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Abstract

Biological pathways provide rich information and biological
context on the genetic causes of complex diseases. The lo-
gistic kernel machine test integrates prior knowledge on
pathways in order to analyze data from genome-wide asso-
ciation studies (GWAS). In this study, the kernel converts the
genomic information of 2 individuals into a quantitative val-
ue reflecting their genetic similarity. With the selection of the
kernel, one implicitly chooses a genetic effect model. Like
many other pathway methods, none of the available kernels
accounts for the topological structure of the pathway or

gene-gene interaction types. However, evidence indicates
that connectivity and neighborhood of genes are crucial in
the context of GWAS, because genes associated with a dis-
ease often interact. Thus, we propose a novel kernel that in-
corporates the topology of pathways and information on in-
teractions. Using simulation studies, we demonstrate that
the proposed method maintains the type | error correctly
and can be more effective in the identification of pathways
associated with a disease than non-network-based meth-
ods. We apply our approach to genome-wide association
case-control data on lung cancer and rheumatoid arthritis.
We identify some promising new pathways associated with
these diseases, which may improve our current understand-
ing of the genetic mechanisms. ©2014 S. Karger AG, Basel
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Introduction

Pathway-based analysis can supplement the explora-
tion of data from genome-wide association studies
(GWAS) through the integration of prior biological
knowledge [e.g. 1-4]. Primarily, the success of pathway-
based analysis may be explained by its focus on jointly
testing of functionally related SNPs. On the one hand, this
allows the identification of pathways via multiple causal
low-effect SNPs, which are usually hard to detect with
conventional GWAS approaches. Pathway-based analy-
sis also considerably reduces the multiple-testing prob-
lem. On the other hand, it has the potential to benefit di-
rectly from the knowledge on functional dependencies in
the human organism [5]. Results obtained from pathway-
based analysis can be interpreted in this context. This al-
lows the easier generation of hypotheses for both diag-
nostic and prognostic targets [6] and can contribute to
the development of novel treatment strategies.

The range of pathway-based analysis approaches is
steadily expanding; for an overview of some methods see
Wang et al. [7] and Varadan et al. [8]. Gene-set enrich-
ment analysis (GSEA) [9], which was originally devel-
oped for gene expression data, has remained the most
popular method. Essentially, this method consists of a
nonparametric test for the enrichment of SNP-disease as-
sociations in a pathway. Like nearly all other pathway-
based analysis approaches, it fails to utilize most available
knowledge on pathways. In particular, it ignores informa-
tion on which genes interact in the pathway. Instead, giv-
en a pathway, GSEA treats genes and their corresponding
SNPs independently from each other.

There is increasing evidence that precisely such infor-
mation on functional relationships among genes, i.e. the
topology of the pathway, is of relevance in the context of
GWAS. Several studies demonstrated that disease-caus-
ing genes often directly interact with each other as part of
larger regulatory or functional systems [10, 11]. For
Crohn’s disease, Chen et al. [12] demonstrated that ‘genes
in the same neighborhood within a pathway tend to show
similar association status’. In fact, it has been estimated
that ‘80% of the currently missing heritability for Crohn’s
disease could be due to genetic interactions’ [13]. How-
ever, not only direct interaction seems to be important.
Lee et al. [14] demonstrated that SNP-trait associations
are enriched in genes occupying structurally relevant po-
sitions in known pathways.

Some researchers have already recognized the poten-
tial of incorporating pathway topology, also called net-
work, into the analysis of GWAS data. Chen et al. [12]

Network-Based Kernel in LKMT for
GWAS

proposed a Markov Random Field to include topological
structures. Pan [15] developed a procedure that reduces
the multiple-testing burden according to the average dis-
tance between genes in a pathway. Others have coined
methods that aim to identify significantly associated sub-
networks [16, 17]. However, all these methods are based
on p values, which summarize the risk for a disease for
whole genes, rather than on raw genotype data.

The integration of networks via kernels is not new, for
example Rapaport et al. [18] considered one in a support
vector machine analyzing microarray data. In general,
kernels are the basis of many powerful statistical methods,
such as support vector machines, nonparametric regres-
sion and smoothing splines. Thereby, kernels are positive
semi-definite functions that reflect the pairwise similarity
between observations. The use of such kernel methods
rapidly gained popularity in the identification of associa-
tions between pathways and complex traits, as they are
both powerful and flexible [19, 20]. Schaid [21] speculated
that appropriate modifications of the kernel could also al-
low for the inclusion of networks in GWAS. In this light,
we propose sophisticated kernels for the logistic kernel
machine test (LKMT) that account for pathway topology.
Here, pathway topology includes not only the network, i.e.
gene-gene interactions, but also the nature of interactions,
which may either constitute activation or inhibition.

