
Retter et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:157
http://asp.eurasipjournals.com/content/2013/1/157

RESEARCH Open Access

Computer-aided diagnosis for diagnostically
challenging breast lesions in DCE-MRI based
on image registration and integration of
morphologic and dynamic characteristics
Felix Retter1, Claudia Plant4, Bernhard Burgeth1, Guillermo Botella2, Thomas Schlossbauer3

and Anke Meyer-Bäse2*

Abstract

Diagnostically challenging lesions comprise both foci (small lesions) and non-mass-like enhancing lesions and pose a
challenge to current computer-aided diagnosis systems. Motion-based artifacts lead in dynamic contrast-enhanced
breast magnetic resonance to diagnostic misinterpretation; therefore, motion compensation represents an important
prerequisite to automatic lesion detection and diagnosis. In addition, the extraction of pertinent kinetic and
morphologic features as lesion descriptors is an equally important task. In the present paper, we evaluate the
performance of a computer-aided diagnosis system consisting of motion correction, lesion segmentation, and feature
extraction and classification. We develop a new feature extractor, the radial Krawtchouk moment, which guarantees
rotation invariance. Many novel feature extraction techniques are proposed and tested in conjunction with lesion
detection. Our simulation results have shown that motion compensation combined with Minkowski functionals and
Bayesian classifier can improve lesion detection and classification.
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1 Introduction
Contrast-enhanced magnetic resonance imaging of the
breast was reported to be a highly sensitive method for the
detection of invasive breast cancer [1]. Different investi-
gators described that certain dynamic signal intensity (SI)
characteristics (rapid and intense contrast enhancement
followed by a wash-out phase) obtained in dynamic stud-
ies are a strong indicator for malignancy [2]. Morphologic
criteria have also been identified as valuable diagnos-
tic tools [3]. Recently, combinations of different dynamic
and morphologic characteristics have been reported [4]
which can reach diagnostic sensitivities up to 97% and
specificities up to 76.5%.
Recent clinical research has shown that ductal carci-

noma in situ (DCIS) with small invasive carcinoma can
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be adequately visualized in magnetic resonance imaging
(MRI) [5] and that MRI provides an accurate estimation
of invasive breast cancer tumor size, especially in tumors
2 cm or smaller [6].
However, more than 40% of the false-negative MR

diagnosis are associated with diagnostically challenging
lesions such as non-mass enhancing lesions (pure DCIs)
and with small lesion (foci) size, thus indicating a lower
sensitivity of MRI for these cases. It has been shown that
double reading achieves a higher sensitivity but is time-
consuming; as an alternative, a computer-assisted system
was suggested [7]. The success of computer-aided diag-
nosis (CAD) in conventional X-ray mammography [8-12]
motivates furthermore the research of similar automated
diagnosis techniques in breast MRI [13,14].
The goal of this paper is to develop a computer-assisted

system and thus improve the quality of breast MRI post-
processing, reducing the number of missed or misinter-
preted cases leading to false-negative diagnosis.
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Figure 1 visualizes the flow diagram of the proposed
computer-assisted system, including image registration,
lesion segmentation, feature extraction, and evaluation.
Automatic motion correction represents an important

prerequisite to a correct automated small lesion eval-
uation [15]. Motion artifacts are caused either by the
relaxation of the pectoral muscle or involuntary patient
motion and invalidate the assumption of the same spatial
location within the breast of the corresponding voxels in
the acquired volumes for assessing lesion enhancement.
Especially for small lesions, the assumption of correct
spatial alignment often leads to misinterpretation of the
diagnostic significance of enhancing lesions [16].
Visual assessment of morphologic properties is a highly

inter-observer variable [17], while automated computa-
tion of features leads to more reproducible indices and
thus to a more standardized and objective diagnosis. In
this sense, we research novel mathematical descriptors for
both morphology and dynamics and will compare their
performance regarding small lesion classification based
on novel feature selection algorithms. In addition, we
develop and test a novel descriptor, the radial invari-
ant Krawtchouk moments, to capture the morphology of
diagnostically challenging lesions.
Therefore, the goal of our paper is to evaluate quantita-

tively based on automated classification the utility of novel
feature extraction approaches to breast lesion detection
such as foci and non-mass enhancing lesions.

