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ABBREVIATIONS

9-AA, 9-aminoacridine; ACN, acetonitrile; DR, diabetic retinopathy; F1,6bP, fructose-1,6-

bisphosphate; G6P, glucose-6-phosphate; G6PD, G6P dehydrogenase; HE, haematoxylin and

eosin; MALDI-FTICR, Matrix-assisted laser desorption/ionization-Fourier transform ion

cyclotron resonance; MSI, mass spectrometry imaging; NAA, N-acetylaspartate; TCA,

tricarboxylic acid

ABSTRACT

Mass spectrometry imaging (MSI) is a valuable tool for diagnostics and systems biology

studies, being a highly sensitive, label-free technique capable of providing comprehensive

spatial distribution of different classes of biomolecules. The application of MSI to the study

of endogenous compounds has received considerable attention because metabolites are the

result of the interactions of a biosystem with its environment. MSI can therefore enhance

understanding of disease mechanisms and elucidate mechanisms for biological variation.

Here we present the in situ comparative metabolomics imaging data for analyses of light- and

dark-treated retina. A wide variety of tissue metabolites were imaged at a high spatial

resolution. These include nucleotides, central carbon metabolism pathway intermediates, 2-

oxocarboxylic acid metabolism, oxidative phosphorylation, glycerophospholipid metabolism,

http://www.proteomics-journal.com
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and cysteine and methionine metabolites. The high lateral resolution enabled the

differentiation of retinal layers, allowing determination of the spatial distributions of different

endogenous compounds. A number of metabolites demonstrated differences between light

and dark conditions. These findings add to the understanding of metabolic activity in the

retina.

1. INTRODUCTION

Metabolomics is emerging as an increasingly important systems biology tool which can

provide information on the metabolic phenotype of a cell, tissue or organism during normal

and pathological conditions. Because metabolic phenotypes are not only affected by gene

expression and protein function but also by environmental factors [1, 2], metabolomics has

been described as the link between the genotype and the phenotype [1]. Mass spectrometry is

currently  the  favored  method  for  metabolomics  studies  due  to  its  ability  for  the  direct  and

simultaneous analysis of many compounds [2, 3]. One drawback, however, is that sample

processing steps can result in the loss of spatial information inherent in the tissue. Mass

spectrometry imaging (MSI) is a rapidly evolving technology which enables the visualization

of many substances within a single sample, and allows for the virtual dissection of tissue

based on molecular mass signatures [4-6]. Matrix-assisted laser desorption/ionization-Fourier

transform ion cyclotron resonance (MALDI-FTICR) instruments provide the highest

resolving power and mass accuracy, and have been used for the imaging of peptides,  drugs

and drug metabolites [7-9]. Although these instruments have a relatively low through-put, the

advantages of combining MALDI-FTICR-MS with MSI is that, compared to traditional mass

spectrometry or immunohistochemistry, this combined technique is able to simultaneously

detect and spatially localize many compounds within cells and tissues without the use of

labeling.  This  is  especially  important  for  substances  with  a  low  molecular  weight  or  those

http://www.proteomics-journal.com
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which are difficult to resolve with imaging techniques, for example downstream metabolic

products of glucose metabolism.

The retina is the extension of the central nervous system where light is converted into

sensory  information.  A  consequence  of  this  specialized  function  is  that  retinal  metabolic

demands differ depending on dark or light conditions and cell class [10, 11]. The retina has a

distinctive anatomy consisting of alternating layers of neurons and synapses (see figure 3).

Light-converting photoreceptor outer segments are located in the posterior (distal) outer

retina, while the mitochondria-heavy photoreceptor somata are located in the outer nuclear

layer of the anterior outer retina. Photoreceptors synapse with signal-converting bipolar cells

of the inner retina, which subsequently form synapses with ganglion cells whose axons

project to the brain [12]. Consumption of oxygen and glucose are much higher in the

photoreceptor-heavy outer retina in the dark than in light [10, 13], which is largely due to

neurotransmitter release and Na+/K+-ATPase activity [14-16]. In contrast, glucose

metabolism and oxygen consumption within the inner retina has been reported to stay largely

constant, independent of light or dark exposure [11, 17]. Defects in retinal metabolism can

lead to visual dysfunction, as seen in Leber’s hereditary optic neuropathy where

mitochondrial function is compromised [18], and in the systemic metabolic disorder diabetes

[19, 20], while accumulation of free radicals has been linked to oxidative stress in age-related

macular degeneration [21]. As such, a greater understanding of retinal metabolism and

metabolites would enhance our understanding of retinal physiology, and how it is altered

under different conditions.