We apply the LKMT with our novel network-based
kernels to genome-wide case-control data on rheumatoid
arthritis (RA) and lung cancer (LC). Both diseases are
common in industrialized nations with an enormous so-
cial and economic impact. Moreover, generally effective
cures or prevention strategies have not been discovered
yet. In fact, for the United States, estimated 228,190 new
LC cases will occur in 2013, making it the most common
type of cancer [22]. Even though exposure to tobacco
smoke determines most of the risk of developing LC,
many studies also suggest genetic influences. Other than
a few rare LC syndromes, only a moderate number of ge-
netic effects, each contributing to only a weak increase in
risk, are known. RA is the most common chronic joint
disease and affects nearly 1% of the adult population in
the United States. Many genetic factors have been firmly
established as contributing to RA risk, in particular the
human leukocyte antigen (HLA) region on chromosome
6 [23]. Thanks to their different genetic profiles, the study
of both these diseases offers an excellent opportunity to
evaluate the performance of novel statistical methods
whose aim is to detect genetic associations of different
strengths. Using kernels that incorporate known network
structures of pathways within the LKMT has the potential

Hum Hered 2013;76:64-75 65
DOI: 10.1159/000357567




to discover previously unknown genetic risk factors.
Through its focus on pathways, it also promises to eluci-
date disease etiology [5].

Next, we briefly outline the framework of the LKMT.
We suggest a way to construct kernels that integrate in-
formation on a pathway topology obtained from the pub-
licly available ‘KEGG: Kyoto encyclopedia of genes and
genomes (KEGG) [24]. We then present simulation re-
sults demonstrating the power of our kernels compared
to commonly used kernels in simple scenarios. We also
demonstrate that our kernels retain the correct type I er-
ror level. Moreover, we discuss the results obtained from
the analysis of the 2 GWAS on LC and RA. Using con-
cepts from statistical network theory, we verify empiri-
cally that the integration of network information does not
lead to artifacts or conceal genuine effects. Finally, we
conclude with a discussion of the promising results of our
research as well as possible further improvements to our
method. Most of the analysis was conducted with the sta-
tistical software package R [25] unless stated otherwise.

Materials and Methods

In this section, we firstly describe the LKMT, followed by de-
tails of the network-based kernel and its construction. We second-
ly introduce the GWAS and pathway data used. Finally, we de-
scribe the simulations performed and the analysis of their results.

The Logistic Kernel Machine Test

The LKMT assumes a semi-parametric logistic regression
model for the probability of being a case. It models genetic effects
nonparametrically and environmental effects parametrically:

logit(P(y; = 1)) = x'B + h(z), 1)

where y; is the case-control indicator (control: y; = 0, case: y; = 1)
fori=1, ..., nindividuals. The vector B represents the intercept and
regression coefficient terms related to the environmental covari-
ates x; for the i-th individual (i = 1, ..., n). These typically include
gender and other trait-relevant information, which are modeled
parametrically as fixed effects. The variable z; denotes the genotype
vector of some selected or all SNPs, coded in the usual trinary fash-
ion (the number of minor alleles, i.e. z;; € {0, 1, 2} for any modeled
SNP s in individual i). The nonparametric function # € Hg de-
scribes how the risk of being affected by the disease depends on the
observed genotypes. Here, Hx denotes a reproducing kernel Hil-
bert space generated by a positive semi-definite and symmetric
kernel K. The mathematical properties imply that any function in
that space, h € Hg, can be approximated arbitrarily close by linear
combinations of its corresponding kernel [26], i.e.

h (zi):Zj:lajK (zj, z,.), a; €R.

The kernel K(z; z;), evaluated for individuals i and j, can also
be understood as measuring the similarity between the individuals
i and j based on their genotypes. Hence, by selecting a different
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kernel, one specifies a different concept of similarity and, implic-
itly, a different model for the effect of the SNPs on the risk of de-
veloping the investigated disease. One of the most commonly used
kernels is the linear kernel (LIN), K(z;, zj) = ziT zj, which measures
the correlation between pairs of individuals. It assumes each SNP
delivers a random independent and additive contribution with the
same variance, in fact, specifying a linear multiple marker logistic
regression. In case of a squared loss function instead of a log-like-
lihood, the model implied by the LIN can be shown to be equiva-
lent to ridge regression. Note that this also highlights the close
relationship to principle component methods [27]. Obviously,
such a model neglects interactions among the considered SNPs
[20].

On the basis of the semi-parametric logistic regression model,
we test the null hypothesis (Hy) that none of the modeled SNPs is
associated with the disease. We can express this mathematically by
Hy: h(z;) =0foralli=1, .., n. Such a Hy can be tested by construct-
ing a score-type statistic. Score statistics are known from variance
component tests or lack-of-fit of fixed effect models. In our case,
the score-type statistic used in the LKMT is given by:

Q=3 (v—a") Ky i) @

wherey = (y1, ..., y,)T denotes the vector of all individual case-con-
trol outcomes and (i’”) is a vector with elements /ﬁt,»(o) = logit™!(x;f),
the maximum likelihood estimate under H, for the i individuals.
The matrix K corresponds to the kernel evaluated for all combina-
tions of individuals. Due to its quadratic form, the test statistic Q
follows asymptotically an unknown mixture of x? distributions. In
order to obtain a p value for significance, this distribution is well-
approximated by a moment matching method (see Wu et al. [20]).
When testing many different pathways, multiple-testing correc-
tions should be applied to the p values. In our analysis, we used the
rather conservative but simple Bonferroni correction.

