of association for all the 1809 individuale when computed
and 15 loci were reported whose strength of association incredsedhaf second stage of
the discovery process. The authors note that “although this approads isell powered



than a full genome-wide joint analysis, it reflects the hisébmcay in which [they] selected
SNPs for follow-up“. This means that if we can identify poterttiaé positives using the
1029 samples, we can validate them in the full dataset, sinchathisot been done in the
lllig et al. study for all hits with p-value > T0for metabolite concentrations and p-value >
10° for concentration ratios. Therefore, the GWAS dataset based onshb@fles was
analyzed for our proof of principle studies. Additionally, to evaluat®el associations
identified by the method in the discovery stage dataset, the strength ofnlersag assessed
in the combined GWAS dataset for 1809 subjects.

GWAS dataset for follow-up studies

Candidate loci identified in the lllig et al. dataset by ma&thod were taken up for follow-up
studies in the dataset published by Demirkan et al. The lattelucted a meta-analysis of
GWAS on plasma levels of ceramides, phosphatidylcholines, lysophogitiatiches,
sphingomyelins, phosphatidylethanolamines and plasmalogens in five Burnopeulations:
the Erasmus Rucphen Family (ERF) study, conducted in the Netterlg2) the MICROS
study from the Tyrol region in Italy, (3) the Northern Swedish PajmaHealth Survey
(NSPHS) in

Norrbotten, Sweden, (4) the Orkney Complex Disease Study (OREGAD Scotland, and
(5) the CROAS (CROATIA_Vis) study conducted on Vis Island, CeoaBroadly, the
metabolite overlap between the lllig et al. dataset and Demékletral. dataset was confined
to the class of phosphatidylcholines, lysophosphatidylcholines and sphidgemyéore
specifically, the overlap represented 62 phospholipid moieties. Alsondiidese genes were
identified for follow up in the lllig et al. dataset. We chooseotmut on SNPs in the flanking
50 kb region of these genes for the follow-up study in the Demirkan A et al. dataset.

Metabolites considered for the generation of genets

Gene sets are defined as entities that participate in pgthavad reactions relevant to the
metabolite and hence hold the potential to influence its levelsgddlevas to generate gene
sets for the compounds that were measured in the lllig et al. 2010atidsli 14 amino acids
(Arginine, Glutamine, Glycine, Histidine, Methionine, Ornithine, Phalayline, Proline,
Serine, Threonine, Tryptophan, Tyrosine, Valine, and Leucine), 41 Casniti&2
Phosphatidylcholines and 15 Sphingomyelins. In addition to the metaboléasoned
above, lllig et al. also measured Hexose. We did not consider ¢febatite for investigation
because pathway information surrounding hexose is lacking. While mttabiie glucose
and fructose could have been considered as proxies, we did not pursoecthise of the
enormous size of the resulting gene set, combined with a lack afleocé in the relevance
of many of these genes to the metabolite measured by the metabolomics platform

Pathway databases and interrogation schemes

The metabolic pathway databases KEGG (release 63) [12] and BioCyoi(vEs3i[13] were
accessed for retrieving background knowledge surrounding metabolitesinfewrogation
schemes were employed: pathway scheme and reaction schigmes (E). In a pathway
scheme, for a given metabolite, all the pathways that iicgetes in are determined
followed by the retrieval of all the genes that participatéhese pathways (Figure 1A). In a
reaction scheme, given a metabolite, all the reactions tisapatrt of and the compounds that
participate in these reactions are determined. The compounds obgitked point are



subjected to the same strategy as in the previous step inlltilag aeactions that these
compounds participate in are determined. This can be visualized awlexphy a radius of
2 steps in the reaction space of every metabolite. Finallyenkzgmes that drive all these
reactions are determined (Figure 1B). As an intermediafe ctetain compounds were
filtered out in order to avoid non-specific connections. The details abeiltration step
and the compounds that were filtered are provided in the Additioedl:fib4. In all there are
four schemes: kegg:pathway, kegg:reaction, biocyc:pathway, and besston. The set of
non-redundant genes combined from all the schemes then forms theegémeasny given
metabolite.

Software used to generate gene and SNP sets

Taverna version 2.4 [14], a workflow management system was usetdme metabolite
specific gene sets as well as for the generation of SNPsnpriesthe 50 kb flanking region
of each gene. Taverna allows users access to remote dataces like KEGG, BioCyc,
Ensembl, NCBI etc. and data management systems like Biomaugh implementation of
web services. Each component in a workflow is responsible for eartfunction and
many such components need to be chained together in a pipelireate arworkflow that
performs a certain task. The pipeline depicted in Figure 1 isemmgited in a Taverna
workflow through appropriate linking of remote web services and &mr#pts. Web services
are software systems that facilitate machine to machieeartion over a network. Taverna
allows the inclusion of different kinds of web services like WebviSes Description
Language (WSDL) and REpresentational State Transfer (RE$E) services provided by
the KEGG database were implemented using the REST serviads available in the
Taverna workbench. The BioCyc database was accessed thfmuEST interface using
the BioVelo language. The latter is a query language designedl ttwel users write precise
gueries against the pathway/genome databases, available atcBtoQwtrieve pathways,
reactions, compounds, genes etc. All the workflows were designed ifajldyest practices
for workflow design [35].

Workflow accessibility

To facilitate retrieval and reproducibility, the workflows haverbdeposited in a repository
at http://www.myexperiment.org/packs/319.html. While the focus of plaiger was on a
specific set of metabolites; using appropriate identifiesfthe KEGG or BioCyc database
users will be able to generate gene sets for other methdlid generate a gene set for any
metabolite using the KEGG or BioCyc database, users have to mgpuotetabolite identifier
for that database and the output is a text file containing thezeg&ne identifiers. For
example, to generate a gene set for the metabolite Arginineittier the pathway or reaction
scheme using the KEGG database, users input the KEGG idefdifiarginine: C00062.
Similarly, to obtain a gene set using the BioCyc databasenplut for the same metabolite is
“L-arginine”. The workflows may also be repurposed to suit othgzctives, for example, to
filter out non-specific connections, we remove hub metabolites like, NADP and other
entities like co-enzymes; however, users may change theidittreriteria if they find it too
stringent for their objectives. A detailed tutorial on how to ss@nd run these workflows is
provided in the Additional file 1: S2.
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