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SUMMARY 2012; Visel et al., 2009b; Blow et al., 2010; Lindblad-Toh et al.,

2011). However, intra- and cross-species differences in gene
Genome-wide association studies have revealed
numerous risk loci associated with diverse diseases.
However, identification of disease-causing variants
within association loci remains a major challenge.
Divergence in gene expression due to cis-regulatory
variants in noncoding regions is central to disease
susceptibility. We show that integrative computa-
tional analysis of phylogenetic conservation with a
complexity assessment of co-occurring transcrip-
tion factor binding sites (TFBS) can identify cis-regu-
latory variants and elucidate their mechanistic role in
disease. Analysis of established type 2 diabetes risk
loci revealed a striking clustering of distinct homeo-
box TFBS. We identified the PRRX1 homeobox fac-
tor as a repressor of PPARG2 expression in adipose
cells and demonstrate its adverse effect on lipid
metabolism and systemic insulin sensitivity, depen-
dent on the rs4684847 risk allele that triggers
PRRX1 binding. Thus, cross-species conservation
analysis at the level of co-occurring TFBS provides
a valuable contribution to the translation of genetic
association signals to disease-related molecular
mechanisms.

INTRODUCTION

Recent advances in genome-wide association studies (GWAS)

have yielded a plethora of loci associated with diverse human

diseases and traits (Hindorff et al., 2009). However, signals

emerging from GWAS, which involve typically dozens of variants

in linkage disequilibrium (LD), have rarely been traced to the dis-

ease-causing variants and even more rarely to the mechanisms

by which they may increase disease risk (Califano et al., 2012).

The majority of common genetic variants are located in noncod-

ing regions (1000 Genomes Project Consortium et al., 2012), and

disease-associated loci are enriched for expression quantitative

trait loci (eQTLs) (Nica et al., 2010), DNase I hypersensitive

sites sequencing (DHSseq) peaks, and chromatin immunopre-

cipitation sequencing (ChIP-seq) peaks (Maurano et al., 2012;

ENCODE Project Consortium et al., 2012), suggesting that

variants modulating gene regulation are major contributors to

common disease risk.

Experimental DHS, RNA, and ChIP-seq approaches have

been used to prioritize candidate cis-regulatory variants (Maur-

ano et al., 2012; ENCODE Project Consortium et al., 2012;

Ward and Kellis, 2012b). However, such functional approaches

require access to appropriate human tissues and are further

hampered by the spatial, temporal, environmental, and epige-

netic complexity of gene regulation. These limitations emphasize

the need for bioinformatics approaches that reliably assess the

regulatory role of noncoding variants. So far, phylogenetic con-

servation has been a common denominator in the search for

noncoding regulatory regions (Waterston et al., 2002; Pennac-

chio et al., 2006; ENCODE Project Consortium et al., 2007,
344 Cell 156, 343–358, January 16, 2014 ª2014 Elsevier Inc.
expression are often driven by changes in transcription factor

binding sites (TFBS), and their rapid evolutionary turnover results

in lineage-specific regulatory regions that are functionally

conserved but have low phylogenetic conservation (Ward and

Kellis, 2012a), thus challenging the use of these algorithms.

Importantly, gene regulatory regions in eukaryotes tend to be

organized in cis-regulatory modules (CRMs), comprising com-

plex patterns of co-occurring TFBS for combinatorial binding

of transcription factors (TFs) (Arnone and Davidson, 1997; Pen-

nacchio et al., 2006; Visel et al., 2013). CRMs integrate upstream

signals to regulate expression of coordinated gene sets, making

them a prime target to achieve phenotypic changes as a result of

adaptive evolution (Junion et al., 2012). Despite the critical

importance of CRMs, no algorithms have so far been developed

to harness the potential power of conserved TFBS patterns

within CRMs to predict regulatory variants in disease genetics.

We show that cross-species conservation at the level of the

CRMs—rather than at the level of the regulatory sequence that

comprises them—identifies cis-regulatory variants within dis-

ease-associated GWAS loci. Exploiting phylogenetic conserva-

tion of TFBS co-occurrences, we found homeobox TFBS as a

cis-regulatory feature of type 2 diabetes (T2D) risk loci, for which

the specific causal variants have rarely been pinpointed (Stitzel

et al., 2010). Detailed analysis at the PPARG risk locus revealed

the rs4684847 risk allele and, by changing binding of the homeo-

box TF PRRX1, its genotype-dependent effect on PPARG2

expression and insulin sensitivity.

RESULTS

Cross-Species Analysis of TFBS Modularity Discovers
cis-Regulatory SNPs at T2D Risk Loci
We developed a method, phylogenetic module complexity anal-

ysis (PMCA), which leverages conserved co-occurring TFBS

patterns within CRMs to predict cis-regulatory variants, i.e.,

variants affecting gene expression (Figure 1A; Extended Experi-

mental Procedures available online). To systematically identify

cis-regulatory variants at GWAS risk loci, we extracted GWAS

tagSNPs and consequently all noncoding (nc) SNPs that are in

high LD with these tagSNPs. PMCA individually tests each nc

variant by analyzing the flanking region for cross-species

conserved TFBS patterns, regardless of global sequence con-

servation. This requires first the extraction of the region sur-

rounding an nc SNP (±60 bp) from the human genome and

consequent identification of orthologous regions in 15 vertebrate

species. Within each SNP-specific set of orthologous regions,

phylogenetically conserved TFBS, TFBS modules (a cross-spe-

cies conserved pattern of two or more TFBS occurring in the

same order and in a certain distance range), and TFBS in those

TFBS modules were identified and then counted. SNP-flanking

regions with a significant enrichment of phylogenetically

conserved TFBS modules are classified as complex regions,

as compared to noncomplex regions (example in Figure 1B)

wherein the occurrence of TFBS modules does not exceed

expectation by chance. To compute this enrichment we estimate

background probabilities using randomizations of orthologous



sets (details on scoring cut-offs in Extended Experimental

Procedures).

We applied PMCA to a set of eight GWAS T2D risk loci

(MTNR1B, TCF7L2, PPARG, CENTD2, FTO, GCK, CAMK1D,

and KLF14) (Dupuis et al., 2010; Voight et al., 2010) covering

strong and weaker GWAS signals and reflecting the different

T2D features, i.e., insulin resistance and impaired insulin secre-

tion (Doria et al., 2008). Using noncoding sequence data, we

defined 200 SNPs in LD with the tagSNPs (r2 R 0.7, 1000

Genomes) (1000 Genomes Project Consortium et al., 2012) (Fig-

ure S1A). PMCA predicted 64 complex and 136 noncomplex re-

gions (Figures 1C–1G; Table S1). We ranked complex regions

based on the count of TFBS in conserved TFBS modules (Table

S2) and examined the allele-dependent cis-regulatory potential

of the 25% highest scoring SNPs using in vitro electrophoretic

mobility shift assay (EMSA) and reporter assays. As predicted,

SNPs in complex regions significantly differed in allele-depen-

dent cis-regulatory activity compared to noncomplex regions

(Figures 1H and 1I; Table S3). Indeed, the regulatory variants re-

vealed effects ranging from 3.1- to 101-fold change in DNA-pro-

tein binding and 1.3- to 3.5-fold change in reporter activity.

