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ABSTRACT

Motor neurons in the vertebrate spinal cord are stereotypically organized along the rostro-caudal axis in
discrete columns that specifically innervate peripheral muscle domains. Originating from the same
progenitor domain, the generation of spinal motor neurons is orchestrated by a spatially and temporally
tightly regulated set of secreted molecules and transcription factors such as retinoic acid and the Lim
homeodomain transcription factors Isl1 and Lhx1. However, the molecular interactions between these
factors remained unclear. In this study we examined the role of the microRNA 9 (miR-9) in the
specification of spinal motor neurons and identified Onecut1 (OC1) as one of its targets. miR-9 and OC1
are expressed in mutually exclusive patterns in the developing chick spinal cord, with high OC1 levels in
early-born motor neurons and high miR-9 levels in late-born motor neurons. miR-9 efficiently represses
OC1 expression in vitro and in vivo. Overexpression of miR-9 leads to an increase in late-born neurons,
while miR-9 loss-of-function induces additional OC1* motor neurons that display a transcriptional
profile typical of early-born neurons. These results demonstrate that regulation of OC1 by miR-9 is a
crucial step in the specification of spinal motor neurons and support a model in which miR-9 expression
in late-born LMCI neurons downregulates Isl1 expression through inhibition of OC1. In conclusion, our
study contributes essential factors to the molecular network specifying spinal motor neurons and

emphasizes the importance of microRNAs as key players in the generation of neuronal diversity.

© 2014 The Authors. Published by Elsevier Inc. All rights reserved.

Introduction

In the developing neural tube numerous transcription factors act
in concert to generate a large diversity of neurons that eventually
will populate the mature spinal cord in stereotypic patterns.
Precursors within the ventricular pMN domain first give rise to
motor neurons of the medial motor column (MMC) and the medial
aspect of the lateral motor column (LMCm) before motor neurons of
the lateral LMC (LMCI) are generated (Jessell, 2000). Several genetic
determinants for the establishment of columnar motor neuron
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identity have been identified. For example, the maintenance of
Isl1 expression by Onecut transcription factors is important to
generate LMCm neurons. Later during spinal cord development
cross-repressive interactions between Isl1 and another transcription
factor, Lhx1, lead to the formation of lateral LMC neurons (Francius
and Clotman, 2009; Roy et al., 2012; Kania and Jessell, 2003). While
the generation of Lhx1* LMCI neurons is dependent on retinoic acid
secreted from early-born LMCm neurons (Sockanathan and Jessell,
1998; Sockanathan et al., 2003), the regulatory events downstream
of retinoic acid signaling and upstream of the Isl1/Lhx1 cross-
repressive events are unclear.

It is now appreciated that posttranscriptional silencing by micro-
RNAs plays an important role in the spatial and temporal regulation
of neuronal specification (Shi et al, 2010). Indeed, disrupting
microRNA biogenesis by conditional deletion of Dicer in motor
neuron progenitors caused loss of many limb and sympathetic
ganglia-innervating spinal motor neurons (Chen and Wichterle,
2012; Zheng et al,, 2010). Recently, miR-9 was found to regulate
the formation of divisional identity by fine-tuning expression levels
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of FoxP1, a transcription factor involved in the generation of lateral
motor column (LMC) motor neurons and motor neurons of the
preganglionic motor column (PGC; (Otaegi et al., 2011). The expres-
sion pattern and function of miR-9 during maturation and specifica-
tion of brachial motor neurons, however, suggest that beside the
modulation of FoxP1 levels miR-9 may play an additional role in the
establishment of motor neuron subtypes.

Here, we show that miR-9 and OC1 are expressed in mutually
exclusive patterns within the LMC and MMC. Using gain- and
loss-of-function approaches we demonstrate that miR-9 controls
OC1 protein expression. In addition, our results show that miR-9
promotes the generation of later-born motor neurons while miR-9
knockdown leads to the transcriptional profile of early-born motor
neurons. Our data support a role of miR-9 in the specification of
motor neuron subtypes through the modulation of OC1 function.

Materials and methods
Chick electroporation

Fertilized eggs were stored at 10-15 °C and incubated for 2 days
at 37.5 °C. In ovo electroporation was performed at HH St 10-14 by
injecting respective DNA/RNA dissolved in PBS and 0.01% Fast
Green into the central canal of the spinal cord. Unilateral transfec-
tion was performed using a platinum electrode (CUY 610P4-4,
Sonidel, USA) and 5 pulses of 25V (duration 50 ms each) using a
BTX ECMS830 square wave electroporator (Harvard apparatus,
Edenbridge, UK). After electroporation, eggs were incubated again
at 37.5 °C. At the appropriate time points embryos were removed,
staged, and fixed with 4% PFA at 4 °C.

DNA/RNA constructs

For miR-9 gain-of-function experiments, Ambion® Pre-miR-9
and negative control Pre-miR miRNA precursors (Life Technolo-
gies, Darmstadt, Germany) were used at a final concentration
of 5uM. To control for efficiency of electroporations, a GFP
expressing plasmid at a concentration of 0.3-0.5 pg/ul was co-
electroporated.

The CAG-GFP-miR-9 sponge plasmid was constructed using a
modified pCRII vector as backbone (Life Technologies) in which the
CAG promoter was inserted via Hindlll/Sacl. The GFP cDNA sequence
was PCR-amplified from a pEGFP-N1 vector (BD Biosciences, Heidel-
berg, Germany) and subcloned using the introduced Sacl and the
BamHI restriction sites. The microRNA sponge construct consisting
of eighteen repetitive bulged complementary miR-9 sequences
(5'-TCATACAGCTATATACCAAAGA-3') separated by a variable four-
nucleotide linker was chemically synthesized (GenScript Corp.,
Piscataway, NJ, USA) and introduced in the 3'UTR of GFP cDNA via
BamHI/Xhol. For the scrambled sponge the sequence 5'-ATGATAA-
CAACGAACGATTACAC-3’ was used. The BGH polyA signal was PCR-
amplified from the pcDNA3 plasmid (Life Technologies) and intro-
duced downstream of the sponge construct via Xbal/Apal. The
control plasmid pCAG-GFP was subsequently generated by remov-
ing the miR-9 sponge using BamHI and Xhol sites and religated after
a Klenow fill-in. For the miR-9 luciferase sensor vector we used the
pCRII backbone and cloned the CAG promoter upstream of the
firefly luciferase gene containing an artificial 3’'UTR with a single
fully complementary binding site for miR-9 (sequence of the 3'UTR:
5'-GGATCCTCATACAGCTAGATAACCAAAGAGAGCTC-3'), followed by
a BGH polyA.

