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Abstract

Niemann-Pick type C (NPC) disease is a rare autosomal-recessively inherited lysosomal storage disorder caused by mutations
in NPC1 (95%) or NPC2. Given the highly variable phenotype, diagnosis is challenging and particularly late-onset forms with
predominantly neuropsychiatric presentations are likely underdiagnosed. Pathophysiologically, genetic alterations
compromising the endosomal/lysosomal system are linked with age-related neurodegenerative disorders. We sought to
examine a possible association of rare sequence variants in NPC1 and NPC2 with Parkinson’s disease (PD), frontotemporal
lobar degeneration (FTLD) and progressive supranuclear palsy (PSP), and to genetically determine the proportion of
potentially misdiagnosed NPC patients in these neurodegenerative conditions. By means of high-resolution melting, we
screened the coding regions of NPC1 and NPC2 for rare genetic variation in a homogenous German sample of patients
clinically diagnosed with PD (n = 563), FTLD (n = 133) and PSP (n = 94), and 846 population-based controls. The frequencies
of rare sequence variants in NPC1/2 did not differ significantly between patients and controls. Disease-associated NPC1/2
mutations were found in six PD patients (1.1%) and seven control subjects (0.8%), but not in FTLD or PSP. All rare variation
was detected in the heterozygous state and no compound heterozygotes were observed. Our data do not support the
hypothesis that rare NPC1/2 variants confer susceptibility for PD, FTLD, or PSP in the German population. Misdiagnosed NPC
patients were not present in our samples. However, further assessment of NPC disease genes in age-related
neurodegeneration is warranted.
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Introduction

Niemann-Pick type C (NPC) disease (OMIM*257220 and

OMIM*607625) is a neurovisceral lysosomal storage disorder,

characterized biochemically by a lipid trafficking defect resulting

in intracellular accumulation of unesterified cholesterol and other

compounds. With incidence estimates of 1:120,000, it is a rare

condition exhibiting an autosomal-recessive mode of inheritance.

NPC is caused by homozygous or compound heterozygous

mutations of either NPC1 (95% of cases) or NPC2 [1,2]. The

diagnosis of NPC is established by a combination of genetic and

biochemical testing, which involves NPC1/2 gene sequencing and

the demonstration of impaired intracellular cholesterol transport

by filipin staining, respectively [3]. The disorder presents with an

extensive phenotypic variability, ranging from fatal neonatal

disease to chronic neurological deterioration in late adulthood.

Besides the key clinical feature vertical supranuclear gaze palsy

(VSGP), neurological symptoms encompass ataxia, early-onset

cognitive decline, psychiatric disturbances, and movement disor-

ders [1,2]. The majority of late-onset forms are diagnosed within

the second or third decade, yet there are an increasing number of

reported cases manifesting as late as 50 years or older, often

mimicking common neurologic or psychiatric illnesses such as

parkinsonian disorders or dementias [1,2,4–9]. As a result of its

broad phenotypic spectrum, NPC is thought to be significantly

under-diagnosed, which is momentous given that an orally applied

enzyme inhibitor has proven to be an effective treatment option

for slowing neurologic disease progression [1,2,10]. Recently, a

remarkable proportion of NPC cases were found in adult patients

with the concurrence of degenerative ataxia and presenile

dementia (17% of 24 patients) [11]. Furthermore, corroborating

the existence of an unrecognized pool of NPC, a multicentre study

identified three NPC patients in 250 adult individuals (1.2%)

suffering from psychosis and/or early-onset cognitive decline

combined with neurological symptoms suggestive of NPC by

NPC1/2 gene sequencing [12]. To date, the prevalence of

misdiagnosed NPC in populations with more common age-related

neurodegenerative diseases is unknown.

On the molecular side, accruing evidence suggests that the

group of lysosomal storage disorders or lysosomal dysfunction in

general is linked with age-related neurodegenerative diseases such

as Parkinson’s disease (PD), frontotemporal lobar degeneration

(FTLD), and progressive supranuclear palsy (PSP) [13–17]. Rare

mutations in the lysosomal disorder genes GBA (Gaucher disease)

and SMPD1 (Niemann-Pick types A and B disease) were shown to

represent susceptibility factors for PD [18,19], and the fundamen-

tal involvement of the lysosome in PD pathogenesis is supported

by the observation that known PD genes such as SNCA, LRRK2,

parkin, PINK1, and ATP13A2 regulate lysosome-dependent path-

ways or lysosomal activity [20]. In FTLD, a critical role of

impaired lysosomal function was pinpointed recently as

TMEM106B, a gene discovered as a FTLD risk factor in

genome-wide association studies, was found to influence lysosomal

function and morphology [21]. Moreover, major genetic forms of

FTLD such as PRGN and CHMP2B encode proteins affecting the

integrity of lysosome-dependent cellular processes [22,23]. Finally,

for the atypical parkinsonian disorder PSP, a recent genome-wide

association study highlighted susceptibility at STX6, a gene

implicated in the endosomal-lysosomal trafficking system, thus

linking the disease to the lysosome as well [24].