In this study, we performed in situ metabolomic imaging of light- and dark-treated retina

using MALDI-FTICR-MSI. A wide variety of tissue metabolites were imaged with high

http://www.proteomics-journal.com
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spatial resolution. The high lateral resolution enabled separation of retinal layers and resolved

the spatial distribution of different endogenous biocompounds. In particular, the distribution

of metabolites associated with glycolysis and the tricarboxylic acid (TCA) cycle of the

central carbon metabolism pathway are significantly altered under light and dark conditions.

These findings add to the understanding of retinal physiology.

2. MATERIALS AND METHODS

2.1 Preparation of porcine retina samples

Adult porcine eyes (5 biological replicates per condition) were acquired from a local

slaughterhouse. To create our experimental groups, the eyes were either maintained in the

dark or exposed to direct light post-mortem. Samples allocated as ‘dark-treated’ were

immediately stored in the dark following collection, and dissected and sectioned using dim

red LED illumination, which produces minimal impact on photopigment activation [22].

Light-treated eyes were illuminated from a desk lamp at 1850 lux for 30 minutes. To

minimize heat-induced artifacts, these eyes were immersed in tris-buffered saline (TBS) and

received the light-treatment from a distance of 30 cm. Light-treated eyes were then processed

under normal laboratory lighting. The cornea, lens, and vitreous humor were removed, and

the posterior chamber (retina and sclera) were immediately frozen in liquid nitrogen. The

eyes were frozen onto the chuck using water, and peripheral retina transversely cryosectioned

at 12 m (CM1950, Leica Microsystems, Wetzlar, Germany) using a fine brush on the sclera

to guide the section from the blade. Sections were thaw mounted onto indium-tin-oxide-

coated conductive slides (Bruker Daltonik, Bremen, Germany).

The sections were coated with 9-aminoacridine (9-AA) hydrochloride monohydrate matrix

(Sigma-Aldrich, Germany) at 10 mg/ml in water/methanol 30:70 (v/v) by a SunCollectTM

automatic sprayer (Sunchrom, Friedrichsdorf, Germany). Fine droplets of matrix were

http://www.proteomics-journal.com
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deposited  onto  the  tissue  section  at  variable  flow rates  over  8  layers.  The  first  three  layers

were performed at 10 µl/min, 20 µl/min and 30 µl/min, respectively. The last five layers were

set at 40 µl/min.

2.2 MALDI mass spectrometry imaging

MSI was performed using a Bruker Solarix 7T FTICR-MS (Bruker Daltonik, Bremen,

Germany) in negative ion mode. Ions were detected over a mass range of m/z 50 to 1000 with

a lateral resolution of 50 µm. For identification of metabolites, MS/MS analysis was

conducted using continuous accumulation of selected ions mode, which allows the target ions

to be selected in the quadrupole and accumulated in the collision cell. Metabolites were either

identified by comparing the observed MS/MS spectra with standard compounds or by

matching accurate mass with databases (METLIN, http://metlin.scripps.edu/; MassBank,

http://www.massbank.jp/; and Human Metabolome Database, http://www.hmdb.ca/).

MSI images were generated using FlexImaging v. 4.0 software (Bruker Daltonik). MALDI

ionization has been known to cause both spot-to-spot and sample-to-sample variations in

signal intensities due to the heterogeneity of matrix crystals. To remove variations in pixel-to-

pixel intensity,  the signal for each pixel was normalized against  the root mean square of all

data points using FlexImaging v. 4.0 software. This normalization process is critical for

quantitative comparison of MSI data acquired from different tissue sections.