To validate the interaction between miR-9 and OC1, two
reporter Plasmids, pGL3-4xOCl1ts and pGL3-cOC1-3'UTR were
generated. pGL3-4x0C1ts was made by inserting a synthesized
DNA sequence containing 4 repeats of the conserved miR-9 target

sites of OC1 (DNA sequence) separated by 4 nt spacer into the
Xbal sites of the pGL3 promotor vector (Promega, Mannheim,
Germany). For the construction of pGL3-cOC1-3'UTR the chick OC1
3'UTR (466 bp) was amplified from chick E6 cDNA (forward
primer: 5-CGTCTAGACTTGTACCAAAGCATGAAGG-3’; reverse pri-
mer: 5'-CGTCTAGACATGGACACACTGCACACCT-3’) and inserted
into the pGL3 vector. The plasmid pcDNA6.2 EmGFP miR-9
(obtained from Lynn Hudson, Addgene plasmid 22741; (Lau
et al,, 2008) was used to overexpress miR-9 in HEK293T cells.

Immunohistochemistry and in situ hybridization

For immunohistochemical analysis, fixed chick embryos were
cryoprotected in 30% sucrose at 4 °C and embedded in TissueTek
(Sakura, Alphen, The Netherlands). Immunostaining on tissue
sections (12 um) was performed as described before (Huber
et al., 2005) with the modification that prior to antibody incuba-
tion cryosections were placed in hot (95-100 °C) antigen retrieval
solution (1 mM Tris, 5 mM EDTA, pH 8.0). After cooling down for
20 min, sections were washed twice in PBS before proceeding with
the standard blocking step. For immunohistochemistry the follow-
ing primary antibodies were used: anti-hFoxP1 (1:500, R&D
Systems, Wiesbaden, Germany), anti-Hnf6 (clone H-100, 1:500,
Santa Cruz Biotechnology, Heidelberg, Germany), chick-anti-GFP
(1:1000, Aves Labs, Oregon, USA). The following antibodies were
developed by T.M. Jessell and obtained from the Developmental
Studies Hybridoma Bank under the auspices of the NICHD and
maintained by The University of lowa, Department of Biology, lowa
City, IA 52242: anti-Isl1/2 (39.4D5, 1:100), anti-Isl1 (39.3F7,1:100),
anti-Hb9 (81.5C10, 1:100), anti-Neurofilament (3A10, 1:50) and
anti-Lhx3 (67.4E12, 1:100). The polyclonal rabbit anti Lhx-1 anti-
serum was raised against an Lhx1-specific peptide (GNHLSHPPEM-
NEAAVW) as reported before (Tsuchida et al., 1994) and used at a
dilution of 1:2000.

Expression of miR-9 was detected with anti-miR-9 LNA detec-
tion probes (Exiqon, Vedbaek, Denmark) labeled with digoxigenin
using 2nd generation dig labeling kit (Roche Diagnostics, Man-
nheim, Germany). Fixed 12 pm tissue sections were deacetylated
for 10 min in 1% Triethanolamin and 0.125% acetic anhydride and
treated with Proteinase K (5 pg/ml in PBS) for 5 min. Hybridization
was performed over night at 52 °C with a dilution of 1:2000
of labeled miR-9 detection probe in hybridization buffer
(50 x Formamid, 5x SSC, 5x Denhardt's solution, 200 pg/ul
torula yeast RNA). Subsequent to hybridization, stringent washing
steps were performed at 60 °C: 4 x 15min 1 x SSC+0.1% Tri-
tonX100, 4 x 15 min 0.2 x SSC+0.1% TritonX100. After an addi-
tional washing step at room temperature with 0.2 1 x SSC+0.1%
Triton X100 for 15 min, the probe was detected with an AP tagged
anti-digoxigenin antibody (Roche Diagnostics) as described by
the manufacturer followed a NBT/BCIP chromogenic reaction
(Roche Diagnostics).

Luciferase assay

For each transfection of HEK293T cells following amounts of
plasmids were used: 20 ng of firefly luciferase expressing vector
(pGL3, pGL3-4x0C1ts, pGL3-cOC1-3’'UTR or miR-9-luciferase
sensor vector), 5ng of a renilla luciferase expressing vector
(pRL-TK, Promega) and 50 ng miR-9 expressing or control vector
(pcDNA6.1 EmGFP lacking miR-9). After transfection, cells were
grown for 40-48 h, lysed and luciferase activity was detected
using the reagents Beetle Juice and Renilla Juice (PJK, Kleinbit-
tersdorf, Germany). Mean luciferase ratios (firefly luciferase/
renilla luciferase) of triplicate experiments were normalized to
control experiments with plasmids lacking miR-9 expression.
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Double fluorescence GFP/RFP sensor assay

To validate miR-9 function cell autonomously in vivo we used a
double fluorescence GFP/RFP sensor (DFRS) plasmid for miR-9
(Tonelli et al., 2006) in which two binding sites for miR-9 were
introduced in the 3'UTR of the RFP coding sequence (DFRS-miR-9).
To detect the baseline RFP/GFP ratio of the GFP reporter and the
RFP sensor, the plasmid DFRS-miR-9mut was used in which the
miR-9 binding sites were mutated. Plasmids were electroporated
into chick spinal cord at HH St 12-14 and analyzed at HH St 27/28.
A 12 pm cryosections were immunostained for Isl1 and Lhx1 to
identify brachial LMCm and LMCI neurons and direct GFP and RFP
signal was determined using identical microscope settings for all
samples. The mean baseline RFP/GFP ratio of LMCm (1.54 + 0.05,
mean + SEM, n=81 neurons from 2 embryos) and LMCI neurons
(239 +0.11, n=38 from 2 embryos) was determined using the
DFRS-miR-9mut plasmid and used to normalize the individual
RFP/GFP ratio of LMCm and LMC neurons expressing the DFRS-
miR-9 sensor, respectively.

Quantification of OC1 expression

To determine the OC1 immunfluorescence signal after miR-9
gain-of-function the mean fluorescence signal of individual neu-
ronal nuclei was measured using Image]. The mean data of all
examined neurons from the electroporated side of a 12 um
cryosection was then normalized to the control side of the same
section and displayed as difference to control. In miR-9 knock
down experiments OC1 signal intensity of individual GFP* nuclei
from miR-9 sponge or control electroporated neurons was mea-
sured with Image] and mean intensities were calculated and
compared.

Tracing experiments

Retrogade tracing experiments were performed in HH St 29-30
chick embryos. Chick embryos were removed and eviscerated in
oxygenated DMEM/F12 (Life Technologies). 6% Tetramethylrhoda-
min or Alexa488 conjugated dextran (Life Technologies) in 0.4%
TritonX100/PBS was injected into longus colli or semispinalis
cervicis muscles using fine pointed glass capillaries. Subsequently,
embryos were incubated for 3-5h in oxygenated DMEM/F12
before fixation and further processing.