Construction of Network-Based Kernels

In order to accommodate network topologies of pathways,
Schaid [21] proposed the kernel matrix K = ZSZT for genomic in-
formation, where the matrix S scores the similarity of SNPs. The
matrix Z = (zy, ..., z,) | denotes the genotype matrix, i.e. the collec-
tion of genotype vectors zj, ..., z, of all individuals. However,
Schaid does not give a general specification of S, but he reviews
different choices for some exemplary genomic applications in-
stead. The kernel, which we develop to take network topologies
into account, is motivated by the viewpoint of a kernel as a similar-
ity measure: SNPs located in the same gene or in interacting genes
are scored to be more similar than SNPs far apart regarding the
network structure. Such a notion of similarity is sometimes also
referred to as ‘guilt-by association’ [28] and has been verified em-
pirically for several complex diseases. More precisely, we define the
matrix S as ANAT, where matrix A maps SNPs to genes and matrix
N represents the network (for an illustration of the kernel’s con-
struction, see also fig. 1). Altogether, the kernel matrix is defined
as K= ZANA'Z". Here, the genotype matrix Z is allowed to con-
tain missing values making imputation necessary.

The elements a, € {0, 1} of matrix A represent the membership
of SNP s in gene g. Most commonly, SNPs are assigned to genes
purely on the basis of their location on the genome, but other an-
notations are conceivable [7]. In the 2 real GWAS, we assign a SNP
to a gene, when it is directly located in a gene or in the 500-kbp
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(A1) Data
SNP1SNP2SNP3 - °
Fig. 1. Pipeline of the construction of the ID1] 0 NA 2
network-basedkernel matrix K=ZANATZ. o2l o0 o 1
(A1) Genotype data (SNP No.) coded in

trinary fashion for cases and controls (ID
No.) are presented in a matrix. (B1) SNP-
gene annotation is mapping all SNPs to
pathway genes, as long as they are located
in the gene or in the 500-kbp windows
around the gene. (C1) The pathway net-
work with activating (solid arrows) and in-

hibiting (dashed arrow) interactions be- D1 0 08 2
tween genes. (A2) Imputation of missing o2 o0 o
genotype values via BEAGLE [33] and de- Z= o3
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letion of SNPs that cannot be mapped to a
pathway resulting in genotype matrix Z.
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D3[ 1 9 2

(A2) Imputation

SNP1 SNP2 SNP3 « -

(B1) Annotation

Gene 1 Gene 2

I———l
Gene G
_|

(C1) Network

SNP 1

(B2) Mapping

Gene1 Gene2 Gene3
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membership. (C2) The network structure
is modified so that genes without any ge-
notyped SNPs (yellow node) and their cor-
responding links (grey arrows) are deleted,
but their directed interactions with their
next neighbors are retained (black arrows);
the network structure is then converted
to an undirected adjacency matrix N,
where 1 represents activation and -1 rep-
resents inhibition. (D) Calculation of the
network-based kernel similarity matrix by
K =ZANA"Z".

(D) Kernel Similarity Matrlx

K=ZANA'Z" =

Y
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wl | I
ID3 DD. .
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windows on either side. Note that, a SNP can be assigned to more
than one gene due to some overlap of genes. Further, we adjust for
different gene sizes by re-weighting the impact of a gene effect.
This ensures an equal treatment despite different numbers of gen-
otyped SNPs in the genes. We denote the modified A by A* with
elements

where 7, equals the number of SNPs in gene g. In the following, we
refer to network-based kernels using the unadjusted gene-SNP an-
notation as NET and ANET under utilization of the size-adjusted
gene-SNP matrix A*.

The matrix N denotes the quadratic adjacency matrix of the
neighborhood structure of the genes in the pathway. Its dimension
equals the number of genes in the pathway. We consider selfinter-
actions, i.e. that every gene interacts with itself, by setting all di-
agonal elements of matrix N = 1. Unlike other network-based
methods, we distinguish between activating and inhibiting gene-
gene interactions. Thus, an element 7, - of N equals 1 or -1, if genes
gand ¢ interact in an activating or inhibiting fashion, respectively.
In the following, we refer to the use of adjacency matrices that dis-
tinguish between inhibition and activation as signed and networks
with unspecified interaction types as unsigned.

