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Methods and
results

Applying a three-staged study design, we analysed more than 4100 DCM cases and 7600 controls. We identified and suc-
cessfully replicated multiple single nucleotide polymorphism on chromosome 6p21. In the combined analysis, the most
significant association signalwasobtained for rs9262636 (P ¼ 4.90 × 1029) located inHCG22, which could againbe repli-
cated in an independent cohort. Taking advantage of expression quantitative trait loci (eQTL) as molecular phenotypes,
we identified rs9262636 as an eQTL for several closely located genes encoding class I and class II major histocompatibility
complex heavy chain receptors.

Conclusion The present study reveals a novel genetic susceptibility locus that clearly underlines the role of genetically driven, inflam-
matory processes in the pathogenesis of idiopathic DCM.
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Keywords Dilated cardiomyopathy † DCM † Genome-wide association study

Introduction
Dilatedcardiomyopathy (DCM) is a severecardiovasculardisorderwith
an estimated prevalence of 37 in 100 000 people. It is the most frequent
cause of heart failure and cardiac transplantation in young adults and
accounts forup to30–40%of all heart failure cases as found in large ran-
domized trials.1 About one-third of all patients have a suspected familial
disease indicating a genetic basis of DCM.2,3 Linkage analyses and
consecutive candidate gene sequencing or recently next-generation
sequencing have facilitated the identification of monogenic causes of
DCM, making genetic testing for the early identification of disease car-
riers a clinical option.4–6 However, the genes identified so far still
explain only a small fraction of all cases. Furthermore, the genotype–
phenotype relationship in DCM is highly variable and even in a single
family carrying the very same mutation the clinical findings and disease
progression may vary markedly. Hence, the search for novel susceptibil-
ity mechanisms is a major challenge in DCM research.7

So far, only a few common variants associated with DCM have
been identified by candidate approaches. Recently, we identified a
600 kilobase (kb) large region in linkage disequilibrium on chromo-
some 5q31.2–3 that shows associations with dilated and ischaemic
cardiomyopathy.8 Cappola et al.9 described a candidate gene associ-
ation study based on single nucleotide polymorphism (SNP) geno-
typing in genes coding for proteins with a known cardiovascular
function. The authors identified an association between rs1739843
located in the Heat shock protein beta-7/CLNCNKA locus and DCM,
which was consequently supported by another candidate gene asso-
ciationstudyaswell as apooled screening approach for genome-wide
associations (GWA).10,11 The latter study furthermore identified a
genetic susceptibility locus on chromosome 10q26 within the
BCL2-associated athanogene 3 (BAG3) gene. BAG3 was subsequently
also found as monogenic cause of DCM.

Here we present the results from a three-stage case–control
GWA study conducted within the German National Genome Re-
search Network (NGFN), the German Center for Cardiovascular
Research (DZHK), the Competence Network Heart Failure
(CNHF), the German–French network INSIGHT DCM, and the
European DCM network INHERITANCE to further elucidate the
complex genetic basis of DCM. We found a close association of
genetic variants on chromosome 6p21 with DCM and show the as-
sociation of HLA-C gene expression with this locus. These findings in-
dicate a link between genetic variants, the susceptibility to idiopathic
DCM, and inflammatory disease mechanisms.

Materials and Methods

Ethics and study design
The study was conducted in accordance with the principles of the Dec-
laration of Helsinki. All participants of the study have given written
informed consent and the study was approved by the ethic committees
of the participating study centres.

The present study relied on a three-staged case–control design. Stage
1 (screening phase) included 909 genome-wide genotyped individuals of
Europeandescent withDCM recruited between2005–08and 2120con-
trols from the PopGen and KORA population-based cohorts. In a first
replication stage, SNPs on locus 6p21 were genotyped in 2597 DCM
cases from Germany and Italy recruited between 2007 and 2011 as
well as in 4867 controls from the population-based SHIP study (SHIP-0
and SHIP-TREND) and from Italy.12,13 In a second replication stage, the
lead SNP was replicated in a cohort of 637 DCM cases and 723 healthy
controls representing European Caucasians of French decent. Supple-
mentary material online, Table S1 gives the origin of cases and controls.

