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Abstract

Background

Radiation-induced alterations in posttranslational histone modificaff®fisls) may affect
the cellular response to radiation damage in the DNA. If not texvexppropriately, altered
PTM patterns may cause long-term alterations in gene eigmaggulation and thus lead|to
cancer. It is therefore important to characterize radiation-imdalterations in PTM patterns
and the factors affecting them.

Methods

A lymphoblastoid cell line established from a normal donor was ussctéen for alterations
in methylation levels at H3K4, H3K9, H3K27, and H4K20, as well as ety at H3K9,
H3K56, H4K5, and H4K16, by quantitative Western Blot analysis at 1 inh and 24

after irradiation with 2 Gy and 10 Gy. The variability of altemas in acetylation marks was
in addition investigated in a panel of lymphoblastoid cell linek ditfering radiosensitivity
established from lung cancer patients.

-

Results

The screening procedure demonstrated consistent hypomethylatid#3kdme3 and
hypoacetylation at all acetylation marks tested. In the panéingbhoblastoid cell lines,
however, a high degree of inter-individual variability became appaRadiosensitive cel
lines showed more pronounced and longer lasting H4K16 hypoacetylatiorathiaresistar
lines, which correlates with higher levels of residuBl2AX foci after 24 h.

~ —

Conclusion

So far, the factors affecting extent and duration of radiation-indhistdne alterations afe
poorly defined. The present work hints at a high degree of inter-thdivivariability and :
potential correlation of DNA damage repair capacity and alterationENhl&vels

S
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Background

It is becoming increasingly evident that the cellular responsartsvDNA damage is
affected by the structure of the chromatin region surrounding tnagka site [29], while at
the same time the chromatin structure is affected by thagamesponse [42]. DNA double-
strand breaks (DSBs) elicit a response in an Mbp-large chromegion surrounding the
break that involves alterations in several post-translational maiiiics (PTMS).

Phosphorylation of histone variant H2AX at serine 139 (S139) to yiEIAAX is a hallmark

step in the cellular response to DSB. Th&i2AX chromatin domains, which can be



visualized as ionizing radiation induced foci (IRIF), delineateoregyivhere a large variety of
signalling and repair proteins accumulate [46].

Immunofluorescence detection of PTMs demonstrated alteratiomesénas modifications in
the y-H2AX domain following DSB induction that are associated with ra&goh of
chromatin accessibility, recruitment of DNA damage responserfacand regulation of
DNA metabolism and transcription [9]. In some instances, the Pllévatons can also be
detected on a more global, i.e. nucleus-wide, manner, e.g. by WBsberanalysis or by
analysis of pan-nuclear immunofluorescence staining. Tjeertds[é¥7] conducted in U20S
cells a screen for PTMs that alter both after 24 h incubatitn hydroxyurea (a drug that
inhibits replication by decreasing the production of desoxyribonuclejtidad 2 h
incubation with phleomycin (a drug that induces strand breaks). OnlysRAdt exhibited a
drastic intensity change in Western Blot-based analysis ezgr@dered further, thus raising
the possibility that DSB-specific PTMs or PTMs that exhibityoalsmall alteration were
neglected. We decided to conduct a screen to identify PTMs thaficgily alter in response
to irradiation. In our screen, we used an immortalized normal humarhbltastoid cell line
(LCL). Cells were irradiated with different doses (0 Gy, 2 B¥,Gy) and incubated for 15
min, 1 h and 24 h. Quantitative Western Blot analysis was pegtbim order to ascertain
detection of small alterations. We here report that histoneylagtin marks exhibit little
alteration, except for tri-methylation of H3K4 the levels of vahieere consistently reduced
after irradiation. All acetylation marks tested exhibited ather long-lasting, globally
detectable hypoacetylation after irradiation. Histone adeiplanarks were also investigated
in a panel of LCLs established from lung cancer patients, where we absemngh degree of
inter-individual variability. Long-term hypoacetylation of H4K16 wsisongest in cell lines
exhibiting increased radiosensitivity and enhanced levels of regid@MAX foci.