Network-Based Kernel in LKMT for
GWAS

This basic network structure must be further modified to en-
sure a well-defined kernel, which should be complete, symmetric
and positive semi-definite. Firstly, to ensure completeness of the
pathway topology, we rewire certain interactions, which are as-
sociated to genes without genotyped SNPs. During mapping
computation, $ = ANAT such genes and their interactions would
be removed from the analysis automatically. Firstly, to preserve
full information on interactions in the pathway, we project links
of genes without genotyped SNPs to their immediate neighbors.
This means, we include additional links, where earlier 2 interac-
tions existed and which would otherwise have been removed en-
tirely. Thereby, the link sign of the newly created interaction is
determined in a multiplicative fashion, e.g. the combination of a
former inhibition and activation results in a new inhibition. Sec-
ondly, we transform the directed pathway structure into an undi-
rected network via mirroring along the diagonal. Finally, kernels
are required to be positive semi-definite, while undirected adja-
cency matrices N are not necessarily positive semi-definite. Thus,
we introduce a new procedure to find the closest matrix N* by
superimposing as much noise as necessary to render the new ma-
trix positive semi-definite without introducing additional inter-
actions to the network. If N is not positive semi-definite, we re-
place the original matrix N in the kernel equation by the weight-
ed N* = pN + (1 + p)I, where I is the identity matrix. It can be
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easily verified that N* is a positive semi-definite matrix if p € [0,
Pmax)> Where
1

1— A’min

Pz = ©)
and A, is the smallest eigenvalue of N. Our approach of approx-
imating the symmetric matrix N by a positive semi-definite one
has the advantage that the original network topology is exactly
preserved although the link weights are eased. It also allows for an
interpretation of the identity matrix as a noise component. We
suggest using p = pp.x since N* is the closest to the original matrix
N but is positive semi-definite and has the minimum eigenvalue
zero. We also tested normalized and ordinary Laplacian matrices
[29] as well as an algorithm by Higham [30] to find the nearest
positive semi-definite approximation of the network matrix, but
found them to have inferior performances (data not shown) when
compared to N and its replacement described above. Moreover,
the alternative methods change the network topology by including
additional interactions, while our method preserves the structure
of network.

Data

RA and LC GWAS

The German Lung Cancer Study (GLCS) examines the role of
genetic polymorphisms on the risk of developing LC at a relative-
ly early age, specifically LC diagnosed prior to the age of 50 years
[31]. Cases for this study, which comprise both small-cell LC as
well as non-small-cell LC, were sampled from 31 German hospi-
tals, while controls are from the KORA epidemiological survey of
individuals living near the southern German city of Augsburg. The
second study, which was conducted by the North American Rheu-
matoid Arthritis Consortium (NARAC), aims to identify genetic
risk factors for RA [32]. Thereby, the criterion of being a RA case
was set by the American College of Rheumatology and cases were
procured from New York hospitals. Informed consent was ob-
tained from all participants of both studies; the studies were con-
ducted according to the Declaration of Helsinki.

We applied stringent quality control (QC) measures, notably
the exclusion of possibly related individuals. Furthermore, SNPs
with a call rate <90% were eliminated. For all remaining SNPs,
missing genotypes were imputed using the standard software
BEAGLE [33]. The number of cases, controls and genotyped SNPs
can be found in table 1. Since some SNPs could not be assigned to
any genes, not all genotyped SNPs were used in the analysis. We
included sex as an additional environmental covariate. In GLCS,
we also considered age at LC diagnosis (cases) or exam (controls)
and the cigarette consumption in pack-years, i.e. the number of
cigarettes smoked per day multiplied by the years of exposure
through active smoking.

While participants in the LC study are fairly homogeneous
with regards to ethnicity, the ancestries of the participants in the
RA study ranged from Northern to Southern European. Despite
this, we did not correct explicitly for population stratification in
either study. There is cumulative evidence that multiple marker
methods used in high-dimensional settings inherently capture
cryptic relatedness, rendering additional corrections obsolete
[34, 35]. For multiple regression models which do not include
population structure explicitly, Setakis et al. [36] were able to
demonstrate their robustness for population stratification effects
via simulation studies. Thus, it stands to reason that additional
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Table 1. Number of individuals, SNPs and genes in the 2 GWAS
of LC and RA

GLCS NARAC
Cases Before QC 506 868
After QC 467 866
Males 286 226
Females 181 640
Controls  Before QC 480 1,194
After QC 468 1,189
Males 237 341
Females 231 848
SNPs Before QC 561,466 545,080
After QC 529,637 492,209
In the analysis 255,241 243,096
Genes In the analysis 2,808 2,807

Table 2. Network characteristics for the 182 investigated pathways

Network characteristic Mean Median  Range
Dimension 22.85 14.00 [2.00, 316.00]
Density 0.24 0.16 [0.00, 1.00]
Average degree 4.22 2.00 [0.00, 303.19]
Inhibition degree 0.14 0.00 [0.00, 3.07]
Diameter 3.57 3.00 [0.00, 15.00]
Transitivity 0.50 0.50 [0.00, 1.00]
Signed transitivity 0.32 0.31 [-0.20, 1.00]

correction for population stratification in the LKMT, which is
similar to such a model, would lead to overcorrection and in turn
loss of power.

Besides applying the LKMT with our network-based kernels
and the LIN kernel, we analyzed both data sets using GSEA. Unlike
the LKMT, GSEA tests competitive hypotheses, i.e. whether a par-
ticular pathway tends to be more associated with the disease than
all other investigated pathways. As a direct result of this funda-
mental difference between the LKMT and GSEA, comparisons of
their results are of particular interest. Here, we use the publicly
available GenGen software [9] to implement GSEA.