2.3  Haematoxylin and Eosin Staining

Following MSI measurement, the matrix was removed with 70% ethanol, and the sections

stained with haematoxylin and eosin (HE), coverslipped, and scanned using a 20x

http://www.proteomics-journal.com
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magnification objective on a Mirax Desk slide scanner (Carl Zeiss MicroImaging, Göttingen,

Germany). The scans were co-registered with the MSI data to correlate the mass spectrometry

data with the histological features of the corresponding region.

2.4 Metabolite extraction and LC-(MS/MS)

80 mg of porcine retina tissue was placed in NucleoSpin BeadTube (Macherey Nagel,

Düren,  Germany)  with  1  ml  of  cold  80%  MeOH/20%  water.  The  tissue  was  lysed  for  3

minutes at a frequency of 30 Hz using a TissueLyser (Qiagen, Hilden, Germany), centrifuged

at 17,900 g at 4°C for 15 minutes and transferred to an autosampler vial.

LC-MS(/MS)  was  used  to  confirm  the  identities  of  various  retinal  metabolites  against

standards (Sigma-Aldrich, Munich, Germany; see Table 1) on a XBridge Amide column, 100

mm x 4.6 mm ID, 3.5 µm (Waters, Eschborn, Germany) using an established protocol [23].

Briefly, 10 µl of retina sample and 10µg/ml of single metabolite standards were injected on

the column via full loop injection. Separation was carried out on a Waters Acquity UPLC

(Waters, Eschborn, Germany) coupled to maXis UHR-TOF-MS (Bruker Daltonics, Bremen,

Germany),  at  a  flow  rate  of  300  l/min,  using  the  same  gradient  conditions  as  Yuan  et  al.

[23]. Buffer A consisted of 20 mM ammonium hydroxide and 20 mM ammonium acetate, pH

9, in 5% ACN/95% water, and 100% ACN as buffer B. Detection was carried out in negative

ion mode. The MS was calibrated using Low concentration Tune Mix (Agilent, Waldbronn,

Germany). For confirmation of metabolite identity, high resolution extracted ion

chromatograms of theoretical ion masses (+/- 0.005 Da) were generated in Bruker Data

Analysis 4.1. If possible, additional MRM experiments were performed with an isolation

width  of  5  Da  and  collision  energy  of  30eV with  nitrogen  as  collision  gas  was  used.  In  all

http://www.proteomics-journal.com
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experiments, three masses were fragmented in one method and the resulting mass spectra

compared against reference spectra from the measured standards and the METLIN database.

2.5 Statistical analysis

Reproducibility of MSI data was evaluated by mean ± standard deviation.

3. RESULTS

3.1. MALDI-FTICR-MSI detection and localization of metabolites in the retina

Figure  1  is  the  workflow  for  the  MALDI-FTICR-MSI  of  light-  and  dark-treated

mammalian retina. Following light- or dark-treatment, retina samples are coated in 9-AA

matrix. The matrix was deposited using a SunCollect sprayer, resulting in fine crystal size

(~20 µm) and homogenous coverage (Figure 2A). Hierarchical clustering, in which similar

spectra are grouped using multivariate statistical analysis, was conducted using the in-built

FlexImaging 4.0 function, and used to generate segmentation maps (Figure 2B) [24, 25].

These segmentation maps are then used to identify areas in which similar spectra occur across

the tissue sample (Figure 2C). Using this approach, MALDI-FTICR-MSI of our sample

resolved more than 600 mass peaks with a single full MS scan.