Determination of axon branch thickness

To determine the thickness of ventral and dorsal axon branches,
whole embryos were immunostained against neurofilament and
GFP as described (Huber et al., 2005). Axon branches innervating
electroporated and control wings were imaged using confocal laser
scanning microscopy (LSM 510, Zeiss, Jena, Germany) at identical
positions. 25 um confocal stacks of either radial nerve or ulnar and
median nerves were collapsed onto a single plane and branch
thickness was determined by an experimenter blinded to the
experimental conditions. Radial nerve thickness was measured at
a distance of 100 um proximally to the stereotypic bifurcation (see
Fig. 6B), while ulnar and median nerve thickness was determined
200 pm distally to the point where the nerves separate (see Fig. 6B).
Values of the electroporated wing were normalized to values of the
non-electroporated control side and values of ulnar and median
nerve were summarized to obtain the thickness of the ventral
nerve branch.

Determination of motor neuron identity

Brachial motor columns were determined using immunostain-
ings against Isl1, FoxP1, Lhx1, Hb9 and Lhx3. Isl1* /[FoxP1™" cells were
counted as LMCm neurons, Lhx1*/Hb9™ cells or Isl1 ~/FoxP1* cells
were assigned to the LMCL Due to incompatible Lhx3 and Hb9
antibodies, Lhx3" cells were classified as MMC neurons if posi-
tioned in Hb9-positive area of the adjacent cryosection. To deter-
mine differences in motor neuron numbers, respective cell numbers
of the non-electroporated side were subtracted from the electro-
porated side and normalized to the control cell number ([EP cell
# — control cell #]/control cell#) for each cryosection. The transcrip-
tional profile of GFP* neurons was determined using immunostain-
ings against the motor column markers described above.

Statistical analysis

Statistical analysis was performed using Prism5 (GraphPad
Software, LaJolla, CA, USA). A Wilcoxon sign ranked test was
performed to determine significant differences in neuronal num-
bers and OC1 expression in miR-9 gain-of-function experiments.
Luciferase assays were analyzed by a one-way ANOVA with
Tukey’s multiple comparison post-hoc test. For the evaluation of
GFP* cell identity a Mann-Whitney test was used. A Student’s
t-test was performed in DFRS experiments and in the evaluation of
OC1 signal intensity after miR-9 knock down.

Results
MicroRNA-9 is expressed differentially in brachial motor columns

We first examined the expression patterns of miR-9 in post-
mitotic motor neurons in the brachial spinal cord at HH St 20
to 28, when motor neurons are generated and establish their
peripheral projections. During motor axon outgrowth very little
miR-9 expression is detectable in the chick spinal cord (Fig. 1A).
One day later, at HH St 25, miR-9 levels increase in ventricular and
intermediate zones of the spinal cord (Fig. 1B), similar to previous
observations (Darnell et al., 2006; Zheng et al., 2010). At HH St 28,
when motor neuron migration is almost complete, and the medial
motor column (MMC) as well as lateral and medial aspects of the
lateral motor column (LMCl and LMCm) can be clearly distin-
guished by position and molecular markers, miR-9 is expressed in
specific subpopulations of motor neurons (Fig. 1C). To identify
individual motor columns in the brachial spinal cord and assign
the miR-9 in situ hybridization signal to specific motoneuronal
populations, we stained adjacent sections with either Isl1/FoxP1
(LMCm), Lhx1/Hb9 (LMCI) and Lhx3 (MMC). LMC neurons exhibit
different levels of miR-9 expression depending upon whether they
innervate dorsal or ventral limb muscles. Throughout the brachial
spinal cord, LMCI neurons that innervate dorsal limb muscles
show stronger miR-9 expression than LMCm neurons projecting to
ventral limb muscles (Fig. 1, Fig. S1). To evaluate whether this
differential expression is also manifested in a differential func-
tional activity of miR-9, we electroporated a double fluorescence
GFP reporter/RFP miR-9 sensor plasmid (DFRS miR-9, (Tonelli
et al,, 2006) into the chick spinal cord. In this construct both
fluorescent proteins are expressed under the same promoter but
only the 3'UTR of RFP contains two miR-9 target sites. Thus,
functionally active miR-9 causes a downregulation of the RFP
signal in electroporated cells, while the GFP signal is not affected.
Using this assay we were able to evaluate miR-9 function by
measuring the RFP/GFP ratio. We found that the RFP/GFP ratio
was 40% lower in LMCI neurons when compared to medial LMC



G. Luxenhofer et al. / Developmental Biology 386 (2014) 358-370

361

A stage 20 B stage 25
b
A% | |
miR-9 Is1/Lhx1 miR-9 Hb9/Lhx1
C stage 28

Isl1/FoxP1

Lhx3

GFP-reporter

RFP-miR-9 sensor

Hb9/Lhx1

RFP/GFP ratio

1.51 kk

0.5 1

0.0-
LMCm LMCI

GFP/RFP/Isl1

Fig. 1. Expression of miR-9 in the developing spinal cord. (A) Expression of miR-9 is almost not present at early developmental stages (HH St 20). (B) miR-9 strongly increases
at HH stage 25 in the ventricular zone and is also present in Hb9 " motor neurons. (C) At HH St 28, brachial lateral motor column (LMC) divisions were identified with Isl1/
FoxP1 (LMCm) and Lhx1/Hb9 (LMCIl). Brachial MMC motor neurons were identified as Lhx3* neurons located in the Hb9 area of the adjacent section. Schematic drawing of
miR-9 expression pattern at HH St28 visualizes miR-9 expression in the lateral LMC and lateral MMC. (D) Expression of a double fluorescence GFP reporter/ RFP miR-9 sensor
(DFRS miR-9) plasmid and evaluation of the RFP/GFP ratio in individual LMCI and LMCI neurons. Lateral LMC neurons exhibit a significant lower RFP/GFP ratio (0.64 + 0.02,
mean + SEM, n=151) than medial LMC neurons (1.07 + 0.07, n=381, p < 0.0001). Scale bars 20 pm.

neurons thereby demonstrating a higher level of functionally
active miR-9 in LMCI neurons (Fig. 1D). Thus, combining histolo-
gical and functional approaches, we showed that miR-9 is differ-
entially expressed in the brachial LMC.