Materials and methods

Tissue culture and irradiation

Screening experiments were conducted with an Epstein-Barr(#&B))-immortalised LCL
of a healthy male donor (HuKo). The cells were cultivated in Rikdium in 75 crhflasks
(37°C, 5% CQ) supplemented with 10% FCS and 1% penicillin/streptomycin. Irradiation
with 2 Gy or 10 Gy was performed with*¥Cs-source (HMW-2000, Markdorf, Germany;
dose rate: 0.54 Gy/min) at room temperature. Further experiments were ednadlitictEBV-
immortalised LCLs established from young cancer patients of the L@y §LUng Cancer
in the Young, www.helmholtz-muenchen/epi/) that differ in radiosensitigis tested with
Trypan Blue and WST-1 assays (Gdurtler et al. 2010). Since the otanhea of cell lines
differs between Gurtler et al. 2010 and the present work, Tabislthie names and relative
radiosensitivity of the lines used. Line 4008, which was not describ#t iprevious study
by Gdrtler et al. 2010, exhibits survival characteristics conppata the sensitive line 36011
(data not shown). All investigations on these cell lines were approwyethe Ethics
Committee of Bavaria (Germany). An LCL established from taxi@ teleangiectasia patient
(Coriell Institute, NJ, USA: GM03189) and an LCL from the patient’s brotligr fnctional
ATM (Coriell Institute: GM03323) were used for comparison.

Table 1Cell lines from LUCY cohort and controls
Name in present work Name in Gurtler et al. 2010 Radiosensitivity status
ATM +/+ 2+ resistant




20037 3 resistant

4064 9 resistant
4008 n.d. sensitive
4028 14 sensitive
36011 6 sensitive
4060 17 sensitive
ATM —/- 1- sensitive

Preparation of protein extracts

Cells were incubated after irradiation for 15 min, 1 h or 24 h at 339%CCQ and then
collected by centrifugation (5 min, 800 rpm). After washing this ¢efice with ice cold PBS
the proteins were extracted with RIPA-buffer (150 mM NacCl, 1949, 10 mM MDOC,
0.1% SDS, 50 mM Tris pH 8.0) on ice. After denaturation for 10 mi®@tQa the DNA was
removed after one freeze-and-thaw cycle by centrifugation (90 sec, 15000 rpm).

Immunoblotting and quantitative Western analysis

The proteins were separated with Laemmli loading dye on 10% rdisNUPAGE-gels
(Invitrogen) or 12% TGX-Precast Gels (BioRad). After immunobloftimgmbranes were
cut in halves, blocked with Roti-Block (Roth) or milk (depending on the antifeee Table
2)) and incubated with primary antibodies in the indicated blocking snlb&fore detection
with appropriate secondary antibodies m-HRP and r-HRP (Santa 22204 and sc2005,
respectively). Blots were developed with Amersham ACL Advance (@&althcare).
Chemiluminescence was detected and images were acquired WGREMISMART
documentation system (Peglab, Vilber Lourmat) and the Chemi-Capt 5000arsof
Quantitative analysis was performed with the Bio-1D softvweier Lourmat). In order to
ascertain detection of small differences between samples weogsonly evaluated when in
all lanes to be compared directly equal amounts of protein extradtbeen loaded. This was
determined by equal intensity of the Tubulin alpha signals (&@. variation over all lanes
to be compared). The signals were normalized with respect tonih@adiated samples at
each time point and the Tubulin alpha signals. Data are fromaat B independent
experiments. Significance of deviation from controls was determined big1-tes

Table 2 Antibodies used in this study

Antibody Company  Order nr. Dilution Blocking solution
y-H2AX millipore 05-636 1:1000 Roti-Block
H3K4 unmodified millipore 05-1341 1:1000 Roti-Block
H3K4mel abcam ab8895 1:1000 Roti-Block
H3K4me2 abcam ab32356 1:1000 Roti-Block
H3K4me3 abcam ab12209 1:1000 Roti-Block
H3K9ac millipore 06-942 1:1000 Roti-Block
H3K9mel millipore 07-450 1:1000 Roti-Block
H3K9me2 millipore 04-768 1:1000 Roti-Block
H3K9me3 millipore 07-442 1:1000 Roti-Block
H3K27me3 millipore 07-449 1:4000 Roti-Block

H3K56ac millipore 07-677 1:1000 Roti-Block




H4K5ac upstate 06-759 1:1000 Roti-Block

H4K16ac millipore 07-329 1:4000 5% milk
H4K20mel millipore 07-1570 1:1000 Roti-Block
H4K20me2 millipore 07-367 1:1000 Roti-Block
H4K20me3 abcam ab9053 1:1000 Roti-Block

All antibodies were tested for specificity by peptide comjpetiassays, except for H3K56ac,
for which no competing peptide was commercially available. We cowudtlide, however,
that our antibody directed against H3K56ac recognizes H3K9ac, whgla lsimilar target
site (Drogaris et al. 2012). All the tested antibodies wereifspexcept for the antibodies
detecting the different H4K20 methylation levels, which exhibitethes cross-reactivity
against the different methylation states.