2 Materials andmethods
2.1 Patients
A total of 63 patients, all females with an age range of 42
to 73 years, with 66 solid breast tumors were examined.
All patients had histopathologically confirmed diagno-
sis from needle aspiration/excision biopsy and surgical
removal.
Histologic findings were malignant in 30 and benign

in 36 lesions. Tumors were classified as diagnostically
challenging lesions for both foci and non-mass enhanc-
ing lesions. Lesion size was derived from mammogra-
phy images. Mean size of malignant lesions was 1.3 cm
(median = 1.2 cm, range = 0.4 to 3.8 cm), and mean size of
benign lesions was 1.2 cm (median = 1.0 cm, range = 0.3
to 3.0 cm).

2.2 Magnetic resonance imaging
MRI was performed with a 1.5-T system (Magnetom
Vision, Siemens, Erlangen, Germany) with two different

protocols equipped with a dedicated surface coil to enable
simultaneous imaging of both breasts. The patients were
placed in prone position. First, transversal images were
acquired with short TI inversion recovery sequence (TR=
5, 600ms, TE= 60ms, FA= 90◦, IT= 150ms,matrix size
256 × 256 pixels, slice thickness 4 mm). A dynamic T1-
weighted gradient echo sequence (3D fast low-angle shot
sequence) was performed (TR = 11 ms and TR = 9 ms,
TE = 5 ms, FA = 25◦) in transversal slice orientation with
a matrix size of 256 × 256 pixels and an effective slice
thickness of 4 or 2 mm.
The dynamic study consisted of six measurements with

an interval of 83 s. The first frame was acquired before
injection of a paramagnetic contrast agent (gadopente-
tate dimeglumine, 0.1 mmol/kg body weight, Magnevist™,
Schering, Berlin, Germany), which was immediately fol-
lowed by five other measurements. The initial localization
of suspicious breast lesions was performed by comput-
ing difference images, i.e., subtracting the image data of
the first from the fourth acquisition. As a pre-processing
step to clustering, each raw gray level time series S(τ ), τ
∈ {1, . . . , 6} was transformed into a signal time series of
relative signal enhancement x(τ ) for each voxel, the pre-
contrast scan at τ = 1 serving as reference; in other words,
x(τ ) = x(τ )−x(1)

x(1) . Thus, we ensure that the proposed
method is less sensitive to changing between different MR
scanners and/or protocols.

3 Motion compensation and lesion segmentation
The employed motion compensation algorithm [18] is
based on the Horn and Schunck method and represents a
variational method for computing the displacement field,
the so-called optical flow u, in an image sequence f1, f2
with movement in between the image acquisitions:

u : � ⊂ R3 → R3, f2compensated(x, y, z)

= f2(x + ux, y + uy, z + uz).
(1)

ui, i ∈ {x, y, z} describes the movement in the correspond-
ing direction.
The method is based on two typical assumptions

for variational optical flow methods: the brightness
and smoothness assumption. Additionally, we enforce a
divergence-free flow field.

Figure 1 Diagram of a computer-assisted system for the evaluation of diagnostically challenging contrast-enhancing lesions.
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The initial image sequence f0 is pre-processed and con-
volved with a Gaussian Kσ of a standard deviation σ :

f = Kσ ∗ f0. (2)

The variational method is based on the minimization
of the continuous energy functional which penalizes all
deviations from model assumptions:

E(u) =
∫

�

(M(Dkf ,u)︸ ︷︷ ︸
Dataterm

+ μS(∇f ,∇u)) + (λ + μ)D(divu)︸ ︷︷ ︸
Regularizer

dx,

(3)

where the spatial domain � represents a spatiotemporal
domain. The data term (M(Dkf ,u)) describes a bright-
ness constancy assumption, the first part of the regularizer
(S(∇f ,∇u)) penalizes deviations from piecewise smooth-
ness, and the second part of the regularizer D(divu)

penalizes non-divergent-free flow fields. The weight terms
μ > 0 and λ represent the regularization parameters, the
so called Lamé constants, where larger values correspond
to more simplified flow fields. This technique is a global
method where the filling-in-effect yields dense flow fields,
and no subsequent interpolation is necessary as with the
technique proposed in [19]. This method works within a
single variational framework. This technique overcomes
the aperture problem, provides sub-pixel accuracy, and
can be easily enhanced and adapted.
The optimal motion correction results were achieved