In MMC neurons, miR-9 expression is very strong in the lateral
aspect of the MMC while it is absent in more medially located
Lhx3 ™" brachial spinal motor neurons (Fig. 1C, arrow). This differ-
ential miR-9 expression pattern is even more distinct at later

developmental stages (Fig. 3B) and suggests a potential role for
this microRNA in generating columnar identity.

miR-9 and the transcription factor Onecut exhibit mutually exclusive
expression patterns

Members of the Onecut (OC) family of transcription factors
are differentially expressed in the mouse and chicken spinal cord
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(Francius and Clotman, 2009). Mouse OC1/2 3'UTRs contain
several highly conserved miR-9 target sites and miR-9 regulation
of OC1/2 expression has been validated in cortical neurons and in
the pancreas (Bonev et al., 2011; Dajas-Bailador et al., 2012;
Plaisance et al., 2006). The Onecut transcription factors have not
yet been annotated in chicken genome and transcriptome assem-
blies. However, computational analysis suggests the presence of
the OC1 gene on chromosome 10 (Francius and Clotman, 2009).
In this study, an antibody against mouse OC1 (HNF-6) was used to
investigate the expression pattern of chick OC1 at very early (HH St
18) and late (HH St 29) stages of chick spinal cord development.
The authors found that OC1 is initially expressed by many motor
neuron populations, while it becomes restricted to a specific
subset of spinal motor neurons at later stages (Francius and
Clotman, 2009). Here, we examined intermediate developmental
stages (HH St 20-28) to determine the degree of correlation
between OC1 and miR-9 expression profiles.

At HH St 20/21 virtually all mature motor neurons, which are
located in the lateral aspect of the ventral horn, express OC1
as shown by co-labeling with Isl1/2 (Fig. 2A). One day later, OC1
expressing cells are Isl1"/Lhx3" representing early-born MMC
neurons (Fig. 2B, arrows). At this developmental stage, prospective
Lhx1*/Hb9* LMCI neurons are still migrating and are therefore
positioned more medially with respect to LMCm neurons (Fig. 2B,

A
stage 21

asterisk). LMCm neurons express OC1 at significantly higher levels
than LMCI neurons, which is even more prominent at HH St 27
(Fig. 2C). Lhx3* neurons located in medial areas of the MMC
strongly express OC1 (Fig. 2C, arrows), while hardly any OC1 signal
was detectable in lateral MMC neurons (Fig. 2C, asterisk). Thus,
OC1 expression levels differ greatly between motor neuron
subpopulations, with OC1 being strongly expressed in neurons in
the LMCm and medial areas of the MMC, where only low miR-9
expression levels were found (Fig. 2C).

Taken together, the expression patterns of miR-9 and OC1 during
the generation and maturation of spinal motor neurons are mutually
exclusive. In the LMCm, where OC1 protein expression is strong at
HH St 27/28, miR-9 is absent, whereas lateral LMC neurons display a
low OC1 signal and a strong miR-9 expression (Fig. 2D). Such a
complementary expression pattern was also found in the MMC.

At brachial spinal levels, MMC neurons innervate the semispinalis
cervicis (SC) and the longus colli (LC) muscles (Gutman et al.,, 1993),
however, at present there are no molecular markers that allow for
identification of muscle-specific MMC pools. We therefore retrogra-
dely traced motor neurons that innervate the LC and the SC muscles
by injecting fluorescent dextran conjugates. Antibody labeling and
in situ hybridization analyses revealed that the LC innervating MMC
neurons (MMC,¢) are located medially and express OC1 and Lhx3 but
not miR-9 (Fig. 3A and B). In contrast, motor neurons innervating the

stage 27

oc1 0C1/1s11/2
B

%
5 %
O L

O

o
3 2
z S
X S
5 o

FoxP1/Isl1
OC1/Lhx3

miR-9
OCH1

Fig. 2. Onecut1 expression pattern in the brachial spinal cord. (A) At early stages (HH St 21) Onecut1 is expressed in all mature Isl1/2-positive motor neurons, which are
already located in a lateral position of the ventral horn. (B) At HH St 25, OC1 expression gets restricted to dorsolateral and medioventral positions (arrowheads). Newly born
Lhx1/Hb9 double-positive LMCI neurons downregulate OC1 (asterisk). Early-born Lhx3*/OC1* neurons reside at a very medioventral position (arrow). (C) At HH St 27, late-
born Lhx3 ™ MMC neurons (asterisk) do not express OC1, and migrate laterally compared to the early born Lhx3"/OC1* MMC neurons (arrows). Isl1/FoxP1 double-positive
LMCm neurons express high levels of OC1 while Isl1-negative LMCI neurons are devoid of OC1. (D) Comparison of OC1 and miR-9 expression within the brachial ventral horn.
Areas of high OC1 and high miR-9 expression are mutually exclusive. LMCm and medial parts of the MMC exhibit low or absent miR-9 expression but are occupied by OC1"&"
neurons, while neurons in the lateral part of the MMC and in the LMCI express miR-9 but not OC1. Scale bars 20 pm.
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OC1

semispinalis cervicis

Fig. 3. Retrograde tracing from longus colli and semispinalis cervicis muscles. (A) Visualization of retrograde tracings of longus colli (LC) or semispinalis cervicis (SC) muscles
with Alexa488 or Rhodamin coupled dextran, respectively, in coronal sections of HH St 29/30 embryos. Motor neurons in the medioventral aspect of the ventral horn
(arrowhead) are labeled by retrogradely transported dextran conjugates, which also visualize axons projecting to the LC (arrow) (left panel). Motor neurons and axons
labeled by tracer injection into the SC are located in the ventrolateral aspect of the motor horn (right panel). (B) Consecutive cryosections of the ventral horn showing
backfilled neurons after injection of labeled dextran into the longus colli or the semispinalis cervicis muscle. Lhx3 marks MMC motor neurons. LC motor neurons are located
in the medial aspect of the MMC and are expressing OC1. In situ hybridization against miR-9 shows that LC neurons do not express miR-9, in contrast to adjacent MMC
neurons located more laterally. These lateral Lhx3* MMC neurons are labeled after tracing SC projections but are not OC1-positive and they show enhanced miR-9

expression. NC=notochord, scale bar 20 um.

SC muscle are located in the lateral aspect of the MMC (MMCsc),
which is devoid of OC1 but expresses high levels of miR-9 (Fig. 3B).
Thus, our expression analysis in combination with retrograde tracing
studies, revealed a mutually exclusive, pool-specific distribution
pattern of OC1 and miR-9, suggesting a functional relationship.

miR-9 regulates Onecutl expression

The 3'UTR of OC1 contains two miR-9 binding sites that are highly
conserved in vertebrates (Fig. 4A). To test whether miR-9 is capable of
regulating OC1 protein expression through these target sites, we
generated a luciferase reporter construct containing 4 OC1 target sites
(4x OC1ts) in the 3'UTR or the biological relevant cOC1-3'UTR (cOC1-
UTR) downstream of the firefly luciferase coding sequence. When a
miR-9 expressing plasmid was co-transfected into Hek293T cells

together with one these two plasmids, luciferase activity was reduced
by 40% (for 4x OCl1ts) or 35% (for cOC1-UTR), compared to the
luciferase activity in the absence of miR-9 (Fig. 4B). Expression of
miR-9 had no effect on luciferase expression when OC1 target sites
were absent from the 3'UTR of the pGL3 vector (Fig. 4B).