Patients and controls
Dilated cardiomyopathy wasdiagnosed according to the guidelines of the
World Health Organization.14 The inclusion criteria for DCM cases in
Stages 1 and 2 were at least moderately [left ventricular ejection fraction
(LVEF) , 45%] reduced left ventricular systolic function (assessed by
echocardiography or left ventricular angiography) in the absence of a
relevant coronary artery disease (CAD). In replication 2, we genotyped
a cohort of DCM patients from France, which had an at least moderately
to severely reduced LVEF (≤35%). Patients with valvular, hypertensive,
or congenital heart disease, history of myocarditis, or cardio-toxic
chemotherapy were excluded. Controls derived from KORA, PopGen,
SHIP, Italy, or France had no history of heart disease, such as valvular,
hypertensive, or congenital heart disease, myocarditis or cardio-toxic
chemotherapy, CAD, myocardial infarction, heart failure, or cardiomy-
opathies.

Genotyping
Please refer to Supplementary material online, Methods for details.

Statistical analysis
Case–control association tests were conducted using the PLINK soft-
ware package version 1.07 (http://pngu.mgh.harvard.edu/purcell/plink).
Associations were tested using logistic regression assuming an underlying
additive genetic model with 1 degree of freedom (df). For detailed infor-
mation on the statistical analysis please refer to the Supplementary
material online, Methods.
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Results

Screening for dilated
cardiomyopathy-associated loci
by a genome-wide association study
In the screening analysis (Stage 1), we investigated a German cohort
comprising909patientswith idiopathicDCMandapopulation-based
control group with 2120 individuals from the KORA and PopGen
consortia. The characteristics and origin of study samples can be
found in Table 1 and Supplementary material online, Table S1.

When assuming an additive model of inheritance adjusted for age
and sex, we identified six signals with P-values surpassing genome-
wide significance of P ¼ 1.7 × 1027 (rs9262636, rs9262635, rs926
2615, rs4947296, rs3130000 on chromosome 6, and rs10859313
on chromosome 12) (Figure 1; Table 2; refer to Supplementary
material online, Table S2 for unadjusted P-values). On chromosome
6, we find multiple, closely located SNPs in a 31 kb large region
with P-values ranging from 1025 down to 7.09 × 1029 (Figure 2A),
underlining a robust disease association for this locus. Since the
estimated inflation factor of the screening study was 1.18, we add-
itionally adjusted for potential population stratification using
genomic control (GC) (Supplementary material online, Figure S1A
and B). After correction, rs9262636 and rs9262635 on chromosome
6 still surpassed the Bonferroni corrected level of genome-wide
significance, showing odds ratios (ORs) of 1.48 [95% confidence inter-
val (CI): 1.29–1.68] after correction for GC or 1.41 (1.23–1.62) after
correction for the first 10 principal components, respectively.

In addition to the novel candidate loci for DCM, we confirmed
weaker associations with SNPs in the HSPB7 locus (rs1763610:
P ¼ 0.002 and rs4661346: P ¼ 0.024) and the CD14 locus
(rs2569193: P ¼ 0.049),8 which were previously identified as suscep-
tibility loci for heart failure due to DCM.

Replication of dilated
cardiomyopathy-associated SNPs
on chromosome 6p21
To further substantiate our findings fromthe screening stage, we sub-
sequently carriedout an independent replication study by genotyping
a large cohort of 2597 DCM patients and 4867 controls to validate

the observed association signals. We selected 12 SNPs based on
stringent quality criteria and significance of association for follow-up
genotyping (see the section Materials and methods). When applying
an additive genetic model of inheritance adjusted for age and sex,
2 out of 12 selected SNPs replicate the association observed in the
screening cohort (P , 0.05; see Table 2). In the combined analysis
of Stages 1 and 2, we find an association signal on the 6p21 locus
with a P-value of P ¼ 4.90 × 1029 for rs9262636 under an additive
penetrance model adjusted for age and sex (P ¼ 7.25 × 1028

adjusted for age, sex, and GC). When combining the screening and
replication stages using inverse variance weighting, we observe a
combined OR and a corresponding 95% CI of 1.195 (1.113–1.283)
for rs9262636.

Since the successfully replicatedSNPs resideall onchromosome 6,
we tested for an underlying DCM risk haplotype. As depicted in
Figure 2B, we observe that the haplotype GCGGG is significantly
associated with DCM in the screening stage (P ¼ 3.23 × 1027)
and shows a trend towards significance in the replication stage
(P ¼ 0.055). The estimated attributable risk for this haplotype is
3.3% based on the haplotype frequencies from pooled samples
of both stages of the study (attributable risk separated by stages:
screening: 7.0%, replication: 1.7%).