Pathway Data

We decided to use the popular database KEGG due to its man-
ual curation. Moreover, it offers a selected range of pathways in-
cluding experimentally verified metabolic pathways, information
and cellular processing pathways as well as those related to organ-
ismal system information and human diseases. We did not access
KEGG directly, but extracted the adjacency matrices by means of
the R package rBioPaxParser [37], which allows the use of the stan-
dardized Biological Pathway Exchange (BioPAX) language. Viswa-
nathan et al. [38] called BioPAX the ‘currently [...] best-suited for-
mat for mathematical modeling and simulations’. Our analysis in-
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cluded the topology of 182 pathways, which have sufficient network
information. After preparation, 38 adjacency matrices N were al-
ready positive semi-definite. For the remaining networks, we
found the closest positive semi-definite counterpart with the afore-
mentioned procedure (py,.x computed by equ. 3 has a mean value
of 0.48).

We found the structures of the different networks to be very
diverse, which is supported by common descriptive network sta-
tistics (see table 2). We considered:

Dimension counting the total number of genes in the pathway.
Density denoting the ratio of existing interactions to the possible
number of interactions in a fully connected pathway.

Average degree referring to the mean number of interactions from
or to a gene.

Diameter measuring the maximum length of the shortest path be-
tween all pairwise combinations of genes.

Transitivity denoting the probability of triangles, i.e. the interac-
tion between 2 neighbors of a gene.

For transitivity and degree, we also distinguished between
signed and unsigned networks. In the case of average degree, we
also looked at the average degree of inhibitions only. Its low mean
highlights that there are only very few inhibiting interactions in the
data base. Furthermore, we used the extension of transitivity intro-
duced by Kunegis et al. [39], which is able to take the interaction
type into account. In general, examination of the means and me-
dians of all descriptive statistics revealed strongly left-skewed dis-
tributions for all introduced network characteristics (see fig. 2).

Simulation Study

To evaluate the performance of the LKMT with our network-
based kernels, we studied empirical type I error rates and power in
different genetic settings. Note that null simulations for testing the
type I error rate are equivalent to the scenarios for testing power
without genetic effects. Empirical power or empirical type I error
rates are determined as the proportion of simulations for which a
p value < the ordinary 0.05 threshold is obtained. Ideally, the em-
pirical type I error rate should be exactly 0.05, while conservative
approaches are acceptable; whereas power should be as high as
possible. We compared type I error rates and power of the LKMT
with our network-based kernels (NET) with the performance of
the LKMT with the LIN kernel and the minimum p value approach
(minP). In the latter method, the minimum p value from single-
marker tests applied to every SNP in the pathway represents the
association of the entire pathway. Since larger pathways are more
likely to generate low p values by random chance [7], we used a
conservative Bonferroni correction to adjust the obtained p value
by the size of the simulated pathway.

A comprehensive pathway disease model that explains how in-
teractions between genes with susceptibility variants lead to the
development of a disease connecting biological and statistical
thinking has not been developed so far. Even if such a model were
to exist, its necessary complexity would render it extremely chal-
lenging to simulate. Our network-based kernels have been devel-
oped with such a degree of complexity in mind, but we use a sim-
pler simulation model. This model meets many assumptions of the
LKMT with the LIN kernel, and therefore we expect the LIN kernel
to be favored. Roughly, our method of simulation can be divided
into 4 parts:

Network-Based Kernel in LKMT for
GWAS

(1) Choosing the genetic setting with respect to a known network
structure and corresponding genetic effects.

(2) Simulating genetic variants and corresponding case-control
status for all individuals.

(3) Creating a structure of a pathway by mapping genetic variants
to ‘genes’ and ‘genes’ to ‘pathways’.

(4) Applying the pathway analysis approaches to the simulated
data.

As pathways we choose to investigate network structures of 2
real KEGG pathways; path:hsa04950 with 22 genes and path:
hsa05218 with 9 genes (compare fig. 3). Values of dimension, den-
sity, average degree, and average negative degree of path:hsa04950
are very close to the mean values of these network characteristics
obtained from all investigated KEGG pathways. In contrast, the net-
work characteristics of path:hsa05218 are more extreme compared
to the KEGG pathway averages. In order to examine empirical pow-
er, we simulated 2 different genetic settings each at different
strengths. In the ‘connected’ setting, 3 ‘genes’, each of which con-
tains 3 causal genetic variants, were selected in a way that they di-
rectly interact in the network. In the ‘apart’ setting, 3 ‘genes’, each
including 3 causal genetic variants, were far away from each other
with respect to the given network structures (see fig. 3). We expect-
ed our network-based kernel to perform better in the ‘connected’
setting than in the ‘apart’ setting, as our network-based kernel was
developed with the aim of exploiting connections explicitly. In both
settings, detection should be aided by the presence of strong linkage
disequilibrium (LD) between causal genetic variants and simulat-
ed noncausal variants (compare online suppl. fig. S1; for all online
suppl. material, see www.karger.com/doi/10.1159/000357567;
Barrett et al. [40]). The effect strength was varied by increasing het-
erozygous risk from 1.05 to 1.20 and the homozygous risk accord-
ingly from 1.10 to 1.40 for each causal variant.