To explore whether miR-9 is capable of regulating OC expres-
sion in vivo, we overexpressed miR-9 in the chick spinal cord.
Endogenously, the pre-miR-9 hairpin sequence generates not only
the mature miR-9 microRNA, but also the antisense microRNA miR-9*
(Lagos-Quintana et al., 2002). To avoid side effects arising from miR-9*
expression, which is known to affect proliferation of neuronal pro-
genitors in the spinal cord (Yoo et al, 2009), we used a pre-miR-9
precursor that is incapable of producing mature miR-9% When pre-
miR-9 was electroporated together with a GFP expressing plasmid, a
strong miR-9 signal was detected only in the electroporated side of the
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Fig. 4. miR-9 regulates OC1 expression. (A) Two highly conserved miR-9 binding sites (red boxed nucleotides) are found in the 3’ untranslated region of the OC1 gene. Seed
sequences of miR-9 target sites show seed matches of 7mer-1A and 8mer, respectively, according to Targetscan6.0 (Friedman et al., 2009). (B) Luciferase assay with empty
pGL3, pGL3 containing 4 OC1-miR-9 target sites in firefly luciferase 3'UTR (4x OC1ts) or the biologically relevant cOC1 3'UTR (cOC1 UTR). Co-transfection of HEK293T cells
with 4x OC1ts or cOC1 UTR and a miR-9 expressing plasmid resulted in a significant reduction of relative Luciferase activity to 61.5% + 3.4% or 66.5% + 5.3% (p < 0.01, n=6),
respectively. Firefly luciferase activity from the empty vector co-transfected with miR-9 was not affected significantly. (C) Electroporation of 5uM pre-miR-9 miRNA
precursor (Ambion) at HH St 12 into chick neural tube results in miR-9 overexpression in the right side of the spinal cord two days after electroporation (pEP; HH St 20/21).
Note that hardly any endogenous miR-9 expression is detectable at this stage (left side of the spinal cord). Three days after electroporation, miR-9 expression in the
electroporated half of the spinal cord (see inlet for co-electroporated GFP) is only weakly higher compared to the control side. (D) OC1 expression after co-electroporation of
5 uM pre-miR-9 and pCAG-GFP 3 days after electroporation. OC1 expression is significantly decreased compared to the control side. (E) Staining for activated Caspase3.
Overexpression of miR-9 did not induce cell death in the electroporated side of the spinal cord (miR-9: 1.40 + 0.59; control: 1.37 + 0.33). (F) Quantification of OC1 expressing
neurons. Compared to the non-electroporated side of each cryosection, miR-9 overexpression led to a significant loss of 46.1% + 3.0% of OC1-positive cells (n=28 sections
from 3 embryos, p <0.0001). In contrast, mock EP (—2.0% + 3.0%, n=15/3) or the negative control pre-miR (—0.1% + 1%, n=14/3) did not change OC1 cell numbers
significantly. (G) Quantification of OC1 immunfluorescence (IF) in OC1-positive neurons from electroporated side compared to control side on the same cryosection. After
electroporation of pre-miR-9 the mean OC1 signal is decreased by 33.5% + 4.2% (n=28/3, p < 0.0001). In contrast, mock EP (+0.6% + 2.1%, n=15/3) or the negative control
pre-miR (+6.3% + 4.4%, n=14/3) did not change OC1 immunosignal significantly. Scale bar 50 pm.

Fig. 5. Overexpression of miR-9 induces changes in motor neuron subtype identity. (A-C) Immunostainings against Isl1/FoxP1, Hb9/Lhx1 and Lhx3/OC1 at HH St25 reveal motor
columns at brachial spinal levels after electroporation of pCAG-GFP only (mock EP, left panels), a negative control sequence (middle panels), or pre-miR-9 (right panels). No difference
in columnar distribution is observed in control conditions (mock EP and control pre-miR), in contrast, in miR-9 gain-of-function (pre-miR-9) situations, the numbers of LMCm neurons
(asterisk) and Lhx3* /OC1 " MMC;c neurons (asterisk) are strongly reduced while the numbers of LMCI neurons are increased (asterisk). (D) Electroporation efficiency visualized by co-
electroporated pCAG-GFP. (E) Quantification of numbers of Isl1* /FoxP1* (LMCm), Lhx1*/Hb9* (LMCI), Lhx3*/Hb9" (MMC) and Lhx3*/OC1* (MMC.c) neurons was determined
4 days after electroporation (HH St 27/28), normalized to respective motor neurons in the non-electroporated side of the spinal cord and presented as the difference to control side.
After electroporation of pre-miR-9, numbers of LMCm neurons are decreased by 48.4% + 3.2 (n=21 sections of three embryos, p < 0.0001) while LMCI numbers are significantly
increased by 36.3% + 12.2 (n=24/3, p < 0.001). Electroporation of the CAG-GFP plasmid only (mock EP) or overexpression of a control pre-miR sequence does not significantly alter
neuron numbers in the LMC or MMC. Evaluation of MMC neurons reveals no effect on total Lhx3* /Hb9 ™ motor neurons (+ 1.4% + 10.7%, n=16/3, p=1), however, the amount of
0OC17*/Lhx3* double-positive MMC;c neurons decrease significantly by 26.0% + 7.8% (n=32/3, p < 0.005). (F) Electroporation of pre-miR-9 causes a small reduction of total FoxP1"
cells (—10.5% + 4.9, n=34/3, p=0.2) when compared to the control side. This reduction is, however, not significant. Mock EP or overexpression of a control pre-miR sequence do not
change the total number of FoxP1* cells. (G) Schematic drawing of the effects by miR-9 GOF. Scale bars 50 pm.
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spinal cord (Fig. 4C), whereas almost no endogenous miR-9 was A
detectable at this developmental stage (HH St 21). This strong over-
expression was downregulated at later stages despite a successful
electroporation indicated by the co-expressed GFP (Fig. 4C).