Moreover, the identified variants operated in a cell type-specific

manner (Figure S1B).

To examine if the identified cis-regulatory variants in complex

regions associate with T2D in vivo, we performed look-ups in the

MAGIC and DIAGRAM cohorts (Dupuis et al., 2010; Voight et al.,

2010). The variants in complex regions revealed a similar or

stronger association compared to the initial GWAS signal (Table

S4), and a look-up in a recent fine-mapping study (Maller et al.,

2012) confirmed that our cis-regulatory SNPs belong to the

predicted T2D-disease SNP set. GWAS signals are enriched

for regulatory variants (Nica et al., 2010). Comparing random

SNPs from the 1000 Genomes Project (1000 Genomes Project

Consortium et al., 2012) to a limited representation of GWAS sig-

nals for 19 human diseases (Hindorff et al., 2009) (Table S5A), we

found a 1.12-fold overall enrichment of SNPs in complex regions

(p = 1.9 3 10�4, binomial distribution) (Table S5B and S5C),

reflecting disease-conferring and low effect cis-regulatory

variants. Finally, we applied PMCA on reported cis-regulatory

SNPs associated with diverse disease-related traits, including

cancer, myocardial infarction, thyroid hormone resistance, hy-

percholesterolemia, and adiponectin levels (MYC, Pomerantz

et al., 2009; MDM2, Post et al., 2010; PSMA6, Ozaki et al.,

2006; THRB, Alberobello et al., 2011; SORT1, Musunuru et al.,

2010; APM2, Laumen et al., 2009). Consistent with the reported

functional proof, our analysis informed on all but one of the cis-

regulatory SNPs (Table S6). The highest scores inferred from

PMCA predicted the myocardial infarction risk variant shown

to regulate hepatic SORT1 expression (Musunuru et al., 2010).

Together, these results demonstrate the utility of cross-species

TFBS modularity information within CRMs to elucidate function-

ality of GWAS signals in the noncoding genome.

Functional Conservation beyond Sequence
Conservation
Given that TFBS turnover is characteristic of CRM evolution

(Blow et al., 2010;Ward and Kellis, 2012a), the utility of sequence

conservation in deciphering cis-regulatory variants may be
limited. To assess the power of harnessing TFBS patterns

beyond sequence conservation, allowing for sequence vari-

ability, we tested complex and noncomplex regions for correla-

tions with evolutionary constrained elements detected by the

SiPhy-p-method (Lindblad-Toh et al., 2011). For this analysis,

we extended our initial PMCA analysis of eight T2D loci to a

set of 47 T2D risk loci comprising all GWAS-reported autosomal

variants (Hindorff et al., 2009) including 487 complex and 978

noncomplex regions (Figure S2; Table S7). Noncomplex regions

were depleted of constrained elements in their close proximity

(Figure 2A). Conversely, complex regions were enriched for

nearby constrained elements, consistent with a 1.37-fold enrich-

ment of GWAS SNPs relative to HapMap SNPs (Lindblad-Toh

et al., 2011). Although complex regions overlapped 1.88-fold

more with constrained elements than noncomplex regions (p =

2.4 3 10�9, hypergeometric distribution, right sided), strikingly

the majority of complex regions lacked an overlap with con-

strained elements (Figure 2B; Table S8). This lack of overlap

was true for all variants that we experimentally characterized

as cis-regulatory (example in Figure 2C). In essence, considering

sequence conservation helps to prioritize genomic regions that

harbor potential causal variants, yet seems insufficient to

pinpoint them. This underscores the importance of exploiting

conservation in terms of a complexity assessment of co-

occurring TFBS, in the search for cis-regulatory variants involved

in human diseases.

To further support PMCA predictions at T2D risk loci, we

merged our analysis with functional genomics data from The

ENCODE Project Consortium (2011) (chromatin state and TF

binding). We found complex regions highly enriched for both

DHSseq peaks (p = 3.52 3 10�10) (Figure 2D) and ChIP-seq

peaks (p = 4.68 3 10�6) (Figure 2E; Table S9). Additionally,

crossing our regulatory predictions for T2D risk SNPs with Reg-

ulomeDB, a data repository of multiple types of functional

ENCODE data (Schaub et al., 2012), confirmed that complex

regions are significantly enriched for functional annotations (p =

33 10�24, hypergeometric distribution, right-sided) (Table S10).

Clustering of Distinct Homeobox TFBS Is a Specific
Feature of T2D-Related Complex Regions
TFBS clustering relative to transcription start sites indicates bio-

logical significance (FitzGerald et al., 2004), and TFBS combina-

tion coupled with the TFs recruited to a CRM determines CRM

function (Zinzen et al., 2009). Thus, we sought evidence for a

discerning T2D functional feature by exploring TFBS character-

istics in evolutionary conserved complex regions at T2D risk

loci. Given a SNP genomic region we used positional bias anal-

ysis, scanning 1,000 bp with the SNP at midposition for the

occurrence of putative TF binding sequences (883 TFBS

matrices grouped in 192 TFBS matrix families) (Table S11). First,

for the set of eight T2D risk loci selected for in-depth analysis

above, we observed a significant positional bias for distinct

TFBS families (�log10(p) > 6) exactly at SNP positions of com-

plex contrary to noncomplex regions (Figure 3A). This striking

SNP-directed overrepresentation in T2D complex regions was

restricted to specific TFBS in the homeobox superfamily,

including the matrix families CART (�log10(p) = 6.52) and

PDX1 (�log10(p) = 6.18) (Table S12A). To test whether these
Cell 156, 343–358, January 16, 2014 ª2014 Elsevier Inc. 345
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findings could be retrieved in a larger set of T2D-associated var-

iants, we extended TFBS clustering analysis to the set of 47

GWAS T2D risk loci (Hindorff et al., 2009). Indeed, this compre-

hensive analysis reproduced colocalization of T2D risk SNPs

exclusively with homeobox TFBS matrices in complex regions

as opposed to noncomplex regions (Figure 3B; Table S12B).

We again found specific clustering of the CART (�log10(p) =

13.00) and PDX1 families (�log10(p) = 6.78) together with the

homeobox matrix families NKX6 (�log10(p) = 8.50), HOMF

(�log10(p) = 8.94), HBOX (�log10(p) = 8.54), and BCDF

(�log10(p) = 7.24). No other TFBS matrices showed a significant

peak in the bias profile at SNP positions. Importantly, when

applying PMCA on risk loci of T2D nonrelated traits, asthma,

and Crohn’s disease (Moffatt et al., 2010; Schaub et al., 2012)

(Figures S3B and S3C; Table S13), we observed disease-distinc-

tive TFBS at SNP positions (Table S12C and S12D). Both com-

plex and noncomplex regions lacked a clustering of homeobox

TFBS at asthma risk SNPs (Figure 3C). The specific clustering

of the early growth response factor matrix family (EGRF) for

asthma risk SNPs in complex regions (�log10(p) = 8.50; Fig-

ure 3D) was in strong contrast to T2D (�log10(p) = 3.97;

Figure 2E) and Crohn’s (�log10(p) = 2.07; Figure S3D). Of note,

the EGRF-binding factor EGR1 regulates asthma-related IL13-

induced inflammation (Cho et al., 2006).