for motion compensation in two directions for mostly
small standard deviations of the Gaussian kernel and
smoothing parameter. Consistent with the only study
known for evaluating the effect of motion correction
algorithms [16], the proposed motion compensation tech-
nique improved the tumor diagnosis by having a strong
impact on the enhancement curves.
Motion compensation is followed by image segmenta-

tion where each MR image has to be segmented into two
regions, the region of interest, i.e., the voxels belonging to
the tumor, and the background. We are using an interac-
tive region growing algorithm that creates a binary mask
for the tumor and its surroundings. The image used for the
region growing algorithm was the difference image of the
second post-contrast image and the native pre-contrast
image.

4 Kinetic andmorphologic features
4.1 Features describing the enhancement kinetics
The computer-assisted interpretation of time-signal series
as measured during a dynamic contrast-enhanced mag-
netic resonance (DCE-MR) examination for each image
voxel represents one of the major steps in designing CAD
systems for breast MRI. In [2], it was shown that the
shape of the time-signal intensity curve represents an

important criterion in differentiating benign and malig-
nant enhancing lesions in DCE-MR imaging. The results
indicate that the enhancement kinetics, as represented
by the time-signal intensity curves visualized in Figure 2,
differ significantly for benign and malignant enhancing
lesions and thus represent a basis for differential diagno-
sis. In cancerous breast tissue, plateau or washout time
courses (type II or III) prevail. Steadily progressive sig-
nal intensity time courses (type I) are exhibited by benign
enhancing lesions, albeit these enhancement kinetics are
shared not only by benign tumors but also by fibrocystic
changes.
As a dynamical feature, we use the slope of relative sig-

nal intensity enhancement (RSIE). To capture the correct
form of the RSIE curve, we are fitting a straight line l =
at+b to the data of the last three time scans of every pixel.
The distance that l is supposed to minimize with respect
to the data is the sum of the squared errors which leads
to the well-known problem of least squares. Since we only
need the slope a, it is sufficient to compute for the last
three post-contrast scans:

a =
∑i=5,j=n

i=3,j=1 ilij − 3nt̄l̄
n(32 + 42 + 52) − 3nt̄2

, (4)

where lij is the relative enhancement lij := fij−f0j
f0j , n corre-

sponds to the number of voxels we consider, and ·̄ denotes
the mean.

Figure 2 Schematic drawing of the time-signal intensity curve
types [2]. Type I corresponds to a straight (Ia) or curved (Ib) line;
enhancement continues over the entire dynamic study. Type II is a
plateau curve with a sharp bend after the initial upstroke. Type III is a
washout time course SIc−SI

SI where SI is the pre-contrast signal
intensity and SIc is the post-contrast signal intensity. In breast cancers,
plateau or washout time courses (type II or III) prevail. Steadily
progressive signal intensity time courses (type I) are exhibited by
benign enhancing lesions.



Retter et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:157 Page 4 of 9
http://asp.eurasipjournals.com/content/2013/1/157

Since this feature has already proven its descriptive
power, we are using it in the evaluation of motion correc-
tion.

4.2 Features describing the lesion morphology
Morphological characteristics contain valuable informa-
tion about a lesion’s type. Combined with kinetic prop-
erties, one could expect a higher accuracy. Furthermore,
non-mass enhancing lesions such as DCIS or ICS can
be better differentiated based on morphologic properties
[20]. In the previous work [21], we have considered fea-
tures that describe the geometric characteristics of the
shape and local moments such as that of Krawtchouk to
identify the non-smooth surface.