Similar to previous observations (Otaegi et al., 2011), we saw no
increase in cell death following miR-9 overexpression, as deter-
mined by activated Caspase3 staining (Fig. 4E). We then asked
whether miR-9 gain-of-function has any impact on OC1 expres-
sion. We found a 50% reduction in the number of OC1-positive
neurons in the ventral horn compared to the non-electroporated
control side (Fig. 4D and F). In addition, the level of OC1 expression
in OC1-positive neurons is also strongly decreased (Fig. 4G). No
change in the number of OC1-expressing neurons nor in the level
of OC1 expression was detected following electroporation of either
the control pre-miR sequence or the expression of GFP alone. Our 7
data show that miR-9 negatively regulates OC1 protein expression
during chick spinal cord development.
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neurons was observed (Fig. 5C and E). Mock electroporation, or £ -204
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in a significant alteration of any cell numbers (Fig. 5E). The same effect ) _
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. . . . Fig. 6. miR-9 gain-of-function leads to decrease of ventrally projecting axon branches.
(Fig. 5F). Thus, our results show that overexpression of miR-9 during & & Y Projecing

the maturation of spinal motor neurons leads to a reduction of
neurons of the MMCc and to a shift towards later-born lateral LMC
neurons (Fig. 5G).

To test whether the generation of supernumerary LMCl neurons
caused by overexpressing miR-9 also resulted in an increased number
of dorsal axon projections, we examined the innervation of the chick
wing using immunostaining against neurofilament in wholemount
embryos. We measured the thickness of the dorsal (radial) and ventral

(A) 3D visualization of axon branches innervating the chick wing in wholemount
embryos stained for neurofilament at HH St 28. (B) Distinct landmarks, e.g. distin-
guished points where axonal branches split were used to determine the thickness of
axon branches. Thickness of the radial nerve was determined 100 um proximally to
the split point while the thickness of the median and ulnar nerves was determined
200 um distally to the split point. (C) Quantification of the branch thickness of
electroporated dorsal (radial) and ventral (sum of median and ulnar) axon branches
were determined for each embryo and normalized to respective axon branch thickness
of the non-electroporated side. After mock electroporation no difference of wing
innervation was observed (dorsal: +4.7% + 4.8%, n=8, p=0.36; ventral: —3.1% + 2.2%,

n=8, p=0.2), but overexpression of miR-9 led to an increase of the dorsal axons
branch (+19.7%45.9%, n=9, p<0.05) innervated by LMCl neurons, while the
ventrally projecting axon branch was decreased by 19.6% +3.9% (n=9, p <0.005)
compared to the non-electroporated control side.

(sum of ulnar and median) nerves at specific landmark points (Fig. GB),
and normalized these measurements to the thickness of respective
nerves in the contralateral, non-electroporated side. Overexpression of

Fig. 7. Motor neuron specification is altered after miR-9 knock down. (A) The miR-9 sponge plasmid contains 18 bulged binding sites for miR-9, each separated by a
4 nucleotide long spacer sequence in the 3’ region of the GFP coding sequence and its expression is driven by the strong CAG promotor. (B) In a miR-9 sensor assay, the
effective downregulation of luciferase activity by miR-9 (30.6% + 3.6%, p < 0.0001, n=3) can be rescued with the miR-9 sponge (81.4% + 3.2%, p=0.07, n=3), while the
scrambled sponge shows no effect (34.3% + 3.1%, p < 0.0001, n=3). (C) Immunostainings at HH St 27 against columnar markers Isl1/FoxP1 (LMCm), Lhx1/Hb9 (LMCI) and
Lhx3/0C1 (MMCc) on the non-electroporated side (control, left panels) and electroporated side of the spinal cord (electroporated, rights panels). (D) Quantification of miR-9
loss-of-function experiments. The numbers are shown as relative change of the electroporated side compared to the control side. miR-9 loss-of-function induces a significant
increase of LMCm neurons by 36.6% + 8.6% (p < 0.001, n=23 sections from four embryos), while the numbers of LMCI neurons are decreased by 15.0% + 4.1% (p < 0.01, n=23/
4). There is no significant change in total Lhx3 " MMC neurons (—4% + 5%, p=0.3, n=18/4), but the numbers of OC1*/Lhx3" double-positive MMC;c neurons are increased
by 72.4% 4 22.5% (p < 0.01, n=19/4). (E) Determination of transcriptional profile of GFP expressing cells. In LMC neurons GFP expression resulting from miR-9 knockdown is
almost exclusively seen in Isl1™/FoxP1+ medial LMC neurons (97.7% + 1.6%, n=15/4) but not in Lhx1*/Hb9™" lateral LMC neurons (2.3% + 1.6%, n=15/4). This differs
significantly (p <0.0001) from LMC neurons electroporated with the empty vector (LMCm 47.5% + 1.9%; LMCl 52.5 + 1.9%, n=10/3). In MMC neurons GFP expression
resulting from miR-9 knockdown is much more evident in Lhx3*/0C1* cells (MMCic: 66.5% + 5.1%, n=22/3) than in the remaining Lhx3"/OC1~ MMC neurons (MMCg:
33.5% + 5.1, n=22/3). Expression of the empty control vector leads to the opposite distribution of GFP™ MMC neurons (MMCc: 22.3% + 3.0%; MMCg: 77.7% + 3.0, p < 0.0001,
n=10/3). (F) After electroporation of the sponge the changes in the total number of FoxP1* motor neurons do not reach significance (+16.2%, n=24/3, p=0.06).
(G) Quantification of OC1 immunfluorescence in GFP-positive motor neurons containing the miR-9 sponge sequence (+) or not (— ). In miR-9 depleted motor neurons mean
OCl1 intensity is almost twice as high (54.5 + 1.8, n=_814 cells) as in motor neurons electroporated with the control plasmid (28.7 + 2.2, n=443, p < 0.0001). (H) Correlation
between GFP and OC1 signal intensities. OC1 expression is positively correlated with GFP expression in miR-9 knock down motor neurons (linear regression:
y=0.2955x+26.658, Pearson r=0.35, n=958, p < 0.0001) while in contrast in the control experiment OC1 expression is negatively correlated with GFP expression (linear
regression: y= —0.0761x+33.42, Pearson r= —0.10, =479, p < 0.05). a.u.=arbitrary units. (I) lllustration of the effects caused by miR-9 LOF. Scale bar 20 pm.
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miR-9 led to an increased thickness of the dorsally projecting radial
nerve, while in contrast the thickness of ventrally projecting nerves
was decreased (Fig. 6C). When we expressed GFP only, no differences
in the branch thickness of radial, ulnar or median nerves were found
(Fig. 6C). These results demonstrate that the supernumerary lateral
LMC neurons that are generated after overexpression of miR-9 exhibit
LMCI identity also in their axonal projection patterns and follow the
dorsal trajectory correctly into the wing.