From the 600 peaks, we identified 23 different metabolites belonging to a broad range of

metabolic pathways using in situ MSI on the MALDI-FITCR. Figure 3 shows the distribution

of  the  23  metabolites  across  the  retina.  These  were  nucleotides  AMP,  ADP,  ATP,  UMP,

UDP, UTP, GMP, GDP, GTP, IMP, and glucose-6-phosphate (G6P), fructose-1,6-bis-

phosphate (F1,6bP), N-acetylaspartate (NAA), citrate and glycerol-mono-phosphate from the

central carbon metabolism pathway. Additionally, we detected metabolites from a number of

different pathways such as desulfoglucotropeolin from 2-oxocarboxylic acid metabolism,

pyrophosphate from oxidative phosphorylation, sn-glycero-3-phosphoethanolamine from

http://www.proteomics-journal.com
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glycerophospholipid metabolism, 3-sulfino-L-alanine and gluthathione from cysteine and

methionine metabolism, and glycerophosphoinositol lipids.

The  identities  of  AMP,  ADP,  ATP,  UMP,  UDP,  UTP,  GMP,  GDP,  GTP,  IMP,  G6P,

F1,6bP, citrate, NAA, glycerol-mono-phosphate, and glutathione, were confirmed by

comparison with LC-full mass scan data and/or MS/MS spectra of standard compounds

(supplementary data 1). As MALDI-FTICR-MS has a high-resolving power (>100,000) and

sub-ppm mass accuracy, it is capable of resolving metabolite peaks with similar nominal

masses of compounds, metabolites and endogenous species in full scan mode often without

the requirement for MS/MS [7, 26]. Therefore, desulfoglucotropeolin, pyrophosphate, sn-

glycerol-3-phosphoethanolamine, 3-sulfino-L-alanine and glycerophosphoinositols were

identified by matching accurate mass with databases (mass accuracy 2 ppm). These findings

demonstrate the potential of MALDI-FTICR-MS for highly sensitive in situ metabolomics

imaging, which can lead to an enhanced understanding of biological mechanisms.

3.2. In situ imaging of the central metabolism pathway in light- and dark- treated retina

The retina possesses many interesting metabolic properties, including high rates of oxygen

consumption and varied electrical activity depending on glucose concentration [27-29]. We

examined differences in the central metabolism pathway of dark and light-treated porcine

retina. An overview and comparison of the metabolic profiles under these conditions is

presented in Figure 4. Reproducibility of MSI data was evaluated by mean ± standard

deviation (5 biological replications). All standard deviations were within 20% indicating

similarity of individual measurement (supplementary data 2).

http://www.proteomics-journal.com
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In  dark-treated  retinas,  G6P  (m/z 259.0220) from glycolysis and F1,6bP (m/z 338.9890)

from the glycolysis and pentose phosphate pathway present similar localization profiles with

both m/z values detected at high intensities in the outer and inner retina. Citrate (m/z

191.0200), from the TCA cycle, followed a similar pattern, localizing evenly across the entire

retina. N-acetylaspartate (NAA, m/z 174.0410), which has a variety of proposed roles in the

central nervous system [30], and lipid metabolism intermediate glycerol monophosphate (m/z

171.0065) were also detected evenly across the retina.

A number of notable differences were found in the distribution profiles of the detected

metabolites between light- and dark-treated samples, particularly those from the glycolysis

pathway. Under the light-treated samples, G6P was detected at high intensities in both the

outer and inner retina, but F1,6bP has completely shifted to the inner retina. Detected in the

outer retina in the dark-treated samples, NAA is almost completely localized to the inner

retina following light treatment, and citrate decreased in the outer retina and increased in the

inner retina following light exposure. Glycerol monophosphate distribution remained

unchanged from dark-treated tissues.

4. DISCUSSION

To gain a better understanding of retinal metabolism, we conducted in situ metabolomic

imaging using a highly sensitive MALDI-FTICR-MS system, and examined differences in

the retina following light and dark treatment. Porcine retinas were used to investigate the

spatial localization of metabolites linked to central metabolism pathway and how they are

altered in two different sensory conditions.

http://www.proteomics-journal.com
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4.1. High-resolution metabolite imaging

Mass spectrometry imaging techniques are emerging as a powerful tool for the analysis of

molecular distributions in biological samples [5, 6]. Unlike traditional mass spectrometry,

sample preparation methods do not result in the loss of spatial localization, while allowing

non-targeted analysis. Compared with immunohistochemistry, this allows detection of many

molecules simultaneously as well as discovery of novel markers. In particular, MALDI-TOF