Given the causal variants and their effect sizes, we simulated
genetic variants and corresponding case-control status for 1,000
individuals using the HAPGEN?2 [41] and the CEU sample of the
International HapMap Project [42]. HAPGEN?2 is considered to
mimic real genetic studies due to its reliance on reference popula-
tions and observed fine-scale recombination rates. Thus, it pre-
serves natural LD structures in the human genome. We simulated
1,100 genetic variants in the region between 1,054 and 11,657 kbp
on chromosome 1 for 500 cases and 500 controls. For each sce-
nario, we repeated the simulations 1,000 times. Note that we did
not use the pathway topology directly when simulating data.

To apply our network-based kernel, we require genetic variants
to be assigned to genes, which are in turn mapped to a network
topology. Since for reasons of feasibility we simulate genetic vari-
ants in one genomic region, we worked with local regions acting
as substitutes for real genes. We selected 22 or 9 local regions each
with 50 genetic variants separated by 500 kbp to prevent LD be-
tween ‘genes’. By restricting our analysis to same size ‘genes’, there
was no difference between results obtained with either the NET or
the ANET kernel. In the situation of equally sized genes, the adjust-
ment for ANET reduces to a constant scale factor, which vanishes
during the moment matching procedure.

Finally, we could apply all 3 investigated methods to the differ-
ent simulations. For the LKMT with the NET kernel, we utilized
the signed as well as unsigned versions of the pathways. Note that
only the NET kernel uses the created structure of the pathway.
Neither the LIN kernel nor the minP approach even takes into ac-
count which genetic variants belong to the same ‘gene’.
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Fig. 2. Histograms for all network properties of the 182 KEGG pathways. The network characteristics include
dimension, density, average degree, inhibition degree, diameter, transitivity, and signed transitivity.

Results

Simulation Study

We demonstrate here that the type I error rate is main-
tained for the LKMT with both the LIN and NET kernel
aswell as the minP approach in all studied genetic settings
(see table 3). Of all investigated pathway analysis ap-
proaches, minP is the most conservative possibly due to
the utilization of the Bonferroni correction. The type I
error rate for all methods was closer to the expected level
for the pathway with only 9 genes. Even so, if we were to
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simulate larger pathways we would observe size bias for
the LIN kernel. Size bias refers to the inflation of the type
I error rate with increasing numbers of SNPs contained
in the pathways. This phenomenon was demonstrated
conclusively for the LKMT with the LIN kernel via a sim-
ulation study by Freytag et al. [43].

Power simulations indicate that the LKMT with our
network-based kernels is indeed superior in performance
compared to other pathway analysis approaches for some
genetic settings (see fig. 4). In particular, the NET kernel
has up to 10% more power than the LIN kernel in the
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Fig. 3. Pathway network examples: ‘matu-
rity onset diabetes of the young’ pathway
(path:hsa04950) and ‘melanoma skin can-

5 CDKN1A
6 RB1
7 BAD

8 CDK4
9 MDM2

cer’ pathway (path:hsa05218). The corre-
sponding HUGO gene identifiers for each
node are given in the box at the bottom. |
Solid lines correspond to activations and I
dashed lines to inhibitions. The ‘connect- !
ed’ scenario refers to the simulations where '
genes with causal SNPs are close to each

other, while in the ‘apart’ scenario the

hsa04950

hsa05218

Pathway gene
® Activated gene in ‘connected' scenario
Activated gene in 'apart' scenario

genes with causal SNPs are far apart.

Table 3. Type I error rates for null simulations differentiated by the
tested pathways

Method  Inhibition Estimated type I error rate
path:hsa04950  path:hsa05281
(1,100 SNPs) (450 SNPs)

NET Not considered ~ 0.039 0.050

NET Considered 0.042 0.050

LIN - 0.049 0.048

minP - 0.019 0.023

The type I error rate is based on 1,000 null simulations each
with 500 cases and 500 controls.

‘connected’ setting. However, if the causal variants are
distributed more randomly with respect to the network,
the LIN kernel does generally better than the NET kernel.
Even though, for lower risk the differences between the
LIN and NET kernel in the ‘apart’ setting are not as pro-

Network-Based Kernel in LKMT for
GWAS

nounced. The minP approach was inferior to all other
methods for both simulated pathways. Generally, all
methods have uniformly higher power for the smaller
simulated pathway. Furthermore, differences in power
between the signed and unsigned version of the NET ker-
nel existed only for the larger pathway. The equivalence
of the signed and unsigned version in the small pathway
probably stems from the fact that it only contains one in-
hibition. Given the simplicity of our simulation study,
which favors the LIN kernel, our network-based kernels
(NET) performed very well.