Herein, in view of the clinical overlap and with regard to

lysosomal dysfunction as a shared pathomechanistic feature, we

screened for rare NPC1 and NPC2 sequence variants in patients

clinically diagnosed with PD, FTLD and PSP, and a cohort of

population-based controls. We first aimed to assess whether

carriers of rare variants in NPC1 and NPC2 are at higher risk for

developing PD, FTLD, or PSP. Second, based on genetic testing,

we investigated the possibility of misdiagnosed NPC cases in the

respective populations. Our analyses did not reveal any association

between NPC1/2 gene mutations and PD, FTLD, or PSP. Also,

we could not identify any unrecognized NPC patients in our

disease cohorts.

Materials and Methods

Standard protocol approvals, registrations, and patient
consents

The study was approved by the ethics review board at the

Technische Universität München, Munich, Germany, and the

ethics review board of the Hessische Landesärztekammer in

Frankfurt, Germany. All subjects provided a written consent form

to participate in the study, which included detailed information

about the genetic mutational screening and an authorization to

publish the screening results. Subjects have been properly

instructed and have indicated that they consent to participate by

signing the appropriate informed consent paperwork. All potential

participants who declined to participate or otherwise did not

participate were eligible for treatment (if applicable) and were not

disadvantaged in any other way by not participating in the study.

Participants
The study population was composed of 563 patients diagnosed

with PD (32.9% female, 69.466.8 years), 133 patients with FTLD

(41.4% female, 63.868.2 years), 94 patients with PSP (42.6%

female, 69.766.8 years), and 846 general population controls

(47.8% female, 75.966.6 years). All patients were enrolled in one

of three German Medical Centers specializing in neurodegener-

ative disorders (Department of Neurology and Department of

Psychiatry, Klinikum rechts der Isar, Technische Universität

München, Munich, Germany; Paracelsus-Elena-Klinik, Kassel,

Germany; Department of Neurology, Klinikum der Universität

München, Ludwig-Maximilians-Universität München, Munich,

Germany). The clinical diagnoses were established according to

the consensus criteria for PD [25], FTLD [26], and PSP [27].

General population controls belong to the KORA-AGE cohort, a

subset of the original KORA survey enriched for older individuals

[28]. Individuals with known dopaminergic medication or signs of

neurodegenerative disease were excluded from the control sample.

All participants of the study were Caucasian and originated from

the same geographic region.

Variant detection
Patients’ blood samples were drawn and DNA was extracted

from peripheral blood lymphocytes using standard protocols. PCR

primers for the 25 exons and flanking intron regions of NPC1

(RefSeq NM_000271) and the five exons and flanking intron

regions of NPC2 (RefSeq NM_006432) were designed with the

ExonPrimer software (http://ihg.gsf.de). Primer sequences and

PCR conditions are summarized in Tables S1 and S2. Variant

screening was performed using IdahoH’s LightScannerTM
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high-resolution melting (HRM) curve analysis according to

standard protocols (Idaho Technology Inc., Salt Lake City, UT)

[29]. Samples with altered melting patterns were Sanger

sequenced. In addition, Sanger sequencing of the entire NPC1 or

NPC2 coding regions and flanking intron regions ensued when a

known disease-associated mutation was identified, respectively. In

our analyses, we focused on sequence variants with a minor allele

frequency (MAF),1% because NPC is known to be a rare

condition caused by mutations with a very low frequency;

synonymous substitutions were omitted since they are unlikely to

be pathogenic.

Statistical analysis
Differences in variant frequencies between cases and controls

were analyzed using Fisher’s exact test and statistical significance

levels were set at p,0.05.

In silico analysis of variants
PolyPhen2 [30], SIFT [31], and Mutation Taster [32] were

used to evaluate the functional effect of single amino acid

substitutions.