MSI is capable of discriminating proteins within a wide range of samples from whole animal

sections or specific organs [31, 32], and investigating of specific questions such as tumor

prognostic biomarker detection or discrimination between tumor types [33, 34]. While

MALDI-TOF is a straightforward and a regularly used approach to MSI, the detection of

molecules below m/z 1000 is complicated by ions from the matrix and compounds

endogenous in the sample [35]. FTICR is capable of higher resolution and mass accuracy

than other analyzers primarily due to the greater stability of a superconducting magnet

compared to radio frequency voltage such as that found in an quadrupole ion trap [36]. The

ability of MALDI-FTICR MSI to detect low molecular weight compounds has been

demonstrated in studies examining olanzapine and imatinib in tissue samples and

methamphetamine in a single hair sample [7, 8], while other groups have found that 9-AA

matrix is suitable for investigating samples in low-mass ranges [37, 38]. The study presented

here combines these two approaches to investigate metabolism within the mammalian retina.

By combining MALDI-FTICR-MS with the use of 9-AA matrix, we were able to detect a

broad range of metabolites from a number of different pathways, such as glycolysis and the

TCA cycle, nucleotides, and lipids within the mammalian retina. A similar study had

previously been conducted using 9-AA and mouse brain [37], and we were able to detect

several of the same metabolites in retinal sections. More interestingly, we have demonstrated

http://www.proteomics-journal.com
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that this approach is able to differentiate between different metabolic states of the same

tissue.

4.2. MALDI-MSI of the retina

MALDI-MSI of the eye has been relatively limited, possibly due to difficulties in handling

ocular tissues. MSI studies of the lens have examined the distributions of proteins such as

aquaporin 0 [39], MP20 [39], Apolipoprotein E and collagen VI [40]. Additionally, a number

of studies have examined distributions of crystallin proteins and peptides in the lens [41, 42],

and their alterations in age and disease [43-45]. MALDI-MSI of the retina has primarily used

MALDI-TOF-MS and concentrated on lipid distributions. These studies can also be divided

into two main areas – studies that utilized whole preparations and those that use retinal

sections. Studies of whole mouse and human retina have examined the distribution of N-

retinylidene-N-retinylethanolamie (A2E) [46, 47], a major component of lipofuscin which has

roles in aberrant cholesterol metabolism and is thought to play a role in the development of

age-related macular degeneration [48]. Interestingly, these MALDI-MSI studies found

contrasting distributions between the mouse and human samples with a correlation between

A2E and lipofuscin fluorescence in mouse tissue that was not present in human retina. Using

sectioned retinal tissue, MALDI-MSI studies have found that the distributions of different

phospholipids and fatty acids follow the different retinal layers [49-51], while others have

used this technique to examine drug penetration and metabolism within ocular tissues [52-

54]. However, while the previous studies utilized MALDI-TOF-MS or nano-particle-assisted

laser desorption/ionization, we believe our study to be the first to utilize MALDI-FTICR-MS

to examine the central metabolism pathway (glycolysis, TCA) within the normal retina.

http://www.proteomics-journal.com
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4.3. Metabolism within the outer retina.

Anatomically and functionally, the retina can be separated into two distinct sections:

the outer retina which is populated with photoreceptors that transform light into electrical

signals, and the inner retina containing signal-processing neurons. Many studies have been

conducted comparing the effect of outer or inner retinal location and illumination on retinal

metabolism, and for simplicity we will also examine our findings with respect to outer versus

inner retina [10, 11, 13-15, 17, 55, 56].

In our study, MALDI-FTICR imaging of dark-treated retina detected G6P, F1,6bP,

citrate, and NAA within the outer retina. With the exception of G6P, which is unchanged, all

of these compounds were decreased in light-treated outer retina. The relatively higher

amounts of all metabolites under dark conditions reflect the function of photoreceptors and

their specialized metabolic requirements. Photoreceptors are known to be among the most

metabolically demanding cells in the body as they are depolarized and constantly release the

neurotransmitter glutamate in the dark, requiring constant Na+/K+-ATPase activity to

maintain plasma membrane potential and Ca2+ flux for synaptic transmission [57].