Application

GWAS Findings

Previous GWAS revealed many associations for RA,
but they detected only a few for LC [23, 31]. The results
from our analysis of the RA and LC GWAS confirm these
observations. The LKMT with the signed ANET, unsigned
ANET, signed NET and unsigned NET detects 26, 27, 25
and 26 pathways, respectively, to be significantly associ-
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Fig. 4. Results from power simulations. The power in the ‘con-
nected’ and ‘apart’ scenario of the network-based kernels is plotted
against the heterozygous risk common for all causal SNPs. The
results are shown for 2 different network topologies (path:hsa04950
and path:hsa05218). Note that the results for the signed and un-
signed network-based kernel are identical in the second pathway.

ated with RA. In contrast, we were unable to detect any
significant pathway associations for LC. Another possible
explanation for the lack of significant LC associations
could also lie in the small sample size of the GLCS GWAS.

Similar to previous studies on LC, we cannot find any
significant pathways either. Thus, we rank the pathways
according to their p values in order to capture potential
important effects on the disease. The top 5 ranked path-
ways are largely similar for the different network-based
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kernels. As an example, we depict the results for signed
ANET in online suppl. table S1 as this is the most sophis-
ticated version of our kernels. The smallest p value belongs
to the pyruvate pathway (path:hsa00620). The pyruvate
pathway converts glucose to pyruvate, which supplies en-
ergy to living cells when oxygen is present. When oxygen
is lacking, it converts pyruvate to lactate. In cancer cells,
this second process takes place regardless of the presence
of oxygen, otherwise known as the Warburg effect [44].
Today, the Warburg effect is recognized as one of the im-
portant characteristics of cancer-causing mutations.

For RA, most of the identified susceptibility pathways
contain genes which have been shown to be associated
with the development and progression of RA in at least
one scientific publication (for significant results of signed
ANET, see online suppl. table S2). Furthermore, genes
located in the HLA region were present in the majority of
identified pathways. The results obtained using different
network-based kernels hardly differ. Results between the
signed and the unsigned version only differ by one path-
way for the adjusted and unadjusted versions of the net-
work-based kernel probably owing to the lack of inhibi-
tions in the investigated pathways. Interestingly, there are
2 pathways identified by the signed ANET but not by
signed NET, and 1 vice versa. This indicates that differ-
ences in the weighting of genes can alter the results. For
all network-based kernels, the steroid hormone biosyn-
thesis pathway (path:hsa00140) is among the pathways
with the smallest p values. Steroids are known to influ-
ence the immune system heavily. They can, in fact, reduce
inflammation, which is the reason that they are still some-
times used in RA treatment. Moreover, we identify 1
novel association with the drug metabolism pathway
path:hsa00983. This pathway is responsible for process-
ing drugs involved in the inhibition of DNA replication,
such as fluorouracil and azathioprine. Interestingly, aza-
thioprine is widely used as an immunosuppressive in the
treatment of chronic inflammatory diseases, such as RA.
Its efficacy in this area is attributed to its role in the con-
trol of T cell apoptosis by modulation of RACI activation
upon CD28 co-stimulation [45].

Comparison of the Results by Different

Pathway-Based Methods

In addition to our novel signed ANET kernel, we also
applied the established GSEA approach and the LKMT
with the simpler LIN kernel. For LC, none of the methods
detected any significant pathway association. In contrast,
the number of identified RA susceptibility pathways dif-
fered greatly, but they had a large common subset. The

Freytag et al.
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Table 4. Correlations of network characteristics and p values for the investigated GWAS

Network characteristics LC GWAS RA GWAS
LIN ANET NET LIN ANET NET

Dimension 0.13 -0.11 -0.12 -0.58 -0.33 -0.29
Density -0.11 0.00 -0.01 0.38 0.32 0.28
Average degree 0.02 -0.16 -0.17 -0.23 -0.05 -0.04
Inhibition degree 0.13 0.06 0.06 -0.28 -0.19 -0.17
Diameter 0.05 -0.11 -0.12 -0.36 -0.25 -0.23
Transitivity 0.04 -0.10 -0.15 -0.07 0.07 0.06
Signed transitivity 0.05 -0.15 -0.12 -0.19 0.00 0.01

The values are nonlinear correlation coefficients (according to Kendall). Values in bold indicate a correlation

that substantially differs from zero.

conventional GSEA approach identified only 14 path-
ways with significant effects, possibly due to the compar-
ative nature of the hypothesis. All of them were detected
as well with the LKMT using the signed ANET kernel,
which found 26 associated pathways. This might indicate
a higher sensitivity of the LKMT with network-based ker-
nels. Instead, the results obtained by using the LIN kernel
were less specific, as 130 pathways were determined to be
associated with RA. This large proportion of significant
results seems to be unlikely. Instead, we believe that size
bias in combination with the HLA region is responsible
for this oversensitivity. Thus, in our applications the
LKMT with the network-based kernel was powerful, gen-
erated reasonable results and thus represents the happy
medium between sensitivity and specificity.

We also examined the p values of the different meth-
ods. We observed that the distribution of the LIN kernel
results seem to be anomalously extreme. In contrast, the
p value distribution obtained with our network-based
kernel, which was fairly close to the one of GSEA, did not
exhibit any such anomalies (see online suppl. fig. S2).