Next, we conducted an independent second replication in a
cohort of 637 cases and 723 controls from France by direct genotyp-
ing of the lead-SNP rs9262636. In an additive model adjusted for
gender and age, we find an OR of 1.22 (1.020–1.459; P ¼ 0.029).
Since one of the phenotypic criteria (LVEF) of this cohort was slightly
more stringent (≤35%) than for the screening and first replication
cohort (,45%), we did not include them in the combined analysis.

Associated single nucleotide
polymorphisms on chromosome 6p21
indicate the contribution of inflammatory
mechanisms in the pathogenesis of dilated
cardiomyopathy
The replicated SNPs on chromosome 6 (Figure 2A) are located within
the major histocompatibility complex (MHC) region 6p21.3,
�300 kb telomeric of the HLA-B locus. The genes MUC21 and
MUC22 are located upstream of our lead-SNP rs9262636. The two

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Study sample characteristics of the screening and replication cohorts

Cohort n Women (%) Age (years) LVEF (%)

Screening (Stage 1)

DCM: Germany (NGFN) 909 25.2 56.6+12.9 28.5+10.9

Controls: Germany (KORA and PopGen) 2120 49.7 57.4+14.1 n.a.

Replication (Stage 2)

DCM: Germany and Italy 2597 24 51.4+12.5 30.5+10.1

Controls: Germany (SHIP and SHIP-TREND) and Italy 4867 50 47.7+16.4 n.a.

Replication (Stage 3)

DCM: France 637 19.6 47.3+11.7 23.3+6.8

Controls: France 723 11.1 48.8+10.5 n.a.

LVEF, left ventricular ejection fraction.
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SNPs with the lowest P-values (rs9262635 and rs9262636) are
located directly within intron 2 of the predictably non-coding gene
‘HLA complex group 22′ (HCG22), while two additional SNPs
(rs4713429 and rs9262615) are located �2 kb upstream (Supple-
mentary material online, Figure S2).

To further elucidate the most likely candidates for DCM susceptibil-
ity, we next performed expression quantitative trait locus (eQTL)
analyses in986samples to investigate thegeneexpression levels asmo-
lecular or intermediate phenotypes.15 The transcriptomic data from
this cohort (SHIP-TREND) were generated using RNA prepared
from whole blood samples. Based on this cohort, we find a highly sig-
nificant association between our lead-SNP rs9262636 and HLA-C
mRNA levels (P ¼ 4.05 × 10247) (Figure 3) as well as associations
with additional transcripts (Table 3). Three out of the five most signifi-
cant associations (P , 1025) were found for genes besides HLA-C that
also encode heavy chain paralogues of the major histocompatibility
antigen complex, namely HLA-DRB5 (P ¼ 5.96 × 10213), HLA-DRB1
(P ¼ 1.22 × 10208), and HLA-DQB1 (P ¼ 1.52 × 10206). For HLA-C,
HLA-DRB5, and HLA-DQB1, mRNA levels decreased with each add-
itional minor G allele of rs9262636 (estimated b ¼ 20.47, 20.29,
and 20.12, respectively). In contrast, HLA-DRB1 transcript levels
increased per G allele (b ¼ 0.21) (Figure 3). The fifth gene, VARS2,
encodes a putative mitochondrial valyl-tRNA synthetase of unclear
physiological relevance within the context of heart disease. Among
the five most significant associations, the effect of rs9262636 on the
VARS2 transcript level was smallest (b ¼ 0.08).

Discussion
Genetic variants affect disease penetrance and modulate phenotypic
expression of many complex diseases. In the cardiovascular field, for

example, the prominent roleof common genetic variants was repeat-
edly demonstrated for CAD and its associated risk factors, such as
hypercholesterolaemia, arterial hypertension, or diabetes melli-
tus.16 –19 However, only few studies were reported so far on
genetic modifiers of DCM or other causes of systolic heart
failure.8,11 Here we report on a novel susceptibility locus identified
by a case–control GWA study for DCM relying on individual geno-
typing of study samples.