4.2.1 Minkowski functionals
Another family of characteristics that capture morpho-
logic attributes is generated by Minkowski functionals
(MFs) [22]. MF can characterize geometrical and topo-
logical space concepts such as shape, convexity, and con-
nectivity and represent a simple yet precise tool for the
analysis of geometrical structures in tumors. The most
important MF for three-dimensional (3D) tumors is the
Euler characteristic.
Since we consider 3D objects, Hadwiger’s theorem [23]

states that in this case we have four MFs, namely volume
V, surface area S, mean breadth B, and Euler character-
istic χ . The meaning of V and S are immediately clear,
and the Euler characteristic is the number of regions of
connected white voxels plus the number of completely
enclosed regions of black voxels minus the number of
black tunnels through white regions, remembering that in
our data, the tumor is shown as a white object in a black
area. The mean breadth is proportional to the integral
mean curvature H of the tumor A which is defined as

H(A) = 1
2

∫
∂A

(κ1 + κ2)df

with κ1, κ2 as the principal curvatures and df as the area
element of A.
Since our object is represented as an MR image, we

are only computing an approximation of the MFs of the
existing tumor, but due to the nature of MRI, we can-
not improve that. To calculate the MFs, one can use an
iterative technique that checks every voxel and updates
the values if the voxel belongs to the tumor. The efficient
algorithm that we have used is presented in [22]. For the
classification, it can also make sense to look at normed
Minkowski functionals, which are

Ṽ = 1, S̃ = S
N1/3 , B̃ = 2B

N2/3 χ̃ = χ/N . (5)

The N denotes the number of voxels in the tumor when
we assume a voxel size of one.

4.2.2 Krawtchoukmoments
The (discrete) Krawtchouk polynomials represent a set
of functions that are related to the binomial distribution.
Their descriptive power was shown in [24]. Since they are
defined over a discrete set, their application is well suited
in image processing.
The Krawtchouk polynomial of nth order is the hyper-

geometric function

Kn(x; p,N) =2 F1
(

−n,−x;−N ;
1
p

)
=

N∑
k=0

ak,n,pxk ,

(6)

and p ∈ (0, 1), x, n = 0, 1, . . . ,N , N > 0. 2F1 is defined as

2F1(a, b; c, z) =
∞∑
k=0

(a)k(b)k
(c)k

zk

k!

using the Pochhammer symbol (a)k which is

(a)k = 	(a + k)
	(a)

.

Their norm ρ(n; p,N) and their weight functionw(x; p,N)

are associated:

w(x; p,N) =
(
N
x

)
px(1 − p)N−x

ρ(n; p,N) = (−1)nn!
(−N)n

(
1 − p
p

)n.

To avoid numeric fluctuations, it is necessary to weight
the Krawtchouk polynomials:

K̄n(x; p,N) = Kn(x; p,N)

√
w(x; p,N)

ρ(n; p,N)
. (7)

Now, the polynomials K̄n(x; p,N) form a set of orthonor-
mal functions [25]:

N∑
x=0

K̄n(x; p,N)K̄m(x; p,N) = δmn.
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Since the computation of the weighted Krawtchouk
moments via Equations 7 and 6 requires a lot of resources,
one normally uses a recursive algorithm [24]:

K̄0(x; p,N) =
√
w(x; p,N)

ρ(0; p,N)

K̄1(x; p,N) =
(
1 − x

pN

) √
w(x; p,N)

ρ(1; p,N)

p(n − N)K̄n+1(x; p,N) =
√

p(N − n)

1 − p)(n + 1)

× (Np − 2np + n − x)K̄n(x; p,N)

−
√
p2(N − n)(N − n + 1)

(1 − p)2(n + 1)n
× n(1 − p)K̄n−1(x; p,N).

Being able to compute the Krawtchouk polynomials, we
can define the Krawtchouk moment of the (n + m + l)th
order for an image of size N × M × L as

Qnml =
N−1∑
x=0

M−1∑
y=0

L−1∑
z=0

K̄n(x; px,N − 1)K̄m(y; py,M − 1)

× K̄l(z; pz, L − 1)f (x, y, z).
(8)

Since the weighted Krawtchouk polynomials form an
orthonormal system, we can even reconstruct the image
as

f (x, y, z) =
N−1∑
n=0

M−1∑
m=0

L−1∑
l=0

K̄n(x; px,N − 1)K̄m(y; py,M − 1)

× K̄l(z; pz, L − 1)Qnml.

For example, the Krawtchouk moments have success-
fully been used for content-based search by Mademlis
et al. [26].