Photoreceptors have a high density of mitochondrial and glycolytic proteins [58], as befitting

their metabolically demanding status, which would account for our detection of these

products in these cells. In response to light stimulation, photoreceptors hyperpolarize and

cease neurotransmitter release, thereby decreasing their metabolic demands. Indeed,

glycolysis and glucose oxidation within the outer retina has been measured as being 42%

lower in light conditions than in the dark [10]. The relative stability of G6P levels in contrast

to  the  other  detected  metabolites  in  the  outer  retina  could  therefore  be  due  to  a  slowing  of

glycolytic activity.  The outer retina is  avascular and is nourished by the choroid.  Choroidal

blood flow is not altered by light stimulation [56], and so while the delivery rate of glucose

http://www.proteomics-journal.com
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and glucose phosphorylation remains the same as in dark conditions, decreased glycolytic

activity results in decreased levels of downstream metabolites such as F1,6bP following

exposure to light.

4.4. Metabolism of the inner retina

Our MALDI-FTICR images of the inner retina indicate the presence of G6P, F1,6bP, citrate,

NAA and glycerol monophosphate at similar levels in both dark and light-treated retina.

Studies using different techniques have reported no difference in inner retinal metabolism

between light and dark conditions [11, 17, 59, 60], although functional studies have indicated

an increase in neuronal activity in light conditions [61, 62]. Shih and colleagues suggested

that a possible reason for the lack of metabolic change in the inner retina between light and

dark conditions is  due to the responses of post-receptoral  neurons in response light [56].  In

the mammalian retina, the post-photoreceptor signaling can be split into two broad categories

– the ‘ON’ and ‘OFF’ pathways, both of which are activated by photoreceptor activity. In the

dark, photoreceptor glutamate release hyperpolarizes ‘ON’ bipolar cell and depolarizes ‘OFF’

bipolar cells. Light stimulation and photoreceptor hyperpolarization reverses this activity,

resulting in ‘ON’ bipolar cell depolarization and ‘OFF’ bipolar cells hyperpolarization (for an

overview of retinal function, see [12]). Shih and colleagues suggest that because the activity

of ON and OFF bipolar cells is reversed in light from dark, as opposed to a complete change

in activity such as seen in photoreceptors, the lack of net activity changes could account for

why there is no measurable difference in metabolism [56]. Our findings of unchanged central

metabolism pathways compound levels in dark and light-treated retina is therefore in

agreement with previous reports.

4.5. Wider use of metabolite imaging

http://www.proteomics-journal.com


A
cc

ep
te

d 
A

rt
ic

le
www.proteomics-journal.com Page 16 Proteomics

This article is protected by copyright. All rights reserved

Our study has revealed the distribution of metabolites in the retina and demonstrated

differences in biocompounds associated with the central metabolism pathway in the retina in

light and dark conditions. It is important to understand these unique distributions as many

diseases of the retina exhibit or are derived from metabolic disturbances [18, 63-65]. Diabetic

retinopathy (DR) is a major complication of diabetes, which affects over 90% of type 1 and

60% of type 2 diabetics after two decades of disease [66]. A large number of biochemical

alterations are known to occur within diabetic retina that affect metabolite levels, such as

Na+/K+ATPase dysfunction [19], altered amino-acid neurotransmitter metabolism [67], and

a decreased abundance of NADH dehydrogenase (ubiquinone) subunits[68]. As a

phosphorylated form of glucose, the distribution of G6P and other glycolysis metabolites

would be ideal metabolites to examine in DR. G6P dehydrogenase (G6PD) catalyzes the

conversion of G6P to 6-phosphogluconolactone as the first step of the pentose phosphate

pathway. G6PD deficiency has been linked with increased prevalence of type 2 diabetes [69],

while type 1 (juvenile) diabetic patients with a G6PD deficiency have been found have an

increased prevalence of proliferative retinal microvasculature complications [70]. Likewise,

glycolysis is known to be altered in diabetic retina, although the exact nature of its

dysfunction is matter of debate. One study using direct measurements of metabolites reported

accumulated F1,6bP and therefore increased glycolysis [71], while another study using NMR

spectroscopy indicated that glycolysis rates were decreased [72]. Additionally, as

hyperglycaemia is known to affect the activity of a number of glycolysis-associated

pathways, it would be useful to use MSI to determine how fluctuations in other metabolites,

such as sorbitol from the polyol pathway, changes in diabetes.