Quantitative analysis ofy-H2AX foci

DNA damage-induced phosphorylation of the histone H2AX variant wagzatbP4 h after
irradiation with 10 Gy gamma rays. Prior to fixation, cells wayan onto slides for 5 min at
500 rpm using a Cytospin centrifuge. Cells were fixed in 2% PBA/ for 15 min,
permeabilised in 0.25% Triton X-100/PBS for 5 min, washed three tiones iinin each in
PBS and blocked with 1% BSA/PBS three times for 10 min eadls. Were covered with 75
ul of the primary antibody (anti-phospho-Histone H2A.X(Serl139), #05-636, Mid)por
diluted 1:200 in 1% BSA/PBS and incubated in a humid chamber at 4°C o¥er After
washing with PBS (5 min), 0,25% Triton/PBS (10 min), PBS (5 min) anBS&4PBS (7
min), cells were incubated with 1B of the secondary antibody (Alexa Fluor 555 goat anti
mouse; A-21422, Life Technologies) diluted 1:1000 in 1% BSA/PBS for 45 miftG
Again, cells were washed in 0.25% Triton/PBS two times for 5 mehia PBS two times for
10 min. For counterstaining, cells were incubated with Hoechst-333424S\girich) for 2
min and washed in PBS two times. Prior to microscopic analydls,were covered with 16
ul Vectashield (Vector Laboratories) and sealed with a coperslor foci analysis, an
automated scanning and analysis system (Axioplan 2; Carl Zmss; Metafer4,
MetaSystems) was used [2].

Results and discussion

We screened for alterations in histone modifications detectgbWdstern Blot analysis of
nuclear extracts from a normal LCL (HuKo) after irradiatwith two different doses (2 Gy,
10 Gy) and post-irradiation incubation for three different time perf{@8smin, 1 h, 24 h).
The amount of several of the PTMs tested is known to locally alitdin the y-H2AX
domain in response to irradiation. Estimating conservatively that 1®fGyirradiation
induce about 400 DSB, each resulting mnld2AX domain of about 2 Mbp [33], a complete
loss of a given PTM within these domains would result in a reducfidheototal nuclear
signal by about 13% (assuming homogeneous distribution of the PTM withie x 18 bp
of the genome). We assume that alterations detectable af&y dfay be explained by local
events, although more global events cannot be excluded. Alterationsabietesdter 2 Gy,
however, most probably involve some global response reactions.

H4K20 methylation is involved in chromatin compaction and DNA damegjgonse (recent
review by [21]). While H4K20me3 is a marker for silenced heteamulatin, H4K20me2
(which is present on 80% of all chromatin-bound H4 molecules in prolifgraells) and



H4K20mel are broadly distributed. H4K20mel and H4K20me2 play importantimalles

DNA damage response as binding sites for 53BP1 [4,16,18,34,43,52]. Nevertheless, bul
levels of H4K20mel and H4K20me2, as well as H4K20me3, appear to bestapblke after
damage induction [4,11,18,19], although others reported increased mono- and dtioathy
[51]. In our study, no significant alterations were detectablehe rtuclear amount of
H4K20mel, H4K20me2 or H4K20me3 (Figure 1).

Figure 1 Levels of H4K20mel, H4K20me2 and H4K20me3 in extracts of HuKo LCLs
after irradiation with 0 Gy, 2 Gy and 10 Gy and incubation for 15 min, 1 h and 24 hA)
representative Western Blot, Tubulin alpha served as loading cdit@Lantitative
evaluation, each normalized to unirradiated controls. Indicated are mean and standaifd e
the mean from 2—-3 independent experiments and 1-2 blots per experiment.