4.2.3 Radial invariant Krawtchoukmoments
In this section, we are describing radial Krawtchouk
moments in 3D based on the radial Krawtchouk moments
in 2D presented in [25]. The idea behind this is to repre-
sent the image in a radial polar system f (r, θ). In an image
of a size N × N , the radius r varies from 0 to N/2 and
the angle θ varies from 0 to 2π in steps of ν. Therefore,
θc = 2πc

ν
, c = 0, . . . , ν − 1. Given this representation, the

radial Krawtchouk moments are defined as

Rnm = 1
ν

u−1∑
r=0

ν−1∑
c=0

K̄n(r; p,N − 1) exp
(

−i2πcm
ν

)
f (r, θc).

u = N
2 is the number of pixels along the radius r. If the

image is rotated by an angle α, we get

|R′
mn| = |1

ν

u−1∑
r=0

ν−1∑
c=0

K̄n(r; p,N − 1)

× exp
(

−i2π(c + α)m
ν

)
f (r, θc)|

= |exp
(

−i2παm
ν

)
Rmn| = |Rmn| =: φmn.

(9)

Hence, the φmn are rotationally invariant.
To extend this method straightforward to 3D, we need

to find a representation of all rotations/orientations in
special orthogonal group in 3D (SO(3) ) that uses only
angles, and then we map them on a linear space having
equidistant points and no singularities [27]. Since this can-
not be accomplished, we are using the Euler angles as a
representation of SO(3). They allow us to represent any
three-dimensional rotation R ∈ SO(3) by three consec-
utive rotations of angle � ∈[ 0, 2π ] , � ∈[ 0,π ] and �

∈[ 0, 2π ] around three predefined axes. For convenience,
let us choose the three axes as the coordinate axes Z,X,Z:

R�,�,� =
⎛
⎝ cos� sin� 0

− sin� cos� 0
0 0 1

⎞
⎠

⎛
⎝1 0 0
0 cos� sin�

0 − sin� cos�

⎞
⎠

×
⎛
⎝ cos� sin� 0

− sin� cos� 0
0 0 1

⎞
⎠

The rotation is uniquely defined for every choice of
angles with � 
= 0. If � = 0, we get a rotation of angle
�+� around the Z-axis which can be achieved by an infi-
nite combination of values for � and �. We avoid this in
our discretization by shifting the values of � by half of the
step size of the discretization.
Let f (r,�,�,�) denote the image in the Euler coor-

dinates, which means the vector (r, 0, 0)T is rotated by
R�,�,� and its three components describe the pixel at the
corresponding x, y and z coordinates (of course, the origin
of the coordinate system x, y, z refers to the center of the
image), then the radial Krawtchouk moments in 3D are
defined as

Rklmn = 1
ν + σ + ξ

u−1∑
r=0

ν−1∑
s=0

σ−1∑
t=0

ξ−1∑
u=0

Kk(r; p,N − 1)

exp
(

−i2πsl
ν

)
exp

(
−i2π tm

σ

)

exp
(

−i2πun
ξ

)
f (r,�s,�t ,�u)

(10)
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with

�s = 2πs
ν

, s = 0, . . . ν − 1,

�t = π t + 0.5
σ

, t = 0, . . . σ − 1,

�u = 2πu
ξ

,u = 0, . . . ξ − 1.

Analogous to Equation 9, we establish the rotational
invariant Krawtchouk moments in 3D as

�klmn := |Rklmn|, (11)

because if we have an image rotated arbitrarily in steps
of the given discretization, there are numbers α,β , γ such
that the moment R′

klmn (10) becomes

R′
klmn = 1

ν + σ + ξ

u−1∑
r=0

ν−1∑
s=0

σ−1∑
t=0

ξ−1∑
u=0

Kk(r; p,N − 1)

× exp
(

−i2πsl
ν

)
·

· exp
(

−i2π tm
σ

)
exp

(
−i2πun

ξ

)
× f (r,�s+α ,�t+β ,�u+γ )

= 1
ν + σ + ξ

u−1∑
r=0

ν−1∑
s=0

σ−1∑
t=0

ξ−1∑
u=0

Kk(r; p,N − 1)

× exp
(

−i2π(s − α)l
ν

)
·

· exp
(

−i2π(t − β)m
σ

)
exp

(
−i2π(u − γ )n

ξ

)
× f (r,�s,�t ,�u)

= exp
(

+i2παl
ν

)
exp

(
+i2πβm

σ

)