Biochemical and laboratory investigations
The filipin test was performed on fibroblasts cultured from

patient skin biopsies as previously described [33]. The slides were

examined on a Nikon Eclipse 80i epifluorescence microscope using

an UV-1A filter (excitation 365/10, DM400, BA 400) with narrow

pass. Tests to aid the diagnosis of NPC comprise measurement of

plasma chitotriosidase activity as well as assessment of certain

cholesterol oxidation products in plasma (oxysterols) [1,2].

Chitotriosidase activity was assayed using 4-methylumbelliferyl-

b-D-N,N9,N0-triacetylchitotriose as a substrate [34]. Plasma levels

of the oxysterol cholestane-3b,5a,6b-triol were quantified by gas

chromatography-mass spectrometry as previously specified

[35,36].

Results

In the present study, we identified rare sequence variants in

NPC1 and NPC2 that had been previously found in patients with

NPC and considered causative for the condition, henceforth

referred to as ‘‘disease-associated’’, as well as rare sequence

variants of unknown significance. Table 1 details all known

disease-associated variants in NPC1 and NPC2 observed in patients

with PD, FTLD, PSP, and controls. The screening revealed four

different disease-associated NPC1 missense variants (p.Asn222Ser,

p.Arg518Trp, p.Ser1004Leu, p.Pro1007Ala) in five independent

individuals with PD and one possibly disease-associated NPC2

missense variant (p.Val30Met) in an additional subject with PD, all

in the heterozygous status, giving an overall variant frequency of

1.1% among PD cases. In contrast, no disease-associated variants

were seen in the groups of FTLD and PSP patients. In the control

cohort, seven heterozygous carriers (0.8%) of six different disease-

associated NPC1 variants were detected, including one nonsense,

one small insertion and four missense mutations (p.Asn222Ser,

p.Arg348X, p.F779fsX9, p.Ser1004Leu, p.Asn1156Ser, p.Ar-

g1186His). All rare NPC1/2 sequence variants of unknown

significance, as detected in addition to known disease-associated

mutations, are listed in Table 2. These alterations comprised a

total of 16 different missense and five different tentative splicing

variants, eleven of them novel (NPC1: p.Tyr157Cys,

p.Thr477Met, p.His497Tyr, p.Ala521Pro, p.Asp611Gly,

p.Pro974Leu, p.Val1158Met, c.1655-1G.A, c.2131-1G.C,

c.3042-5C.T; NPC2: p.Pro46His); two of the variants (p.As-
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p611Gly, p.Val1158Met) were found in a single individual

diagnosed with PD as described below. There were no significant

differences in variant frequencies between patients with PD,

FTLD, PSP and controls, neither for disease-associated NPC1/2

variants alone nor for all rare variation found in the NPC1 and

NPC2 genes (all p.0.05, Table 3).

The clinical characteristics of the six PD patients that were

heterozygous for disease-associated NPC1/2 variants are shown in

Table 4. The age of disease onset ranged from 55 to 76 years, with

an average onset at 65.8 years. All patients presented typical

parkinsonian features responsive to dopaminergic agents, four

patients exhibited a marked cognitive decline with disease

progression, and two patients had a positive family history for

PD. Over the course of disease, two patients were noted to have

impaired eye movements, patient number 2 both vertical and

horizontal and patient number 4 vertical. Patient number 4

further developed psychiatric symptoms at an early disease stage

(Table 4). Sanger sequencing of the entire NPC1 or NPC2 coding

regions and flanking intron regions detected no additional rare

variants in these six individuals, respectively.

Overall, the screening disclosed no rare NPC1/2 variants either

in homozygosity or in compound heterozygosity, hence no NPC

cases were recognized by our genetic analyses. One patient

diagnosed with PD was found to carry two novel heterozygous

missense variants in NPC1 (p.Asp611Gly, p.Val1158Met), both

with consistent pathogenic prediction by three prediction pro-

grams used (SIFT, PolyPhen2, Mutation Taster; Table 2).

Segregation analysis demonstrated that the variants were not

inherited independently but resided on the same chromosome.

Thus, the patient was not compound heterozygous for the variants

and did not meet the NPC diagnostic criteria [3]. Filipin test

performed in cultured skin fibroblasts of this subject showed a

pattern resembling the ‘‘variant’’ biochemical phenotype of NPC

(Figure S1) [33]. Chitotriosidase activity and plasma oxysterol

levels were in the normal range. Clinically, the 60-year-old man

suffered from PD since the age of 55 years with markedly left-sided

bradykinesia, rigidity, and rest tremor, and an excellent response

to dopaminergic medication. There were no atypical signs for PD.