H3K9 methylation is involved in transcriptional silencing, formationheterochromatin
regions and DNA methylation. Although H3K9me3 has been implicatdteiDNA damage
response as a binding site for the histone acetyltransfer&g0 T#4], in many studies
alterations in the amount of H3K9me3 or H3K9me2 could not be detectdtemeithin the
vy-H2AX domain nor on a global level ([1,11,26,30,39,44], [54]). Others, however, observed a
transient reduction in nuclear H3K9me3 and H3K9me2 immunofluoressatals within
the first 45 min after irradiation with 2 Gy [53]. Our observations HBK9me3 are
compatible with a transient reduction, although statistical fetgnice was only obtained for
the sample irradiated with 2 Gy and incubated for 1 h (Figuref2)ot@, the same antibody
was used in our study and the work by Young et al. [53] to def@€®me3. We could not
confirm a reduction in the amount of H3K9me2, however. In addition, we didbsatrve
significant alterations in the amount of H3K9me1l (Figure 2).

Figure 2 Levels of H3K9me1l, H3K9me2 and H3K9me3 in extracts of HuKo LCLs after
irradiation with 0 Gy, 2 Gy and 10 Gy and incubation for 15 min, 1 h and 24 hA)
representative Western Blot, Tubulin alpha served as loading cdit@Lantitative
evaluation, each normalized to unirradiated controls. Indicated are mean and standaifd e
the mean from 2-3 independent experiments and 1-3 blots per experiment. ** statistically
significant with 0.005 > > 0.0005

H3K27me3 is a histone modification associated with gene silen@ngolycomb repressive
complex 2 (PRC2) (reviewed by [41]). Recruitment of memberthe@fPRC2 complex and
accumulation of H3K27me3 has been shown at DNA damage sites inducémbdry
irradiation or ionizing irradiation [5,39]. However, there is no evidesfoglobal alterations
in H3K27me3 levels after irradiation (Figure 3).

Figure 3 Levels of H3K27me3 in extracts of HuKo LCLs after irradiation with 0 Gy, 2
Gy and 10 Gy and incubation for 15 min, 1 h and 24 i) representative Western Blot,
Tubulin alpha served as loading contB®).Quantitative evaluation, each normalized to
unirradiated controls. Indicated are mean and standard error of the mean from 2-3
independent experiments and 1-2 blots per experiment.

Methylation at H3K4 is associated with transcriptionallyivactregions, with H3K4me3
preferentially found in 5 upstream regions of genes. Recently we demonstrated by
immunofluorescence analysis a loss of H3K4me3 and H3K4me2 signal$2AX domains,
which started within minutes after damage infliction by iraéidn and increased over time
[39]. In addition to local loss of H3K4me3, we also detected a gleldaiction of H3K4me3



levels by Western blot analysis in HelLa cells [39]. In thegrew/ork, a robust reduction of
H3K4me3 levels was found in LCL cells under various dose and incubatoa ti
combinations (Figure 4), thus corroborating our earlier observatiglmmo- and di-
methylated H3K4 did not exhibit significant alterations inpmesse to irradiation, while
analysis of unmethylated H3K4 gave inconclusive results: aftediation with 10 Gy, a
transient decrease was evident after 15 min, followed by aeaserafter 24 h (Figure 4).
Whether this pattern is causally related to the loss of H3K4me3 remains toibdatehiic

Figure 4 Levels of unmodified H3K4, H3K4me1l, H3K4me2 and H3K4me3 in extracts of
HuKo LCLs after irradiation with 0 Gy, 2 Gy and 10 Gy and incubation for 15 min, 1 h

and 24 h.A) representative Western Blot, Tubulin alpha served as loading control. B)
Quantitative evaluation, each normalized to unirradiated controls. Indicate@ aneamd

standard error of the mean from 2—3 independent experiments and 1-3 blots per experiment.
** gtatistically significant with 0.005 = > 0.0005, *** statistically significant with 0.0005 >