We identified and replicated SNPs surpassing genome-wide sig-
nificance that are located within the MHC region on chromosome
6. Early studies have linked this region harbouring several candidate
genes to psoriasis, which is an inflammatory skin disease.20– 23

Since common variants that affect the coding regions of proteins
account for only a minority of observed disease associations, the elu-
cidation of the genetic architecture of human disorders has recently
focused on variants residing in non-coding regions.24 Since the iden-
tified DCM risk SNP rs9262636 also resides within a non-coding
gene, we have performed here eQTL analyses to further prioritize
the most likely candidates for DCM susceptibility.15 eQTL studies
are a powerful tool to define regulatory elements that affect the
levels of gene expression, providing important insight into affected
biological pathways that might best explain the observed phenotypic
variation and susceptibility to complex diseases.24,25 As demon-
strated above, we identified a strong association between our
lead-SNP rs9262636 and gene-specific mRNA levels including
HLA-C and -D genes. These genes were in distances of 210 kb
(HLA-C), 1459 kb (HLA-DRB5), 131 kb (VARS2), 1520 (HLA-DRB1),
and 1600 kb (HLA-DQB1) to rs9262636. Therefore, it still remains
unclear whether the observed regulation involves only cis or also
trans regulatory effects, both potentially involving the non-protein
coding gene HCG22.

Figure 1 A manhattan plot of the genome-wide association study for dilated cardiomyopathy. Minus log10 P-values based on an additive genetic
model are shown for single nucleotide polymorphisms that passed the quality control criteria for the screening cohort. Probability values were based
on a logistic regression model, which also included age and sex. The red line indicates the genome-wide significance level of P ¼ 1.7 × 1027 and the
blue line indicates the suggestive significance level of P ¼ 1025.
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Table 2 Dilated cardiomyopathy-associated single nucleotide polymorphisms

SNP CHR Screening (Stage 1) Replication (Stage 2) Combined P

A1 F (aff) F (unaff) OR (95% CI) P GC-adj Bonf A1 F (aff) F (unaff) OR (95% CI) P

rs13428663* 2 G 0.1908 0.1382 1.45 (1.24–1.7) 3.40E206 1.93E205 0.9925 G 0.1571 0.1519 1.03 (0.92–1.16) 0.5972 2.86E205

rs933199* 6 G 0.09167 0.05737 1.75 (1.41–2.17) 3.32E207 2.67E206 0.09697 G 0.06537 0.06718 0.97 (0.82–1.15) 0.7353 3.96E206

rs3130000* 6 T 0.05639 0.09793 0.52 (0.41–0.66) 8.23E208 8.16E207 0.02406 T 0.08715 0.08288 1.07 (0.92–1.25) 0.3846 5.78E207

rs4713429 6 G 0.2475 0.19 1.43 (1.25–1.64) 2.79E207 2.30E206 0.08146 G 0.2352 0.221 1.08 (0.99–1.18) 0.0792 3.31E207

rs9262615 6 C 0.2629 0.1983 1.46 (1.28–1.67) 2.21E208 2.67E207 0.006469 C 0.2489 0.2353 1.07 (0.98–1.16) 0.1126 4.49E208

rs9262635 6 G 0.2704 0.2014 1.48 (1.29–1.68) 7.85E209 1.11E207 0.002296 G 0.2488 0.2327 1.09 (1–1.19) 0.0417 6.44E209

rs9262636 6 G 0.2704 0.2014 1.48 (1.29–1.68) 7.09E209 1.02E207 0.002072 G 0.2511 0.2341 1.1 (1.01–1.19) 0.0348 4.90E209

rs2523883/rs2517471 6 A 0.4481 0.3794 1.34 (1.19–1.51) 7.64E207 5.43E206 0.2233 G 0.4429 0.4237 1.05 (0.97–1.14) 0.2185 2.58E206

rs4947296 6 C 0.1134 0.07197 1.7 (1.4–2.06) 9.09E208 8.88E207 0.02658 C 0.08561 0.08241 1.07 (0.94–1.22) 0.3205 5.81E207

rs12552255* 9 G 0.176 0.1278 1.5 (1.28–1.76) 7.10E207 5.10E206 0.2075 G 0.1276 0.1402 0.9 (0.79–1.02) 0.1114 1.37E206

rs10904002* 10 A 0.08773 0.04793 1.81 (1.44–2.28) 4.11E207 3.21E206 0.1203 T 0.05284 0.05428 1.04 (0.86–1.26) 0.7095 —

rs10859313* 12 A 0.06107 0.1153 0.53 (0.43–0.67) 2.81E208 3.27E207 0.008213 A 0.1083 0.1101 0.93 (0.8–1.06) 0.2757 1.52E207