Homeobox TFs are known to be involved in tissue develop-

mental processes including b-cell development (Jørgensen

et al., 2007). However, except for the MODY gene PDX1 (Fajans

et al., 2001) and the common T2D-associated loci HHEX1 and

ALX4 (Sladek et al., 2007), the PMCA-inferred homeobox fac-

tors have not been implicated in T2D pathogenesis. T2D is

marked by insulin resistance and impaired insulin secretion

(Doria et al., 2008). To evaluate a functional role of the homeo-

box TFBS matrix families in T2D pathogenesis, we extracted

data for insulin resistance (HOMA-IR) and impaired insulin

secretion (HOMA-B) (Dupuis et al., 2010), to compute the
Figure 1. Discovery of cis-Regulatory Diabetes SNPs

(A) Workflow of the PMCA methodology: (1) the flanking region of a noncoding SN

searched in the genomes of 15 vertebrate species; (3) TFBS are identified in each o

sequences (TFBS modules defined as all, two or more TFBS occurring in the s

sequences); (5) phylogenetically conserved TFBS UTFBS, TFBS modules Umodule

repeated counting for different numbers of input sequences weighs the degree of

of conserved TFBS with more restricted parameters Urestr_TFBS accounts for gen

randomized input sequences (randomization of sequences is done using local shu

(8) the probability p-est of observing a given UTFBS,Urestr_TFBS,Umodules, and UTFBS

classified as complex and noncomplex regions; and (10) complex regions harbo

(trait-related TFBS are drawn from overall TFBS clustering analysis as described

(B) Representative complex region (rs4684847) and noncomplex region (rs130647

two vertebrate species are shown to illustrate TFBS modularity across species.

(C–G) Classification of SNP regions for a set of eight T2D risk loci (Table S1; Figur

(C), conserved TFBSmodulesUmodules (D) and occurrences of TFBS in TFBSmod

(black lines). Data points covered by the interquartile range (IQR) and the whiskers

large range with higher median for complex regions for all criteria (at 47 T2D loci w

noncomplex regions). Scoring of SNP regions is illustrated by histograms showin

overall scoring criterion Sall (G). Blue curve: empirical density function of the

noncomplex regions (�log10 p-estTFBS = 1.12, Sall = 6.5); SNP regions with a va

(H and I) cis-Regulatory activity of SNP regions. Noncomplex regions include re

allele-dependent change in DNA-binding activity from EMSAs (n = 4) (H) and lucife

mixed-effects model.

See also Tables S2 and S3.
enrichment of predicted cis-regulatory T2D risk SNPs that

localize in close proximity to those homeobox TFBS (±20 bp,

permutations on the phenotypes, n = 1,000, 95% confidence

interval [CI]; Extended Experimental Procedures). We verified

a significant enrichment of SNPs that localize ± 20 bp at inferred

homeobox TFBS for both insulin resistance (mean = 1.09 3

10�6; 95% CI: 9.59 3 10�7–9.51 3 10�3, p = 3.28 3 10�4;

mean permutation background) and impaired insulin secretion

(mean = 9.45 3 10�4; 95% CI: 5.37 3 10�4–1.34 3 10�2, p =

1.29 3 10�7). Furthermore, we elucidated a potential effect of

their binding TFs on impaired insulin secretion. Assessing

mRNA levels in human islets from 51 healthy and eight T2D

deceased donors by RNA-seq (L.G., unpublished data), we

found a marked expression difference for RAX, PRRX2,

BARX1, PITX1, EMX2, NKX6-3, BARX2, MSX2, and PDX1 in is-

lets from T2D patients compared to healthy controls (7.28 3

10�9 < p < 4.02 3 10�4, false discovery rate [FDR] < 1%) (Table

S14). By genome-wide coexpression analysis we found signifi-

cantly coregulated gene sets (p < 5.02 3 10�3; FDR < 5%,

n = 51 healthy donors) (Table S15). Except for the gene set cor-

egulated with PITX1, we found metabolic pathways among the

top five significantly enriched pathways (hypergeometric test,

FDR corrected p < 0.05) (Figure S3E). Other top five enriched

pathways included insulin signaling, MAPK signaling, notch

signaling, calcium signaling, and pancreatic secretion. Knock-

down of each candidate homeobox TF in pancreatic INS-1

b-cells significantly perturbed glucose-stimulated insulin secre-

tion (Figure S3F). Moreover, except for PDX1 and MSX2

(corrected FDR, p = 0.96 and p = 0.89), all PMCA-inferred

homeobox TFs were significantly coexpressed with the insulin

gene in islets of 26 hyperglycemic individuals (hemoglobin

A1C [HbA1C] > 6) (Table S16). Although the result for PDX1

was borderline nonsignificant, it is a well-known regulator of

insulin expression (Brissova et al., 2002). The other TFs can be

regarded as candidates for regulation of proinsulin production.
P is extracted from the human reference genome; (2) orthologous regions are

rthologous sequence; (4) TFBSmodules are identified in the set of orthologous

ame order and in certain distance range in all or a subset of the orthologous

s, and occurrences of TFBS in TFBS modules UTFBS_in_modules are counted; (6)

cross-species conservation and the number of TFBS in modules; computation

omic regions with low numbers of orthologs; (7) steps 3–6 are repeated using

ffling in order to conserve local nucleotide frequency distributions) to estimate;

_in_modules and to calculate the overall scoring criterion; (9) input sequences are

ring a trait-related TFBS at SNP position are selected for functional evaluation

in text related to Figure 3). See also the Extended Experimental Procedures.

60). Conserved TFBS and conserved TFBS in modules occurring in more than

e S1). Box-whisker plots (IQR 50%) show the counts of conserved TFBS UTFBS

ulesUTFBS_in_modules (E) for complex regions (red lines) and noncomplex regions

values were added as rug at the sides of the plot. Note that values vary over a

e find amedian of 354.5/470.46 and 310/382.35 forUTFBS_in_modules in complex/

g the probability p-est of observing UTFBS across species (F) and showing the

histogram data. Red dashed line: cut-off scores separating complex from

lue to the left of the red line were defined as noncomplex.

gions matched for TFBS density of complex regions (TFBS median = 88). The

rase reporter activity (n = 10) (I) is shown for each SNP.Mean ±SD, p from linear
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Figure 2. Correlations of cis-Regulatory

Predictions at 47 T2D Risk Loci with

Evolutionary Constrained Elements and

Functionally Annotated Genomic Regions

(A) Correlation of PMCA results with evolutionary

constrained regions. The occurrences of 487

complex and 978 noncomplex T2D-associated

regions within constrained regions from SiPhy-p

algorithm (Lindblad-Toh et al., 2011). Localization

of SNPs relative to transcription start site in Fig-

ures S2A and S2B.

(B) Venn diagram illustrates the number of com-

plex and noncomplex regions that directly map to

a constrained element (overlap).

(C) Complex regions at the PPARG locus (Fig-

ure 4E) lack an overlap with constrained regions.

Zoom-in: the rs4684847 cis-regulatory region

does not map to a constrained region (393 bp

upstream of nearest constrained element). A

representative TFBSmodule (UTFBS_in_module = 3) is

shown and its TFBS module conservation for a

given quorum of five species is visualized by a

sequence logo.