Family history was positive for neurodegenerative disorders with

his mother having been diagnosed with Alzheimer’s disease, but

negative for any movement disorders.

Table 3. NPC1/2 variant frequencies by groupa.

PD FTLD PSP Controls

No.(%) No.(%) No.(%) No.(%)

(n = 563) (n = 133) (n = 94) (n = 846)

Disease-associated variantsb 6 (1.1%) 0 0 7 (0.8%)

Fisher’s exact test p = 0.78 p = 0.6 p = 1.0 reference

all rare variantsc 18 (3.2%) 4 (3.0%) 3 (3.2%) 26 (3.1%)

Fisher’s exact test p = 0.88 p = 1.0 p = 1.0 reference

PD = Parkinson’s disease; FTLD = frontotemporal lobar degeneration;
PSP = progressive supranuclear palsy.
aAbsolute number of variant carriers, percentage of carriers within the group, p
values.
bVariants previously described as disease-causing in a NPC patient.
cAll rare (MAF,1%) variants detected in NPC1 and NPC2 (synonymous changes
omitted).
doi:10.1371/journal.pone.0082879.t003
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Discussion

We investigated the possible role of rare sequence variants in the

NPC1 and NPC2 genes, mutations in which are causative for the

lysosomal storage disorder NPC, in three age-related neurode-

generative diseases (PD, FTLD, PSP). Dysfunction of the

lysosomal degrading system has been implied in a variety of

neurodegenerative processes and lysosomal storage disorders in

particular have been strongly linked to parkinsonism [13–17,20].

Mutations in the GBA gene, which encodes the lysosomal enzyme

deficient in Gaucher disease, are one of the commonest risk factors

for PD, which was primarily shown in Ashkenazi Jewish

individuals and subsequently in a number of other populations

worldwide [37–41]. More recently, a founder mutation in SMPD1,

the gene for Niemann-Pick types A and B disease (acid

sphingomyelinase deficiencies), was recognized as a novel suscep-

tibility factor for PD in the Ashkenazi Jewish population [19]. The

same study failed to prove association between PD and founder

mutations in the lysosomal enzyme genes HEXA (Tay-Sachs

disease) and MCOLN1 (mucolipidosis type IV) [19]. Now, our

analyses generated evidence that mutations in the lysosomal

storage disorder genes NPC1 and NPC2 are not associated with PD

in a homogeneous sample of European descent. The proportion of

PD patients positive for disease-associated NPC1/2 variants (1.1%)

was relatively low when compared to GBA mutation frequencies

reported in non-Jewish PD cohorts (4–7%) [18,42]. Moreover,

rare variants in NPC1/2 appear not to be associated with FTLD

and PSP in the German population. Notably, there are limitations

to the present study. First, the study was powered at 80% to detect

a significant association of rare NPC1/2 variants with PD when

modeling odds ratios $2.08 (significance level of 0.05, cumulative

MAF of rare variants in the present study ,1.6%). The sample

size was not large enough to judge modest or small effects of rare

NPC1/2 variants on PD risk. Taking this further, for an association

with FTLD or PSP odds ratios should have been $3.86 (power of

80%), considering that these patient cohorts were relatively small.

Second, our control sample was composed of individuals from the

general population without signs of neurodegenerative diseases or

taking dopaminergic drugs. Nonetheless, there might be potential

risks for PD, FTLD, and PSP later in life and these could have

confounded our observations. The carrier frequency for disease-

associated NPC1 variants among control subjects (0.8%) is in line

with the predicted frequency of 0.6% given a disease incidence of

1:120,000. Third, as we used HRM for variant detection and did

not perform Sanger sequencing of the entire NPC1/2 coding

region, the frequencies of NPC1/2 variants could be underesti-

mated across all samples. However, this effect was likely to be

small since previous investigations applying HRM yielded a

diagnostic sensitivity of 100% for heterozygous variants and 93%

for homozygous variants [29,43]. Ultimately, different results may

be obtained by using more specific inclusion criteria for patients

like an early disease onset or a positive family history, or by

conducting the study in geographically and ethnically different

populations.