5. CONCLUDING REMARKS

http://www.proteomics-journal.com
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This highly sensitive MS imaging technique allowed the visualisation of the distributions

of a broad range of metabolites simultaneously in mammalian retina. These ndings highlight

the potential applications of this in situ metabolomics imaging technique for the visualization

of  spatiotemporal  dynamics  of  the  tissue  metabolome.  MSI  offers  unique  advantages  over

traditional mass spectrometry and autoradiography techniques in that the spatial distribution

of varied classes of molecular species, including peptides, proteins, lipids, drugs and

metabolites, can be determined using the same platform. Implementation of MSI qualitative

and quantitative data for both endogenous and exogenous molecular species from different

compound classes has widespread impact on clinical research and study of disease

mechanisms. In this way, molecules can be interrogated in their native environments,

providing new insights into the biological processes at systems biology level and facilitating

understanding of disease processes and finding of novel biomarkers.
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Figure 1: A workflow for the MALDI imaging of light- and dark-treated mammalian retina.
Porcine eyes were used as the model systems. Light- and dark-treated retinas were
transversely cryosectioned at 12 m, coated with 9-AA matrix and analyzed with MALDI-
FTICR-MS. By comparing the signal intensities of light and dark-treated retinas, metabolites
with different expression profiles can be illustrated.
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Figure 2: High spatial resolution-MSI allows resolving of the layered structure of the retina.

A: A microscope image of 9-AA matrix crystals demonstrates homogenous coverage

consisting of crystals approximately 20 µm in size. B: Hierarchical clustering based on

multivariate statistical analysis of similar peak populations generates segmentation maps of

the imaging data set. C: MSI images of different metabolites which are located on different

retina layers. As examples, glutathione, fructose-1,6-bisphosphate and glucose-

monophosphate are shown.
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Figure 3. In situ MALDI-FTICR-MSI of dark-treated retina. MS imaging data were acquired

in negative ion mode with 50 µm spatial resolution. A broad range of metabolites including

nucleotides, central metabolism pathway, 2-oxocarboxylic acid metabolism, oxidative

phosphorylation, glycerophospholipid metabolism, cysteine and methionine and lipids were

simultaneously visualized in a single MS imaging experiment. The region of retina section

shown above as stained with H&E shows the spatial distribution of the detected compounds

(RPE, retinal pigment epithelium; OS, outer segment; IS, inner segment; ONL, outer nuclear

layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL,

ganglion cell layer).
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Figure 4: In situ central metabolism pathway imaging of retinas that had either been

maintained in the dark or treated with light. Cryosectioned retina slices (12 µm thickness)

were used for the in situ metabolite imaging. Mass-resolved imaging data were acquired in

negative ion mode at 50 µm spatial resolution. All imaging data were normalized against the

root mean square of all data points for quantitative comparison of the concentration of each

metabolite under the different conditions. P = phosphate.
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Table 1. List of chemical standards used for LC-MS/MS validation experiments.

Name Sigma-Aldrich Catalogue number
AMP A2252-5G
ADP A2754-100MG
ATP FLAAS-1VL
UMP U6375-1G
UDP 94330-100MG
UTP 94370-250MG
GMP G8377-500MG
GDP G7127-25MG
GTP G8877-25MG
IMP I4625-5G
Glutathione G4251-1G
Glucose monophosphate G7250-500MG
Fructose 1,6-bisphosphate F6803-1G
Glycerol monophosphate 94124-10MG
N-Acetylaspartate 00920-5G
Citrate 251275-5G
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