(D and E) Correlation of complex (red line) and

noncomplex (black line) T2D-associated SNP re-

gions to DHSseq (D) and ChIP-seq (E) peaks. From

the midpoint of 487 complex and 978 noncomplex

regions, 1,000 bp in both directions were scanned

for DHSseq and ChIP-seq peaks (Extended

Experimental Procedure). For each position, the

sum of occurrences was plotted. T2D complex

regions were significantly enriched for overlaps

with DHSseq and ChIP-seq regions, displayed as

a central peak (correlations with Crohn’s-associ-

ated regions in Figures S2C and S2D).

See also Tables S7, S8, and S9.
The T2D-Identified Variant rs4684847 Regulates
PPARG2 Gene Expression
To establish the informative value of TFBS pattern analysis for

pinpointing the cis-regulatory variant and binding TF underlying

GWAS association signals, we chose the PPARG locus for

detailed study. PPARg is crucial in adipogenesis, lipid meta-

bolism, and systemic insulin sensitivity (Rosen et al., 1999;

Medina-Gomez et al., 2005) and exists as two isoforms: PPARg1

(PPARG1, PPARG3 mRNA) and PPARg2 (PPARG2 mRNA)

(Fajas et al., 1998), the latter mainly expressed in adipocytes
348 Cell 156, 343–358, January 16, 2014 ª2014 Elsevier Inc.
(Tontonoz et al., 1994). There is a robust

association of PPARG with T2D (Deeb

et al., 1998; Heikkinen et al., 2009; Dupuis

et al., 2010; Voight et al., 2010). The T2D

GWAS association comes from an LD

region mainly tagged by the coding

missense mutation Pro12Ala (Figure 4A,

upper panel). However, the minor 12Ala

allele, associated with enhanced insulin

sensitivity in humans, paradoxically

blunts the transcriptional activity of the in-

sulin-sensitizing PPARg2 TF (Deeb et al.,

1998). Hypothesizing that the elusive

PPARG T2D signal instead arises from a
regulatory variant that affects PPARG2 expression, we first

confirmed—before analyzing variants at the PPARG locus with

PMCA—a risk allele-dependent 3.8-fold decrease of PPARG2

mRNA in human adipose stromal cells (hASCs) (p = 1.0 3

10�3) (Figure 4B). This effect was specific for PPARG2, as there

was no effect on PPARG1 expression (Figure 4C).

First, to narrow-down the variants that could explain the

decrease in PPARG2 expression and thereby the underlying

T2D association, we applied PMCA to each of the 23 cor-

related noncoding variants at the PPARG locus (r2 R 0.7,
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Figure 3. Positional Bias of Distinct Homeo-

box TFBS Families at T2D Risk SNPs

Distribution of TFBS matrices relative to SNP

positions (SNP ± 500 bp) at T2D compared to

asthma risk loci, calculated using positional bias

analysis. One thousand base pair genomic regions

with SNPs at midposition were scanned for the

occurrence of TFBS matches for 192 TFBS matrix

families (sliding 50 bp windows, p from binomial

distribution model, Extended Experimental Pro-

cedures).

(A and B) TFBS family distribution in a set of eight

and an extended set of 47 T2D risk loci. Complex

regions reveal clustering of distinct homeobox

TFBS matrix families at T2D risk SNP positions

(±20 bp, gray dashed lines). All TFBS families

displayed equal distributions within T2D non-

complex regions (a subset of representative

TFBS families is shown).

(C) TFBS family distribution in a set of eight asthma

risk loci. Asthma complex and noncomplex re-

gions lack a positional bias at SNP positions for

the homeobox TFBS matrix families clustering in

complex regions at T2D risk SNPs (see Figure S3

for details on Crohn’s).

(D and E) TFBS family distribution in asthma risk

loci revealed a specific EGRF matrix family clus-

tering in complex regions at asthma risk SNPs (D).

T2D complex regions lack a clustering of EGRF

matrices at SNP positions (E).
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Figure 4. The Noncoding SNP rs4684847 by Binding the Homeobox Factor PRRX1, Represses PPARG2 Expression at the PPARG Diabetes

Risk Locus
(A) Top panel: an LD regional plot of the PPARG locus. Diamonds, tagSNP Pro12Ala and pairwise correlation of SNPs in LD (MAF R 1%) against genomic

position; blue, PPARG gene and exons. Middle/lower panel: classification of SNPs in complex regions (red lines) and noncomplex regions (gray lines) (PMCA

steps 1–9, Figure 1A). Scanning of PPARG complex regions for T2D-distinct homeobox TFBS matrix families (CART, HOMF, HBOX, NKX6, BCDF, PDX1;

Figure 3B) pinpoints rs4684847 (C/T), based on its overlap with the CART binding matrix for PRRX1 (step 10, Figure 1A). Zoom-in, human PPARG gene; arrows,

transcription start site (TSS) of PPARG1-3mRNA isoforms; boxes, coding exons (filled) and untranslated exons (open); lines, introns. Second zoom-in, CRM at

rs4684847; the PRRX1 matrix co-occurs with diverse TFBS matrices in consistent orientation and distance range across species, exemplarily illustrated by one

conserved TFBS module (UTFBS_in_modules = 3; TFBS matrices: PRRX1, TEF, LHXF).

(B and C) Genotype-dependent mRNA expression in undifferentiated hASCs genotyped for Pro12Ala and rs4684847 (r2 = 1.0). qPCR of PPARG1 and PPARG2

mRNA isoforms (standardized to HPRT) homozygous CC risk (n = 9) and CT nonrisk allele carriers (n = 5) normalized to mean for CC. Mean ± SD, t test.

(D) Validation of cis-regulatory predictions for complex regions at the PPARG locus. Quantified change in reporter activity in 3T3-L1 adipocytes is shown for each

SNP, using luciferase constructs harboring the risk or nonrisk alleles, representing an activating or repressing effect of the risk allele on transcriptional activity.

Mean ± SD, n = 3–14, paired t test.

(legend continued on next page)
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1000 Genomes) (1000 Genomes Project Consortium et al., 2012)

(Figure 4A). Seventeen variants were ruled out being located in

noncomplex regions (Figure S4A; Table S17). Among the six

variants in complex regions, five had either activating or repres-

sing cis-regulatory activity (Figure 4D), which may reflect gene

regulatory dependency on the tissue/cell-type and the spatial,

temporal, environmental, and epigenetic context. In fact, while

the quantitative PCR (qPCR) data in undifferentiated hASCs

showed a suppressive effect specific for thePPARG2mRNA iso-

form, adipose tissue eQTL data showed an upregulation of total

PPARG mRNA in risk allele carriers (p = 0.01) (Figure S4B).

Second, to pinpoint the functional variants that may explain

the GWAS-reported T2D association, we scrutinized the com-

plex regions for those TFBS showing a clustering at T2D risk

SNP positions (drawn from the overall TFBS clustering analysis

in complex regions; Figure 3), pursuing the variants overlapping

a TFBS matrix in the disease-distinctive cluster. As shown

above, our comprehensive cross-species TFBS pattern analysis

of 47 T2D risk loci unveiled a clustering of specific homeobox

TFBS families as a characteristic feature of T2D risk SNPs (Fig-

ure 3B). Among the six noncoding variants at the PPARG locus,

only one variant, rs4684847 (C/T), overlaps with the T2D-distinct

clustering of the homeobox TFBS matrix. The TFBS matrix over-

lapping with rs4684847 belongs to the CART matrix family

(�log10(p) = 13.00, the highest score among TFBS matrix fam-

ilies), and is predicted to bind the homeobox TF PRRX1. The

other five noncoding variants showed no homeobox TFBS

matrix match (Figure 4A, lower panel).