rs7192626* 16 T 0.07531 0.04107 1.84 (1.44–2.34) 9.13E207 6.33E206 0.2671 —

Given are P-values and ORs with 95% confidence intervals for SNPs found to be significantly associated with DCM applying an additive model adjusted for sex and age. Replication analysis was additionally adjusted for place of origin (Germany/Italy).
SNPs outside the locus 6p21 are marked by an asterisk and have been genotyped in a subset of 5700 samples within the replication stage. In the combined analysis, rs2523833 of screening stage was combined with rs2517471 of replication stage,
because no Taqman assay for rs2523833 was available (see the section Materials and methods). For rs10904002, P-values were not combined because of differing minor alleles.
Chr, chromosome; A1, minor allele; F (aff), allele frequency in affected samples; F (unaff), allele frequency in unaffected samples; OR, odds ratio; CI, confidence interval; P, P-value of association analysis; GC-adj, P-values adjusted by genomic control;
Bonf, P-values adjusted for multiple testing using the Bonferroni correction.

G
enom

e-w
ide

association
study

and
6p21

as
novelrisk

locus
P

age
5

o
f10

 at GSF-Forschungszentrum fuer Umwelt und Gesundheit GmbH - Zentralbibliothek on January 15, 2014 http://eurheartj.oxfordjournals.org/ Downloaded from 

http://eurheartj.oxfordjournals.org/
http://eurheartj.oxfordjournals.org/


Figure 2 A regional plot of associations on the 6p21 locus and haplotype analysis. (A) A regional association plot showing the association results
between genotyped single nucleotide polymorphisms (black dots), imputed single nucleotide polymorphisms (grey dots) and dilated cardiomyop-
athy based on the screening cohort. The plot displays minus log10 P-values from an additive logistic regression model adjusted for age and sex. Mul-
tiple imputation reliedon theCEU (Utah residents with ancestry fromnorthern and westernEurope)population in HapMap and on genotyped single
nucleotide polymorphisms around the strongest signal of association. Linkage disequilibrium blocks are calculated from the genotype data of the
screening cohort and open reading frames are given. (B) A linkage disequilibrium plot of seven single nucleotide polymorphisms located on chromo-
some 6p21 based on data from the screening stage showing a block of five single nucleotide polymorphisms in close linkage disequilibrium.
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The molecular pathways by which genetic variants in MHC heavy
chains may affect DCM and its progression remain elusive. The cell
membrane-bound MHC consists of the subclasses I– III. Class I

molecules, such as HLA-D and -C, play a central role in the
immune surveillance by presenting peptides to immune-competent
cells. In contrast to other class I genes, polymorphisms within

Figure 3 Boxplots of the expression quantitative trait loci probes. Boxplots of the five genes with expression quantitative trait loci P-values below
1 × 1025 via association of single nucleotide polymorphism rs9262636. The y-axis shows the residual log2 expression values per genotype (x-axis)
adjusted for sex, age, and the first 50 principal components obtained from principal component analysis over the expression values. The band in the
box denotes the median and the bottom and top of the box are the 25th and 75th percentiles, respectively, whereas thewhiskers extend them by the
1.5 interquartile range. The genotypes were estimated using the best guess genotype from allele dosage probabilities.
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HLA-C are infrequent and HLA-C expression on the cell membrane is
low. Hence, the functional role of HLA-C in inflammatory and auto-
immune disorders has been questioned for a long time. However, as
indicated above, the HLA-C locus has since then been implicated in
several inflammatory diseases and allo-reactivity processes, such as
psoriasis. Furthermore, HLA-C polymorphisms were recently asso-
ciated with the development of idiopathic inflammatory myop-
athies,26 a group of systemic autoimmune diseases characterized by
chronic inflammation of the skeletal muscle and consecutive
muscle weakness. Several studies also reported on HLA-C acting
as ligand for receptors expressed on T-cells and natural killer
cells.27 It mediates the immune response to several human-
pathogenic viruses, such as Epstein–Barr-, cytomegaly-, HI-, herpes
simplex type 2-, and hepatitis C virus. Thus, our novel findings indi-
cate a potential role of the human leukocyte antigen system, including
HLA-C, in the pathogenesis of idiopathic DCM and support the hy-
pothesis of genetically driven, inflammatory mechanisms in
DCM.8,28–30 This may involve alterations of autoimmunity as well
as immune competency against viruses, eventually promoting viral
persistence in the myocardium.31