a > 0.00005,

Histone acetylation is generally assumed to contribute to chrooimng. A classic view
on DNA damage response assumes that enhancement of adtessibdamage sites is
necessary to warrant efficient recruitment of DNA damageorese and repair proteins, and
that histone acetylation, especially at the N-terminal tal4f plays a fundamental role in
conferring enhanced accessibility (e.g., [7,20,24,28], Xu et al. 2010; relieyw¢50]. A
more detailed analysis of histone acetylation patterns followiNg\ @amage induction
revealed, however, that the processes are more complex. H4K16ageischaracterized
modification that was experimentally shown to disrupt chromatin congpa in vitro
[32,38]. A biphasic regulation of H4K16ac was observed at DSB siit#s,awapid loss of
acetylated H4K16 that later is followed by an increase inyktien levels [19,27,45]. Since
H4K16 acetylation diminishes 53BP1 binding to H4K20me2, rapid loss of #igl aroup
after DSB induction promotes 53BP1 accumulation at the break site [1DA54 global
level, a similar biphasic dynamics was reported by Hsiab Mizzen [19] after Bleocin
treatment, while others find an increase of H4K16ac levels &jlre@ry shortly after
irradiation [15,25]. In our study, we observe comparable reductions of H4KéGals at all
time points and doses tested (Figure 5), albeit statistigaificance was only obtained for
samples irradiated with 2 Gy and incubated for 15 min and 24 h.

Figure 5 Levels of H4K16ac, H4K5ac, H3K56ac and H3K9ac in extracts of HuKo LCLs
after irradiation with 0 Gy, 2 Gy and 10 Gy and incubation for 15 min, 1 h and 24 hA)
representative Western Blot, Tubulin alpha served as loading cdit@Lantitative
evaluation, each normalized to unirradiated controls. Indicated are mean and standaifd e
the mean from 2-3 independent experiments and 1-2 blots per experiment. * statistically
significant with 0.05 > > 0.005, ** statistically significant with 0.005¢> 0.0005, ***
statistically significant with 0.0005 &> 0.00005.

Globally detectable rapid deacetylation may occur on severairhifial lysines of H4 [19].
We tested H4K5ac and observe a reduction in the level of this madvetal time points
after irradiation, up to 24 h (Figure 5). Similar patterns wererves with H3K56ac (Figure
5), a modification the biological function of which in mammaliadscisl still largely unclear.
Conflicting data were reported on global H3K56ac alterations aftirction of different
damage types [3,6,22,27,47] and a detailed analysis of global H3K56anpaktpending
on radiation dose and postirradiation incubation had been lacking hitAertceconcile
conflicting data on whether H3K56ac levels decrease or irereag—H2AX-decorated



chromatin regions ([6,27], [49], [48]), a model assuming a biphasicpatith rapid loss of
H3K56ac and subsequent restoration or even overshooting accumulation was proposed,
similar to the situation with H4K16ac [3,27]. However, our observations 4K1Bac,
H4K5ac, and H3K56ac hint at a long-term reduction in the nuclear amoultitesé
modifications by up to 20-30%, similar after 2 Gy and 10 Gy. Sin@®arding to our earlier
estimation, alterations that take place exclusively inytiid2AX domain are expected to
affect genomic levels by a few percent at most, these obeawvauggest that not only the
immediate vicinity of the DSB sites is concerned.

Another histone acetylation implicated in the DNA damage respsrnid8K9ac. In addition
to a local loss ifH2AX-decorated radiation-induced foci [40], decreased global levieds af
treatment with various genotoxic agents were reported [37,47]. Ouhidétat a rapid and
transient decrease in H3K9ac levels, the extent of which apjebeslower than observed
for the other acetylation sites tested (Figure 5).

To further elucidate the reason for the high preponderance ofiatimgfl reports on
alterations in histone PTM patterns after DSB induction, and to ndieierwhether the
observed differences may be associated with different radiasgpsiwe expanded our
analysis to a panel of LCL lines established from young lungecaatients (LUCY cohort;
[35]). In prior work radiation sensitivity of these LCLs wasabished using viability assays
(Gdartler et al. 2010). We consider the lines 20037 and 4064 as relategdyant, with
viability levels similar to the ATM-proficient cell line G88323, which was included as a
control. In contrast, the sensitive lines 4008, 4028, 36011, and 4060 exhibit survelsl le
comparable to the ATM-deficient cell line GM03189. As comparedth¢orésistant lines, all
sensitive lines exhibit higher levels of residygaH2AX foci at 24 h after irradiation with 10
Gy, hinting at compromised DSB repair in these lines (Table 8)inlkkestigated H3K56ac,
H4K5ac and H4K16ac in these cells lines as these PTMs yieddeer robust alterations in
the screen with HuKo LCLs. Histone acetylation levels weresinyated 1 h and 24 h after
irradiation with 10 Gy (Figure 6). We note a prominent intervitllial variability of quality
and quantity of alterations in the acetyl marks tested, whichnergeseems not to be related
to radiation sensitivity, with the exception of residual H4K16 hypgéatain at 24 h after
irradiation. In all four sensitive cell lines established frongleancer patients, the extent of
hypoacetylation at H4K16 was stronger than in any of the rasilstaat lines. With
reductions in the range of 20-30%, it is possible that hypoacetylatrofves not only the-
H2AX domains, but additional genomic regions. Further experiments eessay to clarify
this question.