Third—as an independent approach to confirm rs4684847

mediating the PPARG2 suppression—we examined the cellular

context of genotype-dependent PPARG2 suppression and epi-

genomic profiling data that allow for temporal chromatin state-

dependent regulatory functional annotations. By allele-specific

primer extension analysis in heterozygous undifferentiated

hASCs genotyped for rs4684847, where each allele serves as

an internal control for the other, we first confirmed a striking

allelic imbalance with 5.4-fold lower PPARG2mRNA expression

from the C risk allele (p = 6.03 10�4) (Figure 4E). Given the role of

PPARG2 in adipogenesis, we then testedwhether the rs4684847

C risk allele might affect PPARG2 mRNA expression during adi-

pogenesis. The allele-specific primer extension analyses in

hASCs from heterozygous risk allele carriers revealed that the

risk allele-dependent suppression ofPPARG2mRNA diminished

with progression of adipogenesis (p < 0.001) (Figure S4C). These

data suggest a highly temporal context-specific effect of the risk

allele on PPARG2 suppression in the undifferentiated state.
(E) Allele-specific primer extension analysis in hASCs of heterozygous rs4684

Mann-Whitney U test.

(F and G) Increased PRRX1 binding at the risk allele in EMSAs with rs468484

competition with cold PRRX1 probe (G, left panel) and PRRX1 antibody shift of pr

(H) Reporter assays with constructs harboring the rs4684847 risk and nonrisk all

rs4684847 reveals abrogated allelic cis-regulatory activity. Mean ± SD, n = 9, pa

(I) Inhibition of reporter activity (normalized to pCMV control) at the rs4684847 ris

n = 9, paired t test.

(J) Regulation of PPARG2 mRNA expression in SGBS adipocytes with the CC

approach. siPRRX1 and siNT transfection concurrent with induction of diffe

standardized to HPRT. Mean ± SD, n = 12, t test. siNT, nontargeting siRNA.

See also Figure S4 and Table S17.
Given the availability of cell-stage-dependent open chromatin

data in hASCs reported by Mikkelsen et al. (2010), we sought

supportive evidence for rs4684847 as the variant underlying

the cell-stage-dependent allelic PPARG2 expression. We inte-

grated all six variants in complex regions at the PPARG locus

with genome-wide temporal regulatory annotations estimated

by H3K27ac data. Among those six, only the flanking

region rs4684847 (C/T) showed consistent cell stage-dependent

H3K27ac density distributions (Figure S4D). Thus, the

rs4684847-specific match with the T2D homeobox TFBS clus-

tering, informed by conserved TFBS pattern analysis, could be

confirmed by cell-stage-dependent regulatory regions esti-

mated by chromatin state data.

Finally, we performed a host of in vitro and in vivo analyses to

prove that the rs4684847 risk allele (C allele) mediates the sup-

pression of PPARG2 mRNA expression via the transcriptional

regulator PRRX1. By affinity chromatography and liquid chroma-

tography-tandem mass spectrometry (LC-MS/MS), we could

demonstrate a 2.3-fold increased binding of PRRX1 to the

rs4684847 risk relative to nonrisk allele (Extended Experimental

Procedures). Moreover, by EMSA we found rs4684847 risk

allele-specific DNA-protein binding (Figure 4F), and competition

EMSA and supershift experiments confirmed that PRRX1 was

responsible for this allele-specific DNA-protein binding (Fig-

ure 4G). Furthermore, consistent with the GWAS signal for insulin

resistance rather than insulin secretion (Voight et al., 2010), in

luciferase reporter assays we observed rs4684847 cell type-

specific effects in 3T3-L1 adipose cells, C2C12 myocytes and

Huh7 hepatocytes, whereas pancreatic INS-1 b-cells and 293T

cells lacked allelic activity (Figure S4E). Luciferase activity in

3T3-L1 preadipocytes was 5.2-fold lower for the C risk allele

(p = 1.0 3 10�4, Figure 4H). This repressive effect was indepen-

dent of 50-versus 30-orientation to the reporter gene (p = 0.03)

and forward-reverse orientation (p = 0.03) (Figure S4F), suggest-

ing enhancer function for the nonrisk allelic complex region.

Importantly, perturbing the PRRX1 consensus sequence without

affecting the SNP position itself fully abrogated the C risk allelic

repression of reporter gene activity (Figure 4H), whereas overex-

pressing PRRX1 enhanced it (p = 2.0 3 10�4; Figure 4I).

We then sought proof that the rs4684847 risk allele—indepen-

dent of correlated sequence variants—causes the suppression

of endogenous PPARG2 expression. We used an adopted

CRISPR/Cas homology-directed repair genome editing

approach (Wang et al., 2013a) to introduce the rs4684847 non-

risk allele in human Simpson-Golabi-Behmel syndrome (SGBS)

preadipocytes, replacing the endogenous risk allele. Notably,
847 carriers (n = 6) normalized to mean risk allele levels (D). Mean ± SD,

7 allelic probes and 3T3-L1 preadipocyte nuclear extracts (F), confirmed by

otein-DNA complex in 293T with ectopically expressed PRRX1 (G, right panel).

ele in 3T3-L1 preadipocytes. Truncation of the PRRX1 matrix without affecting

ired t test.

k allele by ectopic expression of PRRX1 in 3T3-L1 preadipocytes. Mean ± SD;

risk allele, or TT nonrisk allele introduced by CRISPR/Cas9 genome editing

rentiation, PPARG2 mRNA assessed by quantitative RT-PCR (qRT-PCR),
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Table 1. Correlation of Adipose Tissue PRRX1 mRNA Expression with T2D Traits in rs4684847 Risk Allele Carriers

rs4684847 genotypes

PRRX1 mRNA PRRX1 mRNA PRRX1 mRNA

All CC CT and TT

b p b p B p

A n = 38 n = 20 n = 18

log(BMI) — 1.32 0.05 1.23 0.19 1.43 0.23

age 1.45 0.03 1.23 0.19 1.96 0.09

log(TG/HDL) — 6.92 7.54 3 10�4 6.40 0.02 6.35 0.07

age 6.97 7.36 3 10�4 6.14 0.02 6.81 0.07

age/BMI 4.86 8.3 3 10�3 5.00 0.07 2.64 0.33

log(HOMAIR) — 2.77 3.52 3 10�3 3.13 8.3 3 10�3 1.80 0.29

age 2.77 3.77 3 10�3 3.12 8.6 3 10�3 1.70 0.34

age/BMI 1.41 0.028 2.1 4.6 3 10�3 �0.55 0.63

B n = 67 n = 54 n = 13

log(GIR) age/BMI �0.51 1.83 3 10�7 �0.78 3.30 3 10�8 �0.38 0.28

log(FFA) age/BMI 0.25 0.014 0.27 0.015 �0.009 0.99

Gene expression and phenotypes were measured in (A) adipose tissue from a lean/obese patient cohort (mean ± SD 24.2 ± 9.1 kg/m2), and (B) adipose