× exp
(

+i2πγn
ξ

)
Rklmn

↪→ |R′
klmn| = |Rklmn|

5 Classification techniques
The following section gives a description of classifica-
tion methods applied to evaluate the effect of motion
compensation to breast MRI images.
Discriminant analysis represents an important area of

multivariate statistics and finds a wide application inmed-
ical imaging problems. The most known approaches are
linear discriminant analysis (LDA), quadratic discrimi-
nant analysis (QDA), and Fisher’s canonical discriminant
analysis.
Let us assume that x describes a K-dimensional feature

vector, that there are J classes, and there are Nj samples
available in group j. The mean in group j is given by μj,
and the covariance matrix is given by �j.

5.1 Bayes classification based on LDA and QDA
The Bayes classification [28] is based on estimating the
prior probabilities πi for each class which describe the
prior estimates about how probable a class is.
This classification method assigns each new sample to

the group with the highest posterior probability. Thus, the
classification rule becomes

Cj = (xi−μj)
T (�j)

−1(xi−μj)+log |�j|−2 logπj (12)

where μj represents the means of the classes and �j is
the corresponding covariance matrix. The assignment to
a certain class j for a certain pattern is made based on the
smallest determined value of Cj.
There are two cases to be distinguished regarding the

covariance matrices: if the covariance matrices are differ-
ent for each class, then we have a QDA classifier, while
if they are identical for the different groups, it becomes a
LDA classifier.

5.2 Fisher’s linear discriminant analysis
The underlying idea of Fisher’s linear discriminant analy-
sis (FLDA) is to determine the directions in the multivari-
ate space that allow the best discrimination between the
sample classes [29]. FLDA is based on a common covari-
ance estimate and finds the most dominant direction and
afterwards searches for ‘orthogonal’ directions with the
same property. The technique can extract at most J − 1
components, and for visualization purposes, scores of the
first component are plotted against that of the second one,
thus yielding the optimal separation among the classes.
This technique identifies the first discriminating com-

ponent based on finding the vector �a that maximizes the
discrimination index given as

�aTB�a
�aTW �a (13)

with B denoting the inter-class sum-of-squares matrix
andW the intra-class sum-of-squares matrix.

5.3 Support vector machines
Support vectormachines (SVMs) [30] represent an impor-
tant technique for lesion classification inmedical imaging.
The key point of this technique is to determine a hyper-
plane H = av + b that separates the feature vectors
�vi, i = 1, . . . , n in their d dimensional domain in two
classes �vi ∈ {M,B}. First, let us assume that our data set
is linearly separable and that we can find a pair (�w, b) that
fulfills

�wT�vi + b ≥ +1�vi ∈ M
�wT�vi + b ≤ −1�vi ∈ B

(14)
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Furthermore, we want both inequalities to be sharp.
The best hyperplane is the one that maximizes the dis-
tance (margin) of the two parallel hyperplanes defined in
Equation 14. Since the distance of a hyperplane to the ori-
gin is b

‖�w‖ , we want to maximize 2
‖�w‖ . This leads to the

following constrained optimization problem: find (�w, b) so
that L(�w) = ‖�w‖

2 is minimally subject to the condition

f (�vi) =
{

1�vi ∈ M
−1�vi ∈ B

.

Of course, this only works if all the variables are lin-
early separable, which cannot be assumed. This problem
is solved by introducing positive slack variables θi, i =
1, . . . , n which leads us to a minimization of L(�w) = ‖�w‖

2 +
α

∑n
i=1 θi subject to

f (�vi) =
{

1if�wT�vi + b > 1 − θi

−1if�wT�vi + b < −1 + θi
.

An additional challenge appears if there is a non-
linear function that separates the variable since the com-
mon approach would fail under these circumstances.
Aizerman et al. refined this method using non-linear ker-
nel functions instead of the scalar product which maps
the variables onto another space. The optimal hyperplane
computed corresponds to a non-linear function in the
original feature space.

6 Results
In the following, we will explore the applicability of
the previously described motion compensation algorithm
under different motion compensation parameters and fea-
tures’ sets as well as different classification techniques.