Albeit the lack of a genetic association in this study, it cannot be

fully excluded that heterozygous pathogenic variants in NPC1 and

NPC2 represent a component of risk for age-related neurodegen-

erative disorders or might play a role in certain subsets of such

patients. In two of six PD patients (33%) heterozygous for disease-

associated NPC1/2 variants impaired vertical gaze was found on

clinical examination, an atypical sign for PD and the key feature of

NPC, and one of these patients developed concomitant psychiatric

symptoms early in the disease course. Findings from animal

models highlight that heterozygous NPC1 mutations affect

neuronal function and neurodegenerative disease status, particu-

larly in the context of aging [44,45]. Further, several studies

suggest the possibility of symptomatic heterozygotes in human

NPC: Josephs et al. proposed one mutant NPC1 allele as the cause

of parkinsonian tremor in a 75-year-old patient [46]. Harzer et al.

report a NPC1 heterozygote manifesting systemic signs of NPC

during childhood [47]. And, a very recent manuscript described

three independent adult relatives of NPC patients who were

heterozygous NPC1 mutation carriers and exhibited a parkinson-

ism syndrome [48].

NPC displays an extreme clinical heterogeneity, with a large

number of possible differential diagnoses. The most common

presentation in adult-onset cases is a psychiatric illness combined

with cognitive decline and motor signs (parkinsonism in 10%), but

mild clinical pictures with predominant motor dysfunction are also

observed [5]. VSGP is a characteristic sign of NPC, but also

evident in other neurological disorders. In the present study, we

could not unveil any misdiagnosed NPC in 563 patients with PD,

133 patients with FTLD, and 94 patients with PSP by means of a

mutational screen. This negative result notwithstanding, it seems

important to note that NPC patients might be identified in adult

neurologic disease cohorts, for example when testing larger

numbers of patients or including individuals exhibiting more

exceptional clinical presentations, as recently demonstrated

[11,12]. Besides, it is possible that NPC diagnoses could have

been missed because sensitivity of HRM is not 100%, and there

was no exploration of large deletions or deep intronic mutations,

which were shown to be rarely responsible for NPC [49,50]

[Latour and Vanier, unpublished data]. Our study detected an

individual with PD who carried two novel NPC1 missense variants

(p.Asp611Gly, p.Val1158Met) but was found not to be a

compound heterozygote on segregation analysis. Notably, this

case emphasizes the crucial need to check for independent

allele segregation when establishing the diagnosis of NPC by

gene sequencing. Biochemical characterization of the two novel

variants by filipin staining revealed that at least one or the

combination of the two variants is functionally relevant to the

NPC1 protein since mild abnormalities resembling the ‘‘vari-

ant’’ biochemical phenotype were observed in patient skin

fibroblasts. This pattern is seen in a subset of patients with

NPC but is also well documented in heterozygote carriers of

NPC [1,33]. An effect on plasma oxysterol levels has been

described for heterozygous NPC1 mutations [35], but was not

seen in this case. Moreover, confirming the polymorphic nature

of the NPC loci, our study disclosed eight additional novel

variants in NPC1 and one novel variant in NPC2, yet their

functional significance with regard to the NPC1 and 2 proteins

remains unknown.

In conclusion, our study indicates that rare variants in the NPC1

and NPC2 genes are not associated with PD, FTLD, and PSP in

our populations and that, moreover, misdiagnosed NPC seems not

to be frequent in these entities. Further NPC mutational screenings

in larger and ethnically diverse cohorts of patients with PD and

other neurodegenerative conditions should be undertaken to

conclusively define the contribution of these lysosomal genes to the

development of age-related neurodegeneration.

Supporting Information

Figure S1 Filipin test from a PD patient carrying in cis the NPC1

variants p.Asp611Gly and p.Val1158Met. Fibroblasts cultured

from skin biopsies of a healthy control subject (negative control, A),

a classical NPC patient (positive control, B), and the PD patient

(C), after staining of unesterified cholesterol by filipin. The
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fibroblasts were maintained three days in a culture medium

supplemented with 10% lipoprotein-deficient calf serum to

maximize LDL-receptors expression. The cholesterol-starved

fibroblasts were then challenged with human purified LDLs

(50 mg/ml medium) for 24 h, and finally fixed with formalin and

stained [33]. Cells were examined by epifluorescence microscopy

(Nikon Eclipse 80i, UV-1A filter, 620 Planfluor objective,

DXM1200-C/NIS Elements imaging system). In C, the PD

patient presents 30–50% of weakly positive cells. Original

magnification 6200.

(TIF)

Table S1 Primers used for HRM and Sanger sequencing.

(DOC)

Table S2 Touchdown PCR protocol.

(DOC)
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