Impact of Network Characteristics

Associations of LKMT results and network topology in-
dicate that the effects of the genotypes are concealed by the
effects generated by network structures. Thus, we corre-
lated network structure with obtained p values according
to Kendall’s rank coefficients (see table 4). Here, network
topology is described by various network characteristics
ranging from the average degree to clustering coefficient.

Apparently, there is some correlation in the RA GWAS
between the p values and properties of underlying net-
works, whereas the LC GWAS results reveal quite low de-
grees of correlations. We observed correlations between

Network-Based Kernel in LKMT for
GWAS

RA p values and pathway dimension for all kernels. This
indicates the aforementioned presence of size bias. How-
ever, the bias is strongly reduced for our network-based
kernels. We believe that further investigations of this is-
sue will lead to better size corrections. Density, which
measures the connectivity of the network, also seems to
influence the magnitude of the p values. Since this influ-
ence is even higher for the LIN kernel, which does not
incorporate network information, we assume some spu-
rious correlation. The effective size of the pathway is re-
flected by the diameter; its correlation therefore depends
on size as well as the degree of connectivity. The inhibi-
tion degree displays negative correlations, but these were
even stronger for the LIN kernel, so that we again assume
some spurious correlation. We cannot notice any effect
for the extent of clustering in the pathways which is quan-
tified by (signed) transitivity. Altogether, the differences
between networks with regard to their non-disease-caus-
ing characteristics do not seem to introduce bias.

Discussion

The topology of pathways contains information rele-
vant to our understanding of the functional connections
between biological pathways and complex disease pro-
gression and development. We developed a network-
based kernel for the logistic kernel machine to make use
of pathway information when analyzing GWAS. Alto-
gether, this presents a sophisticated and elegant statistical
framework, which allows the seamless integration of ad-
ditional knowledge on biological mechanisms. We dem-
onstrated that our procedure maintains the correct type I
error rate and often has more power to detect genuine
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associations than 2 conventional pathway analysis meth-
ods.

The applications to case-control studies for LCand RA
demonstrated the ease of implementation and efficiency
of our method. Furthermore, the disease studies revealed
its ability to generate plausible results under extremely
different genetic profiles. For LC, the most promising re-
sult, though not significant, was the suggestion of a rela-
tionship with pyruvate metabolism. An immunohisto-
chemical analysis conducted by Koukourakis et al. [44]
provided evidence that the pyruvate pathway is repressed
in 73% of non-small-cell lung carcinoma. Therefore, it is
possible that the attempt to replicate our results in a big-
ger study may well shed further light on the question as
to whether there exists a genuine genetic association or
not. In the case of RA, several promising pathways, most
of them involving the HLA region, were identified using
our network-based procedure. Besides the pathway for
drug deactivation, the notch-signaling pathway is of con-
siderable interest in finding the cause of RA. Notch sig-
naling may be responsible for further exacerbating the
inflammatory response and joint destruction in RA pa-
tients through the formation of dysfunctional microves-
sels in the papillary dermis of the skin [46].

Currently, there is little knowledge of how the in-
creased occurrence of genetic variation in a pathway af-
fects the functionality of the human system. This lack of
a reasonable biological effects model not only severely
hampers method development, but it also makes infor-
mative simulation studies impossible. For our new kernel
in particular, it would be of tremendous interest to inves-
tigate power using meaningful pathway-disease scenari-
os. Since such simulation scenarios would feature interac-
tions between causal variants, we are confident that our
network-based kernels would then be by far superior in
comparison with commonly used kernels. Such kernels,
in particular the LIN kernel, typically assume linearity of
effects and thus fail under such conditions. Furthermore,
these simulation models would allow us to investigate the
effect of incorrectly specified networks. We expect that
the network-based kernels can handle some missing links
with some power decrease. In the application, we already
demonstrated that our approach found a happy medium
between sensitivity and specificity, even though the used
pathway data are known to be incomplete. Thus, given
the extent of our knowledge we will have to rely on the
good performance of our kernels in the 2 applications as
well as the greatly simplified simulation study.

Our method constitutes a promising foundation for
further advances in network-based analysis of GWAS
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data. In particular, the procedure to generate positive
semi-definite network matrices, which can include nega-
tive interactions, may find applications in diverse fields of
research. As one area of improvement, we see the inclusion
of interaction directionality between genes. An adjacency
matrix also tracking the direction of the interaction would
no longer be symmetric, thus violating the requirement of
positive semi-definite kernels. The restriction to undirect-
ed adjacency matrices is a common simplification but
presents a considerable loss of information. Another im-
provement would lie in the explicit consideration of link
uncertainty via incorporating link prediction approaches
or Bayesian methods in the construction of the kernel.

More importantly, the inaccurate and incomplete na-
ture of regulatory models remains the biggest challenge
to network-based analysis. Collaborative research by lab-
oratories and institutes has improved our understanding
of biological processes greatly, but much work still re-
mains to be done. The true value of network-based meth-
ods will only be realized, when network models leverage
additional information particular to the investigated dis-
ease [5]. In particular, models should account for the cell-
specific context and the dynamic nature of the regulation
of biological mechanisms dependent on time [47].
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