As shown, we have successfully identified a novel risk locus for
idiopathic DCM on chromosome 6p21. By further increasing the
number of patients, one might identify additional loci in future
studies. Since DCM can be the endpoint of various cardiac disorders
including hypertensive or ischaemic heart disease, myocarditis, or
cardio-toxicity, it is pivotal to carefully phenotype patients recruited
for such studies, which may also explain that the overlap with previ-
ously identified DCM loci and our study is not complete. As such, we
found only weak associations with the HSPB7 and CD14 susceptibility
loci identified by others and us previously.8,10,11 It will also be inter-
esting to investigate the identified associations in cohorts of patients
and controls who had been genotyped for the currently knownDCM
diseases genes. However, this is still challenging due to the large
number of DCM genes and high costs of next-generation sequencing.

One potential limitation of the current study is the estimated
inflation factor in the screening stage of 1.18, for which we cor-
rected by using GC. For polygenic diseases such as DCM substan-
tial genomic inflation is expected independently from the presence
of population stratification, potentially interfering with the identifi-
cation of associations in these diseases.32 Additionally, although
the control subjects from the KORA and PopGen cohorts are
well established and widely used within the scientific community

and show little genetic differentiation along a north–south gradi-
ent within Germany,33 apparently part of the observed genomic
inflation in our study is driven by population differences
between these control cohorts. For instance, when PopGen
samples are removed from the screening stage, genomic inflation
is reduced to 1.13. Importantly no significant association of our
lead-SNP rs9262636 is present when calculating associations
between KORA controls and PopGen controls, which together
with two independent replication stages shows that the here iden-
tified signals are indeed due to true associations.

In the past decades larger evidence for inflammatory mechanisms
as important pathophysiological pathways in heart failure progres-
sion has emerged. However, a profound clinical benefit of anti-
inflammatory therapies for DCM, such as anti-TNFa, immunoglobu-
lin, or interferon application, could not be proved in larger rando-
mized trials. Hence, besides identification of novel inflammatory
targets a better understanding of underlying mechanisms and
improved patient selection is thought to be key for successful
future developments.34 Our study reveals a novel susceptibility
region for DCM and thus expands our knowledge of the genetic vari-
ance contributing to this complex disease. For the associated locus
on chromosome 6, we identified novel candidate genes that
support the involvement of autoimmunity and inflammatory pro-
cesses in DCM aetiology. While our findings are in good agreement
with previous studies relating polymorphisms in genes encoding
HLA-D antigens to DCM susceptibility,35 HLA-C and the mediation
of HLA-D gene transcription by the here identifiedDCMsusceptibility
locus represent intriguing novel pathophysiological insights. Since
HLA molecules are ubiquitously expressed, it might be speculated
that a distinct profile of these proteins on the leucocyte or cardio-
myocyte surface, defined by specific amounts of class I and class II
heavy chain paralogues of the MHC antigen complex, may be
mediated by the here identified genetic variants and thereby
modify individual susceptibility to DCM and response to anti-
inflammatory therapies. Similar to almost all GWA studies, additional
functional investigations are needed to fully understand the function-
al roles of the here identified genetic associations.

Supplementary material
Supplementary material is available at European Heart Journal online.
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Table 3 Identified expression quantitative trait loci of the lead-single nucleotide polymorphism rs9262636

Gene Accession no. Beta SE P-value Mean expression SD expression

HLA-C NM_002117.4 20.4665 0.0305 4.05 × 10247 7.9850 0.7147

HLA-DRB5 NM_002125.3 20.2852 0.0390 5.96 × 10213 7.4430 1.9762

VARS2 NM_020442.3 0.0751 0.0114 6.50 × 10211 7.5766 0.2860

HLA-DRB1 NM_002124.1 0.2131 0.0371 1.22 × 10208 7.9030 1.6823

HLA-DQB1 NM_002123.2 20.1234 0.0255 1.52 × 10206 7.2463 0.6312

eQTL associations of rs9262636 with P-values ,1 × 1025. The beta references to the increase or decrease of the expression value per minor G allele (forward strand) adjusted for
sex, age, and the first 50 principal components obtained from principal component analysis over the expression values. Associations showing a P-value below 1 × 1026, which
corresponds to a Bonferroni correction of all 48 802 tested expression probes, are significant. SE is the standard error of the beta. Mean and SD are the mean and the standard
deviation of the normalized log2 expression values of all individuals, respectively.
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