tissue samples from BMI-matched obese patients (mean ± SD 43.2 ± 3.1 kg/m2) characterized by hyperinsulinemic euglycemic clamp. rs4684847 risk

allele and nonrisk allele genotypes were determined by Sequenom-assay. p values and b-estimates from linear regression analysis of PRRX1 mRNA

expression levels with phenotype measures are shown. BMI, body mass index; FFA, free fatty acids; GIR, glucose infusion rate of hyperinsulinemic

euglycemic clamp; HDL, high density lipoprotein; HOMA-IR, homeostasis model assessment of insulin resistance; TG, triglyceride.
the rs4684847 nonrisk allele was sufficient to increase PPARG2

transcript levels 5.4-fold (p = 0.005) (Figure 4J, left) (PPARG1

unaffected) (Figure S4G). In parallel experiments, we performed

PRRX1 knockdown and confirmed that (1) risk allele-driven sup-

pression of PPARG2 expression was reversed by PRRX1

silencing (p = 0.005), and (2) PRRX1 silencing did not affect

PPARG2 expression in nonrisk allele cells (Figure 4J, right).

rs4684847 via PRRX1 Binding Affects FFA Homeostasis
and Insulin Sensitivity
The SNP rs1801282 (Pro12Ala) in PPARG associates with BMI,

fasting insulin, and insulin sensitivity (Deeb et al., 1998; Voight

et al., 2010). rs4684847 is located 6.5 kb upstream of the

PPARG2-specific promoter and is in complete LD (r2 = 1.0)

with rs1801282. Via PMCA, we found that PRRX1 binds at the

rs4684847 C risk allele and thus inhibits PPARG2 expression.

On the other hand, the T allele of rs4684847 (minor allele fre-

quency 6.5% in Caucasians) reduces the binding ability of

PRRX1 and thusmaintains a higher level of PPARG2 expression.

Further in vivo evidence was obtained in primary human adipose

stromal cells (hASCs) isolated from BMI-matched subjects,

showing rs4684847-dependent PPARG2 mRNA expression

(p = 1.43 10�20, n = 32). PPARg2 is crucial for maintaining insulin

sensitivity: adipose-specific Pparg2 knockout mice develop

insulin resistance independently of affecting body weight

(Medina-Gomez et al., 2005), and PPARg is target of the thiozo-

lidinedione (TZD) class of insulin-sensitizing drugs such as Rosi-

glitazone (Rosi) (Lehmann et al., 1995). Indeed, we observed

rs4684847-dependent association with lower T2D risk (Voight

et al., 2010) (OR = 0.89, 95% CI = 0.86–0.92, p = 3.75 3 10�11,

n = 80,648). Further, in hASCs we found rs4684847-dependent

increase in adipocyte insulin sensitivity (p = 1.5 3 10�7, ratio in-

sulin-stimulated/basal 2-deoxyglucose uptake, Pearson’s corre-
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lation, n = 32). We confirmed a significant interaction between

the rs4684847 risk allele and adipose PRRX1 mRNA levels to

HOMA-IR, independent of BMI (p = 0.044, n = 38, interaction

model; Extended Experimental Procedures). In addition, we

observed rs4684847-dependent correlations of PRRX1 mRNA

levels with BMI, TG/HDL ratio, and BMI-adjusted HOMA-IR

and with glucose infusion rate (GIR) measured by euglycemic

hyperinsulinemic clamp in a cohort of 67 BMI- and body fat-

matched obese patients (Table 1; Figure S4H).

To further examine PRRX1 as mediator of the repressive

rs4684847 risk allele (C allele) effect on PPARG2 expression,

we performed knockdown of PRRX1 in primary hASCs and

found that PRRX1 silencing was sufficient to revert the risk allelic

suppression (p = 3.3 3 10�15) (Figure 5A; Table 2). Then, to

inform on the cellular processes by which PRRX1may contribute

to T2D, we studied the impact of PRRX1 on PPARg-regulated

genes in hASCs from homozygous rs4684847 CC risk allele car-

riers by microarray analysis (n = 9). We found 2,258 transcripts

regulated by PRRX1 knockdown (q < 0.2), 336 of which were

reversely regulated by concomitant PPARG knockdown (Fig-

ure 5B). Gene set enrichment analysis (GSEA) highlighted an

enrichment of those antiregulated genes among the most differ-

entially expressed genes after PRRX1 knockdown (FDR = 0,

Figure 5C), revealing that PPARg2 mediated the primary

PRRX1 effect on global gene expression. Ingenuity pathway

analysis (IPA) showed the strongest enrichment for lipid meta-

bolism (p = 2.81 3 10�14) followed by adipose tissue function,

glucose homeostasis, nutritional disease, and insulin resistance

(Figure 5D). Accordingly, an inverse relationship between PRRX1

and adipocyte triglyceride (TG) accumulation was observed in

PRRX1-overexpressing SGBS adipocytes (Figure 5E).

By qPCR, we confirmed rs4684847 allele-dependent dysregu-

lation of genes in the identified biological pathways. Notably, the



gene with the strongest risk allele-dependent decrease in mRNA

levels was PEPCKC (Table 2). The top scoring IPA interaction

network reinforced a central role for PEPCKC (Figure 5F).

PEPCK-C is the enzyme controlling the first committed step of

glyceroneogenesis, a crucial metabolic process in adipocytes

regulating the re-esterification of free fatty acids (FFA) to TG

(Ballard et al., 1967). Glyceroneogenesis limits FFA release

from adipocytes in the fasting state thereby controlling systemic

FFA homeostasis and insulin sensitivity (Millward et al., 2010). In

the 67 BMI- and body fat-matched obese subjects, we

confirmed rs4684847 risk allele association with increased

serum FFAs levels (p = 0.049) and risk allele-dependent associ-

ation of PRRX1 mRNA with FFA levels (p = 0.015, Table 1). To

prove that rs4684847, by determining PRRX1 binding, affects

glyceroneogenesis and subsequent FFA release, we monitored

pyruvate incorporation in TG (Ballard et al., 1967). We confirmed

a PRRX1-dependent suppression of glyceroneogenesis in CC

risk allele carriers, marked by a robust correlation with PRRX1

mRNA levels (Figure 5G) and a risk allele-dependent increase

in FFA release (Figure 5H). In a parallel experiment, we also found

that PRRX1 silencing was sufficient to restore cellular insulin

sensitivity in risk allele carriers (Figure 5I). Importantly, the

PPARg ligand Rosi pharmacologically promotes insulin sensi-

tivity largely via control of FFA homeostasis through glyceroneo-

genesis (Cadoudal et al., 2007), and Kang et al. (2005) reported

impaired Rosi response in risk haplotype carriers. In our analysis

of glyceroneogenesis in hASCs, we observed an impaired

response to Rosi-mediated suppression of FFA release depen-

dent on the risk allele (Figure 5J). Strikingly, PRRX1 silencing

in CC risk allele patient samples was sufficient to abolish the

reduced Rosi responsiveness, making PRRX1 a potential target

for pharmacological T2D intervention.