Table 3Residualy-H2AX foci 24 h after y-irradiation with 10 Gy

Cell line Residualy-H2AX foci (compared to unirradiated control)
ATM + 119% + 5%

20037 101% + 5%

4064 99% + 8%

4008 172% £ 4%

4028 169% + 9%

36011 167% + 9%

4060 177% £ 11%

ATM - 141% + 4%

Shown the mean and standard deviation of two independent experiments.



Figure 6 Levels of histone modifications H3K56ac, H4K5ac and H4K16ac after

irradiation with 10 Gy and incubation for 1 h and 24 h in extracts from radioresstant
LUCY LCLs 20037 and 4064, radiosensitive LUCY LCLS 4008, 40028, 36011, and 4060,
as well as LCLs from ATM proficient and ATM deficient individuals. Data from HuKo
LCLs are shown for comparison. Indicated are means and standard errors ofrtieomea
independent experiments and 2—8 blots per data point. * statistically significarttQbt>a

> 0.005, ** statistically significant with 0.005¢> 0.0005, *** statistically significant with
0.0005 >0 > 0.00005.

While our sample size is too small to allow final conclusions,oaetation between
prolonged H4K16 hypoacetylation and radiosensitivity or reduced DSBr repald be
intriguing. It is possible that reduced repair retards re-estedént of chromatin structure,
therefore protracting hypoacetylation. On the other hand, it iscalsceivable that reduced
repair is causally linked to prolonged hypoacetylation of H4K16entework showed that
hypoacetylation at H4K16 results in enhanced binding of 53BP1 and thuesecebinding of
Brcal. The presence of 53BP1 blocks resection and thus facilit&Bsré&pair via non-
homologous end joining, while the presence of Brcal would promageti@as and repair via
homologous recombination [19,27,45]. The outcome of prolonged H4K16 hypoacetylation
thus may resemble the phenotype of Brcal deficiency or TIP&fledefy, i.e. reduced repair
via homologous recombination, more aberration formation, and increased sensitidifgRo P
inhibitors [19,27,45]. Others have proposed that H4K16 hypoacetylation leadgemoeral
reduction of DSB repair [23,31,36]. In addition, H4K16 hypoacetylation may I®
transcriptional deregulation [10,17] and thus affect radiosensitivity.ll84i§/poacetylation
has been implicated as a hallmark of cancer [8]. Both class Icks$ Il histone
deacetylases (HDACSs) can deacetylate H4K16ac [12]. InhibitoD#C are increasingly
considered as cancer therapeuticals that have a potential to madimegumour cells [13].
Our observations suggest, however, that in some situations the inhibitidtdk16
hypoacetylation may render cells more resistant towardsftbetsor irradiation. Clearly,
more research is needed to clarify the relation between madiatisponse and histone
hypoacetylation.

Conclusions

By screening a variety of histone PTMs for radiation-induceztatibns in a normal human
LCL, we observed little variation in histone methylation marksepkéor tri-methylation of
H3K4 the levels of which were reduced after irradiation. In estitrconsistent alterations in
all acetylation marks tested suggest a rather long-lasting, laleéctable hypoacetylation.
In a panel of LCLs established from lung cancer patients, we @usenowever, a high
degree of variability with regard to radiation-induced alterationkistone acetylation. Of
special interest, long-term hypoacetylation of H4K16 was strongestll lines exhibiting
increased radiosensitivity and enhanced levels of residt#lAX foci. This observation
may have implications for the use of HDAC inhibitors in radiation oncology.

Abbreviations

BSA, Bovine serum albumin; DSB, Double-strand break; EBS, Epsein-Barr-\Riks;
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young; PBS, Phosphate-buffered saline; PRC2, Polycomb repressive complex, 2 ¢35tV
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