From this we conclude that manipulation of motor neuron identity
by varying miR-9 expression directly influences the size of particular
motor neuron populations, but leaves the pathfinding capacities of the
motor neurons generated under these conditions intact, resulting in
corresponding alterations of nerve branch thickness.

miR-9 loss-of-function increases numbers of LMCm and MMC;c
neurons

Next, we functionally depleted endogenous miR-9 by electro-
porating a miR-9 “sponge plasmid” (miR-9 sponge) into the chick
spinal cord (Fig. 7A). In order to test the specificity and efficiency
of the plasmid we performed a luciferase-based miR-9 sensor
assay in which the luciferase activity is strongly downregulated
when miR-9 is expressed. The miR-9 sponge vector effectively
rescued the luciferase activity to a normal level, while a scrambled
sponge had no influence on this effect (Fig. 7B).

The effective sponge plasmid consist of 18 bulged miR-9 target
sites located downstream of a GFP coding sequence (Fig. 7A).
Translation of GFP is repressed as long as functionally active miR-9
is available in the electroporated cell. Thus, GFP fluorescence serves
as a marker for a functional knockdown of miR-9 (Ebert and Sharp,
2010). While we found a significant reduction of Lhx1/Hb9 double-
positive LMCl neurons when compared to the non-electroporated
control side, the numbers of Isl1*/FoxP1* neurons of the LMCm
were strongly increased (Fig. 7C and D). Total numbers of FoxP1*
motor neurons were slightly increased, however, this trend did not
reach significance (Fig. 7F). Electroporation of a control plasmid (GFP
only) did not cause a change in numbers nor in the distribution of
lateral and medial LMC neurons. We next investigated whether the
identity of MMC neurons is also changed upon miR-9 knock down.
We found a strong increase in OC1* /Lhx3" MMC;c neurons that is
not observed in control situations while the total numbers of Lhx3 "/
Hb9 " MMC neurons remained unchanged (Fig. 7C and D). Together,
these results complement our data on miR-9 gain-of-function and
demonstrate that endogenous miR-9 is involved in the correct
establishment of subcolumnar motor neuron identity.

While electroporation of a GFP control plasmid resulted in an
even distribution of GFP* neurons in the entire LMC, GFP™* cells
were not homogenously distributed within the ventral horn after
electroporation of the miR-9 sponge (Fig. 7C). To determine which
motor neuron subtypes express GFP and therefore are depleted
of miR-9, we examined the transcriptional identity of GFP* cells.
After miR-9 knock down, almost all GFP* LMC neurons were
Isl1* [FoxP1* (98%), whereas virtually no GFP*/Lhx1*/Hb9 ™ cells
were observed (Fig. 7E). This indicates that lateral but not medial
LMC neurons depend on functionally active miR-9. When we
analyzed GFP*/Lhx3* MMC neurons under control conditions,
the majority (78%) did not co-express OC1 resembling the endo-
genous ratio between MMCsc and MMC, ¢ neurons. However, after
miR-9 knock down, two-thirds of GFP*/Lhx3* MMC neurons
co-expressed OC1 indicating that the generation of MMC¢ neu-
rons is independent of miR-9 function (Fig. 7E).

Thus, OC1 is strongly downregulated due to the silencing function
of exogenous miR-9. We hypothesized that blocking miR-9 by
electroporating a miR-9 sponge should lead to higher levels of OC1
in GFP* neurons. We therefore determined OC1 intensity in GFP*
motor neurons electroporated with the miR-9 sponge or control

plasmid. We found that the mean OC1 expression level in GFP*
neurons that are functionally depleted of miR-9 is almost twice as high
as in control neurons expressing GFP only (Fig. 7G). Next, we
investigated whether GFP and OC1 expression levels are correlated
after miR-9 knockdown. We found a positive correlation of OC1 and
GFP levels in individual neurons if miR-9 was functionally blocked
while a negative correlation was observed in control situations
(Fig. 7H). This indicates that the decrease of OC1 expression depends
on functionally active miR-9.

Together, our miR-9 loss-of-function analyses revealed that the
early-born, OC1 expressing brachial motor pools, LMCm and
MMC,c, gain in number (Fig. 71) and their generation is indepen-
dent on miR-9 functionality. This instructive capacity of miR-9 is
most likely mediated through the inhibition of OC1, since its
expression is enhanced when miR-9 is knocked down.

Discussion
miR-9 and Onecut1 are expressed in mutually exclusive patterns

The transcriptional networks orchestrating motor neuron sub-
type specification are tightly controlled, both at spatial and
temporal levels. We show here that microRNA-9 plays an essential
role in mediating the switch from early-born to late-born motor
neuron populations through the regulation of OC1 protein
expression.

OC1 expression in the developing chick spinal cord is present in
virtually all mature motor neurons in the early phase of motor
neuron migration (HH St 18), while it is restricted to subpopulations
of motor neurons in the LMC and MMC after completion of the phase
of motor neuron generation (around HH St 29) (Francius and
Clotman, 2009). We found that the restriction of OC1 expression to
particular subsets of motor neurons coincides with the generation of
columnar divisions. OC1 is expressed in early-born motor neurons of
the LMCm and the MMC;c that both innervate ventral muscle groups,
namely ventral wing musculature and the longus colli muscle,
respectively. Late-born neurons that migrate to the lateral aspects
of the LMC and MMC showed very low or no OC1 expression. In
contrast, expression of miR-9 was high in LMCl neurons and even
more prominent in MMCsc neurons. It is these motor neurons that
are born the latest in the brachial spinal cord and that innervate the
semispinalis cervicis muscle, which is located dorsal to the spinal
cord (Fig. 8A). The dynamic expression pattern of miR-9, with
expression starting after HH St 19 in the chick spinal cord and at
comparable developmental stages in the mouse, has also been
reported by others (Bell et al, 2004; Chen and Wichterle, 2012;
Darnell et al., 2006; Zheng et al., 2010). Different from a previous
study that reported a uniform distribution of miR-9 in the LMC at HH
St 24 and its downregulation at HH St 29 (Otaegi et al., 2011), we find
a differential expression of miR-9 also at late stages such as HH St
28-30 (Figs. 1 and 3). This is in line with a recent study that showed
strong miR-9 expression at comparable ages in mouse embryos
(E13.5, Chen and Wichterle, 2012). Since such discrepancies may
arise due to different staining protocols, we sought to verify our
expression data by an independent experimental approach using a
sensor construct to detect miR-9 activity cell autonomously. Indeed,
we detected an increased activity of miR-9 in lateral LMC neurons
compared to LMCm. This result strongly supports our observation of
a differential miR-9 expression within the LMC.