In summary, by PMCAwe demonstrate a clustering of specific

homeobox TFBS at T2D risk SNPs. We specifically unveil a role

of the homeobox TF PRRX1 as a repressor of PPARG2 via its

enhanced binding at the rs4684847 C risk allele, thereby provok-

ing dysregulation of FFA turnover and glucose homeostasis

(Figure 5K).

DISCUSSION

We have developed a bioinformatics approach, PMCA, which

enables the extraction of cis-regulatory variants that may mech-

anistically contribute to human disease by dysregulation of gene

expression. In line with our approach to exploit conservation in

terms of co-occurring TFBS patterns, (Visel et al., 2013) has

recently shown that combination of TFBS, rather than single

TFBS, via combinatorial TF binding governs spatial enhancer ac-

tivity in the developing telencephalon. Further, tissue-specific

enhancers were accurately detected by in vivo mapping of the

enhancer-associated proteins p300, in addition to comparative

genomics approaches (Visel et al., 2009a; Blow et al., 2010).

Using T2D as a showcase, we demonstrate the utility of PMCA

for the generic prediction of distinct homeobox TFBS at T2D risk

SNPs, which is important for understanding disease regulatory

circuits when we consider that interactions in a regulatory

network involve numerous genes and a rather small set of TFs

(Califano et al., 2012). Pursuing the results emerging from our
comprehensive T2D analysis, we show that identification of the

cis-regulatory variant rs4684847 at the PPARG locus enabled

linking the molecular upstream factor PRRX1 to aberrant down-

stream mechanisms of impaired lipid handling and insulin sensi-

tivity, explaining the GWAS association with T2D. Notably,

PRRX1 was recently implicated in adipogenesis (Du et al.,

2013), yet the regulated genes remain elusive.

Here, we restricted the analysis to SNPs in LD with GWAS

SNPs. However, the approach could be applied to any other

kind of variability, such as somatic mutations in cancer, without

loss of generality. Certain issues will require consideration, e.g.,

analyzing genomes of closely related species to refine scoring

criteria, and extending our analysis towhole genome sequencing

studies, including rare variants data, should further inform on the

genetic underpinnings of phenotypic diversity in humans. Our

in silico scoring results predict varying numbers of regulatory

SNPs per LD block. Studies have now found evidence for allelic

heterogeneity (Maller et al., 2012; Schaub et al., 2012), yet the

number of causal variants within a disease locus is elusive. We

propose an integrative framework where computational TFBS

modularity analysis may be synergistically combined with func-

tional genomics and population genetics data.

In sum, our results demonstrate that the extension of

sequence analysis to functional conservation integrates biolog-

ical data with statistical signals, and our method should help to

clarify the role of inherited and somatic variability in altering

gene regulatory networks, in both mendelian and common

human diseases.

EXPERIMENTAL PROCEDURES

See the Extended Experimental Procedures for details.

LD Block Definition

SNPs in close LD (r2 R 0.7) to GWAS tagSNPs (references in Tables S1, S5,

S7, and S13) from 1000 Genomes Project, Pilot 1, CEU data (http://www.

1000genomes.org/).

PMCA

PMCA analyzes the occurrence of conserved patterns of TFBS in aCRMwithin

the genomic region flanking a noncoding variant, to predict its cis-regulatory

functionality. For each variant the PMCA method provides a classification of

the region surrounding the variant as being either complex or noncomplex.

Complex regions are defined as being significantly enriched in conserved

co-occurring TFBS (TFBS modules) according to the scoring scheme

described in Extended Experimental Procedures.

Positional Bias Analysis

Complex and noncomplex regions (SNP ± 500 bp) were scanned for presence

of TFBS family matches at SNP positions. Positional bias of TFBS families was

calculated using overlapping 50 bp sliding windows in steps of 10 bp.

Positional bias (p) was calculated as binomial p value for each TFBS family

and each window.

Correlation with Evolutionary Constraint, DHSseq, and ChIP-Seq

Regions

Complex/noncomplex SNP regions (SNP ± 60 bp) were correlated to

constrained regions or DHSseq and ChIP-seq peaks. From midpoint of

constrained regions (±500 bp), DHSseq (±1,000 bp), or ChIP-seq peaks

(±1,000 bp), the overlapping positions (correlation) with complex/noncomplex

regions were counted and plotted versus position relative to anchor. For

the calculation of enrichment of DHS and ChIP-seq peak overlaps to
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Figure 5. Binding of PRRX1 at the rs4684847 Risk Allele in Human Adipose Cells Affects Lipid Metabolism and Insulin Sensitivity

(A) rs4684847-dependent PPARG2 and PRRX1mRNA levels measured by qPCR (standardized to HPRT) in hASC from BMI-matched rs4684847 CT (n = 16) and

CC (n = 32) risk allele carriers. siPRRX1 and siNT transfected concurrent with induction of adipogenic differentiation for 72 hr. Left: Pearson’s correlation in the

siNT set. Right: box-whisker plot comparing PPARG2 mRNA in siNT- versus siPRRX1-treated cells (t test). FC, fold change.

(B and C) Global gene expression profiling by Illumina microarrays (q < 0.2) in hASCs from rs4684847 CC risk allele carriers transfected with siPRRX1 (n = 9, gray

dots) and cotransfected with siPRRX1 and siPPARG (n = 4, red dots) for 72 hr after induction of adipogenic differentiation (B). Distribution of siPRRX1/siPPARG

antiregulated genes among all regulated genes ranked by fold change (C).

(D and E) Biological pathways associated with siPRRX1/siPPARG antiregulated genes (D) and top scoring interaction network (E) from ingenuity pathway

analysis.

(legend continued on next page)
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Table 2. Genotype-PRRX1-Dependent Regulation of PRXX1/PPARG Antiregulated Genes in hASCs