Table 1 Numerical code of features

Numerical code Feature

1. Minkowski functionals (MF)

1.1 Volume

1.2 Surface

1.3 Curvature

1.4 Euler characteristic

2 Normed Minkowski functionals (independent of
tumor size)

2.1 Surface

2.2 Curvature

2.3 Euler characteristic

3 Krawtchoukmoments (Reduction to 28 dimensions)

3.1 Standard Krawtchouk moments

3.2 Radial Krawtchouk moments

4 Slope of RSIE (without motion compensation)

Table 2 Classifiers employed for lesion classification

Classifier Description

LDA Linear discriminant analysis

NLDA Naive Bayes linear discriminant analysis

QDA Quadratic discriminant analysis

NQDA Naive Bayes quadratic discriminant analysis

FLD Fisher’s linear discriminant analysis

PK SVM Classification with a polynomial kernel

RBF SVM Classification with a radial basis function

PUK SVM Classification with a Pearson VII universal function kernel

AUC Area under the ROC curve

The results will elucidate the applicability of motion com-
pensation as an artifact correction method and also the
descriptive power of several tumor features with and with-
out motion correction.

6.1 Experimental results
We analyze the effect of the computer-aided system based
on feature extraction and classification with and with-
out motion compensation with different parameter set-
tings and for several extracted features describing kinetics,
morphology, or both (Tables 1 and 2).
Table 3 shows the results for different classifiers and sin-

gle features when applied to tumor classification. Normed
Minkowski functionals (independent of tumor size) such
as the Euler characteristic achieve the highest AUC value
among all other features. Thus, the descriptive power of
this simple morphologic parameter is almost independent
of the classifier’s type. The regular Krawtchouk moment
scores higher than the radial invariant one, and we assume
that this occurs due to the re-discretization error and the
usage of only one Krawtchouk polynomial. The area under
the curve - representing the kinetic features - scored lower

Table 3 AUC for the classifiers applied to single features
from Table 1

LDA NLDA QDA NQDA FLD PK RBF PUK

1.1 0.74 0.74 0.72 0.72 0.79 0.78 0.78 0.77

1.2 0.75 0.75 0.72 0.72 0.78 0.75 0.75 0.72

1.3 0.75 0.75 0.76 0.76 0.75 0.79 0.79 0.78

1.4 0.78 0.78 0.80 0.80 0.82 0.80 0.80 0.80

2.1 0.70 0.70 0.70 0.70 0.75 0.72 0.72 0.69

2.2 0.78 0.78 0.81 0.81 0.82 0.82 0.82 0.79

2.3 0.85 0.85 0.87 0.87 0.84 0.85 0.85 0.84

3.1 0.82 0.78 0.78 0.75 0.66 0.82 0.54 0.90

3.2 0.64 0.64 0.58 0.57 0.58 0.66 0.54 0.61

4 0.76 0.76 0.75 0.75 0.73 0.75 0.77 0.76
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than some of the morphologic features, confirming that
non-mass enhancing lesions cannot be correctly captured
by kinetics only.

7 Discussion
Breast MRI reading is often impeded by motion artifacts
of different grades. Motion correction algorithms become
a necessary correction tool in order to improve the diag-
nostic value of these breast MR images. We applied a new
motion compensation algorithm based on the Horn and
Schunck method for motion correction and determined
the optimal parameters for lesion classification. At the
same time, we described the lesions based on morpho-
logic and kinetic features and determined the descriptive
power of single features. In addition, we developed and
tested a novel descriptor, the radial invariant Krawtchouk
moment. The highest AUC value was achieved for the
normed Euler characteristic showing that this topological
measure captures well the shape of the tumor. Different
classification techniques were applied to the classification
of the lesions.

8 Conclusions
A novel CAD system was proposed for the detection of
diagnostically challenging lesions. This system comprised
a novel motion compensation algorithm based on the
optical flow method, segmentation, morphological and
kinetic feature extraction, and classification as an evalu-
ation method for the extracted features from the lesions.
Three new morphologic features (Minkowski func-
tional, Krawtchouk moments, and invariant Krawtchouk
moments) for the discrimination of diagnostically chal-
lenging lesions have been proposed in this article and
compared with the standard enhancement kinetic fea-
tures. The simulation results have shown that morpho-
logic feature descriptors such as theMinkowski functional
appear to be more adequate than kinetic descriptors for
descriptors for diagnostically challenging lesions.
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