Inhibition of OC1 by miR-9 is an important component of motor
neuron specification

miRNAs can execute their repressive nature in two ways: either
directly by inhibiting protein translation, or indirectly by reduc-
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Fig. 8. Functional interactions of miR-9 and Onecut1 leading to a proper generation of spinal motor neurons. (A) Model of the temporal development of brachial motor
column in dependence of Onecut1 and miR-9 expression levels. (B) Schematic illustration of the signaling cascade leading to proper specification of LMC divisions.

ing mRNA stability, but in both cases miRNAs eventually cause
a reduction of target protein levels. This makes it likely that
a particular miRNA and its direct target protein display non-
overlapping expression patterns (Bartel and Chen, 2004). miR-9
is therefore expressed at the right time and location to constitute a
bona fide candidate of a regulator of OC1 protein. This notion is
also supported by the presence of miR-9 target sites in the 3'UTR
of OC1 mRNA (Fig. 4A; (Dajas-Bailador et al., 2012), the direct
repression of OC1 by miR-9 in vitro (Fig. 4B), as well as in vivo:
overexpression of miR-9 in the spinal cord decreased the number
of OC1* motor neurons and the OC1 expression level within these
neurons dramatically (Figs. 4E and 5B).

Proper function of the spinal motor system depends on the
generation of appropriate numbers of distinct subtypes of neurons
and their assembly into functional circuits. During development,
motor neurons establish a topographic projection to limb muscu-
lature whereby the cell body position in the LMC predicts the
trajectory of the corresponding axon: motor neurons located in the
medial LMC innervate ventral limb muscles whereas lateral LMC
neurons project to dorsal limb targets (Jessell, 2000). The estab-
lishment of medial and lateral divisions of the LMC is controlled by
a network of secreted factors and transcriptional regulators that
leads to cross-repressive interactions and finally to a mutual
exclusion of Isl1 and Lhx1 expression domains (Kania and Jessell,
2003). During the establishment of LMC divisional identity, reti-
noids secreted from early-born LMCm neurons are essential to
induce extinction of Isl1 expression and initiate expression of Lhx1
in the later-born prospective lateral LMC neurons (Sockanathan
and Jessell, 1998; Sockanathan et al., 2003). Indeed, the high
expression levels in the progenitor zone might indicate an early
function of miR-9 in maturation of motor neuron subsets. Also, a
miR-9 binding site is predicted in the 3’UTR of Isl1 suggesting a
possible regulation of Isl1 through miR-9. However, we and others
did not find a direct interaction between miR-9 and Isl1 (own
unpublished observations and Lagos-Quintana et al., 2002).

We found that overexpression of miR-9 strongly reduces OC1
protein levels in the developing chick spinal cord. In addition, we
observed a decrease in the numbers of LMCm neurons and an
increase in LMCI neurons. The LMCm-promoting activity of OC1 is
corroborated by a recent study in transgenic mice showing that OC1
acts upstream of Isl1 and directly stimulates its expression in specific
motor neuron subtypes. In OC1/2 double knockout mice no Isl1™
LMCm neurons are generated but instead all LMC neurons adopt the
fate of LMCI neurons, as indicated by Lhx1 expression and projection
to dorsal limb musculature (Roy et al., 2012). Since Isl1 expression in
early post-mitotic motor neurons is not affected in OC1/2 knockout
mice, this strongly suggests that OC transcription factors are impor-
tant to support the maintenance of Isl1 expression in LMCm neurons
at later stages thus preventing them from adopting an LMCI fate. We

cannot exclude that miR-9 also has an effect earlier in development,
however, our data suggest a direct effect on OC1 expression levels in
postmitotic neurons that influences the consolidation of motor pools.
This is also in line with our observation that OC1 expression is
strongly decreased or even absent in Lhx1* LMCI neurons that
express high levels of miR-9. Silencing OC1 during motor neuron
development might be essential to allow for the downregulation of
Isl1 in LMC neurons. Subsequently, expression of Lhx1 can be
initiated, since the repressive activity of Isl1 has been relieved.
How might miR-9-OC1 interactions fit into the regulatory network
that determines spinal motor neuron fate decisions during develop-
ment? A recent study described binding sites for CEBP-ox and CEBP-3
transcription factors in the promotor regions of all three genes
encoding miR-9 precursors (Kutty et al., 2010) and all-trans-retinoic
acid has been shown to induce these transcription factors (Masaki
et al,, 2006). In the same study, 4HPR, a synthetic derivative of retinoic
acid, was shown to induce strong miR-9 expression in retinal pigment
epithelium cells (Kutty et al., 2010). These results and our observations
in the present study support a model of a signaling pathway in which
retinoids secreted from early-born LMCm neurons could induce miR-9
expression in later-born LMCI neurons. Subsequently, miR-9 inhibits
OC1 expression and thus also Isl1 expression in these prospective
LMCI neurons. This enables the later-born motor neurons to initiate
Lhx1 expression and subsequently adopt the LMCI fate (Fig. 8B).

miR-9 fulfills multiple functions in the establishment of motor neuron
pools

Besides OC1 miR-9 has additional predicted and experimentally
validated target genes, affecting diverse neurodevelopmental pro-
cesses from neuronal differentiation, regulation of axon extension
and branching to apoptosis (Bejarano et al., 2010; Dajas-Bailador
et al,, 2012; Laneve et al., 2010). Recently, miR-9 has been shown
to target and silence FoxP1 and thereby fine-tune the levels of
FoxP1 protein in motor neurons (Otaegi et al, 2011). Using a
promoter-driven approach a very strong miR-9 overexpression
was achieved in later-born motor neurons at HH St 24. This late
miR-9 gain-of-function lead to a decrease of FoxP1 levels and LMC
neuron numbers and a concomitant increase of MMC neuron
numbers. We have used an experimentally different approach that
overexpressed miR-9 already in progenitor and early post-mitotic
motor neurons, resulting in an early silencing of OC1 and con-
secutively in a decrease of early-born motor neurons such as
LMCm and MMC;¢ neurons. Since we employed a “pulsed” miR-9
overexpression with fading intensities in later-born motor neuron
populations such as LMCl and MMCsc, we likely do not interfere in
the events consolidating the identity of these motor neurons.
Thus, our findings and previous reports support the emerging
view that microRNAs together with transcriptional regulators act
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spatially and temporally in concert at different levels of neuronal
differentiation, specification and maturation.

In summary, we have shown that miR-9 controls OC1 expres-
sion in the developing spinal cord in a spatially and temporally
dynamic pattern coinciding with the differentiation of motor
neuron subtypes of the LMC and the MMC. Experimentally
manipulating miR-9 expression levels shifts the balance between
medial and lateral LMC divisions in a way that is consistent with a
direct induction of Isl1 through OC1. Finally, our results provide a
plausible model integrating the early inductive capacity of retinoic
acid and the cross-repressive events between Isl1 and Lhx1 that
result in the generation of motor neuron specificity.
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