siNT siPRRX1 siPRRX1/siNT

Hetero Homo Hetero/Homo Hetero Homo Hetero/Homo Hetero Homo

Mean ± SD Mean ± SD FC p Mean ± SD Mean ± SD FC p FC p FC p

PRRX1 0.52 ± 0.18 0.51 ± 0.19 1.01 0.92 0.11 ± 0.05 0.12 ± 0.06 0.90 0.56 0.25 2.83 3 10�7 0.22 4.02 3 10�8

PPARG2 4.32 ± 1.07 0.79 ± 0.08 0.18 2.46 3 10�11 4.34 ± 1.47 3.37 ± 1.04 0.77 0.08 1.00 0.96 4.29 7.24 3 10�11

PPARG1 1.07 ± 0.26 1.04 ± 0.33 1.03 0.79 1.18 ± 0.35 1.20 ± 0.49 0.98 0.90 1.15 0.35 1.10 0.41

PEPCKC 2.83 ± 0.58 1.03 ± 0.20 2.76 1.62 3 10�10 2.66 ± 0.50 2.98 ± 0.42 0.89 0.09 0.94 0.43 2.90 8.77 3 10�4

PDK4 2.01 ± 0.88 0.74 ± 0.18 2.73 3.19 3 10�5 2.00 ± 0.60 1.73 ± 0.61 1.15 0.27 0.99 0.97 2.35 8.01 3 10�6

LIPE 1.37 ± 0.64 0.68 ± 0.32 2.01 2.00 3 10�3 1.30 ± 0.32 1.21 ± 0.45 1.08 0.56 0.95 0.74 1.77 2.03 3 10�3

ADIPOQ 1.89 ± 0.32 0.95 ± 0.31 1.98 7.92 3 10�8 1.85 ± 0.44 1.75 ± 0.61 1.05 0.66 0.98 0.81 1.84 2.84 3 10�4

OPG 0.78 ± 0.36 1.67 ± 0.53 0.47 3.91 3 10�5 0.84 ± 0.28 1.09 ± 0.38 0.77 0.07 1.08 0.61 0.65 4.10 3 10�3

TIMP3 0.61 ± 0.21 1.50 ± 0.52 0.41 6.45 3 10�6 0.83 ± 0.33 1.00 ± 0.39 0.83 0.23 1.36 0.06 0.67 0.01

BBOX1 2.16 ± 0.48 0.96 ± 0.30 2.26 8.04 3 10�8 1.84 ± 0.37 2.14 ± 0.44 0.86 0.07 0.85 0.07 2.23 3.09 3 10�8

GLUT4 1.57 ± 0.35 0.99 ± 0.24 1.58 6.15 3 10�5 1.62 ± 1.50 ± 0.31 1.09 0.26 1.03 0.67 1.50 1.08 3 10�4

THRSP 0.99 ± 0.28 1.61 ± 0.39 0.61 8.18 3 10�5 1.53 ± 0.33 1.60 ± 0.32 0.95 0.57 1.55 1.38 3 10�4 0.99 0.93

PRRX1/PPARG antiregulated genes were identified by Illumina microarray analysis in samples with PRRX1 knockdown and simultaneous PRRX1 and

PPARG knockdown during adipogenic differentiation (Figure 5E). Confirmatory qRT-PCR was performed for these representative top regulated genes

in hASC from BMI-matched heterozygous (hetero, n = 16) and homozygous (homo, n = 32) risk allele carriers (genotyped for the PPARG locus

cis-regulatory variant rs4684847 and the tagSNP rs1801282 Pro12Ala). ADIPOQ, adiponectin, C1Q and collagen domain containing; BBOX1,

butyrobetaine (gamma), 2-oxoglutarate dioxygenase (gamma-butyrobetaine hydroxylase); FC, fold change; GLUT4, Glucose Transporter Type 4;

LIPE, lipase, hormone-sensitive; OPG, Osteoprotegerin; p, p value from unpaired t test; PDK4, pyruvate dehydrogenase kinase, isozyme 4; PEPCKC,

Phosphoenolpyruvate carboxylase cytosolic; PPARG, peroxisome proliferator-activated receptor gamma; PRRX1, paired-related homeobox 1;

THRSP, thyroid hormone responsive Spot 14 Protein; TIMP3, TIMP metallopeptidase inhibitor 3.
complex/noncomplex SNPs only those SNPs were considered where an over-

lap was detected within ± 20 bp from SNP positions.

Primary Human Tissue and hASC

Human islets and adipose tissue were obtained with informed consent from

each subject. The studies were approved by the local ethics committees of

the Technische Universität München (Germany), the Haukeland University

Hospital (Norway) and the Lund University (Sweden). Primary hASCs were iso-

lated from subcutaneous adipose tissue and differentiated in vitro. Genotyping

was done by MassARRAY (Sequenom), Omni express (Illumina), or Sanger

Sequencing.

RNA Preparation and Expression Analysis

Total RNA was prepared by TRIzol (Invitrogen) or RNeasy Lipid Tissue Mini Kit

(QIAGEN), and gene expression was measured by qPCR or microarrays

(Affymetrix, Illumina). Allele-specific primer extension was performed with

SNaPshotKit (ABI Prism).

Cell Culture and Reporter Assays

Huh7, INS-1, 293T, C2C12, 3T3-L1, and SGBS cells were cultured using

standard protocols. Genomic sequences surrounding SNPs were synthesized
(F) Oil Red O lipid staining of human SGBS cells with lentiviral-overexpressed fl

ferentiation. Protein expression with aflag (PRRX1) and aACTB antibodies.

(G and H) rs4684847-dependent glyceroneogenesis rate measured by [1-14C]-

rs4684847CT (n = 16) and CC (n = 32) risk allele carriers after silencing of PRRX1. (

siNT- versus siPRRX1-treated cells, t test. FFA, free fatty acids.

(I) rs4684847-dependent increase of [3H]-2-deoxyglucose ([3H]-2DG) uptake foll

siPRRX1-treated cells; t test.

(J) rs4684847-dependent rosiglitazone-mediated suppression of FFA-release dur

Mean ± SD, t test. See also Figures S4G and S4H; Tables 1 and 2.

(K) The rs4684847 risk allele (C allele) promotes PRRX1 binding 6.5 kb upstream

expression and perturbated lipid handling in adipose cells, increased circulating
(MWG), cloned in pGL4.22-TK-promoter (Promega) and transfected in cells by

Lipofectamine (Invitrogen). Luciferase activity was measured by Luminoscan-

Ascent (Thermo).

Gene Knockdown by Small Interfering RNA

All knockdowns were performed with ON-TARGETplus SMARTpool small

interfering RNA (siRNA) (Dharmacon) and HiPerFect (QIAGEN).

CRISPR/Cas Genome Editing

HDR genome editing was performed in human SGBS preadipocytes by trans-

fection of CRISPR/Cas9 and single guide RNA (sgRNA) expression vectors

(sgRNA targeting a NGG PAM sequence 50 of rs4684847, R. Kühn, Munich)

and rs4684847 DNA donor vectors (T allele to replace endogenous allele, C

allele control). Cell enrichment by MACS selected transfected cell selection

kit (Miltenyi). rs4684847 genome editingwas confirmedbySanger sequencing.

EMSA

Forty-two base pairs of allelic Cy5-labeled-DNAs (MWG) and nuclear protein

were used for EMSA. Supershift experiments were performed with aPRRX1

or IgG, competition with excess unlabeled probe, and protein from pCMV-

PRRX1-flag transfected 293T.
ag-tagged PRRX1 (or control vector) 12 days after induction of adipocyte dif-

pyruvate incorporation (G) and FFA release (H) in hASCs from BMI-matched

G) Left: Pearson’s correlation in the siNT set. Right: box-whisker plot comparing

owing insulin stimulation in hASCs. Box-whisker plot comparing siNT- versus

ing glyceroneogenesis. Pearson’s correlation comparing siNT versus siPRRX1.

of the PPARG2-specific promoter, leading to suppression of PPARG2 mRNA

FFA levels, insulin resistance, and risk of T2D.
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DNA-Protein Affinity Chromatography LC-MS/MS

DNA-protein affinity chromatography was performed with streptavidin

magnetic beads (Invitrogen) and allelic biotinylated DNA-probes (MWG)

and Ultimate3000nano HPLC (Dionex) LC-MS/MS coupled to LTQ

OrbitrapXL (Thermo Fisher Scientific). Data were analyzed with Progenesis

software v2.5.

Statistical Analysis

Statistical analyses were done using Graph Pad Prism v5.02, R Software

v2.14.2 or Perl scripts.
ACCESSION NUMBERS

Microarray data for hASC are available in ArrayExpress (E-MTAB-1906). The

Gene Expression Omnibus (GEO) accession number for the adipose tissue

microarray analysis reported in this paper is GSE25402.
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Supplemental Information includes Extended Experimental Procedures, 4
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